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Abstract

In this thesis we build a Kolyvagin system for the Galois representa-
tion attached to a Hida family of modular forms, starting from the big
Heegner point Euler system of Longo and Vigni built in [LV11] in towers
of Shimura curves. We generalize the work of [Büy14] to a quaternionic
setting, relaxing the classical Heegner hypothesis on the tame conductor
of the family. As a byproduct of this construction, we give a proof of
one divisibility of the anticyclotomic Iwasawa main conjecture for Hida
families.
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Introduction

Motivation

In his seminal series of papers [Kol88], [KL89] and [Kol90], Kolyvagin introduced a
new method to approach the study of the Birch and Swinnerton-Dyer conjecture.
Let E be an elliptic curve over Q of conductor NE without complex multiplication
and K be an imaginary quadratic field of discriminant DK that satisfies the strong
Heegner hypothesis, meaning that every prime dividing NE is split in K. Fix also
an odd prime p ∤DKNE , denote by E[p] the group of p-torsion points of E and by
GQ the absolute Galois group of Q. Under the hypothesis that the representation
GQ → Aut(E[p]) is surjective, Kolyvagin was able to find an infinite set of points
yn in E that satisfy some remarkable properties. These points are the images of
some Heegner points on the modular curve X0(NE) via a modular parametrization
and are indexed in a set N of squarefree products of primes of Q inert in K not
dividing pDKNE . Each yn turns out to be rational over the ring class field Hn of
K of conductor n. Kolyvagin proves that this set of points satisfies the following
compatibility properties. For every prime ℓ ∈ N and every n ∈ N such that ℓ ∤ n,
we fix a compatible set of primes λn of Hn that lie above ℓ. Then the set of points
{yn}n∈N satisfies the following

(E1) TrHnℓ/Hn
ynℓ = aℓyn, where TrHnℓ/Hn

is the trace of Gal(Hnℓ/Hn) and ℓ+ 1−aℓ
is the number of Fℓ-rational points of the reduction Ẽ/Fℓ of E at ℓ;

(E2) ynℓ ≡ Frλn yn (mod λnℓ), where Frλn is the arithmetic Frobenius at λn;

(E3) cyn = εσ(yn) in E(Hn) ⊗Z Q for some ε ∈ {±1} and σ ∈ Gal(Hn/K), where c is
the complex conjugation.

The key point of the work of Kolyvagin was to send these points into the coho-
mology over K of the p-torsion points of E via the Kummer map and to modify them
by applying a suitable derivative operator Dn. The rigid properties of this new set
of cohomology classes are the key ingredient for the proof of the following theorem,
that is one of the main consequences of Kolyvagin’s work (see [Kol90, Theorem A]).

Theorem (Kolyvagin). Assume that the point TrH1/K y1 has infinite order in E(K).
Then the group E(K) has rank 1 and the Shafarevich–Tate group X(E/K) is finite.

As explained in the expository article [Gro91], the main step in the proof of this
theorem is to show that the rank of the p-Selmer group of E over K is 1. This result,
together with the famous Gross–Zagier limit formula [GZ86, §I, (6.5)], led to a proof
of the Birch and Swinnerton-Dyer conjecture for elliptic curves of analytic rank 0
and 1.

ix



x 0. Introduction

The idea of building compatible systems of cohomology classes à la Kolyvagin has
been generalized to Galois representations other than elliptic curves since the early
’90s. One important step in this direction is the work [Nek92] of Nekovář, where he
makes use of Heegner cycles in order to produce a compatible system of classes in
the cohomology of the Galois representation attached to an even-weight cusp form.
Similarly to the elliptic curves context, he was able to find bounds for the rank of
the relevant Selmer group attached to the representation.

At the beginning of the new millennium, the incredible fertility of Kolyvagin’s
approach led to an axiomatization of the concepts of Euler systems and Kolyvagin
systems. A system of cohomology classes for a Galois representation is called an
Euler system if it satisfies a suitable generalization of the properties (E1), (E2) and
(E3) above. The concept of Kolyvagin system, instead, was born to axiomatize the
propery of Kolyvagin’s cohomology classes that arise after the application of Koly-
vagin’s descent. Although the concept of Euler system has not been totally settled
in literature (notwithstanding the seminal work [Rub00]), the theory of Kolyvagin
systems was defined for a very general family of Galois representations thanks to the
work of Mazur and Rubin in [MR04]. In the same year, Howard [How04b] showed
that the set of cohomology classes built by Kolyvagin for elliptic curves is indeed a
Kolyvagin system, in this new axiomatic language.

The existence of a Kolyvagin system for a Galois representation has many im-
portant consequences (for example, it can be used to deduce information on the
rank of Selmer groups), but in this thesis we will mainly focus on its applications in
anticyclotomic Iwasawa theory, in a sense that will soon be explained. Indeed, the
core of our work is about building a Kolyvagin system for the anticyclotomic twist
of the Galois representation attached to a Hida family of modular forms, starting
from the Euler system of big Heegner classes of [LV11]. In Chapter 6 we explain
how the existence of such a Kolyvagin system yields to a proof of one divisibility
of the Iwasawa main conjecture. Let us get deeper in the subject and explain more
precisely the content of this thesis.

Hida theory

Fix a positive squarefree integer N and a prime p ∤ 6Nφ(N), where φ is Euler’s
totient function. Fix once and for all embeddings of algebraic closures Q̄ ↪ Q̄p,
Q̄ ↪ C. If µp−1 is the group of p − 1-th roots of unity, denote by ω ∶ (Z/pZ)× → µp−1
the Teichmüller character, which we view also as a Dirichlet character modulo Np.
Let

f(q) =
∞
∑
n=1

an(f)qn ∈ Sk(Γ0(Np), ωj)

be a normalized eigenform (for all Hecke operators Tℓ for ℓ ∤ Np and Uℓ for ℓ ∣ Np)
of weight k ≥ 2 and j ≡ k (mod 2). Fix a finite extension F /Qp which contains all
Fourier coefficients of f and call OF its ring of integers. Assume also that f is an
ordinary p-stabilized newform, in the sense that ap ∈ O×F and the conductor of f is
divisible by N (see §3.2.1). Call

ρf ∶ GQ Ð→ GL2(F )

the Galois representation attached to f by Deligne, where the arithmetic Frobenius
Frℓ at every prime ℓ ∤ Np acts with characteristic polynomial

X2 − aℓ(f)X + ωj(ℓ)ℓk−1.
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Assume also that the residual representation ρ̄f is p-distinguished and absolutely
irreducible (see Assumption 3.3.1).

Hida’s theory [Hid86b; Hid86a] incorporates f and the p-adic representation ρf
into an analytic family of modular forms and Galois representations. This construc-
tion is classical, but has encountered many variations in literature. In Chapter 3 we
settle its different versions (mainly coming from the different approaches of [Hid86b],
[How07, §2.1] and [LV11, §5]) and in the end we define a complete local Noetherian
domain R, finite and free over the Iwasawa algebra ΛF ∶= OF [[1 + pZp]], whose set
of arithmetic prime ideals (see §3.2.4) is in 1:1 correspondence with the set of p-adic
modular forms in the Hida family passing through f (see Theorem 3.2.9).

Taking inverse limits over m of the p-adic Tate modules of the Jacobian varieties
of the modular curves X1(Γ0(N) ∩ Γ1(pm)), in §3.3.3 we introduce a self-dual GQ-
representation T† which is free of rank 2 over R and has the property that, for every
arithmetic prime p of R, the representation V †

p ∶= T† ⊗R Frac(R/p) is a twist of the
representation attached to the modular form corresponding to p.

Big Heegner points

The first construction of an Euler system of Heegner classes (called big Heegner
classes) for the representation T† was pursued by Howard in [How07]. If, again, K
is an imaginary quadratic field of discriminant DK prime to Np that satisfies the
strong Heegner hypothesis with respect to N , Howard was able to build a system
of cohomology classes Xn ∈ H1(Hn,T

†) for every n ∤ N that satisfy compatibility
properties similar to (E1), (E2) and (E3) (see [How07, Propositions 2.3.1, 2.3.2 and
2.3.4]).

Howard’s work was generalized by Longo and Vigni in [LV11], with the aim of
building a system of big Heegner points for Hida families over imaginary quadratic
fields that do not satisfy the strong Heegner hypothesis. Indeed, let’s suppose that
there is a factorization

N = N+N−

such that the primes dividing N+ (respectively, N−) are split (respectively, inert) in
K. Although the construction of [LV11] is more general, for the work of this thesis
we assume also that DK ≠ −3,−4, that the class number of K is prime to p and
that the number of primes dividing N− is even (see Assumption 2.2.6). Studying the
arithmetic of a certain family of orders in quaternion algebras (see §1.1), Longo and
Vigni built a compatible family of Heegner points in towers of Shimura curves (see
§2.3). Moving to the cohomology, they construct a system of big Heegner classes

κn ∈H1(Hn,T
†)

satisfying compatibility properties generalizing (E1) and (E2) (see Propositions 3.5.5,
3.5.6 and 3.5.7). However, they do not prove a formula for the action of complex
conjugation on the classes κn, and the different approach of [LV11] does not make
clear how to generalize [How07, Proposition 2.3.4] to the quaternionic context. This
is why, at a certain point, we will need to conjecture that the right generalization
of (E3) holds also in our context (see Conjecture 5.5.7 and Remark 5.5.8). In a
future work, we will present another family of big Heegner points for T† for which
Conjecture 5.5.7 can be easily proven.
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Anticyclotomic Iwasawa theory

The core of this thesis is to perform a suitable Kolyvagin’s descent to the system of
big Heegner classes κn. At a certain point, we follow some of the ideas of [Büy14],
where the author explains how to construct a Kolyvagin system out of the set of
Howard’s big Heegner points. This is why we import some of his notation.

Let K∞ be the anticyclotomic Zp-extension of K and call Kα the α-th layer
of the extension K∞/K, for every α ≥ 1. Define Γac ∶= Gal(K∞/K) ≅ Zp and
Λac ∶= Zp[[Γac]]. Set Lα ∶= H1Kα and, for every n coprime with Np, set also
Lα(n) ∶=HnLα. See diagram (4.1) for a picture. Then we define the elements

zn,α ∶= corHnpα+1/Lα(n)U
−α
p κnpα+1 ∈H1(Lα(n),T†),

where corHnpα+1/Lα(n) is corestriction. The collection {z1,α}α∈N is compatible with
respect to corestriction (see Lemma 5.3.3), therefore we may set

κ∞ ∶= {corLα/Kα
z1,α}α∈N ∈ lim←Ð

α

H1(Kα,T
†),

where the inverse limit is taken with respect to corestriction maps. Shapiro’s lemma
(see §4.1.2) yields an isomorphism

H1(Kα,T
†) ≅H1(K,T† ⊗Zp Λ

ac/(γpα − 1)),

where γ is a fixed profinite generator of Γac. This implies that κ∞ can be seen as an
element of H1(K,TIw) where, by definition, we set TIw ∶= T† ⊗Zp Λ

ac, allowing the
group GK to act also on the second factor of the tensor product.

Kolyvagin systems

In Chapter 4, we show how one can adapt the theory of Kolyvagin systems of [MR04]
and [How04b] to our context, working with the representation TIw, that is a free
module of rank 2 over the ring RIw ∶= R ⊗Zp Λ

ac ≅ R[[Γac]].
Following the ideas of [Büy14] and [Büy16], we define suitable finite quotients

Rm,s,t of RIw and work with the finite representations Tm,s,t = TIw ⊗R Rm,s,t, for
every m,s, t ∈ Z>0. Then we define the set Pm,s of inert primes λ = (ℓ) of K not
dividing Np such that ℓ + 1 is divisible by ps and the arithmetic Frobenius Frλ at λ
acts trivially on Tm,s,t.

In §4.2.5 we define the module of universal Kolyvagin systems KS(TIw,FGr,P ′)
for TIw with respect to the strict Greenberg condition (see §4.2.2) and a family of
subsets of the sets of primes Pm,s. The precise definition of this module is quite
involved, so we refer to Definition 4.2.17.

Further assumptions and main result

Following the ideas of [Büy14], we have to make some technical hypotheses. The
first assumption is used to bound the p-part of the Tamagawa numbers at the primes
dividing N of the specializations of T†. If p is an arithmetic prime of R, we denote
by T (p) the associated GQ-representation, with coefficients in the integral closure
S(p) of R/p.
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Assumption (Assumption 5.2.3). There is an arithmetic prime p of R such that,
for every prime v of K dividing N ,

(1) Tam
(p)
v (T (p)) = 1;

(2) T (p)Iv is a free S(p)-module of rank 1, where Iv is a fixed inertia group at v.

This assumption is [Büy14, Assumption 3.4] (see also [Büy14, Remark 3.5]).
The number Tam

(p)
v (T (p)) is the p-part of the Tamagawa number of T (p) at v, as

defined in [FP94, §4] (see also our §5.2.2). Under this assumption, following closely
[Büy14], we are able to bound the Tamagawa numbers of all specializations of T†

(see Proposition 5.2.4) and to prove that H1(Iv,T†) is R-torsion-free (see Lemma
5.2.5). This last fact is crucial in order to prove that the classes zn,α lie in the strict
Greenberg Selmer group (see Lemma 5.3.7).

We remark here that one could replace this assumption with the hypotesis of T†

being minimally ramified at every prime v ∣ N (see §5.2.1). In this way, one still
obtains Theorem A. However, for our intended applications to Iwasawa theory of
Chapter 6, we will need the full power of Assumption 5.2.3. For more on this, see
Remark 5.2.6.

We also need to make an assumption on the local cohomology of T† at primes v ∣ p.
In this case, the representation T† comes with an exact sequence (see Proposition
3.3.7)

0Ð→ F +v (T†) Ð→ T† Ð→ F−v (T†) Ð→ 0

of R[[Dv]]-modules, where Dv is a fixed decomposition group at v, F+v (T†) and
F−v (T†) are free R-modules of rank 1.

Assumption (Assumption 5.4.7). For every valuation v ∣ p of K we assume that

H0(Kv, F
−
v (T̄

†)) = {0},

where F−v (T̄
†) is the residual representation F −v (T†) ⊗RR/mR.

For the content of this assumption we refer to [Büy14, (H.stz)]. It can be thought
as an assumption to rule out the existence of exceptional zeroes (in the sense of
[Gre94]) at characters of Γac of finite order.

Finally, we need to define a subset P ′m,s of Pm,s of primes with finer properties
(see Lemma 5.5.6). In order to show that this set is infinite, we must assume that the
image of GQ inside AutR(T†) is big (see Assumption 5.5.4 for a precise statement).
This type of hypothesis, although not present in [Büy14], is very classical and seems
necessary to pursue Kolyvagin’s descent. Then, our main result is the following.

Theorem A (Theorem 5.4.14). Under the running assumptions and Conjecture
5.5.7, there is a universal Kolyvagin system κ̃ ∈KS(TIw,FGr,P ′) such that

κ̃1 = κ∞ ∈ lim←Ð
α

H1(Kα,T
†).

The proof of this result occupies the whole Chapter 5. We first modify the classes
zn,α in order to find cohomology classes κ(m,s,t)n that are rational over K with values
in the finite quotients Tm,s,t of TIw. Then, we show that these classes lie in the
suitable Selmer group. Finally, in §5.5, we show how to build a universal Kolyvagin
system out of them. We remark here that an easier version of the arguments that
come into play in Chapter 5 can be used to build a universal Kolyvagin system for
the representation T† in stead of TIw.



xiv 0. Introduction

The Iwasawa main conjecture

Once we obtain a Kolyvagin system as in Theorem A, a quasi-standard argument
gives a proof of one divisibility for an Iwasawa main conjecture, sometimes also
called the Heegner point main conjecture. This is a generalization of the Heegner
point main conjecture for elliptic curves forumulated by Perrin-Riou [Per87], first
stated in [How07, Conjecture 3.3.1] and generalized in [LV11, Conjecture 10.8]. It
has been recently proven under mild hypotheses (slightly different than ours) by
Castella and Wan in [CW22].

Suppose that the ring RIw is regular (see Assumption 6.0.1) and let M be a
RIw-torsion module. We define the characteristic ideal of M to be

char(M) =∏
p

plength(Mp)

where the product runs over all height-1 primes of RIw. Define also

AIw ∶= TIw ⊗RIw (RIw)∨,

where (RIw)∨ is the Pontryagin dual of RIw.

Theorem B (Theorem 6.2.6). If κ∞ ≠ 0 then the modules SelFGr
(K,TIw) and

SelFGr
(K,AIw)∨ have RIw-rank 1 and

char (SelFGr
(K,AIw)∨tors) ⊇ char (SelFGr

(K,TIw)/(κ∞))
2
.

We devote the entire Chapter 6 to the proof of this theorem and we show how
one can adapt the arguments of [Fou13] to our setting. We hope that our work will
give more consistency to the first lines of the proof of [CW22, Theorem 5.5], where
they implicitely use the fact that Longo-Vigni’s Heegner points can be modified into
a Kolyvagin system. As stated at the end of [CW22, §4], the class κ∞ should be
nonzero thanks to a generalization of the arguments in [CV07], therefore we suspect
that one could drop this condition from the hypotheses of Theorem B.

Outline of the thesis

In Chapter 1 we review in great generality the theory of quaternion algebras and
Shimura curves. We compare different level structures on families of abelian surfaces
and explain how one can pass from the moduli to the analytic interpretation for some
Shimura curves of interest. In the end, we define the action of Hecke operators on
the Jacobian of these curves.

In Chapter 2 we review the definition of CM and Heegner points on Shimura
curves. We recall the construction of the compatible family of Heegner points built
in [LV11].

In Chapter 3 we review Hida theory. We compare two different versions of it and
build the big Galois representation T† attached to a Hida family of modular forms.
We then recall the construction of [LV11, §6], where they show how to compare
classical with quaternionic Hida theory. In the end, we review the construction of
the big Heegner classes built in [LV11].

In Chapter 4 we present the theory of universal Kolyvagin systems. First, we
define the representation TIw and its quotients. We recall some Iwasawa theory and
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define some relevant Galois groups and set of primes that will be used in §5. We
then review the theory of Kolyvagin systems and, in the end, define the module of
universal Kolyvagin systems for TIw.

In Chapter 5 we apply a suitable Kolyvagin’s descent to the big Heegner classes
of [LV11]. We study the local properties of the modified classes and show that they
lie in the appropriate Selmer group. Then, we prove that a suitable modification of
them form a universal Kolyvagin system for TIw.

In Chapter 6 we show how the existence of a nontrivial universal Kolyvagin
system for TIw yields to a proof of one divisibility of the Iwasawa main conjecture
for Hida families.

Notation
R× the group of invertible elements of a ring R;
R≥0 the nonnegative elements of a totally ordered ring;
Fq the field with q elements;
ℓ a prime number;
Zℓ the ℓ-adic integers;
Rℓ the ℓ-adic completion R⊗Z Zℓ of a ring R;
Qℓ the field of fractions of Zℓ;
Ẑ the profinite completion of Z;
R̂ the profinite completion R⊗Z Ẑ of a ring R;
F a field;
F̄ a fixed algebraic closure of F ;
GL2(F ) the group of 2 × 2 invertible matrices with coefficients in F ;
SL2(F ) the subgroup of GL2(F ) consisting of matrices with determinant equal

to 1;
H the upper half plane {z ∈ C ∶ Im(z) > 0};
H the set C ∖R.





Chapter 1

Shimura Curves

In this chapter we review the theory of Shimura curves, the main geometric object of
interest in this thesis. These curves were introduced in the 60’s by Goro Shimura in
a series of papers and their study was developed by many other authors in the 70’s
in the broader context of Shimura varieties. They generalize the notion of modular
curves to a quaternionic context, as we will see in detail in the next pages.

1.1 Quaternion algebras

Main reference: [Voi21]. In this section we introduce and study the arithmetic of
quaternion algebras. We will use the following notation:

F a field with char(F ) ≠ 2;
F̄ a fixed algebraic closure of F ;
ℓ a prime number.

1.1.1 Basics

Definition. An (associative) algebra B over F is a quaternion algebra if there
exist i, j ∈ B such that 1, i, j, ij is a F -basis for B and

i2 = a, j2 = b and ji = −ij (1.1)

for some a, b ∈ F×.

If F is a topological field, there is a unique topology induced on B as a finitely
dimensional vector space over F . For a, b ∈ F× we define (a, b ∣ F ) to be the quater-
nion algebra over F with F -basis 1, i, j, ij subject to the multiplication (1.1). Note
that the map that interchanges i and j gives an isomorphism (a, b ∣ F ) ≅ (b, a ∣ F ).
If L/F is a field extension and a, b ∈ F , there is a canonical isomorphism

(a, b ∣ F ) ⊗F L ≅ (a, b ∣ L).

Example 1.1.1. The quaternion algebra H ∶= (−1,−1 ∣ R) is called the algebra of
Hamilton quaternions.

Example 1.1.2. There is an isomorphism (1,1 ∣ F ) →M2(F ) induced by

i↦ (1 0
0 −1) , j ↦ (0 1

1 0
) .

1
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Definition. A quaternion algebra B over F is said to be split if B ≅ M2(F ) as
F -algebras.

Definition. If B is a quaternion algebra over F and L/F is a field extension, L is
called a splitting field for B if B ⊗F L is split.

Lemma 1.1.3. Every quaternion algebra B over F has B ⊗F F̄ ≅M2(F̄ ).

Proof. See [Voi21, Example 2.2.4 ].

Lemma 1.1.4. Let B be a quaternion algebra over F and let L ⊇ F be a quadratic
extension of fields. Then L is a splitting field for B if and only if there is an injective
F -algebra homomorphism L↪ B.

Proof. See [Voi21, Lemma 5.4.7].

Theorem 1.1.5. If B is an algebra over F , the following statements are equivalent:

(a) B is a quaternion algebra over F .

(b) B is a central simple algebra of dimension 4 over F .

(c) B is a central semisimple algebra of dimension 4 over F .

(d) The algebra B ⊗F F̄ is isomorphic to the matrix algebra M2(F̄ ).

(e) Either B is isomorphic to M2(F ) or B is a noncommutative division ring of
degree 4 over F .

Proof. The equivalence between (a),(b),(c),(d) is [Voi21, Proposition 7.6.1]. For (e)
see [Voi21, Corollary 3.5.6 and Main Theorem 5.4.4].

Following [Voi21, Chapter 3], we see that on B there exists a unique standard
involution, i.e. an F -linear map ∗ ∶ B → B which satisfies

1. 1∗ = 1.

2. (α∗)∗ = α for all α ∈ B.

3. (αβ)∗ = β∗α∗ for all α,β ∈ B.

4. αα∗ = α∗α ∈ F for all α ∈ B.

5. α + α∗ ∈ F for all α ∈ B.

Definition. Let B be a quaternion algebra over F and α ∈ B. We define the
(reduced) trace of α to be Tr(α) ∶= α + α∗ ∈ F and the (reduced) norm of α to
be Nm(α) ∶= αα∗ ∈ F .

Remark 1.1.6. If B = (a, b ∣ F ), as noted in [Voi21, §3.2.9], the map

∗ ∶ B Ð→ B

b = t + xi + yi + zij z→ b∗ = t − xi − yj − zij for t, x, y, z ∈ F

is the unique standard involution on B. In particular, the element b∗ is the only
element in B such that b + b∗ = 2t.
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Example 1.1.7. The adjugate map

A = (a b
c d
) z→ A† = ( d −b

−c a
)

is the standard involution on M2(F ). The operators Tr(A) and Nm(A) coincide
respectively to the usual trace and determinant of A.

Lemma 1.1.8. Let ϕ ∶ B → B′ be a morphism of quaternion algebras over F . Then

ϕ(b∗) = ϕ(b)∗

for every b ∈ B.

Proof. Write b = t + p with t ∈ F and where p is an F -linear combination of i, j, ij.
Remark 1.1.6 implies that b∗ = t−p. Since ϕ is F -linear, we have that ϕ(b) = t+ϕ(p)
and ϕ(b∗) = t−ϕ(p). Adding together, we obtain that ϕ(b) +ϕ(b∗) = 2t. By Remark
1.1.6, we conclude that ϕ(b∗) = ϕ(b)∗.

Corollary 1.1.9. Let ϕ ∶ B → B′ be a morphism of quaternion algebras over F .
Then Tr(b) = Tr(ϕ(b)) and Nm(b) = Nm(ϕ(b)).

Remark 1.1.10. As a consequence of Lemma 1.1.8 and Corollary 1.1.9, whenever
there is an embedding B ↪ M2(L) of a quaternion algebra B over F into a matrix
algebra over a field L, the canonical involution on B corresponds to the adjugate
map of Example 1.1.7 on M2(L). Moreover, the reduced trace and the reduced norm
on B correspond respectively to the trace and the determinant maps on M2(L).

The following is a fundamental result about automorphisms of quaternion alge-
bras, that descends from the Skolem-Noether theorem on simple algebras.

Theorem 1.1.11. Let B be a quaternion algebra over F . Then every automorphism
of B is an inner automorphism.

Proof. See [Voi21, Corollary 7.1.4].

1.1.2 Lattices and orders

For this subsection let R be a Dedekind domain and consider F ∶= Frac(R).

Definition. An R-lattice M of a finitely generated F -vector space V is a finitely
generated R-submodule of V such that M ⊗R F = V .

Definition. Let B be a finite F -algebra. An R-order O of B is an R-lattice that
is also a subring of B. An R-order O of B is maximal if there is no order of B
properly containing O.

If O is an R-order of B we will say that O′ is a superorder of O if O′ is an
R-order containing O.

Definition. Let B be a quaternion algebra over F . An Eichler order O ⊆ B is the
intersection of two (not necessarily distinct) maximal orders.

The following result is an easy consequence of Theorem 1.1.11.
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Lemma 1.1.12. Two R-orders of a quaternion algebra B over F are isomorphic if
and only if they are B×-conjugate.

Proof. An isomorphism f ∶ O1 → O2 of R-orders extends to an isomorphism

f ∶ B = O1 ⊗R F Ð→ O2 ⊗R F = B

of F -algebras. We conclude applying Theorem 1.1.11.

Lemma 1.1.13. Let B be a quaternion algebra over F and O ⊆ B be an R-order.
Then every element α ∈ O is integral over R and Tr(α),Nm(α) ∈ R

Proof. See [Voi21, Corollary 10.3.6 and Lemma 10.3.7].

1.1.3 Quaternion algebras over various fields

Quaternion algebras over algebraically closed fields. If F is algebraically
closed, by Lemma 1.1.3 we have that the only quaternion algebra over F is M2(F ).

Quaternion algebras over the reals. When F = R we have the following theo-
rem.

Theorem 1.1.14 (Frobenius). The algebra of Hamilton quaternions H is the unique
algebraic non-commutative division algebra over R up to isomorphism.

Proof. See [Voi21, Corollary 3.5.8].

Theorem 1.1.5 immediately implies that, up to isomorphism, the only quater-
nion algebras over R are the split algebra M2(R) and the algebra H of Hamilton
quaternions.

Quaternion algebras over finite fields. When F is a finite field, we have the
following theorem.

Theorem 1.1.15 (Wedderburn’s little theorem). Every finite division ring is a field.

Proof. See [Mac05].

This result, together with Theorem 1.1.5, implies that the only quaternion alge-
bras over a finite field F is, up to isomorphism, the split algebra M2(F ).

1.1.4 Quaternion algebras over finite extensions of Qℓ

For this subsection let ℓ be a prime, F /Qℓ be a finite extension of fields and OF be
the valuation ring of F . Fix a uniformizer λ of F and set l ∶= (λ). Set also kF ∶= OF /l
and call q the cardinality of kF .

Theorem 1.1.16. Let B be a quaternion algebra over F . Then B is a division
algebra if and only if

B ≅ (e, λ ∣ F )

where e ∈ O×F is nontrivial in k×F /(k×F )2.

Proof. See [Voi21, Corollary 12.3.12 and Theorem 13.3.11].
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When B is a division quaternion algebra over F , there are a lot of similarities
between B and finite field extensions of F . In particular, we can define valuations
and valuation rings. Let v ∶ F → Z ∪ {∞} be the normalized valuation on F .

Lemma 1.1.17. Let B be a division quaternion algebra over F . The map v can be
uniquely extended to a discrete valuation w ∶ B → R ∪ {∞}, i.e.:

(a) w(α) = ∞ if and only if α = 0.

(b) w(αβ) = w(βα) = w(α) +w(β) for all α,β ∈ B.

(c) w(α + β) ≥min(w(α),w(β)) for all α,β ∈ B.

(d) w(B×) is discrete in R.

Proof. See [Voi21, Lemma 13.3.2].

A straightforward consequence of this lemma is that the set

OB ∶= {α ∈ B ∶ w(α) ≥ 0}

is a ring, called the valuation ring of B.

Proposition 1.1.18. Let B be a division quaternion algebra over F . The ring OB is
the unique maximal OF -order in B, consisting of all elements of B that are integral
over OF .

Proof. See [Voi21, Proposition 13.3.4].

As a consequence, if B is a division quaternion algebra over F , then there is a
unique maximal order in B that is also the unique Eichler order. When, insetad, B
is the split quaternion algebra over F , we don’t have a unique maximal order.

Proposition 1.1.19. After fixing an isomorphism M2(F ) ≅ EndF (F 2), the maximal
orders in M2(F ) are subrings of the form EndOF

(M) where M is an OF -lattice in
F 2. As a consequence, the maximal orders in M2(F ) are the conjugates of M2(OF ).

Proof. See [Voi21, Lemma 10.5.4 and Corollary 10.5.5].

We pursue now the study of Eichler orders for the split algebra M2(F ). We have
the following characterization.

Proposition 1.1.20. Let O ⊆ B =M2(F ) be an OF -order. The following are equiv-
alent:

(a) O is an Eichler order.

(b) O is B×-conjugate to the order (OF OF
le OF

) for a unique e ≥ 0.

(c) O contains an OF -subalgebra that is B×-conjugate to (OF 0
0 OF

).

(d) O is the intersection of a uniquely determined pair of maximal orders.

Proof. See [Voi21, Proposition 23.4.3].

Definition. Let O ⊆ B =M2(F ) be an Eichler order. The ideal le ⊆ OF determined
by point (b) of the previous proposition is called the level of O.
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Corollary 1.1.21. Every superorder of an Eichler order in M2(F ) is Eichler.

Proof. Straightforward from point (c) of Proposition 1.1.20.

Proposition 1.1.22. Let B be a quaternion algebra over F and let O be an Eichler
order of B. Then

(a) Nm(B×) = F×;

(b) Nm(O×) = O×F .

Proof. For (a) see [Voi21, Lemma 13.4.9]. When B is a division algebra, the Eichler
order O is maximal and point (b) descends from [Voi21, Lemma 13.4.9]. When B is
the split quaternion algebra, [Voi21, Lemma 13.4.9] implies that Nm(O×) ⊆ O×F and
point (c) of Proposition 1.1.20 yields Nm(O×) ⊇ O×F .

We end this subsection with a remark on the topology of quaternion algebras
over finite extensions of Qℓ.

Lemma 1.1.23. Let B be a quaternion algebra over F and let O be an order of B.
Then O and O× are compact Hausdorff spaces, whereas B and B× are locally compact
Hausdorff spaces.

Proof. See [Voi21, §13.5.2 and §13.5.6].

1.1.5 Quaternion algebras over number fields

For this subsection we let F be a number field and OF be its ring of integers.

Definition. Let B be a quaternion algebra over F . For any place v of F , we define
the localization Bv of B to be Bv ∶= B ⊗F Fv.

Definition. Let B be a quaternion algebra over F . For any place v of F we say
that B splits at v if Bv ≅ M2(Fv). Otherwise, we say that B ramifies at v. We
denote by Ram(B) the set of places of F which are of ramification for B.

Theorem 1.1.24. The map B ↦ Ram(B) gives a bijection

{Quaternion algebras over F
up to isomorphism } ↔ {Finite subsets of noncomplex places

of F of even cardinality } .

Proof. See [Voi21, Main Theorem 14.6.1].

Remark 1.1.25. As a consequence, a quaternion algebra B over a number field F
is split if and only if Ram(B) = ∅. Moreover, two quaternion algebras B1 and B2

over F are isomorphic if and only if Ram(B1) = Ram(B2).

For quaternion algebras over number fields there is a precise characterization of
quadratic splitting fields, that extends Lemma 1.1.4.

Proposition 1.1.26. Let B be a quaternion algebra over a number field F and let
L/F be a quadratic extension of fields. The following statements are equivalent:

(i) L is a splitting field for B, i.e. B ⊗F L ≅M2(L);

(ii) There is an embedding L↪ B of F -algebras;
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(iii) Every place v ∈ Ram(B) does not split in the field L.

Proof. See [Voi21, Proposition 14.6.7].

Definition. Let B be a quaternion algebra over Q. We say that B is definite if B
is ramified at ∞, i.e. if B∞ = B ⊗Q R ≅ H. We say that B is indefinite if B is split
at ∞, i.e. if B∞ ≅M2(R).

Definition. Let B be a quaternion algebra over Q. The discriminant of B is

disc(B) ∶= ∏
ℓ∈Ram(B)∖{∞}

ℓ. (1.2)

Corollary 1.1.27. Let B be an indefinite quaternion algebra over Q. Then the field
Q(
√
−disc(B)) is a splitting field for B.

Proof. Apply Proposition 1.1.26, noticing that every prime dividing disc(B) is ram-
ified in Q(

√
−disc(B)).

Proposition 1.1.28. Let B be a quaternion algebra over F . Then Nm(B×) is the
subgroup of F × consisting of the elements α ∈ F× such that v(α) > 0 for every infinite
(real) place v ∈ Ram(B).

Proof. See [Voi21, Main Theorem 14.7.4].

Corollary 1.1.29. Let F = Q. If B is definite then Nm(B×) = Q>0, whereas if B is
indefinite then Nm(B×) = Q×.

We now move on to study lattices and orders in quaternion algebras over global
fields. We will mostly be interested in Eichler orders of quaternion algebras over Q,
as they will be the main arithmetic ingredient in the definition of the Shimura curves
of interest.

Definition. If B is a quaternion algebra over F and M is an OF -lattice of B, we
set Mv ∶=M ⊗OF

OFv for every finite place v of F , where OFv is the valuation ring
of Fv. The lattice Mv is called the localization of M at v.

Proposition 1.1.30 (Local-global dictionary for lattices). Let M be a lattice in a
quaternion algebra B over F . There is a bijection between the set of lattices N of B
and the set

{(Nv)v ∣ Nv lattice of Bv, Nv =Mv for all but fin. many finite places v of OF }

estabilished by the maps

N ↦ (Nv)v, (Nv)v ↦ {x ∈ B ∣ x ∈ Nv for all finite places v of OF }

which are inverse to each other.

Proof. See [Voi21, Theorem 9.4.9 and Lemma 9.5.3].

Definition. A property P of lattices of B is said to be local if a lattice M of B
satisfies P if and only if Mv satisfies P for all finite places v of OF .

Proposition 1.1.31. The properties for a lattice to be

(a) an order;
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(b) a maximal order;

(c) an Eichler order

are local.

Proof. This is a consequence of Proposition 1.1.30.

Let now B be a quaternion algebra over Q. We introduce the notion of reduced
discriminant for an order of B and we pursue a deeper study of Eichler orders in B.

Definition. Let B be a quaternion algebra over Q and let O ⊆ B be an order. Fix
a Z-basis α1, α2, α3, α4 for O. The discriminant of O is

disc(O) ∶= ∣det(Tr(αiαj))i,j ∣ ∈ Z>0.

Remark 1.1.32. The discriminant of an order O is integral thanks to Lemma 1.1.13,
and it is independent on the chosen basis.

The discriminant of an order is always a square (see the first lines of [Voi21,
§15.4]), therefore the following definition makes sense.

Definition. Let B be a quaternion algebra over Q and let O ⊆ B be an order. The
reduced discriminant of O is

discrd(O) =
√
disc(O) ∈ Z>0.

Let O be an Eichler order of a quaternion algebra B over Q. By Proposition
1.1.31, we have that the completion Oℓ ⊆ Bℓ is Eichler. This implies that for every
ℓ ∣ disc(B) we have that Oℓ is the unique maximal order of Bℓ, while for ℓ ∤ disc(B)
Proposition 1.1.20 implies that Oℓ is conjugate to the order

( Zℓ Zℓ
ℓeZℓ Zℓ

)

for a unique e ≥ 0.

Lemma 1.1.33. Let B be a quaternion algebra over Q and let O ⊆ B be an Eichler
order. Then there is a unique N ∈ Z>0 coprime with disc(B) such that

(i) discrd(O) = disc(B) ⋅N ;

(ii) For every prime ℓ ∤ disc(B), the order Oℓ is B×ℓ -conjugate to the order

( Zℓ Zℓ
ℓvℓ(N)Zℓ Zℓ

) ,

where vℓ is the normalized ℓ-adic valuation on Z.

Proof. See [Voi21, §23.4.19].

Definition. Let O be an Eichler order of a quaternion algebra B over Q. The
number N = ∏ℓ∤disc(B) ℓe defined in Lemma 1.1.33 is called the level of O.
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Example 1.1.34. If B ≅M2(Q) is the split quaternion algebra over Q, the order

ON = (
Z Z
NZ Z) .

is an Eichler order of level N for every N ∈ Z>0.

Proposition 1.1.35. Let B be an indefinite quaternion algebra over Q and N ∈ Z>0
be coprime with discB. Then all Eichler orders in B of level N are B×-conjugate.

Proof. By point (ii) of Lemma 1.1.33 and the discussion before it, we have that
any two Eichler orders O and O′ of level N are locally conjugated (meaning that
their localizations at any prime are conjugated). Then, as a consequence of strong
approximation (see [Voi21, Theorem 28.2.11]), we obtain that O is isomorphic to O′.
By Lemma 1.1.12 we conclude that O and O′ are B×-conjugate.

1.1.6 The adelic framework

In this subsection, for simplicity, we work with a quaternion algebra B over Q. We
follow closely [Voi21, §27].

Denote by Ẑ = ∏ℓZℓ the profinite completion of Z and with Q̂ = Ẑ⊗Z Q the ring
of finite adeles of Q. There are natural continous diagonal embeddings Z↪ Ẑ and
Q↪ Q̂. The group of invertible elements Q̂× of Q̂ is the group of finite ideles of Q.
We recall that Q̂× comes equipped with the topology induced by the embedding

Q̂× Ð→ Q̂ × Q̂
xz→ (x,x−1)

rather than the embedding Q̂× ↪ Q̂, since the former makes Q̂× a topological group.
For details, see [Voi21, §27.2].

Definition. The adelization of B over Q is the algebra B̂ ∶= B ⊗Q Q̂.

We can explicitly describe the Q̂-algebra B̂ as follows (see [Voi21, §27.3]). Let O
be an order in B and set as usual Oℓ ∶= O⊗ZZℓ for every prime ℓ. Then we have the
equality

B̂ = {(xℓ)ℓ ∈ ∏
ℓ

Bℓ ∣ xℓ ∈ Oℓ for all but finitely many primes ℓ}.

Notice that the set on the right of this equality is independent on the choice of
O, since any two orders are equal at all but finitely many places by Proposition
1.1.30. A fundamental system of open neighborhoods of 0 in B̂ consists of all open
neighborhoods of 0 in the subrings

∏
ℓ∈S

Bℓ ×∏
ℓ∉S

Oℓ

for any fixed order O and with S varying among all finite sets of primes of Q. Notice
that this topology is finer than the one induced by the embedding B̂ ↪ ∏ℓBℓ.
Therefore, this last map is not a homeomorphism onto its image, but it is continous.

Similarly, we can define the idelization B̂× of a quaternion algebra B over Q. It
is the group of invertible elements of B̂ with the topology induced by the embedding

B̂× Ð→ B̂ × B̂
xz→ (x,x−1).
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Let O be an order in B. Then we have the equality

B̂× = {(xℓ)ℓ ∈ ∏
ℓ

B×ℓ ∣ xℓ ∈ O×ℓ for all but finitely many primes ℓ}.

A fundamental system of neighborhoods of 1 in B̂× consists of all open neighborhoods
of 1 in the subgroups

∏
ℓ∈S

B×ℓ ×∏
ℓ∉S

O×ℓ

for any fixed order O and with S varying among all finite sets of primes of Q. Again,
the map B̂× ↪∏ℓB×ℓ is not a homeomorphism onto its image, but it is continous.

Remark 1.1.36. The spaces B̂ and B̂× are Hausdorff, since their topologies are
finer than the ones coming from their embedding in ∏ℓBℓ and ∏ℓB×ℓ respectively,
which are Haudorff spaces (see Lemma 1.1.23).

For any order O of B, define

Ô ∶= ∏
ℓ

Oℓ ⊆ B̂ and Ô× ∶= ∏
ℓ

O×ℓ ⊆ B̂×.

Remark 1.1.37. By definition, the spaces Ô and Ô× are open in B̂ and B̂× respec-
tively. Lemma 1.1.23 together with Tychonoff’s theorem implies that Ô and Ô× are
also compact.

We can define the reduced trace and the reduced norm on B̂ componentwise as

Tr ∶ B̂ Ð→ Q̂
(xℓ)ℓ z→ (Tr(xℓ))ℓ

and
Nm ∶ B̂× Ð→ Q̂×

(xℓ)ℓ z→ (Nm(xℓ))ℓ.

These two maps are well defined thanks to Lemma 1.1.13 and they extend the clas-
sical operators Tr and Nm under the embeddings B ↪ B̂ and B× ↪ B̂× (see [Vig05,
Proposition 1.2.20] for details). Proposition 1.1.22 implies that the idelic norm map
Nm is surjective.

Lemma 1.1.38. Let O be an order in B. Then Ô× ∩B× = O×.

Proof. One inclusion is trivial, the other follows from the local to global principle for
lattices (see Proposition 1.1.30). In particular, if x ∈ B× ∖O×, then xℓ ∉ O×ℓ for some
prime ℓ, hence x ∉ Ô×.

1.1.7 Strong approximation

In this subsection we let B be an indefinite quaternion algebra over Q. For every
subset A of B or B̂, we denote by A1 the subset of A consisting of elements of norm
1. Notice that B̂1 is a topological group, with topology induced by its embedding
inside B̂×.

Theorem 1.1.39 (Strong approximation). B1 is dense in B̂1.

Proof. See [Voi21, Main theorem 28.5.3].

An important consequence of strong approximation is the following result.
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Theorem 1.1.40. Let O be an order of B. Then the norm map induces a bijection

Nm ∶ B×/B̂×/Ô× ≅Ð→ Q×/Q̂×/Nm(Ô×).

Proof. See [Voi21, Theorem 28.5.5].

We now prove a slight generalization of the previous theorem.

Theorem 1.1.41. Let U be an open compact subgroup of B̂×. Then the norm map
induces a bijection

Nm ∶ B×/B̂×/U ≅Ð→ Q×/Q̂×/Nm(U).

Proof. The surjectivity descends from the surjectivity of the norm Nm ∶ B̂ → Q̂
together with the fact that Nm(B×) = Q× (see Corollary 1.1.29). In order to prove
injectivity, we proceed in two steps.

Step 1: B̂1 ⊆ B×U . Indeed, let b ∈ B̂1. Since bU1 is open inside B̂1, by strong
approximation we find a ∈ B1 and u ∈ U1 such that a = bu. But then b = au−1 ∈ B×U .

Step 2: Let b, b′ ∈ B̂×. Since Nm ∶ B× → Q× and Nm ∶ U → Nm(U) are surjective,
to conclude the proof of injectivity it is enough to show that if Nm(b) = Nm(b′) ∈ Q̂×
then b′U = abU for some a ∈ B×. Since b′b−1 ∈ B̂1 and since bUb−1 is compact open,
by step 1 we find a ∈ B× and u ∈ U such that b′b−1 = abub−1. Therefore,

b′U = (b′b−1)(bU) = abub−1bU = abU,

yielding the claim.

Corollary 1.1.42. Let U be an open compact subgroup of B̂× such that Nm(U) ⊇ Ẑ×.
Then, for every b ∈ B̂× there are a ∈ B× and u ∈ U such that b = au.

Proof. This descends from the isomorphism of Theorem 1.1.41 together with the fact
that Q×/Q̂×/Ẑ× = 1, since Q has class number 1.

Lemma 1.1.43. Let U be an open compact subgroup of B̂× that contains an element
of norm −1. Then the map

ϕ ∶ Q>0/Q̂×/Nm(U) Ð→ Q×/Q̂×/Nm(U)
[x] z→ [x]

is a bijection.

Proof. The map ϕ is clearly well defined and surjective. In order to prove injectivity,
let b be an element of U of norm −1 and take [x], [y] ∈ Q>0/Q̂×/Nm(U) such that
ϕ([x]) = ϕ([y]). This means that x = qyα with q ∈ Q× and α = Nm(u) for some
u ∈ U . If q > 0, then [x] = [y]. If q < 0 then

x = (−q) ⋅ y ⋅ (−α) = (−q) ⋅ y ⋅Nm(bu),

and bu ∈ U . Hence also in this case [x] = [y] and we are done.
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1.2 Shimura curves

For this section we fix an indefinite quaternion algebra B over Q. Recall that indefi-
nite means that B is split at infinity or, equivalently, that disc(B) is the product of
an even number of primes.

For every prime ℓ set Bℓ ∶= B ⊗Q Qℓ and B∞ ∶= B ⊗Q R. Fix once and for all
isomorphisms

ι∞ ∶ B∞
≅Ð→M2(R) and ιℓ ∶ Bℓ

≅Ð→M2(Qℓ) (1.3)

for every ℓ ∤ disc(B). Note that there are natural inclusions B ↪ B∞ and B ↪ Bℓ,
hence we can embed B inside M2(R) and M2(Qℓ) for every ℓ ∤ disc(B). With a little
abuse of notation, these embeddings will be denoted again with the symbols ι∞ and
ιℓ respectively. Finally, notice that the isomorphisms ι∞ and ιℓ are also bicontinous,
since they are linear maps between finitely generated normed vector spaces.

1.2.1 Shimura curves as Riemann surfaces

Denote by H the upper half plane of the complex numbers and set H ∶= C∖R. Let U
be a compact open subgroup of B̂×, which acts on B̂× on the right via multiplication
and trivially on H . Moreover, B× acts on the left on B̂× by multiplication, and on
H via Möbius transformations induced by B× ↪ B×∞ ≅ GL2(R).

Definition. The open Shimura C-curve associated to U is the double coset

YU(C) ∶= B×/(H × B̂×)/U,

taken with respect to the actions cited above.

In the next we will see that YU(C) has the structure of a Riemann surface. Since
U acts trivially on H , we can rewrite

YU(C) = B×/(H × (B̂×/U)).

Example 1.2.1. By Remark 1.1.37, an important example of compact open sub-
groups of B̂× are the groups Ô×, where O is an order in B.

Recall that B×1 = ker(Nm ∶ B× → Q×) and B̂×1 = ker(Nm ∶ B̂× → Q̂×). The
following is the main structure theorem for open Shimura C-curves.

Theorem 1.2.2. Let U be a compact open subgroup of B̂×, and let a1, . . . , ah ∈ Q̂×
be representatives for the classes in Q>0/Q̂×/Nm(U). For each i choose bi ∈ B̂× with
Nm(bi) = ai and set

Γi ∶= B×1 ∩ biUb−1i .
Then the maps

Γi/H Ð→ B×/(H × B̂×)/U = YU(C)
[x] z→ [(x, bi)]

for i ∈ {1, . . . , h} induce a homeomorphism

h

∐
i=1

Γi/H
≅Ð→ YU(C),

where the space on the left is the disjoint union of the connected Riemann surfaces
Γi/H, all of which are compact if B is a division algebra.
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Proof. See [Vig05, §2.1.1].

Lemma 1.2.3. Let U be an open compact subgroup of B̂× such that Ẑ× ⊆ Nm(U).
Then the Riemann surface YU(C) is connected and the maps

(U ∩B×1 )/H Ð→ B×/(H × B̂×)/U, (U ∩B×)/H Ð→ B×/(H × B̂×)/U
[x] z→ [(x,1)] [x] z→ [(x,1)]

are homeomorphisms.

Proof. In order to prove the bijectivity of the first map, by Theorem 1.2.2 we just
need to prove that the set Q>0/Q̂×/Nm(U) consists of one element.

Since U contains an element of norm −1, by Lemma 1.1.43 there is a bijection
Q>0/Q̂×/Nm(U) → Q×/Q̂×/Nm(U). Since Q has class number one, the double coset
Q×/Q̂×/Ẑ× consists of one element, and it surjects onto Q×/Q̂×/Nm(U). Therefore,
this last set consists of one element and the claim is proved.

Turning to the second map, it is easy to see that it is well defined and injective.
To show surjectivity, let [(x, b)] ∈ B×/H ×B̂×/U . Corollary 1.1.42 implies that there
are a ∈ B× and u ∈ U such that b = au. Set z ∶= a−1x ∈H . We have

[z] ↦ [(z,1)] = [a−1(x, b)u−1] = [(x, b)],

hence the map is surjective. The proof of bicontinuity is left to the reader.

Since in general we want a compact Riemann surface, for every open compact
subgroup U of B̂× we define XU(C) to be the Baily-Borel compactification (see
[BB66]) of YU(C). Notice that when B is a division algebra, by Theorem 1.2.2 we
have that XU(C) = YU(C), while in the split case XU(C) is obtained from YU(C)
by adjoining a finite number of cusps.

Definition. Let B be an indefinite quaternion algebra over Q and let U be a compact
open subgroup of B̂×. The Riemann surface XU(C) is called the (compact) Shimura
C-curve associated to B and U .

Remark 1.2.4. Let B be the split quaternion algebra GL2(Q). If Nm(U) ⊇ Ẑ×,
we recover the classical case of modular C-curves. For example, if ON is the Eichler
order of level N of Example 1.1.34, the equality O×N ∩B1 = Γ0(N) implies that the
Shimura C-curve XO×N (C) is the classical modular C-curve of level Γ0(N).

When, instead, Nm(U) ⊉ Ẑ× then XU(C) is not connected and it is the disjoint
union of connected modular curves. The reason to consider also nonconnected curves
is that Shimura curves always have a model over Q, whereas modular curves may
not. See [Mil03, §2] for more details. Anyway, our Shimura curves of interest will
always be connected.

Remark 1.2.5. Let U be an open compact subgroup of B̂×. Some authors, such
as [LV11] and [BD96], interchange left and right actions in the double quotients
defining the open Shimura C-curve YU(C). We give here a dictionary to pass from
one interpretation to the other.

First, denote by U∗ the image of U under the standard involution of B̂, that is
induced by the standard involution on B in a natural way. Then, there is a map

YU(C) = B×/(H × B̂×)/U Ð→ U∗/(H × B̂×)/B× =∶ Y ′U(C)
[(z, b)] z→ [(z, b∗)],
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where, in the second double quotient, U∗ acts trivially on H and by left multipli-
cation on B̂×, whereas every b ∈ B× acts by right multiplication on B̂× and by the
Möbius transformation attached to b∗ on H . One can easily prove that the map
above is well defined and bijective.

In the remainder of this subsection, we give a different interpretation of the set
H = C ∖ R. Namely, let HomR(C,B∞) be the set of R-algebra homomorphisms
between C and B∞. There is a left action of the group B× on HomR(C,B∞) by
conjugation.

Theorem 1.2.6. There is a B×-equivariant bijection H
1∶1←→ HomR(C,B∞).

Proof. See [Vig05, Proposition 3.1.3].

Therefore, the Shimura C-curve attached to an open compact subgroup U of B̂×

can be written also as

YU(C) = B×/HomR(C,B∞) × B̂×/U. (1.4)

1.2.2 The analytic definition of the curves X0,M , X1,m and X̃m

In this subsection we introduce the Shimura curves that will be relevant in our work.
Recall that B is an indefinite quaternion algebra over Q and that in (1.3) we fixed
embeddings ι∞ and ιℓ for every ℓ ∤ disc(B). As a shortcut, we will use the notation

N− ∶= disc(B).

Fix also a positive integer N+ coprime with N−, call N ∶= N+N− and fix a prime
p ∤ 6N . The letter M will denote any positive integer coprime with N−.

Fix once and for all a maximal order OB of B such that ιℓ(OB ⊗Z Zℓ) =M2(Zℓ)
for every ℓ ∤ N−. Indeed, up to changing the embeddings ιℓ, we may force every
maximal order OB to have this property, since any maximal order of M2(Qℓ) is
conjugated with the order M2(Zℓ) by Proposition 1.1.19.

Definition. For every positive integer M coprime with N−, let RM ⊆ OB be an
Eichler order of level M such that

ιℓ(RM ⊗Z Zℓ) = (
Zℓ Zℓ

ℓvℓ(M)Zℓ Zℓ
) ⊆M2(Qℓ)

for every prime ℓ ∣M , where vℓ is the ℓ-adic valuation. Set also U0(M) = R̂×M .

Definition. For every integer m ≥ 0 let U1(pm) ⊆ Ô×B be the subgroup

U1(pm) = Ô×B ∩ ι−1p {(
Zp Zp
pmZp 1 + pmZp

)} ,

where, by abuse of notation, ιp is seen also as a function on B̂ by pre-composing
with the projection B̂↠ Bp.

Definition. For all m ≥ 0, we define

U0,1(N+, pm) = U0(N+) ∩U1(pm) = U0(N+pm) ∩U1(pm).
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Lemma 1.2.7. Let U be any of the groups U0(M), U1(pm) or U0,1(N+, pm), for
any M ∤ N− and m ≥ 0. Then U is open and compact in B̂× and Nm(U) = Ẑ×.
Proof. The characterization of the topology of B̂× pursued in Subsection 1.1.6 im-
mediately implies that U0(M) is open. Moreover, the induced topology on U0(M)
coincides with the product topology coming from the equalities

U0(M) = R̂×M =∏
ℓ

(RM ⊗Z Zℓ)×,

therefore U0(M) is also compact by Lemma 1.1.23 and Tychonoff’s theorem.
The group U1(pm) is closed an open since it is defined as the intersection between

a closed and open subgroup of B̂× with the preimage under a continous map of a
closed and open set. Since U1(pm) is contained in the compact set Ô×B, it is also
compact.

The group U0,1(N+, pm) is the intersection of two open and compact sets, hence
it is open and compact.

Proposition 1.1.22 implies that Nm((RM ⊗Z Zℓ)×) = Z×ℓ for every prime ℓ, hence
Nm(U0(M)) = Ẑ×. For the same reason, we have that Nm(U0,1(N+, pm)ℓ) = Z×ℓ for
every ℓ ≠ p. So it is enough to show that Nm(U0,1(N+, pm)p) = Z×p . As noticed
in Remark 1.1.10, the norm map on U0,1(N+, pm)p corresponds via ιp to the deter-
minant map. It is easy to see that for every x ∈ Z×p there is an invertible matrix
in {( Zp Zp

pmZp 1+pmZp
)} with determinant x. Therefore Nm(U0,1(N+, pm)) = Ẑ×. Since

U0,1(N+, pm) ⊆ U1(pm) ⊆ O×B, we also have that Nm(U1(pm)) = Nm(Ẑ×).

Definition. For every m ≥ 0 and M ∤ N−, define the compact Shimura C-curves

X0,M(C) ∶=XU0(M)(C)
X1,m(C) ∶=XU1(pm)(C)
X̃m(C) ∶=XU0,1(N+,pm)(C).

When M = N+pm, we also set

Xm ∶=X0,N+pm .

Corollary 1.2.8. For every M ∤ N− and m ≥ 0, the Riemann surfaces X0,M(C),
X1,m(C) and X̃m(C) are connected.

Proof. Combine Lemma 1.2.3 with Lemma 1.2.7.

Example 1.2.9. When B is the split algebra M2(Q), we can choose OB = M2(Z)
and the embeddings ιℓ and ι∞ to be the natural embeddings induced by tensorization
with Qℓ and R respectively. Moreover, we can take

RN+ = {(
Z Z

N+Z Z)} .

Then B×1 = SL2(Q) and one can see that

U0(M) ∩B×1 = Γ0(M)
U1(pm) ∩B×1 = Γ1(pm)

U0,1(N+, pm) ∩B×1 = Γ0(N+) ∩ Γ1(pm).
This implies that, by Lemma 1.2.3, the Shimura C-curves X0,M(C), X1,m(C) and
X̃m(C) coincide with the classical modular C-curves of level Γ0(M), Γ1(pm) and
Γ0(N+) ∩ Γ1(pm) respectively.
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Remark 1.2.10. The reader familiar with [LV11] will notice that our curve X̃m(C)
corresponds exactly to the curve denoted in the same way in [LV11, §2.2] via the
bijection defined in Remark 1.2.5. Indeed, the image via the canonical involution of
the group U0,1(N+, pm) is the group called Um in loc. cit.

1.3 Moduli interpretation and canonical models of Shimura
curves

In this section we see that the Riemann surfaces X0,M(C), X1,m(C) and X̃m(C)
consist of the complex points of some curves defined over Q that are solutions of
some moduli problems related to families of abelian surfaces with some additional
structure. For this section we use the following notation:

B an indefinite quaternion algebra over Q;
OB the maximal order of B fixed at the beginning of Subsection 1.2.2;
N− the discriminant disc(B) of B;
N+ a positive integer coprime with N−;
N the product N+N−;
p the prime fixed in Subsection 1.2.2, with the property that p ∤ 6N .

1.3.1 Complex abelian surfaces

It is a classical result that the Weierstrass ℘-function induces a one-to-one corre-
spondence between complex tori of dimension 1 and elliptic curves over C (see e.g.
[DS05, §1.4]). When, instead, the dimension of the torus is greater than 1, it may
happen that there are not enough meromorphic functions in order to realize the torus
as a projective algebraic variety. In the following, we study conditions for a complex
torus of dimension 2 to be an abelian variety, mainly following [Voi21, §43.4 and
§43.5].

Definition. A complex torus of dimension 2 is a complex manifold A = C2/Λ
where Λ ⊆ C2 is a Z-lattice of rank 4. A morphism of complex tori C2/Λ → C2/Λ′
is a C-linear map ϕ ∶ C2 → C2 such that ϕ(Λ) ⊆ Λ′. An isogeny of tori of dimension
2 is a surjective morphism with finite kernel.

Choose a Z-basis {λ1, λ2, λ3, λ4} of Λ. The matrix Π ∈ M2×4(C) whose columns
are the coordinates of λ1, λ2, λ3, λ4 with respect to the canonical basis of C2 is called
the big period matrix of the lattice Λ with respect to the basis {λ1, λ2, λ3, λ4}.
Notice that

A = C2/Λ = C2/(ΠZ4).

Definition. A complex torus A of dimension 2 is a complex abelian surface if
there exists a holomorphic embedding A↪ Pn(C) for some n ≥ 1.

Definition. A matrix Π ∈ M2×4(C) is a Riemann matrix if there is a skew-
symmetric matrix E ∈M4(Z) with det(E) ≠ 0 such that

1. ΠE−1Πt = 0;

2. iΠE−1Π̄t is a positive definite Hermitian matrix, where i ∈ C is the imaginary
unit and Π̄ denotes the conjugate of Π.
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Theorem 1.3.1. Let A = C2/(ΠZ4) be a complex torus with Π ∈M2×4(C). Then A
is an abelian surface if and only if Π is a Riemann matrix.

Proof. See [Voi21, Theorem 43.4.6].

We upgrade the above to a basis-free formulation.

Definition. Let E ∶ Λ×Λ→ Z be an alternating Z-bilinear map. Let ER ∶ V ×V → R
be the scalar extension of E over R obtained by Λ⊗Z R =∶ V ≅ C2. We say that E is
a Riemann form for (V,Λ) if the following conditions hold:

1. ER(ix, iy) = ER(x, y):

2. The map

V × V Ð→ R
(x, y) z→ ER(ix, y)

defines a symmetric positive definite R-bilinear form on V .

As noted in [Voi21, §43.4.10], after choosing a Z-basis for Λ, the matrix associated
to E is a Riemann matrix and, conversely, the form associated to the Riemann matrix
is a Riemann form.

Proposition 1.3.2. If E is a Riemann form for (V,Λ), then the map

H ∶ V × V Ð→ C
(x, y) z→ ER(ix, y) + iER(x, y)

is a positive definite Hermitian form on V .
Conversely, if H is a positive definite Hermitian form on V such that ImH(Λ)

is contained in Z, then ImH ∣Λ is a Riemann form for (V,Λ) (here, Im denotes the
imaginary part operator).

Proof. See [Voi21, Proposition 43.4.11].

The form H of the previous proposition is called the Hermitian form associ-
ated with E.

Definition. A complex torus A = C2/Λ equipped with a Riemann form is said to be
polarized.

A morphism between two polarized complex tori (C2/Λ,E) and (C2/Λ′,E′) is
a morphism ϕ ∶ C2/Λ→ C2/Λ′ of complex tori that respects the polarizations, in the
sense that the diagram

Λ ×Λ Z

Λ′ ×Λ′

E

E′
(ϕ,ϕ)

commutes.

Theorem 1.3.3. A complex torus of dimension 2 is an abelian surface if and only
if it is polarizable.

Proof. See [Mil08, Theorem 2.8].
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There is a normal form for skew-symmetric matrices, called Frobenius normal
form. Namely, there is a basis of Λ such that the matrix of E in this basis is ( 0 D

−D 0 ),
where D is a diagonal 2 × 2 matrix with entries in Z≥0.

Definition. A Riemann form E whose matrix D in the Frobenius normal form is
the identity is called a principal Riemann form.

Following [Voi21, §43.4.19], we want to understand polarizations in terms of du-
ality. In order to do that, let A = V /Λ be a complex torus of dimension 2, where
V ≅ C2.

Definition. A C-antilinear functional on V is a function f ∶ V → C such that

1. f(x + x′) = f(x) + f(x′) for every x,x′ ∈ V ;

2. f(ax) = āf(x) for every a ∈ C and x ∈ V .

Call V ∗ the C-vector space of C-antilinear functionals on V .

Then V ∗ is a C-vector space with dimC V
∗ = dimC V = 2 and the underlying

R-vector space of V ∗ is canonically isomorphic to HomR(V,R). The canonical R-
bilinear form

V ∗ × V Ð→ R
(f, x) z→ Im f(x)

is nondegenerate, so
Λ∗ ∶= {f ∈ V ∗ ∶ Im f(Λ) ⊆ Z}

is a lattice in V ∗, called the dual lattice of Λ, hence the quotient A∨ ∶= V ∗/Λ∗
is a complex torus of dimension 2. Double antiduality and nondegeneracy gives a
canonical identification (V ∗)∗ ≅ V , giving a canonical identification (A∨)∨ ≅ A.

Suppose now that A is polarized with a Riemann form E for (V,Λ), and let H
be the associated Hermitian form. Double duality induces a Riemann form E∗ on
(V ∗,Λ∗), so A∨ is a polarized abelian surface. There is a C-linear map

λE ∶ V Ð→ V ∗

xz→H(x,−)

with the property that λE(Λ) ⊆ Λ∗. Since the form H is nondegenerate, the induced
homomorphism λE ∶ A→ A∨ is an isogeny of polarized abelian varieties.

Lemma 1.3.4. The degree of the isogeny λE is the determinant of the matrix D
appearing in the Frobenius normal form for E.

Proof. See [Voi21, §43.4.19]

In particular, if E is principal then λE is an isomorphism of principally polarized
abelian surfaces. In this case, we define the Rosati involution associated with E
by

† ∶ End(A) Ð→ End(A)
ϕz→ ϕ† = λ−1E ○ ϕ∨ ○ λE ,

where End(A) is the set of endomorphisms of A as a complex torus (or, equivalently,
as an abelian variety) and ϕ∨ ∶ A∨ → A∨ is the morphism induced by the pullback.
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Definition. Let D be a finitely dimensional Q-algebra. We say that an involution
∗ ∶ D → D is positive if Tr(αα∗) > 0 for all α ∈ D ∖ {0}, where Tr ∶ D → Q is the
trace of the left multiplication operator.

Proposition 1.3.5. Let A be a principally polarized complex abelian surface. The
Rosati involution † is a positive involution on the Q-algebra End(A) ⊗Z Q.

Proof. See [Voi21, Proposition 43.4.24].

Theorem 1.3.6 (Albert). Let A be a principally polarized complex abelian surface.
The Q-algebra D = End(A) ⊗Z Q is exactly one of the following:

(i) D = Q, and we say that A is typical;

(ii) D = F is a real quadratic field, and we say that A has real multiplication;

(iii) D =K is a quartic CM field K;

(iv) D = B is an indefinite quaternion algebra over Q;

(v) D =M2(K) where K is an imaginary quadratic field.

Proof. See [Voi21, §43.5.9].

Definition. Let A be a principally polarized complex abelian surface. We say that
A has complex multiplication (CM) if End(A) ⊗Z Q contains a CM field.

If A has complex multiplication, then End(A) ⊗Z Q satisfies cases (iii) or (v) of
Theorem 1.3.6. Let now B be an indefinite quaternion algebra and OB be a maximal
order in B.

Definition. Let A be a principally polarized complex abelian surface. We say that
A has quaternionic multiplication (QM) by OB if there is an injective ring
homomorphism i ∶ OB ↪ End(A).

If A has quaternionic multiplication by OB, then End(A)⊗ZQ satisfies cases (iv)
or (v) of Theorem 1.3.6. Abelian surfaces with QM are sometimes called false elliptic
curves. We now specialize to the study of abelian surfaces with QM.

1.3.2 Complex abelian surfaces with QM

Recall that we fixed an indefinite quaternion algebra B over Q with discriminant N−

and a maximal order OB. Throughout, let A be a complex abelian surface.

Lemma 1.3.7. There is an element t ∈ OB such that t2 = −N−.

Proof. Combining Proposition 1.1.26 and Corollary 1.1.27 we obtain that there is an
embedding of Q(

√
−N−) in B. Therefore there is t′ ∈ B such that (t′)2 = −N−, and

t′ lies in a maximal order O′ of B. By Proposition 1.1.35 any two maximal orders
are B×-conjugate, so there is a conjugate t ∈ OB that satisfies t2 = −N−.

From now on we fix t ∈ OB with the property that t2 = −N−. Indeed, we could
fix the couple {t,−t}, since our construction will be independent on the sign. Notice
anyway that a priori there are many such couples of elements, depending on the
number of embeddings of the ring of integers of Q(

√
−N−) in OB.
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To the element t we attach the positive involution

⋆ ∶ B Ð→ B

bz→ b⋆ = t−1b∗t,
(1.5)

where ∗ is the standard involution of B.

Definition. A quaternionic multiplication (QM) structure by OB on A is an
injective ring homomorphism i ∶ OB ↪ End(A). In this case, we say that (A, i) is an
abelian surface with QM by OB.

Definition. A morphism (A, i) → (A′, i′) of complex abelian surfaces with QM by
OB is a morphism of abelian surfaces that also respects i, i′, i.e. such that

i′(b)ϕ(a) = ϕ(i(b)a)

for every a ∈ A and b ∈ OB. An isogeny is a surjective homomorphism with finite
kernel.

Definition. A principal polarization E on a complex abelian surface (A, i) with QM
by OB is compatible with the the couple (OB, t) if the induced homomorphism
i ∶ B ↪ End(A) ⊗Z Q respects involutions, i.e. the diagram

B End(A) ⊗Z Q

B End(A) ⊗Z Q

⋆ †

i

i

commutes, where ⋆ is the involution defined in (1.5) and † is the Rosati involution
attached to E.

Theorem 1.3.8. Let (A, i) be a complex abelian surface with QM by OB. Then
there is a unique principal polarization on A compatible with the couple (OB, t).

Proof. See [Voi21, Remark 43.6.27].

Thanks to this theorem, from now on we will just say "abelian surfaces with
QM" instead of "principally polarized abelian surfaces with QM", understanding that
every such surface is endowed with the unique principal polarization coming from
our choice of t. Morally, we can say that we settled the problem about polarizations
and from now on we can forget about them.

Lemma 1.3.9. Let A2 be an abelian surface, (A1, i1) be an abelian surface with QM
by OB and ϕ ∶ A1 ↠ A2 an isogeny with kerϕ stable under i1(OB). Then there is a
unique quaternionic multiplication i2 ∶ OB ↪ End(A2) characterized by the property

i2(b) ⋅ ϕ(a) = ϕ(i1(b) ⋅ a)

for every b ∈ OB and a ∈ A1.

Proof. In order to see that i2 is well defined, take a, a′ ∈ A1 such that ϕ(a) = ϕ(a′),
i.e. a − a′ ∈ ker(ϕ). Then

ϕ(i1(b) ⋅ a) − ϕ(i1(b) ⋅ a′) = ϕ(i1(b) ⋅ (a − a′)) = 0
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for every b ∈ OB, since kerϕ is stable under i1(OB). This implies that i2 is well
defined.

In order to verify injectivity, take b ∈ OB such that i2(b) ⋅ ϕ(a) = 0 for every
a ∈ A1. This implies that ϕ(i1(b) ⋅ a) = 0, i.e. i1(b) ⋅ a ∈ kerϕ for every a ∈ A1. Since
kerϕ is finite, this means that i1(b) has finite image, hence it is the zero morphism.
The injectivity of i1 implies that b = 0.

Example 1.3.10. ([Voi21, §43.6.12]). Extend the embedding ι∞ fixed at the begin-
ning of Section 1.2 to a map ι∞ ∶ B ↪ B ⊗Q C ≅M2(C). Let τ be an element of the
upper half plane H of C. Define the lattice

Λτ ∶= ι∞(OB)(
τ
1
) ⊆ C2

and let Aτ ∶= C2/Λτ be the associated complex torus. The map ι∞ induces a nat-
ural injective ring homomorphism iτ ∶ OB ↪ End(Aτ) by left multiplication, since
ι∞(OB)Λτ ⊆ Λτ , hence the couple (Aτ , iτ) is an abelian surface with QM by OB.

Proposition 1.3.11. Every complex abelian surface with QM by OB is isomorphic
as such to one of the form (Aτ , iτ) for some τ ∈ H.

Proof. See [Voi21, Proposition 43.6.28].

Quaternionic action on torsion points

We give now a deeper look at the action of OB on the torsion points of A. First
of all, notice that if (A, i) is a complex abelian surface with QM by OB and M is
a positive integer, there is an induced action of OB on A[M] that factors through
OB/MOB.

Let now M ∈ Z>0 be coprime with N−. Take m ∈ Z>0 and a prime ℓ such that
ℓm ∣M . The chosen isomorphism ιℓ ∶ OB ⊗Z Zℓ →M2(Zℓ) induces an isomorphism

OB/ℓmOB = OB⊗ZZ/ℓmZ = OB⊗ZZℓ⊗Zℓ
Z/ℓmZ ιℓÐ→M2(Zℓ)⊗Zℓ

Z/ℓmZ =M2(Z/ℓmZ),

where the equal signs correspond to canonical isomorphisms. The Chinese remainder
theorem then yields an isomorphism

ηM ∶ OB/MOB
≅Ð→M2(Z/MZ) (1.6)

that only depends on the chosen embeddings ιℓ for all primes ℓ ∣ M . Therefore,
the left OB-action on A[M] induced by i can be interpreted as a left action of
M2(Z/MZ).

Lemma 1.3.12. Let (A, i) be a complex abelian surface with QM by OB and M be
a positive integer coprime with N−. Let eM ∶= ( 1 0

0 0 ) and fM ∶= ( 0 1
1 0 ) in M2(Z/MZ).

(i) A[M] splits as Im(eM) × Im(1 − eM) as a group.

(ii) The action of fM induces an isomorphism between ker(eM) and ker(1 − eM).

Proof. (i) Since P = eMP + (1 − eM)P for every P ∈ A[M], we obtain the equality
A[M] = Im(eM) + Im(1 − eM). On the other hand, if there are P,Q ∈ A[M] such
that eMP = (1 − eM)Q, then eMP = e2MP = eM(1 − eM)Q = O, therefore the sum is
direct.
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(ii) Since fM is invertible in M2(Z/MZ), it induces an isomorphism of A[M].
The equalities eMfMeM = 0 and (1 − eM)fM(1 − eM) = 0 together imply that
fM(Im(eM)) ⊆ Im(1 − eM) and fM(Im(1 − eM)) ⊆ Im(eM). Since f2M = 1, applying
fM to the previous relations we obtain that converse inclusions.

Since A[M] ≅ (Z/MZ)4 as groups, this lemma implies that both Im(eM) and
Im(1− eM) are isomorphic to (Z/MZ)2 as abelian groups. It can also be seen easily
that Im(eM) = ker(1 − eM) and viceversa.

Proposition 1.3.13. Keep the notation as in Lemma 1.3.12 and fix a basis P1, P2

for Im(eM) as a Z/MZ-module. Call P ′1 = fMP1 and P ′2 = fMP2. Then the map

Φ ∶ A[M] = Im(eM) × Im(1 − eM) Ð→M2(Z/MZ)

aP1 + bP2 + cP ′1 + dP ′2 z→ (
a b
c d
)

is a (noncanonical) isomorphism of left M2(Z/MZ)-modules, where the action on
the codomain is via left multiplication.

Proof. It is straightforward to see that the map Φ is an isomorphism of abelian
groups, therefore we just need to prove that Φ is M2(Z/MZ)-invariant. Notice that
M2(Z/MZ) is generated as a Z/MZ-algebra by the three elements 1, eM and fM ,
therefore we just need to check the compatibility of Φ with respect to the action of
the last two elements. So let Q = aP1 + bP2 + cP ′1 + dP ′2. Then

Φ(eMQ) = Φ(aP1 + bP2) = ( a b0 0 ) = eM ( a bc d ) = eMΦ(Q).

Similarly,

Φ(fMQ) = Φ(cP1 + dP2 + aP ′1 + bP ′2) = ( c da b ) = fM ( a bc d ) = fMΦ(Q).

This proposition, together with the isomorphism of (1.6), implies that A[M] and
OB/MOB are isomorphic as left OB-modules. On the other hand, this isomorphism
is not canonical. We will see in the next section that choosing such isomorphisms
has something to do with the choice of a level structure on (A, i). We now study
OB-submodules of A[M].

Lemma 1.3.14. Let (A, i) be a complex abelian surface with QM by OB and let M
be a positive integer coprime with N−. Then there is a bijection

{subgroups of Im(eM)} ↔ {OB-submodules of A[M]}
C ↦ C × fMC

eM(D) ↤D

that restricts to a bijection

{cyclic subgroups of Im(eM) of order M ′} ↔ {cyclic OB-submodules of A[M]
isomorphic to (Z/M ′Z)2 } .

for every M ′ ∣M .
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Proof. Let C be a subgroup of Im(eM). The action of OB corresponds to the left
action of elements of M2(Z/MZ), and this last ring is generated by 1, eM , fM . There-
fore, the subgroup C × fMC is an OB-submodule of A[M].

On the other hand, let D be an OB-submodule of A[M]. Then the action of
eM restricts to D, therefore we may decompose D = eM(D) × (1 − eM)D. Since
also the action of fM restricts to D, it induces an isomorphism between eM(D) and
(1 − eM)D. Therefore, we have the claimed bijection.

Remark 1.3.15. In the case that M is a squarefree product of primes, the bijection
of Lemma 1.3.14 restricts to a bijection

{cyclic subgroups of Im(eM) of order M ′} ↔ {cyclic OB-submodules of A[M]
of order (M ′)2 } .

for every M ′ ∣ M . If, instead, M is not squarefree, this is false. Set for example
M =M ′ = ℓ2 for a prime ℓ ∤ N−. Choosing an isomorphism A[M] ≅M2(Z/ℓ2Z), one
can see that the element ( ℓ 0

0 ℓ ) generates an M2(Z/ℓ2Z)-submodule of M2(Z/ℓ2Z) of
cardinality ℓ4, but its projection to the eℓ2-part is isomorphic to (Z/ℓZ)2.

1.3.3 Level structures and moduli interpretation

In this subsection we show that the Shimura C-curves parametrize families of complex
abelian varieties with QM and fixed level structure. We mainly follow [Mil79, §1] and
[Buz97]. See also [Mag22, §2]. Our first aim is to define level structures on complex
abelian surfaces with QM by OB associated to open compact subgroups of Ô×B. In
literature, there are many different definitions of such objects: we check that they
are all equivalent.

Milne’s level structures

Definition. Let (A, i) be a complex abelian surface with QM byOB. The (complete)
Tate module of A is the inverse limit of the M -torsion groups of A

T (A) ∶= lim←Ð
M

A[M].

The structure theory of finite abelian groups implies that T (A) ≅ ∏ℓ Tℓ(A), where
the product is taken among all primes ℓ and Tℓ(A) = lim←ÐmA[ℓ

m] is the usual ℓ-adic
Tate module of A.

By Proposition 1.3.13 we know that A[M] and OB/MOB are (noncanonically)
isomorphic as left OB-modules, for every M ∤ N−. One can prove that their profinite
completions T (A) and ÔB are isomorphic as left ÔB-modules (see [Mil79, §1]). One
can see this also noting that, by Proposition 1.3.11, (A, i) is isomorphic to a QM
abelian surface (C/Λτ , iτ) for some τ ∈ H (see Example 1.3.10). Using the explicit
description of Λτ , one can easily build an isomorphism A[M] ≅ OB/MOB for every
positive M , yielding the desired isomorphism T (A) ≅ ÔB as left ÔB-modules.

Definition. Let U be an open compact subgroup of Ô×B. Two isomorphisms of
left ÔB-modules α1, α2 ∶ ÔB → T (A) are U-equivalent if there is u ∈ U such that
α1 = α2 ○ ru, where ru is right multiplication by u.

The map α ↦ α ○ rb for b ∈ Ô×B defines a left action of Ô×B on the set of ÔB-
isomorphisms between ÔB and T (A).
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Lemma 1.3.16. The action of Ô×B on the set of ÔB-isomorphisms between ÔB and
T (A) is free and transitive.

Proof. Let α ∶ ÔB → T (A) be an ÔB-isomorphism and let b ∈ Ô×B with the property
that α = α ○ rb. Then, for every b′ ∈ ÔB, we have α(b′) = α(rb(b′)) = α(b′b). Since
α is an isomorphism, this implies that b′ = b′b. Choosing b′ = b−1, we obtain that
b−1 = 1, hence b = 1. Therefore, the action is free.

Let now α1, α2 ∶ ÔB → T (A) be ÔB-isomorphisms. Then α−12 ○ α1 ∶ ÔB → ÔB
is an isomorphism of left ÔB-modules. Basic non-commutative algebra implies that
there is an element δ ∈ Ô×B such that α−12 ○ α1 = rδ (more precisely, δ ∶= α−12 (α1(1))).
Hence α1 = α2 ○ rδ, therefore the action is transitive.

Let U1 and U2 be two open compact subgroups of Ô×B. The previous lemma
implies that if A is a set of ÔB-isomorphisms between ÔB and T (A) that is a
U1-equivalence class and a U2-equivalence class (with respect to the action defined
above), then U1 = U2.

Definition ([Mil79]). Let (A, i) be a complex abelian surface with QM by OB and
let U be an open compact subgroup of Ô×B. A U-level structure AU on (A, i)
is a U -equivalence class of ÔB-isomorphisms between ÔB and T (A). The triple
(A, i,AU) is called a U-triple.

Definition. Let (A, i,AU) and (A′, i′,A ′
U) be two U -triples, for some open compact

subgroup U contained in Ô×B. An isomorphism between U -triples is an isomorphism
ϕ ∶ (A, i) → (A′, i′) of QM abelian surfaces such that the map

ÔB
αÐ→ T (A) ϕ̂Ð→ T (A′)

lies in A ′
U for every α ∈ AU , where ϕ̂ denotes the map induced by ϕ.

Definition. Let U be an open compact subgroup of Ô×B. We define CU to be the
category whose objects are U -triples and whose morphisms are isomorphism of U -
triples.

Equivalence classes of full level structures

Let M be a positive integer coprime with N−.

Definition ([Buz97]). Let (A, i) be a complex abelian surface with QM by OB and
M ∤ N−. A full level M structure on (A, i) is an OB-modules isomorphism

α ∶ OB/MOB
≅Ð→ A[M].

Let δ ∈ (OB/MOB)× and call rδ the right multiplication by δ on OB/MOB. For
any full level M structure α, the map α ↦ α○rδ induces a left action of (OB/MOB)×
on the set of full level M structures on A.

Lemma 1.3.17. The action of (OB/MOB)× on the set full level M structures of
(A, i) is free and transitive.

Proof. Follow verbatim the proof of Lemma 1.3.16, mutatis mutandis.

Definition. Let H be a subgroup of (OB/MOB)× ≅ GL2(Z/MZ). Two full level M
structures α1, α2 on (A, i) are H-equivalent if there is h ∈H such that α1 = α2 ○ rh.
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Let H1 and H2 be two subgroups of GL2(Z/MZ). Lemma 1.3.17 implies that
if A is a set of full level M structures that is an H1-equivalence class and an H2-
equivalence class, then H1 =H2.

Definition ([Buz97]). Let (A, i) be a complex abelian surface with QM by OB and
let H be a subgroup of GL2(Z/MZ). An H-level structure AH on (A, i) is a
H-equivalence class of full level M structures. The triple (A, i,AH) is called an
H-triple.

Definition. Let M be a positive integer coprime with N−. Let (A, i,AH) and
(A′, i′,A ′

H) be two H-triples, for a subgroup H of GL2(Z/MZ). An isomorphism
of H-triples is an isomorphism ϕ ∶ (A, i) → (A′, i′) of QM abelian surfaces such that
the map

OB/MOB
αÐ→ A[M] ϕÐ→ A′[M]

lies in A ′
H for every α ∈ AH .

Definition. Let H be a subgroup of GL2(Z/MZ). We define CH to be the category
whose objects are H-triples and whose morphisms are isomorphism of H-triples.

A first equivalence between level structures

Notice that the isomorphism ηM of (1.6) induces also a natural surjective map

ϕM ∶ ÔB = OB ⊗Z Ẑ↠OB ⊗Z Z/MZ = OB/MOB
ηMÐ→M2(Z/MZ)

and, on invertible elements, ϕM ∶ Ô×B ↠ GL2(Z/MZ). Let H be a subgroup of
GL2(Z/MZ) and U = ϕ−1M (H) ⊆ Ô×B. Define a functor Φ ∶ CU → CH in the following
way:

• If (A, i,AU) is an object of CU , then its image under the functor Φ is the
H-triple (A, i,Φ(AU)) where Φ(AU) is the set of full level M structures αΦ

induced by any α ∈ AU via the commutative diagram

ÔB T (A)

OB/MOB A[M]

ϕM

αΦ

α

(1.7)

of OB-modules.

• If ψ ∶ (A, i,AU) → (A′, i′,A ′
U) is a morphism between objects of CU , call with

the same letter ψ the induced isomorphism between abelian surfaces with QM.
Then Φ(ψ) ∶ (A, i,Φ(AU)) → (A′, i′,Φ(A ′

U)) is the morphism of CH that has
ψ as underlying isomorphism between abelian surfaces with QM.

The following lemma gives some highlights on why Φ is a well defined functor.

Lemma 1.3.18. With notation as above, we have the following:

(i) Φ(AU) is an H-level structure for A.

(ii) Φ(ψ) is a morphism of H-triples.
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Proof. (i) Let α,α′ ∈ AU . Then there is an element u ∈ U such that α = α′ ○ru. Since
H = ϕM(U), the element ϕM(u) lies in H and, following the diagram in equation
(1.7), we have that αΦ = α′Φ ○ rϕM (u). This implies that Φ(AU) contains an H-level
structure. But now, if αΦ ∈ Φ(AU) and α̃ ∶= αΦ ○ rh for some h ∈ H, then calling α
an element of AU corresponding to αΦ via Φ and taking u ∈ U such that ϕM(u) = h,
it is easy to see that (α ○ ru)Φ = α̃. Therefore Φ(AU) is also contained in an H-level
structure.

(ii) We need to prove that any isomorphism ψ ∶ (A, i,AU) → (A′, i′,A ′
U) of U -

triples preserves also the induced H-level structures Φ(AU) and Φ(A ′
U). This is

straightforward noting that, for every α ∈ AU , the diagram

ÔB T (A) T (A′)

OB/MOB A[M] A′[M]

ϕM

α ψ̂

ψαΦ

is commutative.

Proposition 1.3.19. Let H be a subgroup of GL2(Z/MZ) and U = ϕ−1M (H). The
functor Φ ∶ CU → CH defined above is an isomorphism of categories.

Proof. (Idea). Using almost the same ideas as before, it is possible to build a functor
Ψ ∶ CH → CU in the following way.

If (A, i,AH) is an object of CH , then its image under Ψ is the triple (A, i,Ψ(AH))
where Ψ(AH) is set of all isomorphisms αΨ that make the following diagram com-
mutative

ÔB T (A)

OB/MOB A[M]

ϕM

α

αΨ

for every α ∈ AH . If ψ ∶ (A, i,AH) → (A′, i′,A ′
H) is a morphism of objects of CH ,

call with the same letter ψ the induced isomorphism between abelian surfaces with
QM. Then Ψ(ψ) ∶ (A, i,Ψ(AH)) → (A′, i′,Ψ(A ′

H)) is the morphism of CU that has
ψ as underlying isomorphism between abelian surfaces with QM.

Following the ideas of Lemma 1.3.18 one can prove that Ψ is a well defined
functor. It is also not hard to show that ΦΨ = 1CH and ΨΦ = 1CU as functors, giving
the claimed isomorphism.

Now we know that, whenever H is a subgroup of GL2(Z/MZ) and U = ϕ−1M (H),
working with (isomorphism classes of) U -triples is the same as working with (iso-
morphism classes of) H-triples.

1.3.4 Level structures attached to X0,M , X1,m and X̃m

We now give a more explicit interpretation of the level structures associated with the
Shimura C-curves X0,M(C), X1,m(C) and X̃m(C) defined in Subsection 1.2.2. For
every m ≥ 0 and M ∤ N− define the groups

H0(M) = {( a b0 d ) ∈ GL2(Z/MZ) ∶ a, b, d ∈ Z/MZ} ;
H1(pm) = {( a b0 1 ) ∈ GL2(Z/pmZ) ∶ a, b ∈ Z/pmZ} ;

H0,1(N+, pm) = {( a b0 d ) ∈ GL2(Z/N+pmZ) ∶ a, b, d ∈ Z/N+pmZ and d ≡ 1 mod pm} .
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Since we have that

U0(M) = ϕ−1N+(H0(M)),
U1(pm) = ϕ−1pm(H1(pm)),

U0,1(N+, pm) = ϕ−1N+pm(H0,1(N+, pm))

as subgroups of Ô×B, the result of Proposition 1.3.19 is valid for these groups. We
want to give an even more explicit notion of level structures for these three cases.

Let (A, i) be a complex abelian surface with QM by OB. In Lemma 1.3.12 we
defined the idempotent element eM that acts on A[M] and gives the decomposition
A[M] = Im(eM) × Im(1 − eM).

Definition. A V0(M)-triple is a triple (A, i,C) where (A, i) is a complex abelian
surface with QM by OB and C is an OB-cyclic submodule of A[M] isomorphic to
(Z/MZ)2. The group C is called a V0(M)-level structure on (A, i).

By Lemma 1.3.14 any OB-cyclic submodule C of A[M] isomorphic to (Z/MZ)2
decomposes as C = eM(C) × (1 − eM)C and is uniquely determined by the M -cyclic
group eM(C). Therefore, a V0(M)-level structure on (A, i) is equivalent to the choice
of an M -cyclic subgroup of Im(eM).

Definition. An isomorphism ψ ∶ (A, i,C) → (A′, i′,C ′) of V0(M)-triples is an
isomorphism ψ ∶ (A, i) → (A′, i′) of abelian surfaces with QM such that ψ(C) = C ′.

Definition. We define C0(M) to be the category whose objects are V0(M)-triples
and whose morphisms are isomorphisms of V0(M)-triples.

Lemma 1.3.20. The categories CH0(M) and C0(M) are isomorphic.

Proof. We build an explicit isomorphism Φ ∶ CH0(M) → C0(M) and its inverse.
Take (A, i,A ) to be an object of CH0(M), so that A is an H0(M)-equivalence

class of full level M structures. Take α ∈ A . The isomorphism ηM of (1.6) allows us
to see α as an isomorphism

α ∶M2(Z/MZ) ≅Ð→ A[M]

of OB-modules, where OB acts on the domain by left multiplication by the image of
the map

OB ↠OB/MOB
ηMÐ→M2(Z/MZ).

Similarly, the right multiplication by elements of (OB/MOB)× on OB/MOB cor-
responds to the right multiplication of GL2(Z/MZ) on M2(Z/MZ). The group of
matrices

L0 ∶= {(
0 b
0 d
) ∈M2(Z/MZ) ∶ b, d ∈ Z/MZ}

is an OB-cyclic submodule of M2(Z/MZ), isomorphic to (Z/MZ)2 as an abelian
group. Therefore its image CA ∶= α(L0) is a well determined OB-cyclic submodule
of A[M] isomorphic to (Z/MZ)2. A straightforward computation shows that right
multiplication by elements of H0(M) stabilizes L0. Therefore, for any other α′ ∈ A ,
we still have that CA = α′(L0). This implies that the group CA depends only on
the equivalence class A , and we can set

Φ(A, i,A ) ∶= (A, i,CA ).
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Let now ψ ∶ (A, i,A ) → (A′, i′,A ′) be a morphism of CH0(M), i.e. an isomorphism
ofH0(M)-triples, and call with the same letter the underlying isomorphism of abelian
surfaces with QM. We define

Φ(ψ) ∶ (A, i,CA ) → (A′, i′,CA ′)

to be the morphism induced by ψ. We need to show that it preserves the level
structures. If α ∈ A , then A ′ is the H0(M)-equivalence class of ψ ○ α. But then

CA ′ = (ψ ○ α)(L0) = ψ(α(L0)) = ψ(CA ).

Therefore, ψ induces an isomorphism of V0(M)-triples.
We now build the inverse functor Ψ. Let (A, i,C) be an object of C0(M), where

C is a given OB-cyclic submodule of A[M] isomorphic to (Z/MZ)2. Let AC be
the set of all full level M structures that send L0 (isomorphically) to C. The set
AC is nonempty because, using Lemma 1.3.14, one can complete a basis of C (as a
Z/MZ-module) to a basis of A[M] and find an element of AC applying Proposition
1.3.13.

A direct computation shows that for any element α ∈ AC , the entire H0(M)-
orbit of α is contained in AC . On the other hand, if there are α1, α2 ∈ AC that lie
in different H0(M)-orbits, the transitivity of the action of GL2(Z/MZ) proved in
Lemma 1.3.17 implies that there exists a matrix δ = ( a bc d ) ∈ GL2(Z/MZ) with c ≠ 0
such that α1 = α2 ○ rδ. But rδ(L0) is not contained in L0, therefore if α2(L0) = C
one cannot have that α1(L0) = C, yielding a contradiction. Therefore, AC consists
of a single orbit. We can hence define

Ψ(A, i,C) = (A, i,AC).

Let now ψ ∶ (A, i,C) → (A′, i′,C ′) be a morphism of C0(M), i.e. an isomorphism
of V0(M)-triples, and call with the same letter the underlying isomorphism of abelian
surfaces with QM. We define

Ψ(ψ) ∶ (A, i,AC) → (A′, i′,A ′
C)

to be the morphism induced by ψ. We need to show that it preserves the level
structures. Since ψ(C) = C ′, for any α ∈ AC we have that ψ ○ α ∈ AC′ , by definition
of AC′ . Therefore, ψ induces an isomorphism of abelian surfaces with QM and
H0(M)-level structure.

Using their definition, it is now straightforward to see that Φ and Ψ are mutually
inverse functors.

The previous lemma together with Proposition 1.3.19 implies that there is a one to
one correspondence between (isomorphism classes of) U0(M)-triples, H0(M)-triples
and V0(M)-triples.

Definition. Letm ≥ 0. A V1(pm)-triple is a triple (A, i,P ) where (A, i) is a complex
abelian surface with QM by OB and P is a point of order pm in Im(epm) ⊆ A[pm].
The point P is called a V1(pm)-level structure on (A, i).

By Lemma 1.3.14 the OB-cyclic submodule generated by P has cardinality p2m,
and the choice of P in Im(epm) is equivalent to the choice of ( 0 1

1 0 )P in Im(1− eM).

Definition. An isomorphism ψ ∶ (A, i,P ) → (A′, i′, P ′) of V1(pm)-triples is an
isomorphism ψ ∶ (A, i) → (A′, i′) of abelian surfaces with QM such that ψ(P ) = P ′.
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Definition. We define C1(pm) to be the category whose objects are V1(pm)-triples
and whose morphisms are isomorphisms of V1(pm)-triples.

Lemma 1.3.21. The categories CH1(pm) and C1(pm) are isomorphic.

Proof. As in the proof of Lemma 1.3.20, we start building explicitly an isomorphism
Φ ∶ CH1(pm) → C1(pm).

Take an object (A, i,A ) of CH1(pm), so that A is an H1(pm)-equivalence class of
full level pm structures. Any α ∈ A corresponds to an isomorphism

α ∶M2(Z/pmZ)
≅Ð→ A[pm]

of OB-modules. Then the point

PA = α(
0 1
0 0
) ∈ A[pm]

lies in Im(epm) and has order pm. Since the matrix ( 0 1
0 0 ) is fixed by the right

multiplication of elements of H1(pm), the point PA is independent on the choice of
α ∈ A . We then define

Φ(A, i,A ) ∶= (A, i,PA ).

Let now ψ ∶ (A, i,A ) → (A′, i′,A ′) be a morphism of CH1(pm), i.e. an isomor-
phism of H1(pm)-triples, and call with the same letter the underlying isomorphism
of abelian surfaces with QM. We define

Φ(ψ) ∶ (A, i,PA ) → (A′, i′, PA ′)

to be the morphism induced by ψ. We need to show that it preserves the level
structures. If α ∈ A , then A ′ is the H1(pm)-equivalence class of ψ ○ α. But then

PA ′ = (ψ ○ α) ( 0 1
0 0 ) = ψ(PA ).

Therefore, ψ induces an isomorphism of V1(pm)-triples.
We now build the inverse functor Ψ. Let (A, i,P ) be an object of C1(pm), where

P ∈ Im(epm) is a point of order pm. Let AP be the set of full level pm-structures
that send ( 0 1

0 0 ) to P . Combining Proposition 1.3.13 and Lemma 1.3.14 one can see
that AP is not empty.

Since ( 0 1
0 0 ) is fixed by the right action of H1(pm), for every α ∈ AP the entire

H1(pm)-orbit of α lies inside AP . On the other hand, if there are α1, α2 ∈ AP that lie
in different H1(pm)-orbits, the transitivity of the action of GL2(Z/pmZ) proved in
Lemma 1.3.17 implies that there exists a matrix δ = ( a bc d ) ∈ GL2(Z/pmZ) with c ≠ 0
or d ≠ 1 such that α1 = α2 ○ rδ. Then rδ does not fix ( 0 1

0 0 ), therefore if α2 ( 0 1
0 0 ) = P

one cannot have that α1 ( 0 1
0 0 ) = P , yielding a contradiction. Therefore, AP consists

of a single orbit. We can hence define

Ψ(A, i,P ) = (A, i,AP ).

Let now ψ ∶ (A, i,P ) → (A′, i′, P ′) be a morphism of C1(pm), i.e. an isomorphism
of V1(pm)-triples, and call with the same letter the underlying isomorphism of abelian
surfaces with QM. We define

Ψ(ψ) ∶ (A, i,AP ) → (A′, i′,AP ′)
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to be the morphism induced by ψ. Since ψ(P ) = P ′, for any α ∈ AP we have that
ψ ○ α ∈ AP ′ , by definition of AP ′ . Therefore, ψ induces an isomorphism of H1(pm)-
triples.

Using their definition, it is now straightforward to see that Φ and Ψ are mutually
inverse functors.

The previous lemma together with Proposition 1.3.19 implies that there is a one
to one correspondence between (isomorphism classes of) U1(pm)-triples, H1(pm)-
triples and V1(pm)-triples.

Definition. Letm ≥ 0. A V0,1(N+, pm)-quadruple is a quadruple (A, i,C,P ) where
(A, i) is a complex abelian surface with QM by OB, C is a V0(N+)-level structure
on (A, i) and P is a V1(pm)-level structure on (A, i).

Notice that the data of a V0,1(N+, pm)-quadruple (A, i,C,P ) is equivalent to the
data of the V0,1(N+pm, pm)-structure (A, i, ⟨C,P ⟩, P ).

Definition. An isomorphism ψ ∶ (A, i,C,P ) → (A′, i′,C ′, P ′) of V0,1(N+, pm)-
quadruples is an isomorphism ψ ∶ (A, i) → (A′, i′) of abelian surfaces with QM such
that ψ(C) = C ′ and ψ(P ) = P ′.

Definition. We denote by C0,1(N+, pm) the category whose objects are V0,1(N+, pm)-
quadruples and whose morphisms are isomorphisms of V0,1(N+, pm)-triples.

Lemma 1.3.22. The categories CH0,1(N+,pm) and C0,1(N+, pm) are isomorphic.

Proof. Let (A, i) be a complex abelian surface with QM by OB. The Chinese re-
mainder theorem induces decompositions

OB/N+pmOB ≅ OB/N+OB ×OB/pmOB and A[N+pm] ≅ A[N+] ×A[pm],

and the left action of OB coincides with the left action of

M2(Z/N+pmZ) ≅M2(Z/N+Z) ×M2(Z/pmZ).

Moreover, the group H0,1(N+, pm) decomposes as the product H0(N+) ×H1(pm) in
GL2(Z/N+pmZ) ≅ GL2(Z/N+Z)×GL2(Z/pmZ) and acts on the right on the module
OB/N+pmOB. This implies that there is a natural one-to-one correspondence be-
tween H0,1(N+, pm)-level structures and couples of H0(N+) and H1(pm)-level struc-
tures on (A, i). We then conclude applying Lemma 1.3.20 and Lemma 1.3.21.

The previous lemma together with Proposition 1.3.19 implies that there is a
one to one correspondence between (isomorphism classes of) U0,1(N+, pm)-triples,
H0,1(N+, pm)-triples and V0,1(N+, pm)-triples.

Moduli interpretation of Shimura curves

Having settled the equivalence of all relevant level structures, we now see that the
open Shimura C-curves parametrize triples of complex abelian surfaces with QM by
OB and level structure.

Theorem 1.3.23 (Milne). Let U be an open compact subgroup of Ô×B. There is a
bijection between the open Shimura C-curve YU(C) = B×/(H × B̂×)/U and the set of
isomorphism classes of U -triples (A, i,AU).
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Proof. See [Mil79, Theorem 1.2]. See also [Mil03, Proposition 2.19 and Proposition
5.1].

Corollary 1.3.24. Let M ∤ N− and m ≥ 0. There is a bijection between the open
Shimura C-curve Y0,M(C) (resp. Y1,m(C), resp. Ỹm(C)) and the set of isomorphism
classes of V0(M)-triples (resp. V1(pm)-triples, resp. V0,1(N+)-quadruples).

Proof. Combine Theorem 1.3.23 with, respectively, Lemma 1.3.20, Lemma 1.3.21
and Lemma 1.3.22.

Remark 1.3.25. Let B be the split quaternion algebra M2(Q) and let OB =M2(Z)
as in Example 1.2.9. A complex abelian variety (A, i) with QM by OB decomposes
as a product of an elliptic curve with itself via

A = (1 0
0 0
)A × (0 0

0 1
)A.

All level structures on A easily correspond to the respective classical level structures
on the elliptic curve ( 1 0

0 0 )A, giving the classical modular interpretation of modular
curves.

1.3.5 Canonical models over Q

In this subsection we see that all Shimura C-curves have a model over Q, meaning
that they consist of the complex points of some algebraic curves defined over Q.

For a compact open subset U of Ô×B recall that CU is the category of U -triples
(A, i,AU). There is a natural action of Aut(C) on CU and CU/ ≅, defined in the
following way. If A is a complex abelian variety and σ ∈ Aut(C), define σA to be the
fibre product

σA A

Spec(C) Spec(C)σ

in which the bottom arrow is induced by σ. More explicitly, if IA is the homogeneous
ideal attached to a model of A inside Pn(C), then σA is associated to the ideal σ(IA)
obtained by twisting by σ the coefficients of every polynomial in IA. Every point
P = (x1 ∶ ⋅ ⋅ ⋅ ∶ xn) ∈ Pn(C) that lies in A defines a point σP ∶= (σx1 ∶ ⋅ ⋅ ⋅ ∶ σxn) ∈ σA,
and this correspondence induces an isomorphism σ ∶ A→ σA.

If (A, i) has QM by OB, then there is an induced QM structure σi on σA defined
as

σi(b)(σP ) = σ(i(b)P ).

for every b ∈ OB and P ∈ A (see Lemma 1.3.9).
If U is an open compact subgroup of Ô×B and A is an U -level structure, define

σA to be the set containing all σ ○ α for every α ∈ A . Therefore, we get an action
of Aut(C) on the set of all U -triples,

σ(A, i,A ) ∶= (σA,σ i, σA ),

which preserves isomorphism classes.
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Theorem 1.3.26. Let U be a compact open subgroup of Ô×B. Then there is a unique
model YU of the Shimura C-curve YU(C) over Q for which the identification

YU(C) = B×/(H × B̂×)/U 1∶1←→ CU/ ≅

of Theorem 1.3.23 is compatible with the actions of Aut(C) on CU/ ≅ and on YU(C)
defined by its identification with the complex points of YU .

Proof. For existence, see [Mil03, Theorem 3.1 and Theorem 5.2]. A discussion about
unicity is given in [Mil03, Theorem 3.10] and at the end of [Mil03, §3].

The model YU is called in literature the canonical model for the Shimura curve.
The study of canonical models of Shimura varieties has been started by Shimura and
Taniyama in the 60’s and continued later on by many other authors. For a summary
of the earlier work of Shimura, see [Del06b].

Remark 1.3.27. Let U be an open compact subgroup of Ô×B. When B is a division
ring, the equality XU(C) = YU(C) together with the previous theorem implies that
there is a canonical model XU for XU(C) over Q.

When, instead, B is the split algebra M2(Q), our compact Shimura curves of
interest are connected and correspond to compact modular curves which are defined
over Q by classical results (see for example [DS05, §7.7]).

From now on the algebraic curve XU over Q will be called the Shimura curve
of level U , whose complex points are in bijection with the previously-called Shimura
C-curve XU(C).

Remark 1.3.28. There is a purely algebraic way to define the scheme XU over
Q, namely as the solution of a moduli problem of families of abelian surfaces with
level structure. This interpretation allows one to generalize the correspondence of
Theorem 1.3.23 to Q-algbebras different from C.

One can indeed go further and discuss integral models of Shimura curves, find-
ing that XU has a proper and smooth model over Z[1/N−MU ] for some MU ∈ Z
associated to the compact open subgroup U . The scheme XU is the coarse moduli
space for a moduli problem that involves families of QM abelian surfaces defined over
schemes defined over Z[1/N−MU ] with some level structure. The scheme XU is the
fine moduli space for this moduli problem if U is small enough. For more on this,
see [Cla03], [Buz97] and [Mil03, §2]. We won’t give more details since we will mainly
work with some special complex points on Shimura curves, called Heegner points.

1.3.6 From the moduli to the analytic interpretation

In this subsection we focus on the curves X̃m for m ≥ 0 and build an explicit corre-
spondence between isomorphism classes [(A, i,C,P )] of QM abelian varieties with
V0,1(N+, pm)-level structure and elements of

Ỹm(C) = B×/(HomR(C,B∞) × B̂×)/U0,1(N+, pm),

where the equality comes from (1.4). In [Vig05, §3.2] and [BD98, §4.II] they treat
the same construction for the curves X0,M .
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The set HomR(C,B∞) as a moduli space

Definition. A quaternionic space attached to B is a 2-dimensional complex vector
space V equipped with a left action of B∞, i.e. an injection of rings B∞ ↪ EndC(V ).
An isomorphism of quaternionic spaces is an isomorphism of vector spaces com-
muting with the action of B∞.

If V is a 2-dimensional complex vector space, we denote by VR the 4-dimensional
real vector space underlying V . For a quaternionic space V we define EndB∞(VR)
to be the set of R-linear endomorphisms commuting with the action of B∞.

Lemma 1.3.29. The algebra EndB∞(VR) is (non-canonically) isomorphic to B∞.

Proof. See [BD98, Lemma 4.3].

Definition. A rigidification of a quaternionic space V is an isomorphism

ρ ∶ B∞ Ð→ EndB∞(VR).
A pair (V, ρ) consisting of a quaternionic space V and a rigidification ρ is called a
rigidified quaternionic space.

A rigidification is usually seen as a way to define a right action of B∞ on VR or,
equivalently, a left action of Bop

∞ on VR. Look at the proof of Proposition 1.3.30 for
more insights on this.

Definition. An isomorphism between two rigidified quaternionic spaces (V, ρ) and
(V ′, ρ′) is an isomorphism of quaternionic spaces ϕ ∶ V → V ′ such that the diagram

B∞

EndB∞(VR) EndB∞(V ′R)

ρ
ρ′

f↦ϕfϕ−1

is commutative.

Proposition 1.3.30. There is a canonical bijection between HomR(C,B∞) and the
set of isomorphism classes of rigidified quaternionic spaces.

Proof. See [BD98, Proposition 4.5]. We recall here how the bijection is built.
First, let ψ ∈ HomR(C,B∞). Then we define V ∶= B∞, viewed as a two-

dimensional complex vector space via the rule

λv ∶= vψ(λ) for every v ∈ V and λ ∈ C.
The left multiplication by B∞ on V endows V with the structure of quaternionic
space. We define also a rigidification on V by the composition of the canonical
involution with right multiplication:

ρ ∶ B∞
≅Ð→ EndB∞(VR)

bz→ (v ↦ vb∗).
The element ψ then corresponds to the isomorphism class of (V, ρ).

On the other hand, let (V, ρ) be a rigidified quaternionic space. If λ ∈ C, mul-
tiplication by λ determines an element of EndB∞(VR) denoted by mλ. Then the
map

ψ ∶ CÐ→ B∞

λz→ ρ−1(mλ)
determines the element of HomR(C,B∞) attached to [(V, ρ)].
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Orientations of the Eichler order RN+

Recall the Eichler order RN+pm of level N+pm defined in Subsection 1.2.2, for some
m ≥ 0. For every prime ℓ we set (RN+pm)ℓ ∶= RN+pm ⊗Z Zℓ.

Lemma 1.3.31. With the notation above,

(i) if ℓn∣∣N+pm there are exactly two surjective homomorphisms of Zℓ-algebras

o+ℓ ∶ (RN+pm)ℓ Ð→ Z/ℓnZ.

(ii) if ℓ ∣ N− there are exactly two surjective ring homomorphisms

o−ℓ ∶ (RN+pm)ℓ = (OB)ℓ Ð→ Fℓ2

where Fℓ2 is the finite field with ℓ2 elements.

Proof. See [Vig05, Lemma 3.2.2].

Definition. An orientation of the Eichler order RN+pm is the choice of one of the
two homomorphisms o+ℓ for all ℓ ∣ N+pm and of one of the two homomorphisms o−ℓ
for all ℓ ∣ N−.

From now on we fix orientations o+ℓ for all ℓ ∣ N+ and o−ℓ for all ℓ ∣ N−.
As seen in Lemma 1.1.17, for every ℓ ∣ N− the ring (OB)ℓ = OB ⊗Z Zℓ is a non-

commutative valuation ring. We denote by mℓ the maximal ideal of (OB)ℓ. By
Proposition 1.1.26, (OB)ℓ contains the ring of integers of an unramified extension
of Qℓ of degree 2, therefore (OB)ℓ/mℓ ≅ Fℓ2 . As pointed out in [BD98, §4.I], if A is
an abelian surface with QM by OB, the subgroup A[mℓ] ⊆ A[ℓ] of points of A killed
by mℓ is a free (OB)ℓ/mℓ-module of rank 1. We regard A[mℓ] as a one dimensional
Fℓ2-vector space by means of the orientation o−ℓ ∶ (OB)ℓ↠ Fℓ2 chosen above.

The rigidified quaternionic space attached to a QM surface

Let (A, i,C,P ) be an abelian surface with QM by OB and V0,1(N+, pm)-level struc-
ture. We regard A as a compact, connected, complex Lie group. Then A = V /Λ
where V = Lie(A) is the Lie algebra of A (which is a 2-dimensional complex vector
space) and Λ is an OB-stable sublattice of V , explicitly given as the kernel of the
exponential map V → A. The left action of OB on A induces an action of OB on V .
By extending scalars from Z to R, we obtain an action of B∞ on V , therefore V is
a quaternionic space in a natural way.

Alternatively, by Proposition 1.3.11 we can suppose that A = Aτ and i = iτ (see
Example 1.3.10). Then A = V /Λτ where V is a two dimensional C-vector space with a
left action of B∞ obtained extending the map ι∞ to a map B∞

ι∞→ M2(R) ⊆M2(C), as
explained in Example 1.3.10. In this way we recover the same quaternionic structure
on V .

Let now M0(N+) ∶= {( a b0 d ) ∶ a, b, d ∈ Z/N+Z} and M1(pm) ∶= {( a b0 1 ) ∶ a, b, d ∈
Z/pmZ}. Recall also that the N+-level structure C is equivalent to the data of
the N+-cyclic subgroup eN+(C). A straightforward matrix computation shows that
eN+(C) is stable with respect to the left action of M0(N+) induced by the action of
OB via the isomorphism (1.6).

Lemma 1.3.32. (i) The ring OB is (noncanonically) isomorphic to EndOB
(Λ).
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(ii) The ring M0(N+) ⊆ OB/N+OB is (noncanonically) isomorphic to the subring
of EndOB

(Λ) ⊗ Z/N+Z preserving the V0(N+)-level structure C (or, equiva-
lently, eN+(C)).

(iii) The multiplicative monoid M1(pm) ⊆ OB/pmOB is (noncanonically) isomor-
phic to the submonoid of EndOB

(Λ)⊗Z/pmZ preserving the V1(pm)-level struc-
ture P .

Proof. For (i) and (ii) see [BD98, Lemma 4.6]. Also (iii) can be proven in the same
way, but we want here to build an explicit isomorphism.

Let Apm be the H1(pm)-level structure attached to P . Let α ∈ Apm be an
isomorphism of left OB-modules between OB/pmOB ≅ M2(Z/pmZ) and A[pm]. In
the proof of Proposition 1.3.21 we saw that P = α ( 0 1

0 0 ), and one can check that
(α ○ rγ) ( 0 1

0 0 ) = P for every γ ∈ M1(pm), where rγ is right multiplication by γ.
Moreover, this last property characterizes M1(pm).

We define an injection

f ∶M1(pm) Ð→ EndOB
(A[pm]) ≅ EndOB

(Λ) ⊗Z/pmZ

in the following way: for every Q ∈ A[pm] and γ ∈M1(pm) we define f(γ)(Q) to be
(α○rγ ○α−1)(Q). It is then straightforward that f(γ)(P ) = P for every γ ∈M1(pm),
hence f induces an isomorphism between M1(pm) and the subset of EndOB

(A[pm])
preserving P .

A similar argument can also be used to find an explicit isomorphism for (ii).

We now choose an isomorphism ρ ∶ OB → EndOB
(Λ) such that its profinite

completion
ρ̂ ∶ ÔB Ð→ EndOB

(Λ) ⊗Z Ẑ,

has the following properties.

1. The reduction ρN+ of ρ̂ modulo N+ induces an isomorphism between M0(N+)
and the subring of EndOB

(Λ) ⊗Z/N+Z preserving the V0(N+)-level structure
C. We require also that the composition

RN+pm ↠M0(N+)
ρN+Ð→ ρN+(M0(N+)) → Z/N+Z

corresponding to the action of ρN+(M0(N+)) on eN+(C) is equal to the product
of the chosen orientations o+ℓ for all ℓ ∣ N+.

2. The reduction ρpm of ρ̂ modulo pm induces an isomorphism between M1(pm)
and subring of EndOB

(Λ) ⊗ Z/pmZ preserving the level pm structure P . This
choice automatically implies that ρpm(M0(pm)) preserves ⟨P ⟩. Moreover, the
choice of putting 1 in the lower right entry of the matrices in M1(pm) deter-
mines uniquely the map

RN+pm ↠M0(pm)
ρpmÐ→ ρpm(M0(pm)) → Z/pmZ

corresponding to the action of ρpm(M0(pm)) on ⟨P ⟩. More precisely, this map
sends ( a b0 d ) ∈M0(pm) to d (and it determines a unique orientation o+p ).
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3. For each ℓ ∣ N−, notice that the action of ρ((OB)ℓ) = ρ((RN+pm)ℓ) preserves
A[mℓ], and its action commutes with the Fℓ2-action defined by the chosen
orientation o−ℓ . We require the map

(OB)ℓ
ρÐ→ ρ((OB)ℓ) ↠ Fℓ2

attached to this action to coincide with the chosen orientation o−ℓ .

Then, if we call U the subset of EndOB
(Λ) ⊗Z Ẑ preserving C and P , we have

that ρ̂−1(U)× = U0,1(N+, pm). Moreover, the map ρ̂ is well defined up to conjugation
by elements of U0,1(N+, pm) on the domain. By extension of scalars from Z to R the
map ρ induces an isomorphism

ρ ∶ B∞
≅Ð→ EndB∞(VR).

Thus, the pair (V, ρ) associated to (A, i,C,P ) is a rigidified quaternionic space.
It can be shown that it depends only on the isomorphism class of (A, i,C,P ) and it is
defined up to the action of Γ ∶= U0,1(N+, pm) ∩B× on ρ by conjugation. By Proposi-
tion 1.3.30, the pair (V, ρ) gives a well defined point on the quotient Γ/HomR(C,B∞),
hence on the Shimura curve X̃m(C) by Lemma 1.2.3. This is the point of X̃m(C)
that corresponds to [(A, i,C,P )].

1.3.7 From the analytic to the moduli interpretation

In this subsection we give an idea on how one can pursue the converse of the con-
struction of the previous subsection.

Let Γ ∶= U0,1(N+, pm) ∩ B× and take [f] ∈ Γ/HomR(C,B∞). As shown in the
proof of Proposition 1.3.30 the rigidified quaternionic space attached to f is (V, ρ)
where V = B∞ (with C-structure induced by f) and

ρ ∶ B∞
≅Ð→ EndB∞(VR)

bz→ (v ↦ vb∗).
The map ρ is the extension of scalars of a map ρ0 ∶ OB → EndOB

(OB). Calling
Λ ∶= OB, we see that A = V /Λ is an abelian surface with QM by OB induced by left
multiplication.

The group of N+-torsion points corresponds to 1
N+Λ/Λ ≅ OB/N

+OB, which cor-
responds to M2(Z/N+Z) via the isomorphism ηN+ of (1.6) induced by the chosen
embeddings. We choose the V0(N+)-level structure on A to be the OB-submodule
that coincides with {( 0 a0 b ) ∶ a, b ∈ Z/N+Z} under these isomorphisms.

Similarly, take the V1(pm)-level structure P to be the point corresponding to
( 0 1
0 0 ) under the isomorphism OB/pmOB ≅M2(Z/pmZ).

One can prove that (A, i,C,P ) is a V0,1(N+, P )-quadruple whose isomorphism
class corresponds to the point [f] on the Shimura curve Ỹm(C).

1.4 Hecke operators on Shimura curves

In this section we review the theory of Hecke operators for the curves Xm ∶=X0,N+pm

and X̃m. Thanks to the work of the previous sections, we are able to give a complete
description of their action both in the analytic and in the modular interpretation of
the curves.

Definition. Call Div(Xm) and Div(X̃m) the groups of divisors of the Riemann
surfaces Xm(C) and X̃m(C) respectively.
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1.4.1 The Hecke operators Tℓ

Let m ≥ 0 and fix a prime ℓ ∤ Npm. For all j ∈ {0, . . . , ℓ − 1} denote by λ̂j ∈ B̂× the
idele whose ℓ-component is equal to ( ℓ j

0 1
) and whose components at all other primes

are equal to 1. Similarly, let λ̂∞ be the idele whose ℓ-component is equal to ( 1 0
0 ℓ )

and whose all other components are equal to 1.

Definition. ([LV11, §2.4]) The Tℓ-operator on Div(Xm) and Div(X̃m) acts as

Tℓ ([(f, b)]) =
ℓ−1
∑
j=0
[(f, bλ̂j)] + [(f, bλ̂∞)]

for every b ∈ B̂× and f ∈ HomR(C,B∞).

Passing to the modular interpretation, recall that any complex abelian surface
(A, i) with QM by OB has ℓ+ 1 cyclic OB-submodules annihilated by ℓ (see Lemma
1.3.14 and Remark 1.3.15). Denote them by D0, . . . ,Dℓ. Then, the quotient isoge-
nies ψj ∶ A → A/Dj induce a natural QM structure ij on A/Dj by Lemma 1.3.9.
Therefore, the action of the Hecke operator Tℓ on Div(X̃m) can be described as

Tℓ([(A, i,C,P )]) =
ℓ

∑
j=0
[(A/Dj , ij ,Cj , Pj)],

where Cj and Pj are the images of C and P respectively under the quotient isogeny
ψj . A similar (and more classical) interpretation is also available for the curve Xm.

1.4.2 The Hecke operator Up

Let m ≥ 1. For all j ∈ {0, . . . , p − 1} denote by π̂j ∈ B̂× the idele whose p-component
is equal to ( p j0 1

) and whose components at all other primes are equal to 1.

Definition. ([LV11, §2.4]) The Up-operator on Div(Xm) and Div(X̃m) acts as

Up ([(f, b)]) =
p−1
∑
j=0
[(f, bπ̂j)]

for every b ∈ B̂× and f ∈ HomR(C,B∞).

Let now [(A, i,C,P )] be a V0,1(N+, pm)-quadruple. Since p ∤ N− then any
complex abelian surface (A, i) with QM by OB has p + 1 cyclic OB-submodules
annihilated by p, one of whom is the one generated by P . Denote the other ones
by D1, . . . ,Dp. Notice that two different cyclic OB-submodules annihilated by p
intersect only in {O}. The quotient isogenies ψj ∶ A → A/Dj induce a natural QM
structure ij on A/Dj by Lemma 1.3.9. Therefore, the action of the Hecke operator
Up on Div(X̃m) can be described as

Up([(A, i,C,P )]) =
p

∑
j=1
[(A/Dj , ij ,Cj , Pj)],

where Cj and Pj are the images of C and P respectively under the quotient isogeny
ψj . A similar interpretation is also available for the curve Xm.
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1.4.3 The diamond operators

Let m ≥ 0. For any a ∈ Z×p , we denote with the same letter the idele of Q̂× ⊆ B̂×
whose p-component is a and whose components at all other primes are equal to 1.

Definition. For any a ∈ Z×p , the diamond operator ⟨a⟩ on Div(Xm) and Div(X̃m)
acts as

⟨a⟩([(f, b)]) = [(f, ba)]

for every b ∈ B̂× and f ∈ HomR(C,B∞).

Notice that [(f,−b)] = [(−1) ⋅ (f,−b)] = [(( −1 0
0 −1 ) ⋅ f, b)] = [(f, b)], therefore we

obtain the equality ⟨−1⟩ = ⟨1⟩.
If [(A, i,C,P )] is a V0,1(N+, pm)-quadruple, the diamond operator can be de-

scribed as
⟨a⟩([(A, i,C,P )]) = [(A, i,C, a ⋅ P )].

Thanks to this interpretation, it is immediate that the action of diamond operators
on Div(X̃m) factors through (Z/pmZ)×.

1.5 The tower of curves

In the rest of the thesis, we will mainly work with the curves Xm ∶=X0,N+pm and X̃m

defined in Subsection 1.2.2. In the previous section we have seen that these curves
are defined over Q and have a modular interpretation.

If we let m ≥ 0 vary, the inclusions U0(N+pm+1) ⊆ U0(N+pm), U0,1(N+, pm+1) ⊆
U0,1(N+, pm) and U0,1(N+, pm) ⊆ U0(N+pm) yield a commutative diagram of curves

. . . X̃m X̃m+1 . . .

. . . Xm Xm+1 . . .

α̃m α̃m+1 α̃m+2

αm+1αm αm+2

βm βm+1 (1.8)

in which all maps are finite coverings that are defined over Q. Every such morphism
has an easy modular interpretation as a map forgetting the suitable level structure.
For example, the map βm sends the class of a V0,1(N+, pm)-quadruple (A, i,C,P )
to the class of the V0(N+pm)-triple (A, i, ⟨C,P ⟩OB

), where ⟨C,P ⟩OB
is the OB-

submodule of A[N+pm] generated by C and P .



Chapter 2

Heegner points on Shimura curves

In this chapter we introduce the theory of Heegner points on the curves Xm and X̃m.
In the modular interpretation, they correspond to abelian varieties with CM by an
imaginary quadratic fields. Their arithmetic will be fundamental for our work. For
this chapter, we mainly refer to [BD96], [BD98] and [LV11] and use the following
notation:

Ym the open Shimura curve Y0,N+pm for some m ≥ 0;
Xm the open Shimura curve X0,N+pm for some m ≥ 0.

2.1 Abelian surfaces with QM+CM

In Theorem 1.3.6 we classified all possible endomorphism algebras for a complex
abelian surface. Among all complex abelian surfaces (A, i) with QM by OB, those
whose endomorphism algebra End(A) ⊗Z Q is isomorphic to M2(K) for some imag-
inary quadratic field K will play an important role for us.

Definition. Let (A, i) be a complex abelian surface with QM by OB. Then

EndOB
(A) ∶= {f ∈ End(A) ∶ f ○ i(b) = i(b) ○ f for all b ∈ OB}

is the group of endomorphisms of A commuting with the action of OB.

Definition. Let (A, i) be a complex abelian surface with QM by OB and let c ≥ 1.
If

EndOB
(A) ≅ Oc

for the order Oc of conductor c in an imaginary quadratic field K, we say that (A, i)
has QM+CM by (OB,Oc). The number c is called the central conductor of A.

Lemma 2.1.1. Let (A, i) be a complex abelian surface with QM+CM by (OB,Oc)
for an order Oc in an imaginary quadratic field K. Then

(i) End(A) ⊗Z Q ≅M2(K);

(ii) K embeds in B;

(iii) A is not simple and is isogenous to E × E, where E is an elliptic curve with
CM by an order of K.

39
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Proof. (i) Theorem 1.3.6 gives only two possibilities for End(A) ⊗Z Q. If it were
End(A)⊗ZQ ≅ B, the centrality of the Q-algebra B would imply that EndOB

(A)⊗Z
Q = Q, which is not true. Therefore End(A) ⊗Z Q ≅ M2(K ′) for some imaginary
quadratic field K ′. But then K ′ =K since K = Oc⊗ZQ is contained in End(A)⊗ZQ.

(ii) Since the center of B is Q, we have that EndOB
(A) is not contained in i(OB).

Then, we have that End(A) ≅ i(OB) ⊗Z EndOB
(A), that yields M2(K) ≅ B ⊗Q K.

Therefore, K is a splitting field for B and we conclude applying Proposition 1.1.26.
(iii) Since End(A) ⊗Z Q is not a division algebra then A is not simple, therefore

it is isogenous to the product of two elliptic curves E1 × E2. By (i) we know that
End(E1×E2)⊗ZQ ≅M2(K), hence we must have End(E1)⊗ZQ = End(E2)⊗ZQ =K,
therefore E1 and E2 have CM by an order in K and are isogenous.

Remark 2.1.2. For those who are aware of the theory of complex multiplication
for abelian surfaces, in the language of [Mil07] or [Bil] we have that every abelian
surface with QM+CM by (OB,Oc) has complex multiplication by the étale algebra
K ×K.

One can go further in the characterization of abelian surfaces with QM+CM.

Theorem 2.1.3. Let (A, i) be an abelian surface with QM+CM by (OB,Oc) for
some c ≥ 1 and let E be an elliptic curve with CM by Oc. Then there is an elliptic
curve E′ of conductor c′ ∣ c such that

A ≅ E ×E′

as complex abelian surfaces.

Proof. See [Ufe12, Theorem 4.4].

Definition. If U is an open compact subgroup of ÔB and (A, i) is an abelian surface
with QM+CM by (OB,Oc) for some c ≥ 1, we say that the point [(A, i,AU)] ∈XU(C)
is a CM point of conductor Oc, for any U -level structure AU .

2.2 Heegner points on Xm and X̃m

In this section, we define Heegner points on the curves Xm and X̃m and study some
of their properties.

2.2.1 Optimal embeddings

Just for this subsection, we let B be a quaternion algebra over any field F that is
a finite extension of Q or of Qℓ for some prime ℓ. Let also K/F be a quadratic
F -algebra, fix an order O of K and an Eichler order R of B.

Definition. An optimal embedding of O into R is an embedding f ∶ K ↪ B
such that f−1(R) = O (equivalently, f(O) = R ∩ f(K)).

2.2.2 Heegner points on Xm

We now focus on the Shimura curves Xm ∶=X0,N+pm for m ≥ 0.

Definition. Let (A, i,C) be a V0(N+pm)-triple. Define EndOB
(A) to be the subset

of EndOB
(A) consisting of all endomorphisms that preserve the OB-submodule C of

A.
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Definition. Let c be an integer coprime with N = N+N− and K be an imaginary
quadratic field. A Heegner point of conductor c on Xm is a point on Xm(C)
corresponding to a V0(N+pm)-triple (A, i,C) such that

EndOB
(A) ≅ Oc,

where Oc is the order of K of conductor c.

Remark 2.2.1. This definition follows [BD98, Definition 5.1]. For example, a triple
[(A, i,C)] with QM+CM is a Heegner point of conductor equal to its central con-
ductor if C is stable under the action of EndOB

(A). In general, the conductor of
a Heegner point divides the central conductor of the corresponding surface with
QM+CM.

In [BD98, §4.II] they describe how one can explicitly build the point of Xm(C)
corresponding to a V0(N+pm)-triple (A, i,C) (their contruction is indeed the inspi-
ration for what we did in Subsection 1.3.6). We recall here some highlights.

Let (A, i,C) be a V0(N+pm)-triple. Then A = V /Λ where V is a two-dimensional
C-vector space and Λ is an OB-stable sublattice of V . The left action of OB on A
induces a natural action of OB (and hence of OB ⊗Z R = B∞) on V . Therefore, V is
a quaternionic space. One then defines a rigidification starting from an isomorphism

ρ ∶ OB Ð→ EndOB
(Λ)

that must satisfy the properties corresponding to (1) and (3) of Subsection 1.3.6
(i.e. properties (1) and (2) of [BD98, §4.II]). In particular, we must have that
ρ induces a bijection between RN+pm and the subset of EndOB

(Λ) preserving the
group C. Extending the scalars from Z to R, we see that the space (V, ρ) is a
rigidified quaternionic space. For every λ ∈ C call mλ the multiplication by λ in
EndB∞(VR). Then we define the homomorphism

ψ ∶ CÐ→ B∞

λz→ ρ−1(mλ).

This morphism induces a well defined element of Γ/HomR(C,B∞), where Γ = R×N+pm .
This quotient is in bijection with Ym(C) by Lemma 1.2.3.

Starting now with a triple (A, i,C) whose isomorphism class is a Heegner point
of conductor c, we see that EndOB

(A) ≅ Oc is contained in the subset of EndOB
(Λ)

that preserves C. The map ψ is then the extension of scalars of a map

ψ0 ∶ Oc Ð→ RN+pm .

The map ψQ ∶= ψ0 ⊗Q induces an optimal embedding of Oc inside RN+pm . Indeed,
if there was Oc′ with c′ ∣ c such that ψQ(Oc′) ⊆ RN+pm then the multiplication by
any element of Oc′ would be an endomorphism of EndOB

(A) that fixes C. Therefore
c = c′. Then we have the following theorem.

Theorem 2.2.2. Let c be a positive integer coprime with N . There is a bijection
between the set of Heegner points of conductor c on Xm(C) and the set of points

[f] ∈ R×N+pm/HomQ(K,B)

such that f is an optimal embedding of Oc into RN+pm .
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Proof. With the discussion above (see also [BD98, Theorem 5.2]) we have seen that
every Heegner point of conductor c corresponds to an optimal embedding.

Conversely, let f ∈ HomQ(K,B) be an optimal embedding and take (V, ρ) to
be the rigidified quaternionic space attached to f ⊗Q R. With the same ideas of
Subsection 1.3.7 one can build a V0(N+pm)-triple (A, i,C), where A = V /Λ with
V = B∞ and Λ = OB. Since f is an embedding of Oc in RN+pm , the rigidification
ρ induces an embedding of Oc in EndOB

(A). The optimality of f implies that
EndOB

(A) = Oc.

Applying the isomorphism of Lemma 1.2.3, one easily finds that an element

[(f, b)] ∈ B×/(HomR(K,B) × B̂×)/R̂×N+pm ⊆ Ym(C)

is a Heegner point of conductor c if and only if

f(K) ∩ bR̂N+pmb−1 = f(Oc),

i.e. if and only if f is an optimal embedding of Oc into the order bR̂N+pmb−1 ∩ B.
Therefore, we recover the definition of [BD96, §2.1]. For more properties of Heegner
points on Xm, see [Vig05, §3].

2.2.3 Heegner points on X̃m

Recall that, for every m ≥ 0, there are degeneracy maps βm ∶ X̃m → Xm defined in
(1.8).

Definition. Let c be a positive integer coprime with N = N+N− and K be an
imaginary quadratic field. A pre-Heegner point of conductor c on X̃m(C) is
any point P ∈ X̃m(C) such that βm(P ) is a Heegner point of conductor c on Xm.

Remark 2.2.3. Let f ∈ HomQ(K,B) and b ∈ B̂×. The discussion of the previous
section implies that [(f, b)] ∈ X̃m(C) is a pre-Heegner point if and only if f is an
optimal embedding of Oc into the Eichler order bR̂N+pmb−1 ∩B.

On the modular side, the class of a V0,1(N+, pm)-quadruple [(A, i,C,P )] is a
pre-Heegner point of conductor c if the subset of EndOB

(A) consisting of all endo-
morphisms that preserve the OB-submodule generated by C and P is isomorphic to
the order Oc of K.

We now want to streghten the condition of being a pre-Heegner point, in order to
control the field of rationality and to have compatibility when changing the parameter
m. In literature, there are some different ways to do that. We present here the
approach of [LV11, Definition 3.1].

Definition 2.2.4 ([LV11]). We say that a pre-Heegner point P = [(f, b)] ∈ X̃m(C)
is a LV-Heegner point of conductor c on X̃m if

f−1p (fp ((Oc ⊗Zp)×) ∩ b−1p Um,pbp) = (Oc ⊗Zp)× ∩ (1 + pmOK ⊗Zp)×,

where Um ∶= U0,1(N+, pm) and the subscript p means that we are taking the p-
component of the object.

This definition has the merit of having a meaning both in the definite and in the
indefinite case (although in this thesis we are only considering indefinite Shimura
curves). We will see later that Longo and Vigni were able to build a family of big
Heegner points starting from this definition.
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Remark 2.2.5. There is a second possible approach to define Heegner points on
X̃m. The construction is modular and is a direct translation of the work of Howard
in [How07, §2.2] in the context of indefinite Shimura curves. The idea is to build
explicitly a family of pre-Heegner points and prove directly the needed compatibility
relations. We will present this construction in a future work.

Following [LV11, §3], we list some properties of LV-Heegner points on X̃m. In
order to do this, we must fix once and for all an imaginary quadratic field K with
the following properties.

Assumption 2.2.6. From now on we fix an imaginary quadratic field K such that

• The discriminant of K is not −3 or −4, so that O×K = {±1}.

• The primes dividing Np do not ramify in K;

• The class number of K is prime to p;

• The primes dividing N+ (respectively, N−) are split (respectively, inert) in K.

This last condition, sometimes called the generalized Heegner hypothesis,
implies that there is an embedding of K into B (see Proposition 1.1.26). The third
condition will be exploited in Chapter 4.

For any c ≥ 1 coprime with N we denote by Oc the order of K of conductor c and
with Hc the ring class field of K of conductor c. We also denote by µpm the group
of pm-th roots of unity.

Proposition 2.2.7. Let P ∈ X̃m(C) be a LV-Heegner point of conductor cpm on
X̃m. Then P is defined over Hcpm(µpm), i.e. P ∈ X̃m(Hcpm(µpm)).

Proof. See [LV11, Propositions 3.2 and 3.3].

Proposition 2.2.8. Let P ∈ X̃m(C) be a LV-Heegner point of conductor cpn on X̃m

for some n ≥m ≥ 1 and let Q ∈ X̃m(C) belong to the support of Up(P ). Then

Up(P ) = TrHcpn+1(µpn+1)/Hcpn(µpn+1)(Q)

in Div(X̃m).

Proof. See [LV11, Proposition 3.4].

Proposition 2.2.9. Fix a prime ℓ ∤ Npmc which is inert in K. Let P ∈ X̃m(C)
be a LV-Heegner point of conductor cℓpm on X̃m and let Q ∈ X̃m(C) belong to the
support of Tℓ(P ). Then

Tℓ(P̃ ) = TrHcℓpm(µpm)/Hcpm(µpm)(Q)

in Div(X̃m).

Proof. See [LV11, Proposition 3.5].
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2.3 A compatible family of Heegner points

In this section we review the properties of the compatible family of LV-Heegner
points built in [LV11, §4].

Let c ≥ 1 and m ≥ 0 be integers with (c,N) = 1. Using the theory of optimal
embeddings, Longo and Vigni built in [LV11, §4] a family of Heegner points P̃c,m of
conductor cpm on X̃m that satisfy the following compatibility properties. Write

α̃m,∗ ∶ Div(X̃m) Ð→ Div(X̃m−1)

for the map between divisor groups induced by α̃m (see (1.8)).

Proposition 2.3.1. Let m ≥ 0 be an integer and c ≥ 1 be coprime with N . Then

(a) If ℓ ∤ Npmc is a prime inert in K, then

Tℓ(P̃c,m) = TrHcℓpm(µpm)/Hcpm(µpm)(P̃cℓ,m)

in Div(X̃m).

(b) If m ≥ 1 then

Up(P̃c,m) = TrHcpm+1(µpm+1)/Hcpm(µpm+1)(P̃cp,m)

in Div(X̃m).

(c) If m ≥ 1 then

Up(P̃c,m) = α̃m+1,∗ (TrHcpm+1(µpm+1)/Hcpm(µpm+1)(P̃c,m+1))

in Div(X̃m).

Proof. See [LV11, Propositions 4.7, 4.8 and 4.9]. Notice that the assumption at the
end of [LV11, p.293] that Ocpm = {±1} is automatically verified here thanks to the
first point of Assumption 2.2.6.

Let εcyc ∶ GQ → Z×p be the p-adic cyclotomic character and set p∗ = (−1)
p−1
2 p.

By class field theory, Q(
√
p∗) ⊆ Q(µp) and Q(

√
p∗) ⊆ Hp. The restriction of εcyc to

Gal(Q̄/Q(
√
p∗)) takes values in (Z×p)2, hence there is a unique continous homomor-

phism
θ ∶ Gal(Q̄/Q(

√
p∗)) Ð→ Z×p/{±1}

such that θ2 = εcyc.

Lemma 2.3.2. Let c,m ≥ 1 and (c,N) = 1. For every σ ∈ Gal(Q̄/Hcpm) we have
that

σ(P̃c,m) = ⟨θ(σ)⟩P̃c,m.

Proof. See [LV11, §4.4].



Chapter 3

Hida theory and big Heegner
points

In his seminal papers [Hid86b] and [Hid86a], Hida described a way to build families of
p-adic modular forms passing through a fixed ordinary modular form. These p-adic
families have their own associated Galois representations, which will be fundamental
for our work. Until today, Hida theory has been developed by many other authors
in many different directions.

The aim of this chapter is to give an introduction to classical Hida theory, focusing
on the Galois representation side of the matter. Nothing here is really new, but we
hope that our work of summarizing and re-ordering results will be useful to somebody.

For this chapter we use the following notation:

N a squarefree integer greater than 0;
p a prime with the property that p ∤ 6N ;
Φm the group Γ0(N) ∩ Γ1(pm) for some m ≥ 0;
Ξm either the group Γ1(Npm) or the group Φm for some m ≥ 0;
Γ the group 1 + pZp;
F a finite extension of Qp.

Notice that the assumptions on N and p are compatible with the choices of the
same letters done in the previous chapters. We will eventually assume that they are
the same numbers.

3.1 p-adic Hecke algebras

Let m ≥ 0. Let Sr(Γ1(Npm)) and Sr(Φm) be the spaces of cusp forms of weight
r ≥ 2 and level Γ1(Npm) and Φm ∶= Γ0(N) ∩ Γ1(pm) respectively. We will use the
letter Ξm to denote any of the groups Γ1(Npm) or Φm.

Definition. For any subalgebra A of C we define Sr(Ξm,A) to be the A-submodule
of Sr(Ξm) consisting of all modular forms with Fourier coefficients in A.

We have the following integrality result.

Lemma 3.1.1. For any subalgebra A of C and Ξm as above, the map

Sr(Ξm,Z) ⊗Z A
≅Ð→ Sr(Ξm,A)

f ⊗ az→ af

45
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is an isomorphism.

Proof. See [Hid00, Theorem 3.12].

This lemma allows us to define Sr(Ξm,A) as Sr(Ξm,Z) ⊗Z A for any algebra A,
not necessarily contained in C. Since Sr(Ξm,Z) is a finitely generated torsion-free
Z-module, it is also free over Z. This implies that Sr(Ξm,A) is finitely generated
and free over A.

Definition. The space of p-adic cusp forms of level Ξm and weight r ≥ 2 is
Sr(Ξm, Q̄p) ∶= Sr(Ξm,Z) ⊗Z Q̄p.

3.1.1 Hecke algebras

By [Hid00, Theorem 3.13], the usual Hecke operators Tℓ for ℓ ∤ Np, together with
operators Uℓ for ℓ ∣ Np and diamond operators ⟨d⟩ for d ∈ (Z/NpmZ)× acting on the
space Sr(Γ1(Npm)), restrict their action also to Sr(Φm). The same result implies
that the space Sr(Ξm,Z) is stable under their action, for Ξm equal to Γ1(Npm) or
Φm. This last fact allows us to define the action of these operators on the space
Sr(Ξm,A) for every algebra A, by linearity.

Definition. Let A be any subring of Q̄p. Denote by hr(Ξm,A) the A-algebra of all
Hecke and diamond operators acting on Sr(Ξm,A).

For every A ⊆ Q̄p, the space Sr(Ξm,A) is generated as an A-module by Sr(Ξm,Z)
and all Hecke and diamond operators are A-linear. Hence, the A-algebra hr(Ξm,A)
can be naturally identified with the A-algebra generated by all Hecke and diamond
operators acting on the space of p-adic cusp forms Sr(Ξm, Q̄p). We will mainly deal
with the case when A is the ring of integers of a finite extension of Qp.

Lemma 3.1.2. Let F be a finite extension of Qp and call OF its ring of integers.
Then

hr(Ξm,OF ) = hr(Ξm,Z) ⊗Z OF
is commutative, free of finite rank over OF for every r ≥ 2.

Proof. It is well known that hr(Ξm,Z) is commutative, free of finite rank over Z (see
for example [DI95, Corollary 12.4.3]). The equality hr(Ξm,OF ) = hr(Ξm,Z) ⊗Z OF
is just commutative algebra (see for example [Mat89, Theorem 7.11]), and the result
follows.

From now on F will be a fixed finite extension of Qp. The OF -algebra hr(Ξm,OF )
can be endowed with the structure of an OF [(Z/pmNZ)×]-algebra via the morphism

OF [(Z/pmNZ)×] Ð→ hr(Γ1(Npm),OF )
[d] z→ dr−2⟨d⟩

(3.1)

for d ∈ (Z/pmNZ)×. Here we denote with square brackets the group elements of
OF [(Z/pmNZ)×] and with angled brackets the diamond operator in hr(Ξm,OF ).
The choice of this map is made following [How07] and [LV11] rather than [Hid86b],
[Hid86a] and [NP00], where they use a different normalization.

When Ξm = Φm, the map in (3.1) factors via OF [(Z/pmZ)×]. For fixed r ≥ 2 and
m ≥ t ≥ 1, the inclusion of Sr(Ξt,Qp) into Sr(Ξm,Qp) induces a canonical surjective
homomorphism

ϕm,t ∶ hr(Ξm,OF ) ↠ hr(Ξt,OF ) (3.2)
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defined by sending each Hecke operator in hr(Ξm,OF ) to its corresponding one in
hr(Ξt,OF ).

Definition. Let r ≥ 2. We define the big Hecke algebras of tame level N and
weight r to be

h1,r ∶= lim←Ð
m

hr(Γ1(Npm),OF ) and hr ∶= lim←Ð
m

hr(Φm,OF ),

where the inverse limit is taken with respect to the maps ϕm,t defined in (3.2).

Taking the inverse limit of the maps in (3.1), h1.r is naturally an algebra over

OF [[ZN ]] ∶= lim←Ð
m

OF [(Z/pmNZ)×],

where ZN = lim←Ðm(Z/p
mNZ)× ≅ lim←Ðm((Z/p

mZ)× × (Z/NZ)×) = Z×p × (Z/NZ)×. In
particular, we can view h1,r also as a module over OF [[Z×p ]]. The structure map
OF [[Z×p ]] → h1,r is explicitly given by

[z] z→ zr−2⟨z⟩ (3.3)

for every z ∈ Z×p , where ⟨z⟩ ∈ h1,r is the unique element that projects to ⟨z (mod pm)⟩
on hr(Γ1(Npm),OF ), for every m ≥ 1. In the same way, mutatis mutandis, also the
big Hecke algebra hr is naturally an OF [[Z×p ]]-algebra.

The decomposition Z×p ≅ (Z/pZ)××(1+pZp) induced by the Teichmuller character
gives also an action of

ΛF ∶= OF [[1 + pZp]]

on h1,r and hr.

3.1.2 The ordinary part

The algebras h1,r and hr are too big to work with. For this reason, we are going to
define canonical subalgebras, called big ordinary Hecke algebras. One reference for
this construction is [Hid93, §7.2]. The construction is purely algebraic, so we give
first a general treatment of the theory.

Lemma 3.1.3. Let A be a ring, I an ideal of R. If R/I and I are finite, then R is
finite.

Proof. The function

R/I × I Ð→ R

(r + I, i) z→ r + i

is clearly surjective, hence the lemma follows.

Proposition 3.1.4. Let F /Qp be a finite extension, OF the ring of integers of F .
Let A be a commutative OF -algebra of finite rank over OF and take x ∈ A.

(a) The limit
ex ∶= lim

n
xn!

exists in A and is an idempotent of A.
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(b) If ex ≠ 0, then exA is the greatest factor of A in which the projection of x is
invertible.

Proof. (a) Suppose first that A is local, call m its unique maximal ideal. Since A
is finite over OF , then A/m is a finite extension of the residue field of OF , hence
the cardinality of A/m is finite. Since A is Noetherian, the quotients mi/mi+1 are
finite vector spaces over A/m for every i ≥ 1, so, applying the previous lemma, the
cardinality of A/mr is finite for every r ≥ 1. Call

ar ∶=#(A/mr)×

and notice that ar ∣ ar+1 for every r ≥ 1. If x ∈ A× (i.e. x ∉ m), then xar ≡ 1 (mod mi)
for every i ≤ r. By Krull intersection theorem, ⋂∞i=1mi = 0, hence the limit limn x

n!

exists and is equal to 1, since ar will eventually divide n! for every r. If x ∉ A× (i.e.
x ∈ m), then xn! ∈ mn!, hence limn x

n! = 0.
We move now to the general case. Since A is a finite commutative algebra over

a complete local noetherian ring, by [Eis13, Corollary 7.6] A is the (finite) product

A =
s

∏
i=1
Ami

of the completions Ami of A at all its maximal ideals mi. Moreover, the topology of
A as an OF -algebra corresponds to the product topology on ∏si=1Ami (this is clear
when looking at the proof of [Eis13, Corollary 7.6]). We can now write our fixed
element x ∈ A as

x = (x1, . . . , xs)
where xi ∈ Ami . Then, applying the result of the previous paragraph,

lim
n
xn! = (lim

n
xn!1 , . . . , limn

xn!s ) ∈ {0,1}s

is an idempotent.
(b) Follow the proof of point (a). If A is local, then ex ≠ 0 implies ex = 1 and

x invertible. If A = ∏si=1Ami is not local, then exx corresponds to the s-uple where
(exx)i is equal to xi or 0 depending on whether (ex)i = 1 or (ex)i = 0, i.e. whether
xi is invertible or not in Ami . Since exA corresponds to the product of those local
factors Ami such that (ex)i = 1, then exx is invertible in exA, and exA is maximal
with this property.

Remark 3.1.5. Point (a) of the proposition above is [Hid93, Lemma 7.2.1], but
here we gave a slightly different proof, in order to have point (b) as an immediate
consequence.

Now we apply this theory to our specific case, with A = hr(Ξm,OF ) and x = Up.

Definition. Let r ≥ 2 and m ≥ 0. We define Hida’s ordinary projector to be the
idempotent

eord
r,m ∶= eUp = limn Un!p ∈ hr(Ξm,OF ),

whose existence is granted by point (a) of Proposition 3.1.4.

Definition. For any hr(Ξm,OF )-module M we define the ordinary part of M to
be

Mord ∶= eordr,mM.
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Notice that when M = hr(Ξm,OF ) we have an algebra decomposition

hr(Ξm,OF ) = hr(Ξm,OF )ord × (1 − eordr,m)hr(Ξm,OF ).

By point (b) of Proposition 3.1.4, hr(Ξm,OF )ord is the greatest factor of hr(Ξm,OF )
on which Up is invertible.

By definition, the maps ϕm+1,m defined in (3.2) satisfy

ϕm+1,m(eordr,m+1) = eordr,m,

hence we can define eordr = lim←Ðm e
ord
r,m in h1,r and hr. This element is also called Hida’s

ordinary projector.

Definition. The big ordinary Hecke algebras or tame level N and weight
r ≥ 2 are the algebras

hord1,r ∶= eordr h1,r = lim←Ð
m

hr(Γ1(Npm),OF )ord and hordr ∶= eordr hr = lim←Ð
m

hr(Φm,OF )ord.

Also in this case, for an h1,r or hr-module M we denote eordr M by Mord. Again,
hord1,r and hordr are the greatest factors of h1,r and hr respectively where Up is invertible.

3.1.3 Duality

Let A be any commutative ring and Ξm be either Γ1(Npm) or Φm for some m ≥ 0.
For any cusp form f ∈ Sr(Ξm,A) we denote with an(f) the n-th coefficient of the
Fourier expansion of f .

Definition. For every r ≥ 2 and m ≥ 0 we define the following pairing:

⟨ , ⟩ ∶ hr(Ξm,A) × Sr(Ξm,A) Ð→ A

(T, f) z→ a1(Tf).
Theorem 3.1.6. The pairing ⟨ , ⟩ is perfect, i.e. induces isomorphisms of A-modules

HomA(Sr(Ξm,A),A) ≅ hr(Ξm,A) and HomA(hr(Ξm,A),A) ≅ Sr(Ξm,A)
for every r ≥ 2 and m ≥ 0. The same pairing restricts to the ordinary parts and
induces isomorphisms of A-modules

HomA(Sr(Ξm,A),A)ord ≅ hr(Ξm,A)ord, HomA(hr(Ξm,A)ord,A) ≅ Sr(Ξm,A)ord.
Proof. The first part descends from [Hid00, Theorem 3.17]. The second statement
is a consequence of the fact that

⟨T, eordr,mf⟩ = ⟨eordr,mT, eordr,mf⟩ = ⟨eordr,mT, f⟩
for every T ∈ hr(Ξm,A) and f ∈ Sr(Ξm,A).

Let now OF be the ring of integers of a finite extension of Qp. Recall that the ring
hr(Ξm,OF ) is an OF [(Z/NpmZ)×]-algebra via the map [d] ↦ dr−2⟨d⟩ (see (3.1)).
We can make Sr(Ξm,OF ) an OF [(Z/NpmZ)×]-module via

[d] ⋅ f ↦ dr−2⟨d⟩f. (3.4)

This induces anOF [(Z/NpmZ)×]-module structure also on HomA(Sr(Ξm,OF ),OF ).
Then we have the following result.

Lemma 3.1.7. If A = OF , the pairing ⟨ , ⟩ and the isomorphisms of Theorem 3.1.6
are OF [(Z/NpmZ)×]-equivariant.

Proof. Straightforward.
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3.1.4 Structure theorems

In this section we sum up the most important structure theorems for the big ordinary
Hecke algebras hord1,r and hordr . The first has been widely studied in [Hid86b], [Hid86a]
and [NP00], while the second has been used in [How07] and [LV11]. We try here to
fill some gaps in literature and show how one can derive the properties of hordr from
the known results about hord1,r . The key result in this direction is the following lemma.
Recall that at the end of Subsection 3.1.1 we defined a structure of ΛF -modules for
h1,r and hr that naturally induces a structure of ΛF -modules on hord1,r and hordr .

Lemma 3.1.8. If the cardinality of (Z/NZ)× is not divisible by p, we have that hordr
is a direct summand of hord1,r as a ΛF -module.

Proof. Let π be a fixed uniformizer of OF . [Hid00, Theorem 3.15] implies that the
module Dn ∶= Sord

r (Φm,OF /πnOF ) corresponds to the submodule of fixed elements
for the action of G ∶= (Z/NZ)× on En ∶= Sord

r (Γ1(Npm),OF /πnOF ) via the diamond
operators. The map

En Ð→ EGn =Dn

xz→ 1

∣G∣ ∑g∈G
gx

(3.5)

is well defined since p ∤ ∣G∣ and it gives a G-equivariant splitting of the injection
Dn = EGn ↪ En, hence Dn is a direct summand of En as an (OF /πnOF )-module.

Taking inverse limits on n, we obtain that Sord
r (Φm,OF ) is a direct summand

of Sord
r (Γ1(Npm),OF ) as an OF -module. It is immediate to see that the split-

ting induced by (3.5) is linear with respect to the action of OF [(Z/NpmZ)×] on
Sord
r (Γ1(Npm),OF ) defined in (3.4). Therefore, Sord

r (Φm,OF ) is a direct summand
of Sord

r (Γ1(Npm),OF ) as an OF [(Z/NpmZ)×]-module.
The duality between cusp forms and Hecke algebras (see Theorem 3.1.6 and

Lemma 3.1.7) gives that hr(Φm,OF )ord is a direct summand of hr(Γ1(Npm),OF )ord
as an OF [(Z/NpmZ)×]-module. Taking the inverse limit on m, we obtain the claim
of the lemma.

Theorem 3.1.9. Let r, r′ ≥ 2.

(a) There is a canonical isomorphism of ΛF -algebras

hord1,r ≅ hord1,r′

that sends Hecke operators Tℓ, Uℓ and dr−2⟨d⟩ to Tℓ, Uℓ and dr
′−2⟨d⟩ respec-

tively.

(b) The algebra hord1,r is finite and free over ΛF for any r ≥ 2.

Proof. Point (a) is [Hid86a, Theorem 1.1], point (b) comes from [Hid86b, Theorem
3.1]. See also [NP00, Proposition 1.4.3].

Corollary 3.1.10. If the cardinality of (Z/NZ)× is not divisible by p, then:

(a) The isomorphism of point (a) of Theorem 3.1.9 induces an isomorphism of
ΛF -algebras hordr ≅ hordr′ .

(b) The algebra hordr is finite and free over ΛF for any r ≥ 2.
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Proof. (a) By Lemma 3.1.8 we know that hordr is a direct summand of hord1,r , therefore
we can restrict the isomorphism of point (a) of Theorem 3.1.9 to hordr . Since each
Hecke operator is sent to the corresponding one in hord1,r′ , we see that hordr is sent
surjectively to hordr′ .

(b) By Lemma 3.1.8, hordr is a direct summand of hord1,r . Applying point (b) of
Theorem 3.1.9 we have that hordr is finite and projective over ΛF , hence it is free
since ΛF is a local ring.

Remark 3.1.11. This corollary is stated at the beginning of [How07, §2.1] and at
the end of [LV11, §5.1] without proof and without the assumption of p not dividing
the cardinality of (Z/NZ)×. However, we were able to derive it only assuming this
further hypothesis and we still don’t have a proof for the general case. An idea could
be trying to follow the proof of [Hid86a, Theorem 1.1] using the group Φm instead
of Γ1(Npm), but we haven’t investigated further.

From now on we identify all big ordinary Hecke algebras hord1,r for all r and hordr
for all r by means to the isomorphisms of Theorem 3.1.9 and Corollary 3.1.10 re-
spectively, so we simply set

hord1 ∶= hord1,2 and hord = hord2 .

We will also use the letter Γ to denote the group 1+pZp, so that ΛF = OF [[Γ]], and
we fix a profinite generator γ of Γ.

Definition 3.1.12. For every r ≥ 2 and m ≥ 1 define

• ωr,m = [γ]p
m−1 − γ(r−2)pm−1 ∈ ΛF ;

• Pr,ε = [γ] − ε(γ)γr−2 ∈ OF [ε][[Γ]] for every homomorphism ε ∶ Γ/Γpm−1 → Q̄×p .

Notice that there are identifications Γp
m−1 = 1 + pmZp and Γ/Γpm−1 ≅ Z/pm−1Z.

Lemma 3.1.13. Let r ≥ 2 and m ≥ 1. We have the equality

ωr,m = ∏
ε∶ Γ/Γpm−1→Q̄×p

Pr,ε ∈ ΛF ,

where the product runs over all possible homomorphisms ε ∶ Γ/Γpm−1 → Q̄×p .

Proof. The roots of the polynomial Xpm−1 − γ(r−2)pm−1 in Q̄p are ε(γ)γr−2 with ε

varying among all possible characters of Γ/Γpm−1 ≅ Z/pm−1Z. The lemma follows by
substituting X with [γ].

Corollary 3.1.14. For a fixed r ≥ 2, we have that ωr,m ∣ ωr,m+1 in ΛF for every
m ≥ 1.

Proof. Appling Lemma 3.1.13 we find that

ωr,m+1 = ∏
ε∶ Γ/Γpm→Q̄×p

Pr,ε = ∏
ε∶ Γ/Γpm−1→Q̄×p

Pr,ε ⋅ ∏
ε∶ Γ/Γpm→Q̄×p
ε primitive

Pr,ε = ωr,m ⋅ ∏
ε∶ Γ/Γpm→Q̄×p
ε primitive

Pr,ε.
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Following the conventions of [Hid86b] and [Hid86a], for any congruence subgroup
Γ0(Npm) ⊇ ∆ ⊇ Γ1(Npm) and for any character χ of ∆/Γ1(Npm) we denote by
Sr(∆, χ) the subspace of Sr(Γ1(Npm)) made by all modular forms such that the
modular action of matrices in ∆ factors via χ on them. We will use a similar
notation for the corresponding algebras of Hecke operators.

Theorem 3.1.15. The canonical maps hord1
≅→ hord1,r → hr(Γ1(Npm),OF )ord induce

isomorphisms

hord1 /Pr,εhord1
≅→ hr(Γ1(Np)∩Γ0(pm), ε,OF )ord, hord1 /ωr,mhord1

≅→ hr(Γ1(Npm),OF )ord

for every r ≥ 2, m ≥ 1 and ε ∶ Γ/Γpm−1 → O×F .

Proof. This is a consequence of [Hid86a, Theorem 1.2]. In particular, the images of
the elements Pr,ε of [Hid86a, Theorem 1.2] in hord1 via Hida’s structure map (that
differs from ours for a factor) correspond (up to a unit) to the images of our elements
Pr,ε = [γ] − ε(γ)γr−2 in hord1 via our structure map.

Then our element ωr,m coincides up to a unit with the element with the same
name defined by Hida a few lines after [Hid86a, Theorem 1.2], and the lemma follows.
See also [NP00, Proposition 1.4.3].

Corollary 3.1.16. If p does not divide the cardinality of (Z/NZ)×, the canonical
maps hord

≅→ hordr → hr(Φm,OF )ord induce isomorphisms

hord/Pr,εhord
≅→ hr(Γ1(p) ∩ Γ0(Npm), ε,OF )ord, hord/ωr,mhord

≅Ð→ hr(Φm,OF )ord

for every r ≥ 2, m ≥ 1 and ε ∶ Γ/Γpm−1 → O×F .

Proof. Immediate from Theorem 3.1.15 and the splitting of Lemma 3.1.8.

Remark 3.1.17. In the previous theorem, the character ε is seen as a character of
(Γ1(p) ∩ Γ0(Npm))/Γ1(Npm) via the natural isomorphism

(Γ1(p) ∩ Γ0(Npm))/Γ1(Npm) ≅ (Z/NZ)× ×Z/pm−1Z ≅ (Z/NZ)× × Γ/Γpm−1 ,

being by definition the trivial character on the factor (Z/NZ)×.

3.2 Hida families

In the previous section we studied the structure of p-adic big ordinary Hecke alge-
bras. We now fix a cusp form (with certain properties) and see that it defines a
decomposition of the big ordinary Hecke algebra that is associated, by duality, to a
family of p-adic cusp forms. We will then focus on the Galois representation attached
to this family.

3.2.1 A fixed cusp form f

We review some terminology and some facts about cusp forms. Let M ≥ 1 and k ≥ 2
be integers. For every congruence subgroup Γ contained in SL2(Z), there is the so
called Petersson inner product, defined by

⟨f, g⟩P =
1

VΓ
∫
X(Γ)

f(z)ḡ(z) Im(z)kdµ(z)



3.2. Hida families 53

for every f, g ∈ Sk(Γ), where X(Γ) is the compact modular curve attached to Γ,
dµ(z) = dxdy

y2
is the hyperbolic measure of the upper-half plane (for z = x + iy), VΓ

is the volume of X(Γ) with respect to µ and ḡ denotes the complex conjugate of
g. For more details, see for example [DS05, §5.4]. The Petersson inner product is
Hermitian-symmetric and positive definite.

Definition. For each divisor d of M we define

id ∶ (Sk(Γ1(M/d)))2 Ð→ Sk(Γ1(M))
(f, g) z→ f + ( d 0

0 1 ) g.

If M = AB with (A,B) = 1, the subspace of B-old cusp forms of level M is

SB−oldk (Γ1(M)) ∶= ∑
d∣M
(d,B)≠1

id (Sk(Γ1(M/d)))2 .

The subspace SB−newk (Γ1(M)) of B-new cusp forms of level M is the orthogonal
complement of SB−oldk (Γ1(M)) with respect to the Petersson inner product.

When B =M we will write Sold
k and Snew

k instead of SM−oldk and SM−newk respec-
tively. The spaces SB−oldk (Γ1(M)) and SB−newk (Γ1(M)) are stable under the action
of all Hecke and diamond operators (see [DS05, Proposition 5.6.2]). Notice that there
is the decomposition

Sk(Γ1(M))B−new = ⊕
B∣P ∣M

⎡⎢⎢⎢⎢⎢⎣
⊕
d∣M

P

id(Sk(Γ1(P ))new)2
⎤⎥⎥⎥⎥⎥⎦
,

as remarked also in [MT99, Equation 3.4].

Definition. Let f ∈ Sk(Γ1(M)). We say that f is an eigenform if it is an eigen-
vector for the action of all Hecke operators Tℓ for ℓ ∤M , Uℓ for ℓ ∣M and ⟨d⟩ for all
d ∈ Z>0. An eigenform f(z) = ∑∞n=1 an(f)qn is normalized if a1(f) = 1.

Proposition 3.2.1. Let f ∈ Sk(Γ1(M)) be a normalized eigenform. Then there is a
normalized eigenform g ∈ Sk(Γ1(P ))new for a uniquely determined P ∣ M such that
an(g) = an(f) for all n coprime with M .

Proof. See [DS05, Proposition 5.8.4].

The level P of the newform g in the proposition is called the conductor of f .

Definition. Let f ∈ Sk(Γ1(M),OF ) for some finite extension F of Qp. We say that
f is p-ordinary if ap(f) ∈ O×F .

Definition. Let f ∈ Sk(Γ1(Npm),OF ) with k ≥ 2. We say that f is an ordinary
p-stabilized newform of tame level N if m ≥ 1, f is p-ordinary and the conductor
of f is divisible by N .

As remarked in [NP00], f is an ordinary p-stabilized newform of tame level N if
and only if f is p-ordinary and is either a newform on Γ1(Npt) for some t ≥ 1 or it
is equal to the p-stabilization of a newform on Γ1(N). For more on p-stabilizations,
see [NP00, §1.3.6] or [Vig22, §2.4].
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We now fix embeddings Q̄ ↪ Q̄p and Q̄ ↪ C, so that the Teichmuller character
ω ∶ (Z/pZ)× → Z×p can be seen as a Dirichlet character modulo p. For the rest of the
thesis we fix

f = ∑
n>0

an(f)qn ∈ Sk(Γ0(Np), ωj)

to be a normalized eigenform of weight k ≥ 2 and character ωj for some j ≥ 0 (here,
as usual, q = e2πiz for z ∈ H). Since ω is an odd character (i.e. ω(−1) = −1), the
existence of such a form implies that j ≡ k (mod 2).

Fix now a finite extension F /Qp that contains all Fourier coefficients of f , that
in fact lie in the ring of integers OF of F (see [DS05, Theorem 6.5.1]).

Assumption 3.2.2. We require that f is an ordinary p-stabilized newform of tame
level N without complex multiplication (in the sense of [Rib77, p. 34]).

3.2.2 The Hida family passing through f - Hida’s version

In this subsection we describe the construction of Hida families following the work of
Hida in [Hid86a, §1] (see also [LV11, §5.3] and [NP00, §1.4.4]). We will assume that p
does not divide the cardinality of (Z/NZ)×, so that hord is a direct summand of hord1

as a ΛF -module (here F is the field chosen at the end of the previous subsection).

Local decomposition

Since hord and hord1 are finitely generated commutative ΛF -modules, a classical result
in commutative algebra (see [Eis13, Corollary 7.6]) implies that they split as finite
products

hord =∏
m

hordm and hord1 =∏
n

hord1,n (3.6)

of their localizations (equivalently, completions) at their maximal ideals m and n
respectively. Every summand appearing in these decompositions is a complete local
ring, finite and free over ΛF since hord and hord1 are so by Theorem 3.1.9 and Corollary
3.1.10. Moreover, since hord is a direct summand of hord1 , it happens that each hordm

coincides with one of the hord1,n . In general, these local factors are not integral domains;
to get a further decomposition we can proceed in two ways. In this subsection we
follow the approach of Hida. Call L the fraction field of ΛF .

Lemma 3.2.3. There are splitting of L-algebras

hord ⊗ΛF
L = (∏

i∈I
Fi) ⊕M and hord1 ⊗ΛF

L =
⎛
⎝∏j∈J
Kj
⎞
⎠
⊕N

where Kj are finite field extensions of L, {Fi}i∈I is a subset of {Kj}j∈J , M and N
are nilpotent.

Proof. The algebras hord⊗ΛF
L and hord1 ⊗ΛF

L are finite-dimensional artinian algebras
over L. The field L has characteristic 0, therefore it is perfect. Moreover, for artinian
algebras, the nilradical is nilpotent and coincides with the Jacobson radical (see
[AM69, Corollary 8.2 and Proposition 8.4]). Therefore, by Weddeburn principal
theorem, every finite dimensional algebra over L splits into the sum of a semisimple
and a nilpotent algebra. A semisimple finitely generated artinian algebra over L is
the product of finite field extensions of L.
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In Hida’s terminology, the fields Fi and Kj are called primitive components
of hord1 ⊗ΛF

L and hord⊗ΛF
L, respectively. The splittings of (3.6) induce the decom-

positions

hord ⊗ΛF
L =∏

m

(hordm ⊗ΛF
L) and hord1 ⊗ΛF

L =∏
n

(hord1,n ⊗ΛF
L).

Definition. We say that Fi (resp. Kj) belongs to m (resp. n) if it is a direct
summand of hordm ⊗ΛF

L (resp. hord1,n ⊗ΛF
L).

The Hida family passing through f

Recall that the algebras hord and hord1 are OF [[Z×p ]]-modules. Our fixed cuspform f
determines, using the duality of Theorem 3.1.6, an OF -algebra map

θf ∶ hord hk(Γ0(N) ∩ Γ1(p),OF )ord OF (3.7)

characterized by θf(Tℓ) = aℓ(f) for ℓ ∤ Np, θf(Uℓ) = aℓ(f) for ℓ ∣ Np and

θf([δ]) = δk+j−2, θf([γ]) = γk−2

for δ ∈ (Z/pZ)× and γ ∈ Γ = 1 + pZp. We define also a morphism θ1,f ∶ hord1 → OF by
pre-composing θf with the natural projection hord1 ↠ hord.

Since OF is a domain, the maps θf and θ1,f factor through a unique local factor
of hord and hord1 respectively. Call mf and nf the maximal ideals corresponding to
these two local factors, respectively. Since hord is a direct summand of hord1 , we have
that hordmf

= hord1,nf
. Since from now on we will work with this local component, it

happens that there is no difference in using hord or hord1 , as long as the first is a
direct summand of the second (that is always the case if we assume that p does not
divide the cardinality of (Z/NZ)×).

Making a finite extension of F , we can assume that F is equal to the algebraic
closure of Qp in K for any field K = Kj appearing in the decomposition of Lemma
3.2.3 (see [Hid86b, Proposition 3.4]). We define h(K) to be the image of hord1 in K,
h̃(K) to be the free ΛF -closure of h(K) in K and J (K) to be the integral closure of
ΛF in K. Equivalently, h̃(K) is the intersection of all localizations of h(K) at height
one prime ideals of ΛF , and it is free of finite rank over ΛF . As noted in [NP00,
§1.4.4], there are inclusions

h(K) ⊆ h̃(K) ⊆ J (K).

For every r ≥ 2, m ≥ 1 and character ε ∶ Γ/Γpm−1 → O×F we have a natural morphism

θr,ε ∶ hord1 /Pr,εhord1 Ð→ h̃(K)/Pr,εh̃(K)

induced by the projection of hord1 into h(K).

Definition. Let r ≥ 2, m ≥ 1 and ε ∶ Γ/Γpm−1 → O×F be a character. Take g ∈
Sr(Γ1(Np)∩Γ0(pm), ε,OF )ord and fix a local component K appearing in the decom-
position of Lemma 3.2.3. We say that g belongs to K if there is a map θ′ making
the diagram

hord1 /Pr,εhord1 h̃(K)/Pr,εh̃(K)

hordr (Γ1(Np) ∩ Γ0(pm), ε,OF ) OF

θr,ε

θ′

θg

≅
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commutative, where θg is the map attached to g by duality.

Theorem 3.2.4 (Hida). Let r ≥ 2, m ≥ 1 and ε ∶ Γ/Γpm−1 → O×F be a character. If g
is an ordinary p-stabilized newform of tame level N in Sr(Γ1(Np) ∩Γ0(pm), ε,OF ),
there is a unique field Kg to which g belongs.

Proof. See [Hid86a, Corollary 1.3].

We now fix the field Kf to which our fixed cusp form f belongs. Then Kf belongs
to the maximal ideal nf of hord1 . Since the form f has trivial character at N , the field
Kf is also a local component of hord ⊗ΛF

L and the field Kf belongs to the maximal
ideal mf of hord. We call Rf ∶= J (Kf) the integral closure of ΛF in Kf .

Definition. The local ring hord1,nf
= hordmf

is called the Hida family of f and the ring
Rf is the branch of the Hida family on which f lives.

Theorem 3.2.5. The ring Rf is a complete local Noetherian domain which is finitely
generated over ΛF . Moreover, it is a Cohen-Macaulay ring, free over ΛF .

Proof. The first part is [LV11, Proposition 5.2]. Since Rf has Krull dimension 2 and
is integrally closed, Serre’s criterion for normality implies that it is a Cohen-Macaulay
ring. By miracle flatness, we conclude that Rf is free over ΛF .

The natural map
f∞ ∶ hordmf

Ð→ h(Kf) Ð→ Rf (3.8)

gives a structure of hordmf
-module on Rf .

3.2.3 The Hida family passing through f - Nekovář’s version

In this section we relate Hida’s version (used also in [LV11]) with Nekovář’s version
(used for example in [Nek06, §12.7], [How07] and [Büy14]) of Hida theory. The
difference lies in the definition of the branch of the Hida family passing through the
fixed cusp form f .

Lemma 3.2.6. Let hordmf
and Kf be the components to which f belongs (in the sense

of the previous section). Then the kernel of the natural map

π ∶ hordmf
↠ h(Kf)

is a minimal prime of hordmf
contained in the kernel of θf .

Proof. The kernel of π is prime since h(Kf) is a domain. Moreover, since both hordm

and h(Kf) have Krull dimension 2, the kernel of π must be a minimal prime. Since f
belongs to Kf , the map θf factors through π and we obtain that ker(π) ⊆ ker(θf).

It is also known (see [Nek06, §12.7.5] or [Hid86a, Corollary 1.4]) that the localiza-
tion of hordmf

at ker(θf) is a discrete valuation ring, unramified over the localization of
ΛF at ΛF ∩ker(θf). Therefore, ker(π) is the unique minimal prime of hordmf

contained
in ker(θf).

Definition. The Nekovář branch of the Hida family on which f lives is the ring
Rf ∶= hordmf

/ker(π).
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Lemma 3.2.7. The ring Rf is a complete local Noetherian domain which is finitely
generated over ΛF . It is a Cohen-Macaulay ring, free over ΛF . The integral closure
of Rf in its field of fractions Kf is Rf .

Proof. By Lemma 3.2.6 we know that Rf is isomorphic to h(Kf), therefore the first
and the last sentences are trivial. The fact that Rf is Cohen-Macaulay and free over
ΛF is verified in [Fou13, Lemma 3.6].

Comparing Theorem 3.2.5 with Lemma 3.2.7 one can notice that Rf and Rf
have the same relevant algebraic properties, except for normality. With the same
notation as in Hida’s setting we denote by f∞ ∶= π ∶ hordmf

↠ Rf the quotient map.

3.2.4 Arithmetic primes

We now study some properties of Hida families. With this purpose, we introduce
the concept of arithmetic primes following [NP00, §1.4.4], [How07, §2.1] and [LV11,
§5.5].

Definition ([How07]). Let A be a finite commutative ΛF -algebra. An OF -algebra
map A→ Q̄p is arithmetic if the composition

Γ A× Q̄×p
γ↦[γ]

has the form γ ↦ ψ(γ)γr−2 for some r ≥ 2 and some finite order character ψ of Γ.
The kernel of an arithmetic map is called an arithmetic prime of A.

As noted in [Nek06, §12.7.2 and §12.7.4], the arithmetic primes of A are exactly
all primes lying above Pr′,ε′ΛF ′ ∩ ΛF for some r′ ≥ 2, F ′ finite extension of F and
ε′ ∶ Γ→ OF ′ finite order character.

Given an arithmetic prime p, the residue field Fp = Ap/pAp = Frac(A/p) is a
finite extension of F . The composition Γ → A× → F×p has the form γ ↦ ψp(γ)γrp−2
for a finite order character ψp ∶ Γ → F×p called the wild character of p and an
integer rp ≥ 2 called the weight of p.

Example 3.2.8. The map θf ∶ hordmf
→ OF is an arithmetic map with trivial wild

character and weight k.

Theorem 3.2.9 (Hida). Ler R be any of Rf or Rf and fix an arithmetic prime p
of R of weight rp and character ψp. Set mp to be the maximum between 1 and the
p-adic order of the conductor of ψp. Then the composition

hord Ð→ hordmf

f∞Ð→RÐ→ Fp

factors through hrp(Φmp ,OF ) and determines by duality an ordinary p-stabilized new-
form

fp ∈ Srp(Γ0(Npmp), ψpω
k+j−r, Fp).

Proof. See [How07, p.97], [LV11, p.300] and [Nek06, §12.7.4 and §12.7.5].

Remark 3.2.10. For more insights on why there is no difference in using Rf or Rf
in Theorem 3.2.9, see [NP00, Proposition 1.4.6]. From now on we fix R ∶= Rf , but
everything can be probably done also using Rf instead.
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3.3 The big Galois representations attached to a Hida
family

Hida in [Hid86a, §2] showed a canonical way to build a Galois representation at-
tached to a Hida family of modular forms. We will be interested in a twist of Hida’s
representation, therefore we will mainly follow [How07, §2] and [LV11, §5]. We first
briefly recall how one can attach a p-adic Galois representation to the fixed modular
form f .

3.3.1 Deligne’s Galois representation attached to f

For the content of this subsection we mostly refer to [Vig22, §2]. According to
Deligne [Del06a] there is an OF -module Tf of rank 2 with an action of GQ such that
the representation

ρf ∶ GQ Ð→ GL(Tf) ≅ GL2(OF ) ⊆ GL2(F )

attached to f has the property that the characteristic polynomial of the arithmetic
Frobenius Frℓ at every prime ℓ ∤ Np is

X2 − aℓ(f)X + ωj(ℓ)ℓk−1.

We also set Vf ∶= Tf ⊗OF
F .

Definition. Let πF be a uniformizer of OF . The composition

GQ Ð→ GL(Tf) Ð→ GL(Tf /πFTf)

is called the residual representation attached to ρf , and will be denoted by ρ̄f .

From now on, as in [LV11, Assumption 5.1], we assume the following property
on the residual representation attached to f .

Assumption 3.3.1. The residual representation ρ̄f is p-distinguished and absolutely
irreducible.

Here we recall that ρ̄f is said to be p-distinguished if its restriction to a decom-
position group Dp at p can be put in the shape ρ̄f ∣Dp = (

ε1 ∗
0 ε2 ) for characters ε1 ≠ ε2

(see [Gha05, Definition 4]). Notice that, since f is p-ordinary, it is a result due to
Mazur and Wiles that ρ̄f ∣Dp is always upper triangular (see [Gha05, §1]).

Remark 3.3.2. Absolute irreducibility of ρ̄f is equivalent to irreducibility, as re-
marked for example in [Vig22, Remark 2.5]. Notice also that since ρ̄f is irreducible,
it coincides with its semisimplification.

3.3.2 Critical characters

We now go back to the context of Hida families and define critical characters, fol-
lowing [How07, p. 96] and [LV11, §5.4].

Definition. Factor the p-adic cyclotomic character εcyc ∶ GQ → Z×p as the product
εcyc = εtame ⋅ εwild with εtame ∶ GQ → µp−1 and εwild ∶ GQ → Γ. Define the critical
character Θ ∶ GQ → Λ×F by

Θ = ε
k+j
2
−1

tame ⋅ [ε
1/2
wild]

where ε1/2wild is the unique square root of εwild taking values in Γ.
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Decompose Z×p =∆×Γ and recall that ω ∶∆→ µp−1 is the Teichmüller character.
For each i ∈ Z/(p − 1)Z define the idempotent

ei ∶=
1

p − 1 ∑δ∈∆
ω−i(δ)[δ] ∈ OF [[Z×p ]],

that satisfies the relation

ei ⋅ [ζ] = ζi ⋅ ei for all ζ ∈ µp−1.

We can see ei in hord via the structure map induced by (3.3). Since θf(ei) = 0 for
every i ≠ k + j − 2, we must have

ek+j−2h
ord
mf
= hordmf

,

therefore the image of ek+j−2 is a unit in hordmf
. Combining the last two equations, we

obtain that [εtame] = εk+j−2tame in hordmf
. It follows that

Θ2 = [εcyc] in hordmf
,

and therefore also in Rf and in R = Rf via the map f∞. In particular, for every
prime ℓ ∤ p, the relation

Θ2(Frℓ) = [εcyc(Frℓ)] = [ℓ] (3.9)

holds in hordmf
, Rf and R, for every chosen frobenius element Frℓ at ℓ.

Definition. Let R† denote R as a module over itself but with GQ acting through
the character Θ−1.

3.3.3 The big Galois representation

For every integer m ≥ 0 denote by X0,1(N,pm) the compactified modular curve of
level structure Φm = Γ0(N)∩Γ1(pm), viewed as a scheme over Q, by Jac(X0,1(N,pm))
its Jacobian variety and by Tap(Jac(X0,1(N,pm))) the p-adic Tate module of the
Jacobian, i.e. the inverse limit of all the pn-th torsion subgroups of the Jacobian. All
Hecke and diamond operators act on Jac(X0,1(N,pm)) and on Tap(Jac(X0,1(N,pm)))
via the Albanese action. There is also a natural action of GQ on them, coming from
the fact that the curve X0,1(N,pm) is defined over Q.

As in [How07, §2.1] and [LV11, §5.5], for every integer m ≥ 1 we define hord-
modules

Taordp,m ∶= eord(Tap(Jac(X0,1(N,pm))) ⊗Zp OF )

Taord ∶= lim←Ð
m

Taordp,m

Taordmf
∶= Taord ⊗hord hordmf

T ∶= Taordmf
⊗hordmf

R.

All these modules are endowed with hord-linear actions of the Galois group GQ, and
the inverse limit in the definition of Taord is taken with respect to the maps induced
by the degeneracy maps X0,1(N,pm+1) →X0,1(N,pm).

Write mR for the maximal ideal of the local ring R and set FR ∶= R/mR for the
residue field of R. Denote with T̄ ∶= T/mRT for the residual representation attached
to T.
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Theorem 3.3.3. The residual GQ-representation T̄ is equivalent up to a finite base
change to the residual representation ρ̄f of f . In particular, it is absolutely irre-
ducible.

Proof. See [LV11, Proposition 5.4].

The big Galois representation has the following fundamental property with re-
spect to the arithmetic specializations.

Theorem 3.3.4. For every arithmetic prime p of R the representation T⊗R Fp is
equivalent up to a finite base change to the representation Vfp attached by Deligne to
the modular form fp attached to p via Theorem 3.2.9.

Proof. See [NP00, (1.5.5)] (see also [Vig22, §2.5]).

Definition. The critical twist of T is the GQ-module

T† ∶= T⊗RR†.

Corollary 3.3.5. The residual GQ representation T̄
† = T†/mT† is absolutely irre-

ducible.

Proof. The representation T̄
† is a one-dimensional twist of T̄, and irreducibility is

preserved by tensorization with one dimensional representations (see [Kow14, Exer-
cise 2.2.14, (2)]). We conclude applying Theorem 3.3.3.

Proposition 3.3.6. The R-module T† is free of rank two. As a GQ-representation,
T† is unramified outside Np. The arithmetic Frobenius of a prime ℓ ∤ Np acts on
T† with characteristic polynomial

X2 −Θ−1(Frℓ)TℓX + ℓ,

where Θ is the critical character defined in Subsection 3.3.2.

Proof. We prove the claims for the representation T† ∶= Taordmf
⊗hordmf

R†
f , since we rely

on some results of [How07]. The proposition will easily follow from the fact that
T† = T† ⊗Rf

R.
The first claim follows then immediately from [How07, Proposition 2.1.2]. The

second claim follows from [How07, Proposition 2.1.2] and the fact that the charac-
ter Θ is unramified outside p (this is true since the p-adic cyclotomic character is
unramified outside p).

In order to prove the third claim, we start from the fact that the action of Frℓ on
Taordmf

has characteristic polynomial

X2 − TℓX + [ℓ]ℓ,

as explained in [How07, Proposition 2.1.2]. When we move to T†, the original action
of GQ becomes twisted by Θ−1. Elementary computations show that the action of
Frℓ has characteristic polynomial

X2 −Θ−1(Frℓ)TℓX +Θ−2(Frℓ)[ℓ]ℓ

on T†. The relation of equation (3.9) yields a simplification in the characteristic
polynomial, that becomes

X2 −Θ−1(Frℓ)TℓX + ℓ
as claimed.
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Proposition 3.3.7. Let Dp a fixed decomposition group for p in GQ̄. Then there is
an exact sequence of R[[Dp]]-modules

0Ð→ F+p (T†) Ð→ T† Ð→ F−p (T†) Ð→ 0

where F+p (T†) and F−p (T†) are free R-modules of rank 1.

Proof. See [LV11, p.300] and [How07, Proposition 2.4.1].

3.4 Hida theory on indefinite quaternion algebras

In this section we recover the notation of the first chapter and see how one can join
classical Hida theory with the theory of Galois representations coming from towers
of Shimura curves attached to division quaternion algebras. We mainly follow [LV11,
§6].

Recall the indefinite quaternion algebra B over Q of discriminant N− and that
N ∶= N+N− for a positive squarefree integer N+ coprime with N−. In this section we
assume that B is a division algebra, the theory for the split case B ≅M2(Q) having
been considered earlier.

Recall the curves X̃m defined in Subsection 1.2.2 for every m ≥ 0 and studied
thereafter. Fix m ≥ 0 and let Div(X̃m) and Div0(X̃m) denote the groups of divisors
and of degree zero divisors, respectively, on X̃m(C).

Let Princ(X̃m) be the group of principal divisors on X̃m(C) and denote, as usual,
the Picard groups

Pic(X̃m) ∶= Div(X̃m)/Princ(X̃m) and Pic0(X̃m) ∶= Div0(X̃m)/Princ(X̃m).

The degree map induces the short exact sequence of abelian groups

0 Pic0(X̃m) Pic(X̃m) Z 0.
deg

(3.10)

3.4.1 Hecke modules

Thanks to Abel’s theorem (see e.g. [DS05, Theorem 6.1.2]) the group Pic0(X̃m) can
be identified with the Jacobian variety Jac(X̃m) of X̃m, which is an abelian variety
defined over Q of dimension equal to the genus of X̃m. More precisely, Pic(X̃m)
identifies with the Q̄-points of the Picard scheme of X̃m and Pic0(X̃m) with the
identity component of this scheme.

In Section 1.4 we defined Hecke operators for every ℓ ∤ N and diamond operators
acting on Div(X̃m). As explained for example in [Fou13, §2.1.3], it is possible to
define also Hecke operators Uℓ for all primes ℓ ∣ N+, following the same construction
of Subsection 1.4.2, but we don’t recall the details since we don’t need them explicitly.
The OF -algebra generated by all these Hecke operators is called the full classical
Hecke algebra and written Bm. As in the classical case, we define Hida’s ordinary
projector

eordm ∶= lim
n
Un!p ∈ Bm

and set Bord
m ∶= eordm Bm. Taking inverse limits with respect to the maps induced by

the tower of curves (1.8), we set

B ∶= lim←Ð
m

Bm and Bord ∶= lim←Ð
m

Bord
m .
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Write Tap(Jac(X̃m)) for the p-adic Tate module of Jac(X̃m) and define

T ord
m ∶= eordm (Tap(Jac(X̃m)) ⊗Zp OF ),

T ord
∞ ∶= lim←Ð

m

eordm Tm,

which are left Bord
m [GQ] and Bord[GQ] modules, respectively.

3.4.2 New quotients and Jacquet-Langlands correspondence

Let r ≥ 2, m ≥ 0 and assume that p does not divide the cardinality of (Z/NZ)×.
We are now interested in the space SN

−−new
r (Φm, Q̄p) of cusp forms of level Φm =

Γ0(N) ∩ Γ1(pm) with coefficients in Q̄p that are new at N−, as defined in Subsec-
tion 3.2.1. Write Tr,m for the image of hr(Φm,OF ) in the endomorphism ring of
SN

−−new
r (Φm, Q̄p). Set also

Tr ∶= lim←Ð
m

Tr,m, Tord
r,m ∶= eordm Tr,m Tord

r ∶= lim←Ð
m

Tord
r,m,

where eordm is Hida’s ordinary idempotent projector. The isomorphisms of Corollary
3.1.10 yield isomorphisms of Λ-modules

Tord
r ≅ Tord

r′

for all weights r, r′ ≥ 2, so we identify the algebras Tord
r with Tord ∶= Tord

2 .
As explained in [LV11, §5.3] one can pursue Hida theory working with the algebra

Tord in stead of hord, obtaining that the map θf of (3.7) factors as

θf ∶ hord Tord OF .

There is a unique maximal ideal nf of Tord through which θf factors. The field
Kf to which f belongs is isomorphic to the field appearing in the decomposition of
Tord
nf
⊗Λ L to which f belongs, in the same sense.

Since Tord
nf

is finite over ΛF , it is also integral over ΛF . This implies that the
image of Tord

nf
in Kf is contained in Rf . We denote by the symbol

f∞ ∶ Tord
nf
Ð→Rf (3.11)

the structure map.
There is a canonical way to define an OF [[Z×p ]]-algebra structure on Bord such

that the following result holds.

Theorem 3.4.1 (Jacquet-Langlands). There is a canonical isomorphism of OF [[Z×p ]]-
algebras

JLord ∶ Tord ≅Ð→ Bord

that sends every Hecke operator to the corresponding one.

Proof. See [LV11, Proposition 6.1]. See also [MT99, Theorem 20].

In light of this theorem, from now on we will identify that algebra Bord with Tord,
and use the latter symbol to denote both Hecke algebras.
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3.4.3 Galois representations

In this subsection, as in [LV11, §6.4], we work under the following assumption, whose
analogue for the Hida family hordmf

is true by [How07, Proposition 2.1.2].

Assumption 3.4.2. The ΛF -algebra Tord
nf

is Gorenstein, that is

Tord
nf
≅ HomΛF

(Tord
nf
,ΛF )

as Tord
nf

-modules.

Define the Galois modules

T ord
∞,nf ∶= T

ord
∞ ⊗Tord Tord

nf
, TSh ∶= T ord

∞,nf ⊗Tord
nf
R, T†

Sh ∶= TSh ⊗RR†.

As in [LV11, §6.4] we need the following assumption.

Assumption 3.4.3. The residual GQ-representation TSh/mRTSh is absolutely irre-
ducible.

Now recall theR[GQ]-module T defined in Subsection 3.3.3. The following result
will be crucial.

Proposition 3.4.4. There are isomorphisms of Tord
nf
[GQ]-modules T ≅ TSh and

T† ≅ T†
Sh.

Proof. See [LV11, Corollary 6.5].

In light of this proposition, from now on we unify the notations and write T in
place of TSh. Notice that, when we will study the action of the operators Tℓ and Up on
(the cohomology of) T, we always see them via the structure map f∞ ∶ Tord

nf
Ð→Rf .

This is because we have to work with points and cohomology classes that come from
the Shimura world, and for them there is not an action of the bigger algebra hordmf

.
However, the entire philosophy of [LV11] makes clear that this is not a big deal,
because the relations that they found (and that we sum up in the next section) are
formally the same as those presented in [How07] for the classical split case.

3.5 Big Heegner points

In this section we review the contruction of big Heegner points in an indefinite quater-
nionic context, mainly following [LV11, §7-8]. We will stress that the construction
and the properties of big Heegner points will depend only on the compatibility prop-
erties satisfied by the classes of points that will be used. This is why we work with
the abstract data of a system of LV-Heegner points Pc,m ∈ X̃m of conductor cpm for
m ≥ 0 and c ≥ 1 such that (c,N) = 1 satisfying the properties of Proposition 2.3.1
and Lemma 2.3.2. An example of a system of points satisfying these properties is
the set of points P̃c,m built in [LV11, §4] and recalled in Section 2.3.
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3.5.1 Big Heegner classes

Recall that, by Proposition 2.2.7, the point Pc,m is rational over Lc,m ∶=Hcpm(µpm).
Following [LV11, §6.2] we denote by Jm and J0

m the functors from the category of
Q-algebras to the category of OF -modules which associate with any Q-algebra L the
OF -modules

Jm(L) ∶= Pic(X̃m)(L) ⊗Z OF and J0
m(L) ∶= Jac(X̃m)(L) ⊗Z OF ,

respectively. Set also Jm(Lc,m)ord ∶= eordm Jm(Lc,m) and J0
m(Lc,m)ord = eordm J0

m(Lc,m).
From the short exact sequence (3.10) we obtain the Hecke equivariant exact sequence

0 J0
m(Lc,m) Jm(Lc,m) OF 0.

deg

Since the action of Up on OF is via the multiplication by p = deg(Up), the fact that
eordm = limnU

n!
p yields an identification

J0
m(Lc,m)ord ≅ Jm(Lc,m)ord.

Viewing Pc,m as a divisor on X̃m, we obtain an element

eordm Pc,m ∈ J0
m(Lc,m)ord.

We want to move to the component identified by the Hida family attached to f . This
is why we define

J0
m(Lc,m)ord ∶= J0

m(Lc,m)ord ⊗Tord R and J0
m(Lc,m)ord,† ∶= J0

m(Lc,m)ord ⊗Tord R†.

Write also P c,m for the image of eordm Pc,m in J0
m(Lc,m)ord,†.

Lemma 3.5.1. With the notation above, P c,m ∈H0(Hcpm ,J
0
m(Lc,m)ord,†).

Proof. As explained in [LV11, §7.1], the action of Θ(σ) coincides with the action of
⟨θ(σ)⟩ on J0

m(Lc,m)ord for every σ ∈ GHc,m . One then concludes by applying Lemma
2.3.2.

One then defines

Pc,m = TrHcpm/Hc
(P c,m) ∈H0(Hc,J

0
m(Lc,m)ord,†).

Recall the reduction maps α̃m ∶ X̃m → X̃m−1 of (1.8).

Lemma 3.5.2. The equality

α̃m(Pc,m) = Up(Pc,m−1)

holds in H0(Hc,J
0
m−1(Lc,m−1)ord,†) for all m ≥ 1.

Proof. See [LV11, Corollary 7.2].

There is a twisted and Hecke-equivariant Kummer map

δm ∶H0(Hc,J
0
m(Lc,m)ord,†) Ð→H1(Hc,T

†
m)
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where T†
m ∶= Taordp,m⊗TordR†. Set κc,m ∶= δm(Pc,m). The previous lemma gives the

relation
α̃m(κc,m) = Up(κc,m−1).

Thanks to this relation and the isomorphism of Tord-modules

lim←Ð
m

H1(Hc,T
†
m) ≅H1(Hc,T

†),

we define, as in [LV11, Definition 7.4],

Definition 3.5.3. The big Heegner class of conductor c attached to the system
{Pc,m}m≥0 is the element

κc ∶= lim←Ð
m

U−mp (κc,m) ∈H1(Hc,T
†).

Remark 3.5.4. As noticed in [LV11, §7.4], one can be more precise and prove that
the big Heegner class κc is unramified outside Np, meaning that it lies in the kernel
of the restriction map

H1(Hc,T
†) resÐ→H1(H(Np)c ,T†)

where H(Np)c is the maximal extension of Hc unramified at outside Np.

3.5.2 Euler system relations

We sum up the main compatibility properties of big Heegner points, proven in [LV11,
§8]. Their proofs rely only on the fact that their points satisfy the relations of
Proposition 2.3.1 and Lemma 2.3.2, therefore are still valid for our big Heegner
points that are built starting from the more generic system {Pc,m}c,m defined at the
beginning of this section.

Proposition 3.5.5. Let c ≥ 1 coprime with N . The relation

Up(κc) = corHcp/Hc
(κcp)

holds in H1(Hc,T
†).

Proof. See [LV11, Corollary 8.2].

Proposition 3.5.6. Let c ≥ 1 coprime with N and ℓ ∤ Npc be a prime which is inert
in K. The relation

Tℓ(κc) = corHcℓ/Hc
(κcℓ)

holds in H1(Hc,T
†).

Proof. See [LV11, Corollary 8.4].

Let c ≥ 1 be an integer coprime with N and ℓ ∤ Npc be a prime which is inert
in K. By class field theory, ℓ splits completely in the extension Hc/K. Fix a prime
λ ∈ Hc above ℓ. Then λ is totally ramified in Hcℓ, so λOHcℓ

= λ̃ℓ+1 for a prime ideal
λ̃ of the ring of integers OHcℓ

of Hcℓ. Denote by Frℓ ∈ Gal((Hc)λ/Qℓ) the arithmetic
Frobenius at ℓ.

Proposition 3.5.7 (Eichler-Shimura relation). Let ℓ ∤ Npc be a prime inert in K.
Then κcℓ and Frℓ(κc) have the same image (via restriction) in H1((Hcℓ)λ̃,T

†).
Proof. See [LV11, Proposition 8.7].





Chapter 4

Kolyvagin systems

In this chapter we review the theory of Kolyvagin systems, first settled in the foun-
dational work [MR04] and then developed by others. We will mainly follow [Büy14,
§4], [Büy16] and [How04b] since our setting needs a greater generality than [MR04].

In the first section we fix some fields and define some quotients of the big rep-
resentation. Then we present the general theory of Kolyvagin systems, with an eye
at the examples coming from the objects we defined before. These examples will be
part of the setting of the next chapters.

4.1 The anticyclotomic setting

Let Hn be, as usual, the ring class field of K of conductor n. For α ∈ Z>0 define Lα
to be the maximal p-extension in Hpα+1/H1. The class number formula (see [Cox22,
Theorem 7.24]) implies that [Lα ∶ H1] = pα. By Assumption 2.2.6, the degree of the
extension H1/K is prime to p, therefore there exists a unique subextension of Lα/K
of degree pα disjoint with H1. We call this extension Kα. Let

L∞ ∶= ⋃
α∈Z>0

Lα and K∞ ∶= ⋃
α∈Z>0

Kα.

We have that Gal(L∞/L) ≅ Gal(K∞/K) ≅ Zp.
Definition. K∞ is called the anticyclotomic Zp-extension of K.

For n ∈ Z>0 coprime with p we also set K(n) to be the maximal p-extension of
Hn/K, Lα(n) to be the composite of Lα and Hn and Kα(n) to be the composite of
Kα and K(n). The picture is the following:

Hnpα+1

L∞ Hpα+1 Lα(n)

K∞ Lα Kα(n) Hn

Kα H1 K(n)

K
pα

(4.1)
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Notice that the fields Lα and Hn are disjoint over H1 by ramification issues. The
fields Kα, H1 and Hn are pairwise disjoint over K by ramification issues and from
the hypothesis (see Assumption 2.2.6) that [H1 ∶K] is coprime with p. This implies
that any prime v of K (resp. of H1) that lies over p is totally ramified in Kα (resp.
in Lα).

Definition 4.1.1. We define Γac = Gal(K∞/K) ≅ Gal(L∞/L), Λac = Zp[[Γac]] and
fix a profinite generator γ of Γac.

For more properties on the anticyclotomic Zp-extension of K, see [Bri07]. We will
use the ring Λac to twist the big Galois representation, in order to get information
about the anticyclotomic tower, and work out one divisibility of the Iwasawa main
conjecture.

4.1.1 Quotients and anticyclotomic twist of the big representation

Let r ≥ 2 and m ≥ 1. In Definition 3.1.12 we defined elements ωr,m ∈ ΛF and
Pr,ε ∈ ΛF [ε] for a character ε of Γ that factors through Γ/Γpm . We can see these
elements in R and R[ε] respectively via the structure morphism ΛF →R.

Lemma 4.1.2. The ring R/(ωr,m) is a free OF -module of finite rank.

Proof. Since R is finite and free over ΛF by Theorem 3.2.5, then R/(ωr,m) is free
over ΛF /(ωr,m), that is a free OF -module of finite rank because ωr,m is not divisible
by the uniformizer πF of OF .

Remark 4.1.3. By definition of the element ω2,m, the action of Γ on R/(ω2,m)
factors through Γ/Γpm−1 . Moreover, by Lemma 3.1.13 the element of ω2,m is contained
in any arithmetic prime of R of weight 2 and character ε that is trivial on Γp

m−1
.

Lemma 4.1.4. Let πF be a uniformizer of OF . The sequence {ωr,m, πnF } is a regular
sequence in R for every r ≥ 2, m ≥ 1 and n ≥ 1.

Proof. It is enough to show that the sequence {ωr,m, πF } is regular in R. Clearly,
{ωr,m, πF } is regular in ΛF , since ωr,m is not divisible by πF . The lemma then
follows from the fact that ΛF →R is finite and flat (see Theorem 3.2.5), therefore it
preserves regular sequences.

Definition. For each m,s, t ∈ Z>0, let

Rm ∶= R/(ω2,m), Rm,s ∶= R/(ω2,m, p
s) and Rm,s,t ∶= Rm,s ⊗Zp Λ

ac/(γpt − 1).

Define also

Tm ∶= T† ⊗R Rm, Tm,s = T† ⊗R Rm,s and Tm,s,t ∶= T† ⊗R Rm,s,t.

Since, by Corollary 3.1.14, ω2,m divides ω2,m+1, we have that Rm is naturally a
quotient of Rm+1. The modules Tm and Tm,s are GQ-modules with respect to the
action induced by the action on T†. The module Tm,s,t is naturally a GK-module,
where we allow GK to act on both factors defining Tm,s,t (on the right factor via the
map GK ↠ Γac).

By the discussion in Remark 4.1.3, if p is an arithmetic prime of R of weight 2
and character ε that is trivial on Γp

m−1
, then the specialization map R→ Frac(R/p)

factors through Rm.
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Lemma 4.1.5. The rings Rm,s and Rm,s,t are finite for every m,s, t ∈ Z>0.

Proof. It is enough to prove that Rm,s is finite. By Lemma 4.1.4, we have that
{ω2,m, p

s} is a regular sequence in R. It is known (see e.g. [AM69, Corollary 11.18])
that the quotient of a local Noetherian ring with a non zero divisor has dimension
equal to the dimension of the ring minus one. Therefore, Rm,s has dimension 0,
hence it is an Artinian local ring. This implies that the descending chain of ideals
m ⊇ m2 ⊇ . . . must stabilize, where m is the maximal ideal of Rm,s. By Nakayama’s
lemma, this sequence stabilizes to 0. Also, all quotients of subsequent elements in
the chain are finitely generated vector spaces over Rm,s/m ≅ R/mR that is finite field,
as R is a finite extension of Λ. Therefore we have a finite chain

Rm,s ⊇ m ⊇ m2 ⊇ ⋅ ⋅ ⋅ ⊇ me = {0}

where all quotients of subsequent elements are finite. This implies that Rm,s is
finite.

Since their residue fields have characteristic p, we have that the cardinality of
Rm,s and Rm,s,t is a power of p.

Corollary 4.1.6. The modules Tm,s and Tm,s,t are finite for every m,s, t ∈ Z>0 and
they have cardinality equal to a power of p.

While Tm and Tm,s are quotients of T†, the modules Tm,s,t are quotients of
T† ⊗Zp Λ

ac. This last object is a module over the ring R ⊗Zp Λ
ac, that is a local

domain isomorphic to R[[Γac]], as noted at the beginning of [Och05, §1]. Again, we
allow GK to act also on Λac in the definition of T† ⊗Zp Λ

ac and R⊗Zp Λ
ac.

Definition. Call RIw ∶= R ⊗Zp Λ
ac and set TIw ∶= T† ⊗Zp Λ

ac.

Lemma 4.1.7. The RIw-module TIw is free of rank two. As a GK-representation,
it is unramified outside Np.

Proof. Follows directly from 3.3.6 and the fact that Γac does not contain any inertia
outside p.

Call mIw the maximal ideal of RIw and denote by T̄
Iw the residual representation

TIw/mIwTIw.

Lemma 4.1.8. There is an isomorphism of GK-representations between T̄
† and

T̄
Iw.

Proof. By definition, there is a canonical isomorphism of GQ-modules

TIw/mIwTIw = T†/mRT† ⊗FR FRIw

where FR is the residue field of R and FRIw is the residue field of RIw, with Galois
action induced by the action on RIw. But since [γ]−1 ∈ mIw, then the action of GK is
trivial on FRIw . Moreover, the isomorphism RIw ≅ R[[Γac]] ≅ R[[X]] as R-algebras
(see [NSW13, Proposition 5.3.5]) implies that FRIw ≅ FR as fields.

Remark 4.1.9. The reason of working with TIw (and with its quotients) instead of
T† relies on the applications of Kolyvagin systems to Iwasawa theory. See Chapter
6 for more details.
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The following lemma allows us to use the residual representation to deduce the
absence of invariants in the actual representation.

Lemma 4.1.10. Let (A,mA) be a local Noetherian ring and T be a finitely generated
A-torsion-free module, with a continuous action of a profinite group G on it compat-
ible with the A-module structure. If H0(G,T /mAT ) = {0}, then H0(G,T ) = {0}.

Proof. We need to prove that, under our hypotheses, TG = {0}. Notice that the
submodule (TG + mAT )/mAT is contained in (T /mAT )G, hence it is trivial. This
implies that TG ⊆ mAT . Then, we can write any nonzero element n ∈ TG as n = at
with a ∈ mA ∖ {0} and t ∈ T . For every σ ∈ G the relation σn = n implies that

0 = σ(at) − at = a(σ(t) − t).

Since T is A-torsion-free, we obtain that σ(t) − t = 0, i.e. t ∈ TG, hence we have
that TG ⊆ mAT

G. Since T is finitely generated over a Noetherian ring, then also
TG is finitely generated over A. Applying Nakayama’s lemma, we conclude that
TG = {0}.

Corollary 4.1.11. The GQ-representations T†, Tm and Tm,s have no GQ-invariants.

Proof. We just need to check that all representations satisfy the hypotheses of Lemma
4.1.10. This is true because the rings R, Rm, Rm,s are Noetherian, the modules
T†, Tm, Tm,s are free of rank 2 over the corresponding ring and the residual GQ-
representation is irreducible by Corollary 3.3.5.

We now improve the previous corollary showing that the relevant representations
have no invariants over the absolute Galois group of some extensions of Q.

Lemma 4.1.12. Let DK be the discriminant of K and let n be a positive integer
coprime with NpDK . The representations T†, Tm and Tm,s have no GHn-invariants.

Proof. Let T be one of T†, Tm or Tm,s, and denote by T̄ the residual representation.
Then T̄ is free module of rank 2 over a finite field, unramified outside Np. Call Q(T̄ )
the finite extension of Q determined by the subgroup of GQ that fixes T̄ pointwise.
We want to show that Q(T̄ ) ∩Hn = Q.

Let F be any field different from Q that is contained in Q(T̄ ) ∩Hn. Since the
Hilbert class field of Q is Q itself, there must be a prime ℓ that ramifies in F . Since
the extension Q(T̄ )/Q is unramified outside Np, we must have that ℓ ∣ Np. From
the fact that the extension Hn/Q is unramified outside nDK , we must have that
ℓ ∣ nDK . But this is impossible, since Np is coprime with nDK (see Assumption
2.2.6). Therefore, Q(T̄ ) ∩Hn = Q.

The action of GQ on T̄ factors through Gal(Q(T̄ )/Q), and it is possible to lift
the elements of Gal(Q(T̄ )/Q) to elements of GHn . Since, by Corollary 3.3.5, T̄ has
no GQ-invariants we conclude that it does not have any GHn-invariant. The lemma
follows applying Lemma 4.1.10.

Corollary 4.1.13. Let DK be the discriminant of K and let n be a positive integer
coprime with NpDK . The representations TIw and Tm,s,t have no GHn-invariants.

Proof. By Lemma 4.1.8 there is an isomorphism of GK-representations between T̄
†

and T̄
Iw, therefore they are isomorphic also as GHn-representations. Then, by the

proof of Lemma 4.1.12, the representation T̄
Iw has no GHn-invariants, and we con-

clude applying Lemma 4.1.10.
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Finally, we study the action of the complex conjugation c on the representations
T†, Tm and Tm,s.

Lemma 4.1.14. Let p ≥ 3, let T be a Zp[GQ]-module and let c ∈ GQ be the complex
conjugation. Then T = T1 ⊕ T−1 where T±1 is the ±1-eigenspace for the action of c
on T .

Proof. Since c is an automorphism of T and 2 is invertible in Zp, we have that

T = 2cT ⊆ (c + 1)T + (c − 1)T ⊆ T.

The relation c2 = 1 implies that if x ∈ (c + 1)T then (c − 1)x = 0, and similarly if
y ∈ (c−1)T then (c+1)y = 0. Also, if z ∈ (c+1)T ∩(c−1)T then (c−1)z = (c+1)z = 0,
i.e. 2z = 0. Since 2 is invertible, this yields that z = 0.

Lemma 4.1.15. The modules T†, Tm and Tm,s can be decomposed into the direct
sum of their ±1-eigenspaces under the action of the complex conjugation c ∈ GQ, each
of which has rank 1.

Proof. Lemma 4.1.14 implies that the action of c on T† is diagonalizable, and the
same is true for Tm and Tm,s just tensoring T† overR with Rm and Rm,s respectively.
Hence it remains to study the rank of the eigenspaces.

According to [How07, Equation (3)] there is a perfect, alternating, GQ-invariant,
Λ-bilinear pairing

ν ∶ T† ×T† Ð→R(1).
Let x, y ⊆ T† be an R-basis of T†. Then

−ν(x, y) = c ⋅ ν(x, y) = ν(cx, cy) = det(c ∣ T†) ⋅ ν(x, y),

therefore the determinant of the action of c on T is −1. This implies that the action
of c on T† has eigenvalues 1 and −1. The same holds for Tm and Tm,s just tensoring
T† over R with Rm and Rm,s respectively.

4.1.2 Shapiro’s lemma

Let F be a perfect field and F∞/F be a Zp-extension. For any α ≥ 1 call Fα the α-th
layer of the extension. Let T be a Zp-module together with an action of GF . We
allow GF to act on both factors of T ⊗Zp Zp[Gal(Fα/F )] and T ⊗Zp Zp[Gal(F∞/F )]
via the natural projection.

Lemma 4.1.16. Let α ≥ 1. Shapiro’s lemma induces isomorphisms

(i) H1(F,T ⊗Zp Zp[Gal(Fα/F )]) ≅H1(Fα, T );

(ii) H1(F,T ⊗Zp Zp[Gal(F∞/F )]) ≅ lim←ÐαH
1(Fα, T ).

Proof. This is essentially [Col98, Proposition II.1.1] (see also [MR04, Lemma 5.3.1]).
Point (i) is a consequence of the isomorphisms

H1(F,T ⊗Zp Zp[Gal(Fα/F )]) ≅H1(F, IndFFα
T ) ≅H1(Fα, T ),

where the first is elementary (see e.g. [Mil20, Remark II.1.3] or the proof of [Col98,
Proposition II.1.1]) and the second is Shapiro’s lemma (see e.g. [Mil20, Proposition
II.1.11]). Point (ii) descends from (i) by taking inverse limits on α.
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Let now α > β ≥ 1 and call ψα,β ∶ Z[Gal(Fα, F )] → Z[Gal(Fβ, F )] the map
induced by the natural projection between Galois groups. As noted in the proof of
[Col98, Proposition II.1.1], the following diagram

H1(Fα, T ) H1(F,T ⊗Zp Zp[Gal(Fα/F )])

H1(Fβ, T ) H1(F,T ⊗Zp Zp[Gal(Fβ/F )])

≅

≅

cor ψβ,α (4.2)

is commutative, where the two horizontal maps are the isomorphisms of Lemma
4.1.16, the left vertical map is corestriction and the right one is the map induced by
ψα,β .

4.1.3 Choice of Galois groups and primes

In this subsection we define some set of primes of OK that will be used when building
Kolyvagin systems. For every field L and every finite GL-representation T we denote
by L(T ) the smallest extension of L such that GL(T ) acts trivially on T .

Definition. Let m,s, t ∈ Z>0.

(a) We define P to be the set of all primes λ ⊆ OK inert over Q such that λ ∤ Np.

(b) We define Pm,s to be the subset of P made by all primes λ = (ℓ) such that

(i) ℓ ≡ −1 (mod ps);
(ii) Frλ = Fr2ℓ acts as the identity on Tm,s.

(c) We define the sets N and Nm,s to be the sets of all square-free products of the
rational primes that lie below the primes chosen among P and Pm,s respectively.

(d) For n ∈ N , define Gn ∶= Gal(Hn/H1).

Lemma 4.1.17. Let (ℓ) = λ ∈ Pm,s. Then Frλ acts trivially on Tm,s,t.

Proof. The element Frλ acts trivially on Tm,s by hypothesis and it acts trivially on
Λac since λ is split in K∞/K by class field theory.

Since Tm,s and Tm,s,t are unramified at ℓ, we also have that any decomposition
group at λ acts trivially on Tm,s and Tm,s,t. We also have the following consequence
of point (b).

Lemma 4.1.18. Let λ = (ℓ) ∈ Pm,s. Then the element Tℓ is divisible by ps in Rm,
therefore it is 0 in Rm,s and Rm,s,t.

Proof. By condition (b), the characteristic polynomial of Frℓ on Tm divides X2 − 1
modulo ps. By Proposition 3.3.6 we know that the characteristic polynomial of Frℓ
on Tm divides X2 − Θ−1(Frℓ)TℓX + ℓ. Since ℓ ≡ −1 (mod ps), comparing the two
polynomials we obtain that ps ∣ Θ−1(Frℓ)Tℓ. Since Θ−1(Frℓ) is a unit, we must have
that ps ∣ Tℓ.
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Remark 4.1.19. As noted in [Bes97, Remark 3.1], Lemma 4.1.18 implies that Frℓ is
conjugated to the complex conjugation c in Gal(K(Tm,s)/Q), where K(Tm,s) is the
extension of K attached to the group of Galois morphisms that fix Tm,s pointwise.
This is clear after comparing the characteristic polynomial for the action of c on Tm,s
(which is X2 − 1 by Lemma 4.1.15) with the characteristic polynomial of the action
of the Frobenius (see Proposition 3.3.6).

For every prime q of K we denote by kq the residue field of K at q.

Lemma 4.1.20. For every n ∈ N we have that

(a) Gn ≅ ∏ℓ∣n Gℓ where ℓ varies among all prime divisors of n.

(b) For every prime ℓ ∈ N the group Gℓ ≅ k×λ/F×ℓ is cyclic of order ℓ + 1, where
λ = (ℓ).

Proof. See [Gro91, §3].

Definition. For every prime ℓ ∈ N we fix a generator σℓ for the group Gℓ.
Since the primes λ ∈ P are principal, class field theory implies that they split

completely in H1 and in Hpα for every α ≥ 1. Moreover, every prime λ1 of H1 above
λ is totally ramified in Hℓ. This implies that λ is totally ramified in K(ℓ). For the
same reason, we have that every prime above p in K (resp. in H1) is totally ramified
in K∞ (resp. L∞).

Lemma 4.1.21. Let λ = (ℓ) ∈ Pm,s. The extension K(ℓ)λ/Kλ is a maximal totally
tamely ramified abelian p-extension of Kλ.

Proof. Local class field theory (see the proof of [Neu86, Theorem 7.9] and [Neu86,
Corollary 7.18]) implies that every abelian totally ramified extension ofKλ has degree
that divides ℓ2n(ℓ2 − 1) for some n. Then, maximal totally tamely ramified abelian
extensions of Kλ have degree ℓ2 − 1. Since ℓ + 1 ≡ 0 (mod ps) and p > 2, the p-part
of ℓ2 − 1 equals the p-part of ℓ + 1, that is equal to the cardinality of the p-Sylow of
k×λ/F×ℓ ≅ Gℓ.

Lemma 4.1.22. Let s ≥m and λ = (ℓ) ∈ Pm,s. Then Θ(Frℓ) = (−1)
k+j
2
−1 in Rm.

Proof. Let εcyc benote the p-adic cyclotomic character, and recall that εcyc(Frℓ) = ℓ.
Since ℓ ≡ −1 (mod ps), we have the decomposition

Z×p
≅Ð→ (Z/pZ)× × (1 + pZp)

ℓz→ (p − 1,1 + psx)
for some x ∈ Zp. Then, by definition of Θ, we obtain that

Θ(Frl) = (−1)
k+j
2
−1[(1 + psx)

1
2 ] ∈ Λ×F ,

where (1 + psx) 12 is the unique square root of 1 + psx in 1 + pZp. Since p > 2, the
element (1 + psx) 12 is of the form 1 + psy for some y ∈ Zp. Since s ≥m, we have that
Γp

s−1
is trivial in Rm. Therefore [1 + psy] = ⟨1 + psy⟩ = 1 in Rm.

Corollary 4.1.23. Let s ≥m. The Frobenius Frℓ of a prime ℓ that lies below a prime
of Pm,s acts on Tm with characteristic polynomial

X2 − (−1)
k+j
2
−1TℓX + ℓ = 0.

Proof. Combine Proposition 3.3.6 with Lemma 4.1.22.
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4.2 Kolyvagin systems

4.2.1 Preliminaries

Throughout this subsection, let L be a finite extension of K and for each prime
v of L define Lur

v to be the maximal unramified extension of Lv. Let Iv ⊆ Dv be
a fixed choice of inertia and decomposition groups of v. Let R be any complete
local Noetherian ring with finite residue field of characteristic p and let M be any
R[[GL]]-module which is finitely generated and free as an R-module and unramified
outside a finite set of primes.

Definition. A Selmer structure F on M is a collection of local conditions on
M (viewed as an R[[Dv]]-module) for every valuation v of L, i.e. a choice of an
R-submodule H1

F(Lv,M) ⊆H1(Lv,M) for every v.

Definition 4.2.1. Given an R[[Dv]]-submodule (resp. quotient) N of M and a
local condition F on M we define the propagated condition, still denoted by F ,
on N to be the preimage (resp. image) of H1

F(Lv,M) under the natural map

H1(Lv,N) Ð→H1(Lv,M)

(resp. H1(Lv,M) →H1(Lv,N)).

Definition. Given a Selmer structure F on M , define the Selmer module to be

SelF(L,M) ∶= ker (H1(L,M) Ð→∏
v

H1(Lv,M)/H1
F(Lv,M))

where v runs over all places on L.

We will be concerned primarily with local conditions of the following type:

(i) The unramified condition

H1
ur(Lv,M) = ker (H1(Lv,M)

resÐ→H1(Lur
v ,M)).

When Lv has residue characteristic different from p and M is unramified at
v, we shall refer to the unramified condition on M as the finite condition
Hf(Lv,M).

(ii) If Lv has residue characteristic different from p, we define the transverse
condition

H1
tr(Lv,M) = ker (H1(Lv,M)

resÐ→H1(L̃v,M)),

where L̃v is a maximal totally tamely ramified abelian p-extension of Lv.

Remark 4.2.2. The definition of the transverse condition is made following [Büy14,
Definition 4.9] and [How07, Definition 1.1.1] rather than [MR04, §1.2]. The difference
is that our field L̃v is the maximal p-subextension of the field L′v chosen in [MR04].
Nevertheless, notice that if M is a p-group unramified at v, then our transverse con-
dition coincides with the one of [MR04]. This can be seen using inflation-restriction,
the fact that M is unramified at v and noticing that all continous homomorphisms
from Gal(L′v/Lv) to a p-group must factor via Gal(L̃v/Lv).

Definition. When Lv has residue characteristic different from p andM is unramified
at v, we define the singular quotient by the exactness of

0 Hf(Lv,M) H(Lv,M) Hs(Lv,M) 0.
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4.2.2 The Greenberg Selmer structure on TIw

In this section we define a Selmer structure on theR[[GK]]-module TIw = T†⊗ZpΛ
ac.

This structure will then be propagated to quotients Tm,s,t. We follow and expand
the ideas of [Büy14, §4.1.1].

Lemma 4.2.3. Let v be a place of K above p, call Dv a fixed decomposition group
for v. Then there is an exact sequence of R[[Dv]]-modules

0Ð→ F+v (TIw) Ð→ TIw Ð→ F −v (TIw) Ð→ 0

where F+v (TIw) and F−v (TIw) are free RIw-modules of rank 1.

Proof. The Zp-algebra Λac = Zp[[Γac]] is flat over Zp, therefore the lemma follows
by tensoring the exact sequence of Proposition 3.3.7.

Remark 4.2.4. The RIw-modules F+v (TIw) and F −v (TIw) of the previous lemma
coincide with F +v (T†) ⊗Zp Λ

ac and F−v (T†) ⊗Zp Λ
ac respectively.

Fix now a finite extension L/K.

Definition 4.2.5. The (strict) Greenberg Selmer structure FGr on TIw is
defined by setting local conditions as

H1
FGr
(Lv,TIw) =

⎧⎪⎪⎨⎪⎪⎩

H1
ur(Lv,TIw) if v ∤ p

ker (H1(Lv,TIw) Ð→H1(Lv, F −v (TIw))) if v ∣ p

with v running over all places of L, where the unnamed map is induced by the exact
sequence of Lemma 4.2.3.

The Greenberg Selmer module for the representation TIw is then

SelFGr
(L,TIw) ∶= ker (H1(L,TIw) Ð→∏

v

H1(Lv,TIw)/H1
FGr
(Lv,TIw))

where v runs over all places of L.

Remark 4.2.6. Following the definitions above, one can define the strict Greenberg
Selmer structure and the Greenberg Selmer module also for the representation T†

(as done in [Büy14, §4.1.1]), just erasing the tensorization with Λac.

Notice that the natural surjective map TIw ↠ Tm,s,t is R[[GK]]-equivariant for
every m,s, t ∈ Z>0. We can hence propagate the structure FGr to Tm,s,t, following
Definition 4.2.1. We remark that in general

H1
FGr
(Lv, Tm,s,t) ≠

⎧⎪⎪⎨⎪⎪⎩

H1
ur(Lv, Tm,s,t) if v ∤ p

ker(H1(Lv, Tm,s,t) →H1(Lv, F −v (Tm,s,t))) if v ∣ p
,

where F−v (Tm,s,t) ∶= F−v (TIw) ⊗RIw Rm,s,t. Anyway, we have the following partial
result.

Lemma 4.2.7. If v ∤ Np is a prime of L, then

H1
FGr
(Lv, Tm,s,t) = ker (H1(Lv, Tm,s,t) →H1(Lurv , Tm,s,t)) =H1

f (Lv, Tm,s,t)

for every m,s, t ∈ Z>0.
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Proof. This is [Rub00, Lemma 3.5, (iv)], but we give here a direct proof. The
commutative diagram with exact rows

H1
f (Lv,TIw) H1(Lv,TIw) H1(Lurv ,TIw)

H1
f (Lv, Tm,s,t) H1(Lv, Tm,s,t) H1(Lurv , Tm,s,t)

res

res

induces a map
ϕ ∶H1

f (Lv, T ) Ð→H1
f (Lv, Tm,s,t).

To conclude the proof, it suffices to show that ϕ is surjective. By inflation-restriction,
the map ϕ corresponds to the map

H1(Lurv /Lv, (TIw)Iv) Ð→H1(Lurv /Lv, T Iv
m,s,t)

induced by the morphism (TIw)Iv → T Iv
m,s,t, where Iv is a fixed inertia at v. Since

v ∤ Np, the inertia Iv acts trivially both on TIw and on Tm,s,t (see Lemma 4.1.7).
The claim follows by applying the long exact sequence in cohomology to the surjective
map TIw → Tm,s,t, noticing that Gal(Lurv /Lv) ≅ Ẑ has cohomological dimension 1.

In particular, Lemma 4.2.7 applies for every place v that lies above a prime λ ∈ P.

4.2.3 The finite-singular isomorphism

For the following two subsections, we fix m,s, t ∈ Z>0. When working with the field K
and with a place λ ∈ P, we choose K(ℓ)λ′ to be the maximal totally tamely ramified
abelian p-extension of Kλ occurring in the definition of the transverse condition,
where λ′ is a prime above λ. We can also improve Remark 4.2.2.

Lemma 4.2.8. Let λ = (ℓ) ∈ P and M be any finite R[[GK]]-module unramified at
λ. Then

H1
tr(Kλ,M) = ker (H1(Kλ,M)

resÐ→H1((Hℓ)λℓ ,M)),

where λℓ a prime of Hℓ above λ.

Proof. Let λ′ be the prime ofK(ℓ) below λℓ. Using the functoriality of the restriction
we can decompose the map that defines the right hand side as

H1(Kλ,M)
resÐ→H1(K(ℓ)λ′ ,M)

resÐ→H1((Hℓ)λℓ ,M).

We just need to prove that the second restriction is injective. By inflation-restriction,
its kernel is

H1(Gal ((Hℓ)λℓ/K(ℓ)λ′),M
G(Hℓ)λℓ ) = Hom (Gal ((Hℓ)λℓ/K(ℓ)λ′),M

G(Hℓ)λℓ )

since λ′ is totally ramified in (Hℓ)λ and M is unramified at λ. Since M is a fi-
nite R-module it is also a finite p-group. Since, by definition of K(ℓ), the group
Gal ((Hℓ)λℓ/K(ℓ)λ′) has cardinality coprime with p, we conclude that the object in
the previous equation is {0}.
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Fix now λ ∈ Pm,s and call ℓ the prime of Q below λ. By definition of Pm,s, we
have that the action of GKλ

is unramified on Tm,s,t and that the cardinality of the
invertible elements of the residue field kλ of Kλ equals ℓ2 − 1, therefore it kills Tm,s,t
since ℓ + 1 is divisible by ps. These conditions imply that our setting is compatible
with the one of [MR04, §1.2]. We list here some of the key results that will lead to
the definition of a Kolyvagin system for Tm,s,t.

Lemma 4.2.9. Let λ ∈ Pm,s. There are canonical functorial isomorphisms

(i) H1
f (Kλ, Tm,s,t) ≅ Tm,s,t.

(ii) H1
s (Kλ, Tm,s,t) ⊗ Gℓ ≅ Tm,s,t.

Proof. Point (i) is [MR04, Lemma 1.2.1] combined with the fact that Frλ acts triv-
ially on Tm,s,t. Let’s move to point (ii). From [MR04, Lemma 1.2.1] we have the
isomorphism

H1
s (Kλ, Tm,s,t) ⊗ k×λ ≅ Tm,s,t.

Since Tm,s,t is a finite p-group, then also H1
s (Kλ, Tm,s,t) is a p-torsion group. This

implies that tensoringH1
s (Kλ, Tm,s,t) with k×λ is the same as tensoringH1

s (Kλ, Tm,s,t)
with the p-Sylow subgroup of k×λ . Since p ∣ (ℓ + 1) and p > 2, the p-Sylow of k×λ is
isomorphic to the p-Sylow of k×λ/F×ℓ ≅ Gℓ.

Remark 4.2.10. As noticed in the proof of [How04b, Proposition 1.1.7] the isomor-
phism of point (i) of Lemma 4.2.9 is given by evaluating cocycles at the Frobenius
automorphism Frλ, whereas the isomorphism of point (ii) is given by sending ξ ⊗ σℓ
to ξ(σ̃ℓ) for any lifting σ̃ℓ ∈ Gal(K̄λ/Kur

λ ) of σℓ.

Definition 4.2.11. Let λ ∈ Pm,s. We define the finite singular isomorphism

ϕfsλ ∶H1
f (Kλ, Tm,s,t) Ð→H1

s (Kλ, Tm,s,t) ⊗ Gℓ

to be the isomorphism induced by Lemma 4.2.9.

Remark 4.2.12. This definition does not coincide with [MR04, Definition 1.2.2],
otherwise our finite-singular morphism would have been the zero map. Instead, our
definition is compatible with [How04b, Definition 1.1.8] and [Büy14, Proposition 4.7].

Lemma 4.2.13. Let λ ∈ Pm,s. The transverse subgroup H1
tr(Kλ, Tm,s,t) projects iso-

morphically onto the singular quotient H1
s (Kλ, Tm,s,t) under the natural projection.

In other words, there is a functorial splitting

H1(Kλ, Tm,s,t) =H1
f (Kλ, Tm,s,t) ⊕H1

tr(Kλ, Tm,s,t).

Proof. This descends from [MR04, Lemma 1.2.4] and Remark 4.2.2.

4.2.4 Kolyvagin systems for Tm,s,t

We are going to define Kolyvagin systems for the Rm,s,t-module Tm,s,t. The first
key ingredient is working with a slight modification of the strict Greenberg Selmer
structure, that involves the transverse condition.
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Definition. For n ∈ Nm,s, we define the modified (strict) Greenberg Selmer structure
on Tm,s,t to be

H1
FGr(n)(Kv, Tm,s,t) =

⎧⎪⎪⎨⎪⎪⎩

H1
FGr
(Kv, Tm,s,t) if v ∤ n

H1
tr(Kv, Tm,s,t) if v ∣ n

for every place v of K.

Definition. For n ∈ N , define G(n) = ⊗ℓ∣n Gℓ.

We recall now some basics about sheaves of graphs.

Definition. Let X be an (undirected) graph, R be a ring and ModR be the category
of R-modules. A simplicial sheaf S on X with values in ModR is a rule assigning

• an R-module S(v) for every vertex v of X;

• an R-module S(e) for every edge e of X;

• an R-module homomorphism ψev ∶ S(v) → S(e) whenever the vertex v is an
endpoint of the edge e.

Definition. Let S be a simplicial sheaf on a graph X. A global section of S is a
collection

{κv ∈ S(v) ∶ v is a vertex of X}

such that, for every edge e = {v, v′} of X, we have

ψev(κv) = ψev′(κv′)

in S(e). We write S(X) for the R-module of global sections of S.

Definition. For any subset P ′m,s of Pm,s, we defineN ′m,s to be the set of all squarefree
products of primes that lie below elements of P ′m,s.

Fix now a subset P ′m,s of Pm,s.

Definition. We define a graph X = X(P ′m,s) attached to the triple (Tm,s,t,FGr,P ′m,s)
by taking the set of vertices of X to be N ′m,s, and the edges to be {n,nℓ} whenever
n,nℓ ∈ N ′m,s and ℓ is prime.

Definition. The (Greenberg) Selmer sheaf H = Hm,s,t is the simplicial sheaf on
X given as follows. We take:

• H(n) ∶= SelFGr(n)(K,Tm,s,t) ⊗ G(n) for n ∈ N ′m,s;

• H(e) ∶=H1
s (Kλ, Tm,s,t)⊗G(nℓ) if e is the edge {n,nℓ} and λ is the prime of K

above ℓ.

We define the vertex-to-edge maps to be (see the next remark for more details)

• ψenℓ ∶ SelFGr(nℓ)(K,Tm,s,t) ⊗ G(nℓ) →H1
s (Kλ, Tm,s,t) ⊗ G(nℓ) is restriction at λ

followed by the projection to the singular cohomology;

• ψen ∶ SelFGr(n)(K,Tm,s,t) ⊗ G(n) → H1
s (Kλ, Tm,s,t) ⊗ G(nℓ) is restriction at λ

followed by the finite-singular comparison map ϕfsλ .
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Remark 4.2.14. Let T ∶= Tm,s,t. The vertex-to-edge maps of the previous proposi-
tion are described by the following diagram

SelFGr(nℓ)(K,T ) ⊗ G(nℓ)

H1
tr(Kλ, T ) ⊗ G(nℓ)

SelFGr(n)(K,T ) ⊗ G(n) H1
f (Kλ, T ) ⊗ G(n) H1

s (Kλ, T ) ⊗ G(nℓ)

resλ⊗ id

≅
resλ⊗ id ϕfsλ⊗id

ψe
nℓ

ψe
n

where for the most left arrow and for the upper arrow we are using the definition of
the Greenberg Selmer group and Lemma 4.2.7, for the horizontal right arrow we are
using the finite-singular isomorphism and for the bottom vertical arrow we are using
the isomorphism coming from Lemma 4.2.13.

Definition. A Kolyvagin system for the triple (Tm,s,t,FGr,P ′m,s) is any element
of H(X), i.e. any global section for the sheaf H. We call

KS(Tm,s,t,FGr,P ′m,s) ∶= H(X)

the set of all Kolyvagin systems for the triple (Tm,s,t,FGr,P ′m,s).

More explicitely, an element κ ∈KS(Tm,s,t,FGr,P ′m,s) is a collection of cohomol-
ogy classes {κn}n∈N ′m,s

such that, for every n,nℓ ∈ Nm,s with ℓ prime, we have:

(i) κn ∈ SelFGr(n)(K,Tm,s,t) ⊗ G(n);

(ii) ψen(κn) = ψenℓ(κnℓ)

where e is the edge {n,nℓ}. Since all involved maps are Rm,s,t-linear, the set
KS(Tm,s,t,FGr,P ′m,s,t) is naturally an Rm,s,t-module.

4.2.5 Kolyvagin systems for TIw

In this subsection we show how to patch together the Rm,s,t-modules of Kolyvagin
systems KS(Tm,s,t,FGr,P ′m,s,t) when (m,s, t) ∈ Z3

>0 vary, in order to build what we
will call a universal Kolyvagin system for the big representation TIw. We mainly
adapt the definitions of [Büy16, §3].

Definition. For any two triples (m,s, t) and (i, j, r) in Z3
>0, we say that

(m,s, t) ⪯ (i, j, r)

if m ≤ i, s ≤ j and t ≤ r. A similar definition can be done for couples of positive
integers.

Notice that if (m,s) ⪯ (i, j) then Pm,s ⊇ Pi,j . We also suppose that P ′m,s ⊇ P ′i,j .
In this case we denote by KS(Tm,s,t,FGr,P ′i,j) the set of global sections for the sheaf
Hm,s,t restricted to the subgraph X(P ′i,j) of X(P ′m,s). For (m,s) ⪯ (i, j) ⪯ (i′, j′) we
also have a natural map

KS(Tm,s,t,FGr,P ′i,j) Ð→KS(Tm,s,t,FGr,P ′i′,j′) (4.3)
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defined by restricting global sections on X(P ′i,j) to global sections on X(P ′i′,j′). With
respect to these maps, with (m,s, t) ∈ Z3

>0 fixed, one can define the direct limit

limÐ→
(i,j)

KS(Tm,s,t,FGr,P ′i,j)

for all (i, j) ⪰ (m,s). Now we want to make (m,s, t) vary.

Lemma 4.2.15. Let (m,s, t) ⪯ (m′, s′, t′), n ∈ N ′m′,s′ and v be a valuation of K.

(i) If v ∣ n, the natural projection Tm′,s′,t′ ↠ Tm,s,t yields a morphism

H1
tr(Kv, Tm′,s′,t′) Ð→H1

tr(Kv, Tm,s,t).

(ii) If v ∤ n, the natural projection Tm′,s′,t′ ↠ Tm,s,t yields a surjection

H1
FGr
(Kv, Tm′,s′,t′) ↠H1

FGr
(Kv, Tm,s,t).

Proof. Let v ∣ n. The commutative diagram with exact rows

H1
tr(Kv, Tm′,s′,t′) H1(Kv, Tm′,s′,t′) H1(K(ℓ)v′ , Tm′,s′,t′)

H1
tr(Kv, Tm,s,t) H1(Kv, Tm,s,t) H1(K(ℓ)v′ , Tm,s,t)

res

res

induces a map
H1

tr(Kv, Tm′,s′,t′) Ð→H1
tr(Kv, Tm,s,t).

Let v ∤ n. Recall that the Selmer structure FGr on the quotients of TIw is
propagated (in the sense of Definition 4.2.1) from the Selmer structure of TIw. This
yields the commutative diagram

H1
FGr
(Kv,T

Iw) H1
FGr
(Kv, Tm′,s′,t′)

H1
FGr
(Kv, Tm,s,t)

where the vertical arrow is surjective since the diagonal arrow is so.

When v ∤ Np, combining the previous lemma with Lemma 4.2.7, we obtain a
surjection

H1
f (Kv, Tm′,s′,t′) ↠H1

f (Kv, Tm,s,t).

Proposition 4.2.16. Let (m,s, t) ⪯ (m′, s′, t′) ⪯ (i′, j′, r′). Call α ∶ Tm′,s′,t′ ↠ Tm,s,t
the natural projection. Then the map

α∗ ∶ KS(Tm′,s′,t′ ,FGr,P ′i′,j′) Ð→KS(Tm,s,t,FGr,P ′i′,j′)
{κ′n} z→ {α∗(κ′n)}

is a well-defined morphism of RIw-modules.
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Proof. Fix n ∈ N ′i′,j′ . Let’s first show that

α∗(κ′n) ∈ SelFGr(n)(K,Tm,s,t) ⊗ G(n).

Call T ′ ∶= Tm′,s′,t′ and T ∶= Tm,s,t. The definition of the modified Selmer group and
Lemma 4.2.15 yield the following commutative diagram with exact rows

SelFGr(n)(K,T ′) H1(K,T ′) ∏vH1(Kv, T
′)/H1

FGr(n)(Kv, T
′)

SelFGr(n)(K,T ) H1(K,T ) ∏vH1(Kv, T )/H1
FGr(n)(Kv, T ),

res

res

∏v α∗α∗

where v runs over all places of K. This diagram yields the desired map

α∗ ∶ SelFGr(n)(K,T
′) ⊗ G(n) Ð→ SelFGr(n)(K,T ) ⊗ G(n)

κ′n z→ α∗(κ′n).

Fix now λ = (ℓ) ∈ P ′i′,j′ . We need to show that ψen(α∗(κ′n)) = ψenℓ(α∗(κ′nℓ)), where
e is the edge {n,nℓ}. The strategy is to prove that α∗ commutes with ψen and ψenℓ,
and then conclude just using that {κ′n} is a Kolyvagin system. In order to prove
the commutativity above, we show that α∗ commutes step by step with all maps
defining ψen and ψenℓ (look at Remark 4.2.14 for a picture). Consider the diagram

SelFGr(n)(K,T ′) ⊗ G(n) H1
f (Kλ, T

′) ⊗ G(n) H1
s (Kλ, T

′) ⊗ G(nℓ)

SelFGr(n)(K,T ) ⊗ G(n) H1
f (Kλ, T ) ⊗ G(n) H1

s (Kλ, T ) ⊗ G(nℓ).

resλ⊗ id

resλ⊗ id

α∗ α∗

ϕfsλ⊗id

ϕfsλ⊗id
α∗

The left square is well defined by definition of the Selmer group, by Lemma 4.2.7 and
by Lemma 4.2.15, and it is commutative since the restriction map is functorial (see
[NSW13, Proposition 1.5.2]). The right square is well defined and commutes since
the finite-singular morphism is functorial by Lemma 4.2.9. Hence ψen ○α∗ = α∗ ○ψen.
Consider the diagram

SelFGr(nℓ)(K,T ′) ⊗ G(nℓ) H1
tr(Kλ, T

′) ⊗ G(nℓ) H1
s (Kλ, T

′) ⊗ G(nℓ)

SelFGr(nℓ)(K,T ) ⊗ G(nℓ) H1
tr(Kλ, T ) ⊗ G(nℓ) H1

s (Kλ, T ) ⊗ G(nℓ).

resλ⊗ id

resλ⊗ id

α∗ α∗

≅

≅

α∗

The left square is well defined by definition of the Selmer group and by Lemma
4.2.15, and it is commutative since the restriction map is functorial. The right
square is well defined and commutative since it is induced by the right square of the
following diagram with exact rows

0 H1
f (Kλ, T

′) H1(Kλ, T
′) H1

s (Kλ, T
′) 0

0 H1
f (Kλ, T ) H1(Kλ, T ) H1

s (Kλ, T ) 0,

α∗α∗ α∗

that is commutative since the left square is commutative by Lemma 4.2.15. This
shows that ψenℓ ○ α∗ = α∗ ○ ψenℓ. As remarked above, this implies that the map α∗
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between Kolyvagin systems is well defined. The fact that it is a morphism of RIw-
modules descends from the fact that all maps that come into play are morphisms of
RIw-modules.

Fix (m′, s′, t′) ⪰ (m,s, t). It is easy to see that the maps α∗ of the proposi-
tion above commute with the maps defined in (4.3), hence we have a well defined
morphism of RIw-modules

α̃∗ ∶ limÐ→
(i′,j′)

KS(Tm′,s′,t′ ,FGr,P ′i′,j′) Ð→ limÐ→
(i,j)

KS(Tm,s,t,FGr,P ′i,j),

where the limits are taken for (i′, j′) ⪰ (m′, s′) and for (i, j) ⪰ (m,s). The set

{ limÐ→
(i,j,r)

KS(Tm,s,t,FGr,P ′i,j,r)}(m,s,t)∈Z3
>0

is an inverse system with respect to the maps α∗. This implies that we can take the
inverse limit with respect to these maps. This fact leads us to the following final
definition (see also [Büy16, Definition 3.4]).

Definition 4.2.17. The RIw-module

KS(TIw,FGr,P ′) ∶= lim←Ð
(m,s,t)

limÐ→
(i,j)

KS(Tm,s,t,FGr,P ′i,j)

is called the module of universal Kolyvagin systems for the representation TIw.

In [Büy14, Definition 4.12], it is stated that there is an equality

KS(TIw,FGr,P ′) = lim←Ð
(m,s,t)

KS(Tm,s,t,FGr,P ′m,s).

We will use this fact at the end of the next chapter. It is possible that a proof of this
equality follows the steps showed in [Büy16, Definition 3.6 and Lemma 5.7]. This
seems possible under the assumption that the local condition FGr is cartesian, which
will be the case under some new assumptions to be made in the course of the next
chapter. Indeed, one can prove (exactly as in Proposition 6.2.5) that FGr coincides
with the Bloch–Kato condition, which is cartesian by [How04a, §2.2].



Chapter 5

The big Heegner point Kolyvagin
system

In this chapter we build a universal Kolyvagin system for the representation TIw,
starting from the set of big Heegner classes of Definition 3.5.3.

5.1 Summary

We fixed a prime p ≥ 5 and a positive squarefree integer N coprime with p and
such that p does not divide the cardinality on (Z/NZ)×. We assume that there are
N+,N− ∈ Z>0 such that

N = N+N−,

whereN− is a squarefree product of an even number of primes. We fixed an imaginary
quadratic field K of discriminant DK prime to 6Np with class number prime to p
such that the primes dividing N+ (respectively, N−) are split (respectively, inert) in
K (see Assumption 2.2.6).

In Subsection 3.2.1 we fixed a normalized eigenform f ∈ Sk(Γ0(N) ∩ Γ1(p), ωj)
that is an ordinary p-stabilized newform of tame level N whithout complex multipli-
cation, for fixed k ≥ 2 and j ≥ 0. We are also assuming that the residual representation
ρ̄f attached to f is p-distinguished and absolutely irreducible (see Assumption 3.3.1).
We called F a finite extension of Qp containing the Fourier coefficients of f and OF
its ring of integers.

We denoted by R the branch of the Hida family where f lives, T† is the twisted
Galois representation attached to the Hida family and TIw is T† ⊗Zp Λ

ac. This last
is a module over the complete Noetherian local domain R⊗Zp Λ

ac ≅ R[[Γac]]. The
residual GQ-representation T̄

† is absolutely irreducible (see Corollary 3.3.5).
In Subsection 4.1.1, for every triple (m,s, t) ∈ Z3

>0 we defined the rings Rm, Rm,s
and Rm,s,t together with the Galois modules Tm, Tm,s and Tm,s,t. By Lemma 4.1.12
and Corollary 4.1.13, all these modules have no Hn-invariants, for n coprime with
NpDK .

At the beginning of Section 4.1 we defined some abelian extensions Hnpα , Lα,
Lα(n), Kα, Kα(n), K(n), K∞ and L∞ of K, for α ∈ Z>0 and n coprime with p (see
diagram (4.1)). We have also the set P of primes ofK that are inert and coprime with
Np, together with its subset Pm,s of primes λ = (ℓ) of P such that ℓ ≡ −1 (mod ps)
and with the property that Frλ acts trivially on Tm,s and Tm,s,t. We called N and
Nm,s the set of squarefree products of primes lying below primes of P and Pm,s,

83
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respectively. Also, for every n ∈ N there are groups Gn ∶= Gal(Hn/H1) ≅ ∏ℓ∣n Gℓ and
G(n) ∶= ⊗ℓ∣n Gℓ. For (ℓ) ∈ P, the groups Gℓ are cyclic of order ℓ + 1, and we fixed a
generator σℓ.

For every c ∈ Z>0 coprime with N we have the big Heegner class κc ∈H1(Hc,T
†)

of conductor c defined in Definition 3.5.3. This class can be built from any system
of compatible points on towers of Shimura curves (see Section 3.5). An example of
a compatible family that satisfies these properties is the one built in [LV11].

5.2 Controlling Tamagawa elements

In this section, following the ideas of [Büy14, §3] and [Fou13, §5] we study the p-
part of the Tamagawa numbers attached to the specializations of T†. We also make
two assumptions that will be fundamental when checking the local properties of our
classes at the primes dividing N .

5.2.1 Minimally ramified modules

In this subsection we introduce the notion of minimally ramified module, as presented
in [Fou13, Definition 5.6].

Definition. Let L be a finite extension of Q, v be a place of L, S be a local Noethe-
rian commutative domain with maximal ideal mS and T be an S[GL]-module. We
say that T is minimally ramified at v if the nautural map

T Iv Ð→ (T /mST )Iv

is a surjection, where Iv is a fixed inertia group at v.

If T is minimally ramified at v, we then have that (T /mST )Iv is isomorphic to
T Iv/mST

Iv under the natural map.

Lemma 5.2.1. Let T be a S[GL]-module minimally ramified at v and let B be a
quotient of S. Then

(i) The module T ⊗S B is minimally ramified at v.

(ii) The map T Iv → (T ⊗S B)Iv is surjective and (T ⊗S B)Iv = T Iv ⊗S B.

Proof. Since B is a quotient of S, the surjective morphism T Iv ↠ (T /mST )Iv factors
through the module (T ⊗S B)Iv . This fact yields the surjectivity of the natural
morphism (T ⊗S B)Iv → (T /mST )Iv ≅ T Iv/mST

Iv . This last isomorphism yields
also the equality (T ⊗S B)Iv = T Iv ⊗S B.

Lemma 5.2.2. Let T be a S[GL]-module minimally ramified at v. Then

(i) H1(Iv, T ) is S-torsion-free.

(ii) If S is a DVR then an S[GL]-module T ′ is minimally ramified at v if and only
if H1(Iv, T ) is S-torsion-free.

Proof. (i) Suppose that T is minimally ramified at v and let x ∈ S ∖ {0}. The
multiplication-by-x map induces the long exact sequence

T Iv (T /xT )Iv H1(Iv, T ) H1(Iv, T ).⋅x (5.1)
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Thanks to point (ii) of Lemma 5.2.1, the first map is surjective and hence the mul-
tiplication by x in H1(Iv, T ) is injective.

(ii) When S is a DVR, we let x be a generator of its maximal ideal. Then, the
exact sequence (5.1) with T ′ in place of T yields the needed converse implication.

For the applications to Iwasawa theory, we would like to control minimal ramifica-
tion under tensorization with respect to maps S → S′ where S′ is a discrete valuation
ring. This seems impossible without a careful study of Tamagawa elements, as done
in [Büy14, §3]. We explain this approach in the next subsection.

5.2.2 Tamagawa numbers

In this subsection we briefly recall the work of [Büy14, §3]. Notice that our assump-
tion p ∤ #(Z/NZ)× is enough to replace [Büy14, Assumption 3.1] in the arguments
of [Büy14, §3].

Since we assumed N to be squarefree, [BCS23, Proposition 4.25] implies that, for
every place v of K dividing N , there is an exact sequence of R[Dv]-modules

0Ð→R(1) ⊗ µÐ→ T† Ð→R⊗ µÐ→ 0

where µ ∶Dv → {±1} is a quadratic character. With this exact sequence in hand, the
whole work of [Büy14, §3] is available, as we now recall. See also [BCS23, §4.4] for a
further discussion on this subject.

Let now T be a GK-module that is finite and free over the ring of integers S of a
finite extension of Qp. For every place v of K dividing N , following [FP94, §4] (see
in particular [FP94, Proposition 4.2.2]), we define the p-part of the Tamagawa
number at v to be

Tam(p)v (T ) ∶=#H1(Iv, T )Frv=1tors .

As noticed at the end of the proof of [Büy14, Proposition 3.2] (see also [Rub00,
Lemma I.3.5]), there is an equality

Tam(p)v (T ) =#((T ⊗S (Frac(S)/S))Iv/(T ⊗S (Frac(S)/S))Ivdiv)
Frv=1

,

where the subscript "div" means that we are taking the divisible part of the module.
Let now p be an arithmetic prime of R and call S(p) the integral closure of R/p,

that is the ring of integer of a finite extension of Qp. Call T (p) = T† ⊗R S(p) the
twisted Galois representation attached to p by Hida theory. For the content of the
following assumption, see [Büy14, Assumption 3.4 and Remark 3.5].

Assumption 5.2.3. There is an arithmetic prime p such that, for every v ∣ N

(1) Tam
(p)
v (T (p)) = 1.

(2) T (p)Iv is a free S(p)-module of rank 1.

Under Assumption 5.2.3, Büyükboduk builds a Tamagawa element τ ∈ R that
contains informations about the Tamagawa numbers at any specialization of T†. In
particular, under the same assumptions, we have the following result.

Proposition 5.2.4. Let s ∶ R → S be any OF -algebra map, where S is a discrete
valuation ring. Under the running assumptions, Tam(p)v (T†⊗sS) = 1 for every v ∣ N .

Proof. See [Büy14, Proposition 3.9].
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The second fundamental consequence of the assumptions of this subsection is the
following result.

Lemma 5.2.5. Under the running assumptions, the module H1(Iv,T†) isR-torsion-
free for every v ∣ N .

Proof. See [Büy14, Lemma 3.11].

Remark 5.2.6. In this remark we investigate the relation between working under
Assumption5.2.3 (as done in [Büy14]) and working under the assumption of T† being
minimally ramified at every prime v ∣ N (as suggested in [Fou13, Assumption 5.10]).

First, notice that Lemma 5.2.5 is true in both contexts (see Lemma 5.2.2). More-
over, minimal ramification alone would be enough for the work of this chapter, since
we will just need the surjectivity of (T†)Iv → T Iv

m,s, which follows from Lemma 5.2.1.
On the other hand, also Assumption5.2.3 gives the surjectivity of (T†)Iv → T Iv

m,s

(see [Büy14, Lemma 4.27]) and have the plus of giving Proposition 5.2.4 in its full
generality, which will be used in Chapter 6. For this reason, from now on we work
under Assumption 5.2.3.

5.3 Construction of the classes

Recall the big Heegner classes κc ∈H1(Hc,T
†) of conductor c coprime withN defined

in Definition 3.5.3.

Definition 5.3.1. Let α,n ∈ Z>0 with n prime to Np. We define

zn,α ∶= corHnpα+1/Lα(n)U
−α
p κnpα+1 ∈H1(Lα(n),T†),

where Up ∈ R is the image of the Hecke operator Up in R.

Remark 5.3.2. The operator Up is invertible in R since it is the image of an in-
vertible element in the big ordinary Hecke algebra Tord

nf
(see point (b) of Proposition

3.1.4) via the map f∞ ∶ Tord
nf
→R.

The aim of this section is to massage these classes in order to build a system of
elements in the cohomology over K of some quotients of TIw.

5.3.1 Compatibility

Let’s look at the compatibility properties of the classes zn,α.

Lemma 5.3.3. Let n ∈ Z>0 be prime to Np and α ≥ 2. Then

corLα(n)/Lα−1(n)(zn,α) = zn,α−1.

Proof. From Proposition 3.5.5 we have that corHnpα+1/Hnpα
(U−1p κnpα+1) = κnpα . The

claim follows applying corHnpα/Lα−1(n) ○U−α+1p to both sides, remembering that the
Hecke algebra is a commutative algebra defined over Q, hence it also commutes with
corestriction.

Lemma 5.3.4. Let n ∈ Z>0 be prime to Np, ℓ be a prime not dividing nNp and
α ≥ 1. Then

corLα(nℓ)/Lα(n)(znℓ,α) = Tℓ(zn,α).
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Proof. From Proposition 3.5.6 we have that corHnℓpα+1/Hnpα+1 (κnℓpα+1) = Tℓ(κnpα+1).
The claim follows applying corHnpα+1/Lα(n) ○U−αp to both sides, remembering that the
Hecke algebra is a commutative algebra defined over Q, hence it commutes also with
corestriction.

5.3.2 The classes lie in the Selmer group

Let n ∈ Z>0 be prime to Np and let α ≥ 1. We want to work with classes that lie in the
Greenberg Selmer group SelFGr

(Lα(n),T†) (see Subsection 4.2.2 for details on the
Greenberg conditions). This goal is usually reached by multiplying the classes zn,α
by a fixed element of R (see [LV11, Proposition 10.1]). In our setting, Assumption
5.2.3 allow us to get rid of this extra element.

Proposition 5.3.5. For every n ∈ Z>0 and α ≥ 1 we have

κnpα ∈ SelFGr
(Hnpα ,T

†).

Proof. Following the proof of [LV11, Proposition 10.1], one shows that the restriction
of κnpα to H1((Hnpα)v,T†) lies in the Greenberg condition for every v ∤ N−. For
those primes v dividing N−, one is able to show that the restriction of κnpα to
H1((Hnpα)urv ,T†) is R-torsion. By class field theory, K(ℓ) = (Hnpα)v where ℓ is the
rational prime below v. By Lemma 5.2.5 we know that H1(Kur

(ℓ),T
†) is R-torsion-

free, hence the restriction of κnpα to it is zero. This implies that κnpα satisfies also
the Greenberg condition at v.

Remark 5.3.6. Without Assumption 5.2.3, one can choose an element a ∈ R (inde-
pendent on n and α) that lives in the annihilator of the finitely generated R-module
∏ℓ∣N−H1(Kur

(ℓ),T
†)tors and work with the modified classes a ⋅ κnpα in place of κnpα ,

as done in [LV11, §10]. In this setting the results of this chapter remain true, mod-
ulo assuming further that T† is minimally ramified at every prime dividing N (see
Remark 5.2.6). However, in Chapter 6 we will need Assumption 5.2.3, therefore we
assume them to be true and get rid of the unwanted factor a.

Proposition 5.3.7. Let n ∈ Z>0 be prime to Np and α ≥ 1. Then

zn,α ∈ SelFGr
(Lα(n),T†).

Proof. We need to check that zn,α ∈ H1
FGr
(Lα(n)v,T†) for every place v of Lα(n).

In order to ease the notation, for primes w of Hnpα+1 and v of Lα(n) we write
Lw ∶= (Hnpα+1)w and Kv ∶= (Lα(n))v.

Fix primes w ∣ v ∣ λ ∤ p where w (resp. v, resp. λ) is a prime of Hnpα+1 (resp. of
Lα(n), resp. of K). By Proposition 5.3.5 we have that

resw(κnpα+1) ∈H1
FGr
(Lw,T†). (5.2)

A careful study of restriction and corestriction maps (see Corollary A.1.2) yields a
commutative diagram

H1(Hnpα+1 ,T
†) ⊕w∣vH

1(Lw,T†) ⊕w∣vH
1(Lur

w ,T
†)

H1(Lα(n),T†) H1(Kv,T†) H1(Kur
v ,T

†)

U−αp ○cor

⊕ resw

resv

U−αp ○ϕ

res

U−αp ○ψ

res

(5.3)
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for some morphisms ϕ and ψ, where w runs over all places of Hnpα+1 over v (that
is supposed to be fixed here). Then, using (5.2) and chasing the diagram above, we
conclude that

resv(zn,α) ∈H1
FGr
(Kv,T†).

If w ∣ v ∣ λ ∣ p, using the commutative diagram

H1(Lw,T†) H1(Lw, F −v (T†))

H1(Kv,T†) H1(Kv, F −v (T†))

U−αp ○cor U−αp ○cor

together with Proposition 5.3.5 we conclude that

resv(zn,α) ∈H1
FGr
(Kv,T†).

5.3.3 Kolyvagin’s derivative

Our aim is building out of these classes zn,α a universal Kolyvagin system for the
representation TIw = T† ⊗Zp Λ

ac over the field K. The first step is, for now, fixing
m,s, t ∈ Z>0 in order to define classes in the cohomology of Tm,s,t.

Notice that if α ≥ t, then γp
α − 1 ∈ (γpt − 1) in Λac, where γ is a fixed generator

of Γac. Therefore the augmentation ideal

Aα = ker (OF [[Gal(K∞/Kα)]] Ð→ OF )

is contained in (γpt−1). This implies that, for every α ≥ t, the action of Gal(K∞/Kα)
is trivial on Rm,s,t.

Remark 5.3.8. A similar fact is also used [Büy14, (4.2)], but here the result is easier
since we are using the elements γp

t − 1 instead of (γ − 1)t. One can also easily prove
(see [Was97, p.116]) that γp

t −1 ∈ (p, γ −1)t+1 and that p ∤ γpt −1. This implies that
the sequence ps, γp

t − 1 is regular in Λac.

Let now n ∈ Nm,s. Recall that Gn = Gal(Hn/H1) is isomorphic to the product
∏ℓ∣n Gℓ of cyclic groups of order ℓ+ 1 generated by σℓ, for every prime divisor ℓ of n.
Ramification issues imply also that

Gn = Gal(Hn/H1) ≅ Gal(Lα(n)/Lα) ≅ Gal(Kα(n)/Kα)

for every α ≥ 1.

Definition. Define the derivative operators Dℓ = ∑ℓi=1 iσiℓ ∈ Z[Gℓ] for a prime ℓ ∣ n
and Dn = ∏ℓ∣nDℓ ∈ Z[Gn].

Notice that the action of Dn on any Gn-module is a product of the action of
elements that lie in inertia groups above the primes that divide n. Since T† and TIw

are unramified outside Np (see Proposition 3.3.6 and Lemma 4.1.7), we can lift Dn

to an element of Z[GQ] that acts trivially on T† and TIw.
Since Gn is a normal subgroup of Gal(Hn/Q) ≅ Gal(Hn/K) ⋊ Gal(K/Q), the

complex conjugation c ∈ Gal(K/Q) acts on Gn with the relation cσc = σ−1, for all
σ ∈ Gn.
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Lemma 5.3.9. For λ = (ℓ) ∈ Pm,s and n ∈ Nm,s we have the relations

(a) (σℓ − 1)Dℓ = ℓ + 1 −TrGℓ .

(b) cDn ≡ (−1)ω(n)Dnc (mod ps) in Z[Gal(Hℓ/Q)], where ω(n) is the number of
prime factors of n.

Proof. Point (a) is a classical straightforword computation (see [Gro91, Equation
(3.5)]). Turning to point (b), let ℓ be a prime factor of n. Using the fact that
ps ∣ ℓ + 1, we obtain that

cDℓ =
ℓ

∑
i=1
icσiℓ =

ℓ

∑
i=1
iσ−iℓ c =

ℓ

∑
i=1
iσℓ+1−iℓ c =

ℓ

∑
i=1
(ℓ + 1 − i)σiℓc = (ℓ + 1)

ℓ

∑
i=1
σiℓc −

ℓ

∑
i=1
iσiℓc

= −Dℓc + ps(something)

in Z[Gal(Hℓ/Q)]. Then, for every ℓ ∣ n, we can compute

cDn = cDℓDn/ℓ = −DℓcDn/ℓ + ps(something),

and point (b) follows by induction on the number of prime factors of n.

We now fix m,s, t, α ∈ Z>0 and n ∈ Nm,s and massage the elements zn,α using
cohomology operators in order to build classes in H1(K,Tm,s,t).
Definition. For any element z ∈ H1(Lα(n),T†) we write z for the image of z in
H1(Lα(n), Tm,s).
Proposition 5.3.10. For every n ∈ Nm,s, we have Dnzn,α ∈H1(Lα(n), Tm,s)Gn.

Proof. By the functoriality of the Galois action on cohomology groups (see [NSW13,
Proposition 1.5.2]), we have that

Dnzn,α =Dnzn,α.

Since Gn = ∏ℓ∣n Gℓ, it suffices to prove that

(σℓ − 1)Dnzn,α = 0

in H1(Lα(n), Tm,s) for every prime ℓ ∣ n. Using Lemma 5.3.9 and the fact that Gn
is abelian, we obtain that

(σℓ − 1)Dnzn,α = (σℓ − 1)DℓDn/ℓzn,α = (ℓ + 1 −TrGℓ)Dn/ℓzn,α =
= (ℓ + 1)Dn/ℓzn,α −Dn/ℓTrGℓ(zn,α).

Since ℓ lies below a prime in Pm,s we have that ps ∣ ℓ+ 1, hence ℓ+ 1 is zero in Rm,s.
It suffices now to prove that TrGℓ(zn,α) = 0.

By [NSW13, Corollary 1.5.7] there is a commutative diagram

H1(Lα(n), Tm,s) H1(Lα(n), Tm,s)

H1(Lα(n/ℓ), Tm,s).

cor
res

TrGl

Using the functoriality of the corestriction together with Lemma 5.3.4 we obtain that

corLα(n)/Lα(n/ℓ)(zn,α) = Tℓ(z̄n/ℓ,α),

and the lemma follows from the fact that Tℓ is zero on Tm,s by Lemma 4.1.18.
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The end of the proof of the previous proposition yields the following corollary,
that has some importance on its own.

Corollary 5.3.11. With the notation of the proof of the previous proposition, we
have that

corLα(n)/Lα(n/ℓ)(zn,α) = 0

in H1(Lα(n/ℓ), Tm,s).

Lemma 5.3.12. The restriction map

res ∶H1(Lα, Tm,s) Ð→H1(Lα(n), Tm,s)Gn

is an isomorphism.

Proof. We will prove that H0(Lα(n), Tm,s) = {0} and then conclude via the inflation-
restriction exact sequence.

By Lemma 4.1.12, we have that H0(Hn, Tm,s) = {0}. We can write

{0} =H0(Hn, Tm,s) =H0(Lα(n)/Hn,H
0(Lα(n), Tm,s)),

and notice that the group Gal(Lα(n)/Hn) has order pα. Suppose by contradiction
that H0(Lα(n), Tm,s) ≠ {0}. Then, since Tm,s is a finite abelian p-group, the cardi-
nality of H0(Lα(n), Tm,s) is equal to pc for some c ≥ 1. By [Ser77, Lemma 3], we have
that p divides the cardinality of H0(Lα(n)/Hn,H

0(Lα(n), Tm,s)). But since the el-
ement 0 is always stabilized, the cardinality of H0(Lα(n)/Hn,H

0(Lα(n), Tm,s)) is
greater then 0, hence greater or equal then p. This is absurd since we know that
H0(Hn, Tm,s) = {0}.

Definition. For n ∈ Nm,s and α ≥ t, define κ[n,α] ∶= res−1Dnzn,α ∈H1(Lα, Tm,s).

Point (i) of Lemma 4.1.16 yields an isomorphism

Shα ∶H1(Lα, Tm,s)
≅Ð→H1(H1, Tm,s ⊗Zp Λ

ac/(γpα − 1)) =H1(H1, Tm,s,α) (5.4)

Whenever α ≥ t, the fact that γp
t − 1 ∣ γpα − 1 implies that there is a natural map

ψα,t ∶H1(H1, Tm,s,α) Ð→H1(H1, Tm,s,t).

Definition. For every n ∈ Nm,s define κ[n] ∶= Sht(κ[n,t]) ∈H1(H1, Tm,s,t).

The following lemma explains the compatibility in the anticyclotomic tower sat-
isfied by the classes κ[n].

Lemma 5.3.13. For every α ≥ t, there is an equality

κ[n] = (ψα,t ○ Shα)(κ[n,α]).

Proof. Lemma 5.3.3 yields the relation

corLα(n)/Lt(n)(zn,α) = zn,t.

Corestriction commutes with the action of Dn (see [NSW13, Proposition 1.5.4]), with
reduction to Tm,s and, since Lα and Lt(n) are disjoint over Lt, also with the inverse
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of the restriction defining κ[n,α] and κ[n,t] (see [NSW13, Corollary 1.5.8]). Therefore,
we obtain that

corLα/Lt
(κ[n,α]) = κ[n,t].

As noted in (4.2), there is a commutative diagram

H1(Lα, Tm,s) H1(H1, Tm,s ⊗Zp Λ
ac/(γpα − 1))

H1(Lt, Tm,s) H1(H1, Tm,s ⊗Zp Λ
ac/(γpt − 1))

Shα

Shα

cor ψα,t

where ψα,t is the map attached to the projection Λac/(γpα −1) ↠ Λac/(γpβ −1). This
implies that the image of Shα(κ[n,α]) in H1(H1, Tm,s,t) coincides with Sh(κ[n,t]).

Definition. For n ∈ Nm,s we define

κn ∶= corH1/K κ[n] ∈H1(K,Tm,s,t).

The main goal of the rest of this chapter will be to prove that a slight modification
of the classes {κn}n∈Nm,s form a Kolyvagin system for Tm,s,t over K with respect to
the Greenberg condition. The first step in this direction will be proving that they
lie in the proper Selmer group.

5.4 Local properties of the classes

The aim of this section is to show that the classes κn lie in SelFGr(n)(K,Tm,s,t), by
checking all local conditions at the primes of K. In order to do this, we keep working
with fixed m,s, t ∈ Z>0 and n ∈ Nm,s.

Remark 5.4.1. Let α ≥ 1, vα be a prime of Lα and wα be a fixed place of Lα(n)
above vα. Since Dn ∈ Z[Gn], its action is well defined on H1(Lα(n), Tm,s) but it is
not defined on a single local component H1(Lα(n)wα , Tm,s), since the action of an
element of Gn may twist local components. This is why we will extensively make use
of the following semilocal commutative diagram

H1(Lα(n), Tm,s) ⊕w∣vαH1(Lα(n)w, Tm,s)

H1(Lα(n), Tm,s) ⊕w∣vαH1(Lα(n)w, Tm,s),

Dn Dn

⊕ resw

⊕ resw

where w runs over all places of Lα(n) over vα. See also Section A.1 and [Rub00,
§B.5] for a discussion on semilocal Galois cohomology.

5.4.1 Local properties away from Np

Proposition 5.4.2. Fix a place v ∤ Nnp of K and let vα be a place of Lα over v.
Then, for all α ≥ 1 we have

(a) resvα(κ[n,α]) ∈H1
f ((Lα)vα , Tm,s) =H1

FGr
((Lα)vα , Tm,s).

(b) resv(κn) ∈H1
f (Kv, Tm,s,t) =H1

FGr
(Kv, Tm,s,t).
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Proof. Before starting the actual proof, notice that the equality signs in (a) and (b)
between local conditions come from Lemma 4.2.7.

(a) Let w be a place of Lα(n) above vα. Since the extensions Lα(n)w/(Lα)vα/Kv

are unramified, then Lα(n)urw = (Lα)urvα = Kur
v . Thanks to the functoriality of the

restriction (see [NSW13, Proposition 1.5.2] and [NSW13, Proposition 1.5.4]) and to
the commutative diagram of Remark 5.4.1 we obtain the commutative diagram

H1(Lα(n),T†) ⊕w∣vα H
1(Lα(n)w,T†) ⊕w∣vα H

1(Lα(n)urw ,T†)

H1(Lα(n), Tm,s) ⊕w∣vα H
1(Lα(n)w, Tm,s) ⊕w∣vα H

1(Lα(n)urw , Tm,s)

H1(Lα(n), Tm,s) ⊕w∣vα H
1(Lα(n)w, Tm,s) ⊕w∣vα H

1(Lα(n)urw , Tm,s).

⊕ resw

Dn Dn

⊕ resw

res

res

Dn

⊕ resw res

Following the path of zn,α from the upper left to the bottom right of the previous
diagram and applying Proposition 5.3.7 we obtain that

resw(Dnzn,α) ∈H1
f (Lα(n)w, Tm,s)

for every w ∣ vα. Point (a) descends from the following commutative diagram

H1(Lα(n), Tm,s) H1(Lα(n)w, Tm,s) H1(Lα(n)urw , Tm,s)

H1(Lα, Tm,s) H1((Lα)vα , Tm,s) H1((Lα)urvα , Tm,s).

res res

resw res

resresvα

(b) Let now v1 be a place ofH1 above v and take α = t. Semilocal Shapiro’s lemma
(see e.g. [Rub00, Proposition B.4.2]) yields the following commutative diagram

H1(Lt, Tm,s) ⊕vt∣v1 H
1((Lt)vt , Tm,s) ⊕vt∣v1 H

1((Lt)urvt , Tm,s)

H1(H1, Tm,s,t) H1((H1)v1 , Tm,s,t) H1((H1)urv1 , Tm,s,t).

Sht Sht Sht

⊕ resvt

resv1

⊕ res

res

Following the path of κ[n,t] from the upper left to the bottom right and applying
point (a), we obtain that

resv1(κ[n]) ∈H1
f ((H1)v1 , Tm,s,t).

Corollary A.1.2 yields a commutative diagram

H1(H1, Tm,s,t) ⊕v1∣vH
1((H1)v1 , Tm,s,t) ⊕v1∣vH

1((H1)urv1 , Tm,s,t)

H1(K,Tm,s,t) H1(Kv, Tm,s,t) H1(Kur
v , Tm,s,t)

cor

⊕ resv1 ⊕ res

resv res

that gives point (b).

Proposition 5.4.3. Let λ = (ℓ) be a prime of K such that ℓ ∣ n. Then

resλκn ∈H1
tr(Kλ, Tm,s,t).
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Proof. Fix α ≥ 1 and let vα (resp. w, resp. w′) be a place of Lα (resp. Lα(ℓ), resp.
Lα(n)) that lies above λ (resp. above vα, resp. above w). By Lemma 4.2.8, we must
prove that resλκn lies in the kernel of

res ∶H1(Kλ, Tm,s,t) Ð→H1((Hℓ)vℓ , Tm,s,t),

where vℓ is the prime below w.
First step: prove that the restriction ofDnz̄n,α toH1((Lα(n))w′ , Tm,s) is trivial,

where z̄n,α is the reduction of zn,α to H1(Lα(n), Tm,s).
First, by Proposition 5.3.7 and Lemma 4.2.7 we know that resw′ z̄n,α lies in

H1
f ((Lα(n))w′ , Tm,s). Since the operator Dn commutes with restriction (in the sense

of Remark 5.4.1), the same is true for resw′Dnz̄n,α.
By the explicit description of the isomorphism of point (i) of Lemma 4.2.9 (see

Remark 4.2.10) and the fact that Dn = ∏ℓ′∣nDℓ′ , it suffices to show that the evalu-
ation (Dℓz̄n,α)(Frw′) of a cocycle representing Dℓz̄n,α at Frw′ is trivial. Since Tm,s
is unramified outside Np, we know that σℓ (our fixed generator for Gℓ) can be lifted
to an element that acts trivially on Tm,s. This, together with the fact that the co-
cycle resw′ z̄n,α is inflated by an unramified cocycle, implies that the action of σℓ on
resw′ z̄n,α is trivial, therefore

(Dℓz̄n,α)(Frw′) =
ℓ

∑
i=1
i ⋅ (σiℓz̄n,α)(Frw′) =

ℓ

∑
i=1
i ⋅ z̄n,α(Frw′) =

ℓ(ℓ + 1)
2

⋅ z̄n,α(Frw′) = 0

since (ℓ + 1)/2 is zero on Tm,s.
Second step: prove that the restriction of κ[n,α] to H1(Lα(ℓ)w, Tm,s) is trivial.

Recall that there are disjoint field extensions

Lα(n)

Hn Lα(ℓ)

Hn/ℓ Hℓ

H1

Since λ = (ℓ) is a principal prime in K, by class field theory we have that λ splits
completely in Hn/ℓ. Elementary algebraic number theory shows that this implies
that w splits completely in Lα(n). This implies that Lα(ℓ)w = Lα(n)w′ .

Our claim now follows easily from the first step of this proof together with the
commutativity of the following diagram

H1(Lα(n), Tm,s) H1(Lα(n)w′ , Tm,s)

H1(Lα, Tm,s) H1((Lα)vα , Tm,s) H1(Lα(ℓ)w, Tm,s).

resw′

res

resvα res

Third step: we conclude as in the proof of point (b) of Proposition 5.4.2. Precisely,
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setting α = t, we have the commutative diagram

H1(Lt, Tm,s) ⊕vt∣λH
1((Lt)vt , Tm,s) ⊕w∣λH

1((Lt(ℓ))w, Tm,s)

H1(H1, Tm,s,t) ⊕v1∣λH
1((H1)v1 , Tm,s,t) ⊕vℓ∣λH

1((Hℓ)vℓ , Tm,s,t)

H1(K,Tm,s,t) H1(Kλ, Tm,s,t) H1((Hℓ)vℓ , Tm,s,t),

cor

⊕ resv1 ⊕ res

resλ res

Sht

⊕ resvt ⊕ res

Sht Sht

where the two upper squares are induced by semilocal Shapiro’s lemma and the two
bottom squares are a consequence of [NSW13, Proposition 1.5.6] (see also Corollary
A.1.2). In particular, since λ is split in H1, the bottom vertical central and right
maps are just a sum of Galois actions, and in the bottom right cohomology group
the field (Hℓ)vℓ is intended to correspond to the intersection between the chosen
decomposition group at λ with GHℓ

.

5.4.2 Local properties at p

For this subsection, we fix a place v of K above p. Since F−v (T†) is flat over R, by
tensoring the exact sequence of Proposition 3.3.7 over R with Rm,s, we obtain the
exact sequence of Rm,s[[GKv]]-modules

0 F +v (Tm,s) Tm,s F−v (Tm,s) 0

where, by definition, F±v (Tm,s) ∶= F±v (T†)⊗RRm,s. For a similar reason, from Lemma
4.2.3 we obtain the exact sequence

0 F+v (Tm,s,t) Tm,s,t F−v (Tm,s,t) 0 (5.5)

where, by definition, F±v (Tm,s,t) ∶= F±v (TIw) ⊗RIw Rm,s,t.

Proposition 5.4.4. Let α ≥ 1. For any place vα of Lα above v, we have

resvα(κ[n,α]) ∈ ker (H1((Lα)vα , Tm,s) Ð→H1((Lα)vα , F −v (Tm,s))).

Proof. Let a ≥ α be a positive integer, fix va a valuation of La abowe vα. We have
the following commutative diagram

H1(La(n),T†) ⊕w∣va H
1(La(n)w,T†) ⊕w∣va H

1(La(n)w, F −v (T†))

H1(La(n),T†) ⊕w∣va H
1(La(n)w,T†) ⊕w∣va H

1(La(n)w, F −v (T†))

H1(La(n), Tm,s) ⊕w∣va H
1(La(n)w, Tm,s) ⊕w∣va H

1(La(n)w, F −v (Tm,s))

Dn

⊕ resw

DnDn

⊕ resw

⊕ resw

where w varies among all places of La(n) above va, and:

(i) the commutativity of the two upper squares follows from the fact that Dn

commutes with the restriction (see Remark 5.4.1) and from the fact that the
action of Dn is functorial (see [NSW13, Proposition 1.5.2]);
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(ii) the commutativity of the two bottom squares comes from the fact that tensor-
ing over R commutes with restriction in cohomology and with R-linear maps.

From the commutativity of the diagram above and the fact that, by Proposi-
tion 5.3.7, zn,a ∈ SelFGr

(La(n),T†) we obtain that the image of zn,a inside the sum
⊕w∣va H

1((La(n))w, F −v (Tm,s)) is zero. This implies that, chasing the commutative
diagram

H1(La(n), Tm,s) H1(La(n)w, Tm,s) H1(La(n)w, F −v (Tm,s))

H1(La, Tm,s) H1((La)va , Tm,s) H1((La)va , F −v (Tm,s)),

res

resva

resres

resw

the image of κ[n,a] is zero in H1(La(n)w, F −v (Tm,s)) for every place w above va. Our
claim reduces to show that the image of κ[n,a] in H1((La)va , F −v (Tm,s)) is zero when
a = α. For any a ≥ α, call this image c[n,a].

From the discussion above we know that c[n,a] lies in the kernel of the right
vertical restriction map of the last diagram. We call this kernel Ma.

Chasing the norm compatibility properties of the zn,a (shown in Lemma 5.3.3)
in the diagrams above (mainly using [NSW13, Corollary 1.5.8] and observing at a
certain point that any prime above v is totally ramified in the extension L∞/H1),
one is able to prove that

cor(La)va/(La−1)va−1 (c[n,a]) = c[n,a−1].

for every a ≥ α. Therefore, our claim reduces to prove that c[n,a] = 0 for some a ≥ α.
Moreover, the corestriction maps naturally restrict to

cor(La)va/(La−1)va−1 ∶Ma Ð→Ma−1.

By inflation-restriction

Ma ≅H1(La(n)w/(La)va ,H0(La(n)w, F −v (Tm,s))) =∶ Na,

and the corestriction maps on the Ma’s correspond, on the Na’s, to

ϕa ∶ Na Ð→ Na−1

[f] z→ [TrLa(n)w/La−1(n)w ○f ○ i
−1
a ]

on classes of cocycles, where ia is the natural isomorphism

ia ∶ Gal(La(n)w/(La)va) Ð→ Gal(La−1(n)w/(La−1)va−1)

and where the trace acts on the codomain of the cocycle. The proof of this fact
is just bookkeeping up to making a smart choice for representatives of the group
Gal((La)va/(La−1)va−1) inside G(La−1)va−1 .

Notice that, since by Corollary 4.1.6 the module Tm,s is finite, the size of the
modules H0(La(n)w, F −v (Tm,s)) is bounded independently on a, hence these modules
stabilize for large enough a. For these large enough values of a, the trace map in the
defintion of ϕa equals the multiplication by the cardinality of Gal((La)va/(La−1)va−1),
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that is p (since the primes of H1 above v are totally ramified in L∞). This implies
that, for big enough a, there is an ã > a such that

ϕa+1 ○ ϕa+2 ○ ⋅ ⋅ ⋅ ○ ϕã
is the zero map. Since c[n,a] lies in the image of this map, it is zero. Therefore,
c[n,α] = 0.

Corollary 5.4.5. resv(κn) ∈ ker (H1(Kv, Tm,s,t) Ð→H1(Kv, F
−
v (Tm,s,t))).

Proof. The exact sequence (5.5) yields the commutative diagram

H1(Lt, Tm,s) ⊕vt∣vH
1((Lt)vt , Tm,s) ⊕vt∣vH

1((Lt)vt , F −v (Tm,s))

H1(H1, Tm,s,t) ⊕v1∣vH
1((H1)v1 , Tm,s,t) ⊕v1∣vH

1((H1)v1 , F −v (Tm,s,t))

H1(K,Tm,s,t) H1(Kv, Tm,s,t) H1(Kv, F
−
v (Tm,s,t))

cor

⊕ resv1

resv res

Sht

⊕ resvt

Sht Sht

where the bottom vertical maps come from Corollary A.1.2 and the functoriality of
corestriction and Galois action in cohomology. Following the path of κ[n,t] from the
upper left to the bottom right and applying Proposition 5.4.4, we conclude.

Remark 5.4.6. Thanks to the exact sequence (5.5), Corollary 5.4.5 is equivalent to

resv(κn) ∈ Im (H1(Kv, F
+
v (Tm,s,t)) Ð→H1(Kv, Tm,s,t)).

As we noticed before Lemma 4.2.7, the result of Corollary 5.4.5 is not enough to
conclude that resv(κn) ∈H1

FGr
(Kv, Tm,s,t), because

H1
FGr
(Kv, Tm,s,t) = Im (H1(Kv, F

+
v (TIw)) Ð→H1(Kv, Tm,s,t)).

This is why, following the ideas of [Büy14, Hypothesis (H.stz)], we make the following
assumption.

Assumption 5.4.7. For every valuation v ∣ p of K we assume that

H0(Kv, F
−
v (T̄

†)) = {0},

where F−v (T̄
†) ∶= F−v (T†) ⊗RR/mR.

Remark 5.4.8. By Lemma 4.1.8, the residual GK-representation T̄
† coincides with

T̄
Iw. Therefore Assumption 5.4.7 is equivalent to assume that

H0(Kv, F
−
v (T̄

Iw)) = {0}.

Notice that F−v (T̄
Iw) ≅ F−v (T̄

†) is a vector space of dimension 1 over a finite
field. Moreover, the action of GKv on it factors through the product of characters
ηvΘ

−1, where ηv ∶ GKv → R× is the unramified character defined by sending Frv to
Up (see [LV11, p. 300]). Therefore, Assumption 5.4.7 is equivalent to require that
the character ηvΘ−1 is not identically congruent to 1 modulo mR.

We will also see in Chapter 6 that Assumption 5.4.7 will be useful to compare
different local conditions on spme specializations of TIw (see Proposition 6.2.5). For
more insights on this Assumption 5.4.7, see [Büy14, Remark 4.24].
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Proposition 5.4.9. Under Assumption 5.4.7 we have that

resv(κn) ∈H1
FGr
(Kv, Tm,s,t).

Proof. Let’s use the letter T to denote one of TIw, TIw/(ω2,m), TIw/(ω2,m, p
s) or

TIw/(ω2,m, p
s, γp

t − 1) = Tm,s,t. Assumption 5.4.7 together with Nakayama’s lemma
(see Lemma 4.1.10) yields that H0(Kv, F

−
v (T )) = {0}. The duality between F −v (T )

and F+v (T ) coming from the perfect alternating pairing of [How07, (3)] together with
Tate local duality implies that

H2(Kv, F
+
v (T )) = {0}, (5.6)

as noted also in [Büy14, p. 809]. Since F+v (TIw) is free over RIw, multiplication by
ω2,s yields the exact sequence

0 F +v (TIw) F+v (TIw) F+v (TIw/(ω2,m)) 0.
ω2,s

Taking the long exact sequence in cohomology, equation (5.6) gives a surjection

H1(Kv, F
+
v (TIw)) ↠H1(Kv, F

+
v (TIw/(ω2,m))).

Repeating the same argument to the exact sequences attached to the multiplication
by ps and γp

t − 1, we eventually obtain a surjection

H1(Kv, F
+
v (TIw)) ↠H1(Kv, F

+
v (Tm,s,t)).

Then we have the commutative diagram

H1(Kv, F
+
v (TIw)) H1(Kv,T

Iw)

H1(Kv, F
+
v (Tm,s,t)) H1(Kv, Tm,s,t)

where the left vertical map is surjective. By Remark 5.4.6 we know that resv(κn)
lies in the image of the bottom horizontal map, hence it comes from an element of
H1(Kv, F

+
v (TIw)). By definition of the Greenberg condition on Tm,s,t, this implies

that
resv(κn) ∈H1

FGr
(Kv, Tm,s,t).

5.4.3 Local properties at primes dividing N

For this subsection, fix a place v ∣ N of K.

Proposition 5.4.10. Let vα be a place of Lα such that vα ∣ v. Then for every α ≥ 1
we have that

(a) resvα(κ[n,α]) ∈ ker (H1((Lα)vα , Tm,s) Ð→H1((Lα)urvα , Tm,s)).

(b) resv(κn) ∈ ker (H1(Kv, Tm,s,t) Ð→H1(Kur
v , Tm,s,t)).

Proof. The proof of Proposition 5.4.2 goes through verbatim.



98 5. The big Heegner point Kolyvagin system

As in the case of the previous subsection, when v ∣ p, this proposition is not
enough to conclude that resv(κn) ∈H1

FGr
(Kv, Tm,s,t). However, since we are working

under Assumption 5.2.3, we have a control on Tamagawa factors and we can deduce
the following result.

Proposition 5.4.11. With notation as above, we have that

resv(κn) ∈H1
FGr
(Kv, Tm,s,t).

Proof. The commutative diagram with exact rows

H1
ur(Kv,T

Iw) H1(Kv,T
Iw) H1(Kur

v ,T
Iw)

H1
ur(Kv, Tm,s,t) H1(Kv, Tm,s,t) H1(Kur

v , Tm,s,t)

res

res

induces a map
ϕ ∶H1

ur(Kv,T
Iw) Ð→H1

ur(Kv, Tm,s,t).

To conclude the proof, it suffices to show that ϕ is surjective. By inflation-restriction,
the map ϕ corresponds to the map

H1(Kur
v /Kv, (TIw)Iv) Ð→H1(Kur

v /Kv, T
Iv
m,s,t)

induced by the morphism ψ ∶ (TIw)Iv → T Iv
m,s,t. As proven in [Büy14, Lemma 4.27]

(see also Remark 5.2.6), under Assumption 5.2.3 the natural morphism ψ′ ∶ (T†)Iv →
T Iv
m,s is surjective. Since Iv acts trivially on Λac, semilocal Shapiro’s lemma on

the 0-th cohomology groups (see [Rub00, Proposition 4.2]) implies that also ψ is
surjective. The claim now follows by applying the long exact sequence in cohomology
and noticing that Gal(Kur

v /Kv) has cohomological dimension 1, exactly as in the end
of the proof of [Büy14, Proposition 4.26].

5.4.4 The Kolyvagin system

Under the running assumptions, the results of Proposition 5.4.2, Proposition 5.4.3,
Proposition 5.4.9 and Proposition 5.4.11 lead to the following theorem.

Theorem 5.4.12. Let m,s, t ∈ Z>0 and let n ∈ Nm,s. Then

κn ∈ SelFGr(n)(K,Tm,s,t).

We want to build a Kolyvagin system out of the classes κn. Denote by κ∗[n,t] ∶=
corLt/Kt

κ[n,t]. The diagram

H1(Lt, Tm,s) H1(H1, Tm,s,t)

H1(Kt, Tm,s) H1(K,Tm,s,t)

cor cor

is commutative, where the horizontal maps are Shapiro’s maps Sht, so the classes
κ∗[n,t] are another byproduct of the descent procedure of Subsection 5.3.3 (they are
closer to the classes used in [Büy14]).
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We now study what happens when we move the parameters m,s, t. With this
aim, we denote by κ

(m,s,t)
n what we called κn, in order to make clear the dependence

on m,s, t. If we take m̄ ∶= (m,s, t) ⪯ ī ∶= (i, j, r) (see Subsection 4.2.5), there are
natural maps

ϕī,m̄ ∶H1(K,Tī) Ð→H1(K,Tm̄).

Lemma 5.4.13. For every m̄ ⪯ ī and n ∈ Nī we have

ϕī,m̄(κ(̄i)n ) = κ(m̄)n .

Proof. By the compatibility of Lemma 5.3.13, both κ
(̄i)
n and κ

(m̄)
n come from a

unique class zn,r ∈H1(Lr(n),TIw), and the maps used to define κ
(̄i)
n and κ

(m̄)
n from

zn,r commute with ϕī,m̄, since they just involve restrictions, corestrictions, Galois
actions and Shapiro’s maps.

From the fact that lim←Ð(m,s,t) Tm,s,t = T
Iw, we obtain that

lim←Ð
(m,s,t)

H1(K,Tm,s,t) ≅ lim←Ð
t

H1(K,T† ⊗Zp Λ/(γp
t − 1)) ≅ lim←Ð

t

H1(Kt,T
†),

where the last isomorphism comes from Lemma 4.1.16. When n = 1, the system of
elements {κ(m,s,t)1 }m,s,t∈Z>0 , that is compatible with respect to the maps of Lemma
5.4.13, yields an element of lim←ÐtH

1(Kt,T
†), that coincides with κ∞ ∶= {κ∗[1,t]}t∈Z>0 .

Explicitely,
κ∗[1,t] = corLt/Kt

z1,t = corHpt+1/Kt
U−tp κpt+1 ,

where κpα+1 is the big Heegner class of Definition 3.5.3. The main result of this
chapter is that the system of elements {κ(m,s,t)1 }m,s,t∈Z>0 can be slightly modified in
order to obtain a universal Kolyvagin system whose set of classes at n = 1 coincides
with κ∞. However, we are not able to get this result in great generality, but we need
to work under some (technical) assumptions and to select a subset P ′m,s,t of Pm,s,t
of primes to work with.

Theorem 5.4.14. Under Assumption 5.5.4 and Conjecture 5.5.7, there is a univer-
sal Kolyvagin system κ̃ ∈KS(TIw,FGr,P ′) such that

κ̃1 = {κ(m,s,t)1 }m,s,t∈Z>0 = κ∞ ∈ lim←Ð
t

H1(Kt,T
†).

For a precise statement and a proof of this theorem, see Corollary 5.5.11 and the
assumptions made in the next section.

Remark 5.4.15. At this point, our arithmetic context is formally equivalent to the
one of [Büy14, Theorem 4.28]. There, Theorem 5.4.14 is claimed without any further
assumptions. However, we were not able to find a proof that works in great generality.
In particular, it seems fundamental to require some "big image" condition for the
GQ-representation T† (see Assumption 5.5.4) and to work with some well-chosen
subsets of Pm,s.
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5.5 On the proof of Theorem 5.4.14

In this section we prove that a slight modification of the set of elements {κn}n∈Ns,m

form a Kolyvagin system for Tm,s,t, and that these Kolyvagin systems can be put
together in order to form a universal Kolyvagin system for the representation TIw.
The main idea is to adapt arguments of [Nek92, §7-12], [Bes97] and of [How04b, §1.7]
to our context.

5.5.1 The arithmetic context

In this subsection we prove that our arithmetic context satisfies conditions (i)-(x)
described in Subsection A.3.2, and we derive a key formula.

Fix m,s, t ∈ Z>0 with s ≥ m. Let n ∈ Ns,m and (ℓ) = λ ∈ Pm,s such that ℓ ∤ n.
Choose a prime λℓ of Hℓ above λ. For every element ξ ∈H1(−,T†) denote by ξ′ the
image of ξ in H1(−, Tm).

Set G̃ = GLt(n)+ (where Lt(n)+ is the maximal real subfield of Lt(n)), G = GLt(n),
H = GLt(nℓ), G̃ = GQℓ

, G0 = GKλ
, H0 = G(Hℓ)λℓ

, σ = σℓ, A = Tm, S = Rm, ϕ = Frℓ,
d = ℓ, M = ℓ + 1, M1 = Tℓ ∈ Rm, x = Dnz

′
n,t ∈ H1(Lt(n), Tm) and y = Dnz

′
nℓ,t ∈

H1(Lt(nℓ), Tm). The goal of this subsection is to check that these elements satisfy
conditions (i)-(x) of Subsection A.3.2.

Point (i), (ii) and (iv) can be easily verified. Point (iii) descends from a study of
the maximal tamely ramified extension of Qℓ (see Section A.2). Point (vi) descends
from the fact that λ ∈ Pm,s, point (vii) is a consequence of Lemma 5.3.4 and point
(viii) is a direct consequence of the proof of Lemma 5.3.12. Point (v) is a consequence
of the following proposition.

Proposition 5.5.1. Let L be a finite extension of Qℓ and recall that s ≥ m. The
inflation map

inf ∶H1(Lur/L,Tm) H1(L,Tm)

is an isomorphism.

Proof. Let ℓd be the cardinality of the resudue field of L. In order to apply Lemma
A.2.2, we need to check that ℓd is not an eigenvalue for the action of FrL on Tm.

Let p be an arithmetic prime of R of weight 2 and character ε ∶ Γ/Γpm → Q̄×p .
Then p contains ω2,m and ω2,s, and gives an arithmetic map

RÐ→ Rs Ð→ Rm Ð→ Frac(R/p)

that yields a specialization

T† Ð→ Ts Ð→ Tm ⊗Rm Frac(R/p).

The representation Tm ⊗Rm Frac(R/p) is the twist by Θ−1 of the representation
attached by Deligne to the modular form of the Hida family passing throug f that
corresponds to the arithmetic prime p (see Theorem 3.3.4). Lemma 4.1.22 implies
that Θ(FrL) acts as ±1 on Tm, hence by Weil conjectures we obtain that ℓd is not
an eigenvalue for FrL on Tm⊗Rm Frac(R/p) (see also the end of the proof of [Nek92,
Lemma 4.1]). The Galois equivariancy of the specialization map implies that ±ℓd is
not an eigenvalue for FrL on Tm, and we conclude by applying Lemma A.2.2.

Point (ix) of Subsection A.3.2 is a consequence of the following lemma.
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Lemma 5.5.2 (Eichler-Shimura relation). Let ω(n) denote the number of prime
divisors of n.

(a) The classes z′nℓ,t and Frℓ(z′n,t) coincide when restricted to Lt(nℓ)λnℓ
= (Hℓ)λℓ

for any prime λnℓ above λℓ.

(b) The classes Dnz
′
nℓ,t and (−1)ω(n)Frℓ(Dnz

′
n) coincide modulo ps when restricted

to Lt(nℓ)λnℓ
= (Hℓ)λℓ .

Proof. Point (a) descends from Proposition 3.5.7 together with the functoriality of
the action of Frℓ and its commutativity with the operators Up and cor.

Turning to point (b), Remark 4.1.19 says that the action of Frℓ on Tm coincides
with the action of the complex conjugation c modulo ps. Then the claim follows
by applying the operator Dn to point (a), together with the commutativity relation
proved in point (b) of Lemma 5.3.9.

Finally, by Corollary 4.1.23 we know that the characteristic polynomial of the
action of Frℓ on Tm is

X2 − (−1)
k+j
2
−1TℓX + ℓ,

therefore point (x) of Subsection A.3.2 is satisfied. Then, applying the machinery
explained in Subsection A.3.2, the key formula (A.6) translates to

((−1)ω(n)(ℓ + 1)Frℓ −Tℓ)ax = ((−1)
k+j
2
−1TℓFrℓ −(ℓ + 1))(a − ps(something)) (5.7)

in Tm, where ax ∈ Tm is congruent to (Dnz
′
n,t)(Frλ) modulo (Frλ −1)Tm and a is

congruent to −(res−1Lt(n)/Lt(nℓ)Dnℓz
′
nℓ,t)(σ̃ℓ) modulo ps, where σ̃ℓ is a fixed lifting of

σℓ to Gal(K̄λ/Kur
λ ) (see (A.4)). Applying Lemma 5.3.12, using bars in order to

denote projections to Tm,s and the fact that Frλ = Fr2ℓ is the identity on Tm,s we
obtain that

• āx = κ[n,t](Frλ) in Tm,s;

• ā = −κ[nℓ,t](σ̃ℓ) in Tm,s.

Remark 5.5.3. Here we comment the importance of the relation (5.7). Suppose
that one wants to prove that the set {κn⊗ℓ∣nσℓ}n∈Nm,s is a Kolyvagin system. Then,
by definition (see also Remark 4.2.14), one needs to check that for every nℓ ∈ Nm,s
the equality

ϕfsλ (resλ(κn)) = resλ(κnℓ) ⊗ σℓ

holds in H1
s (Kλ, Tm,s,t) ⊗ Gℓ. By the explicit description of the isomorphisms of

Lemma 4.2.9 (see Remark 4.2.10), this amounts to check that

κn(Frλ) = κnℓ(σ̃ℓ).

Equation (5.7) is then a first step in finding a relation between the left and the
right-hand side of this equation. As we will see, we will not be able to prove that
the set {κn⊗ℓ∣n σℓ}n∈Nm,s,t is a Kolyvagin system, but we will need to do some slight
modifications.
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5.5.2 A finer choice of primes

Let’s continue to work with fixed m,s, t ∈ Z>0 with s ≥ m. Recall that, by Lemma
4.1.18, for every prime (ℓ) = λ ∈ Pm,s we have that ps ∣ ℓ + 1 and ps ∣ Tℓ as elements
of Rm. We need to control also the non-divisibility at p of a linear combination of
these elements.

In order to do that we need to study the image of GQ in AutRm(Tm). In partic-
ular, we will need the following big image result.

Assumption 5.5.4. The image of GQ in Aut(Tm) contains the scalars 1 + psZp.

Remark 5.5.5. We present here an infinite set of representations for which Assump-
tion 5.5.4 is verified, but we suspect it to be true for many other families.

First, suppose that the cusp form f fixed in Subsection 3.2.1 has weight k = 2.
This is not a strong assumption, since inside the Hida family of any fixed (admissible)
cuspform there is always a p-adic form of weight 2. Then, thanks to [Fis02, Theorem
4.8], there is a set of primes of density 1 (called Σf in [Fis02, p.355]) with the property
that if p ∈ Σf then the image of GQ in AutR(T) contains SL2(R) (see also the proof
of [Vig22, Theorem 4.15]). This implies that the image of GQ in AutRm(T/(ω2,m))
contains SL2(Rm).

Call Φ the image of GQ in AutRm(Tm). Since Tm is a twist of T/(ω2,m) by a
character of finite order, every element of AutRm(Tm) has a scalar multiple that
lies in Φ. Since SL2(Rm) is the commutator of AutRm(Tm), then Φ must contain
SL2(Rm).

For all ℓ ∤ Np, the image of Frℓ has determinant ℓ in AutRm(Tm) by Proposition
3.3.6, therefore Φ contains all matrices of determinant ℓ. The set of primes ℓ ∤ Np is
dense in Z×p , Φ is closed and the determinant map is continuous, therefore Φ contains
the whole GL2(Zp). In particular, Tm satisfies Assumption 5.5.4 for every m ≥ 1.

Now we present the main consequence of Assumption 5.5.4.

Lemma 5.5.6. There is an infinite subset P ′m,s of Pm,s such that

(a) for every (ℓ) ∈ P ′m,s we have that

ps+1 ∤ ℓ + 1 ± Tℓ

as elements of Rm;

(b) for every (ℓ), (ℓ′) ∈ P ′m,s we have that

ℓ + 1 ≡ ℓ′ + 1 (mod p2s) and Tℓ ≡ Tℓ′ (mod p2s).

Proof. Fix a prime ℓ̃ below a prime of Pm,s. By Corollary 4.1.23 we know that the
action of Frℓ̃ on Tm has the properties

Tr(Frℓ̃) = (−1)
k+j
2
−1Tℓ̃ and det(Frℓ̃) = ℓ̃.

Let now α ∈ 1 + psZp. By Assumption 5.5.4 there is an element σα ∈ GQ such that
the image of σα in Aut(Tm) is α. Then, on Tm, we have

Tr(Frℓ̃ σα) = (−1)
k+j
2
−1αTℓ̃ and det(Frℓ̃ σα) = α

2ℓ̃.
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Take now a prime ℓ such that Frℓ is conjugated to Frℓ̃ σα in Gal(K(Tm,2s)/Q). By
Chebotarev’s density theorem, we can find infinitely many such primes. One can
check directly that (ℓ) ∈ Pm,s, since

Tℓ ≡ αTℓ̃ (mod p2s) and ℓ ≡ α2ℓ̃ (mod p2s) (5.8)

in Rm (see also Remark 4.1.19).
Let p be an arithmetic prime of Rm of weight 2 and character ε ∶ Γ/Γps → Q̄×p

and consider the two relations
α2ℓ̃ ± αTℓ̃ + 1 (5.9)

with coefficients in Rm/p and variable α. Our claim is that there is always α ∈ 1+psZp
(depending on our choice of ℓ̃) that makes both these relations not congruent to 0
modulo ps+1. This can be checked directly in the following way. Set α = 1 + xps,
ℓ̃ = −1 + aps and Tℓ = bps for fixed a ∈ Z, b ∈ Rm/p and variable x ∈ Zp. A direct
computation yields that equation (5.9) becomes

(a − 2x ± c)ps + p2s ⋅ (something).

Since p is a power of a prime element in Rm/p, we just need to ask that p ∤ (a−2x±c).
Since p ≥ 5, there is an x ∈ Zp such that its reduction x̄modulo p satisfies x̄ ≠ (ā±c̄)/2̄.
We then have that α̃ ∶= 1 + xps satisfies the claim.

Lifting toRm, one obtains then that α̃2ℓ̃±α̃Tℓ̃+1 ≢ 0 (mod ps+1). Define now P ′m,s
to be the set of all primes ℓ such that Frℓ is conjugated to Frℓ̃ σα̃ in Gal(K(Tm,2s)/Q).
For every (ℓ) ∈ P ′m,s, since ℓ+ 1± Tℓ is congruent to (5.9) modulo ps+1, we have that

ℓ + 1 ± Tℓ ≢ 0 (mod ps+1),

yielding point (a). By (5.8) we also have that

Tℓ ≡ α̃Tℓ̃ (mod p2s) and ℓ ≡ α̃2ℓ̃ (mod p2s),

yielding point (b).

Definition. We define N ′m,s to be the set of squarefree products of primes lying
below elements of P ′m,s.

5.5.3 The result

Before stating the main result, we need to spend a few words on the action of the
complex conjugation. In particular, we will work under the following conjecture.

Conjecture 5.5.7. For every n ∈ Nm,s the complex conjugation c acts on the element
κ[n,t] ∈H1(Lt, Tm,s) as

cκ[n,t] = εnσκ[n,t]
for some σ ∈ Gal(Lt/K) and some εn ∈ {±1} that depends only on the number of
prime factors ω(n) of n.

Remark 5.5.8. This conjecture should descend from a quaternionic counterpart of
[How07, Proposition 2.3.5], that gives an explicit description for the action of the
complex multiplication on classical big Heegner points. The dependence on ω(n)
would then be a consequence of the action of Dn on our starting points, as explained
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for example in [Nek06, Proposition 10.2, (1)] (it is essentially a consequence of point
(b) of Lemma 5.3.9).

The problem in proving this conjecture is that we do not have a clear modular
description of Longo and Vigni’s big Heegner points, therefore the generalization of
[How07, Proposition 2.3.5] is not straightforward. However, we believe that a deeper
study of Longo and Vigni’s points would give this result. In a future work, we will
also present another family of big Heegner points for which this conjecture can be
easily proven.

From now on, we assume Conjecture 5.5.7 to be true. Let now λ = (ℓ) ∈ Pm,s and
βℓ ∶H1(Kλ, Tm,s) ⊗ Gℓ → Tm,s be the isomorphism coming from point (b) of Lemma
4.2.9. The following lemma studies the behaviour of the action of the complex
conjugation c under the isomorphism βℓ.

Lemma 5.5.9. Let λ = (ℓ) ∈ Pm,s and ξ ⊗ σℓ ∈H1(Kλ, Tm,s) ⊗ Gℓ. Then

c ⋅ βℓ(ξ ⊗ σℓ) = −βℓ(cξ ⊗ σℓ).

Proof. As noticed in Remark 4.2.10, the isomorphism βℓ is given by sending the
element ξ ⊗ σℓ to ξ(σ̃ℓ) for any lifting σ̃ℓ of σℓ to Gal(K̄λ/Kur

λ ). However, since βℓ
does not depend on the chosen lifting, the value ξ(σ̃ℓ) only depends on the class of σ̃ℓ
in Gal(Kur

λ (Hℓ)λ/Kur
λ ), that is a quotient of Gal(Kab

λ /Kur
λ ). Then, we can compute

βℓ(cξ ⊗ σℓ) = c ⋅ ξ(cσ̃ℓc) = c ⋅ ξ(σ̃−1ℓ ),

where the last equality comes from the fact that the class of cσ̃ℓc modulo GKab
λ

coincides with the class of σ̃−1ℓ modulo GKab
λ

. But then, since σ̃−1ℓ acts trivially on
Tm,s, we have that

c ⋅ ξ(σ̃−1ℓ ) = −c ⋅ ξ(σ̃ℓ).

This lemma implies that the natural action of the complex conjugation on the
module H1(Kλ, Tm,s) ⊗ Gℓ is sent, under the isomorphism βℓ, to the action of −c on
Tm,s. We are now ready to prove the first main result of this section.

Theorem 5.5.10. Let m ≥ s. Then there is a Kolyvagin system {κ′n}n∈N ′m,s
for the

triple (Tm,s,t,FGr,P ′m,s) such that κ′1 = κ1.

Proof. Let nℓ ∈ P ′m,s and call λ = (ℓ) the prime of K above ℓ. From the key formula
(5.7) we know that

((−1)ω(n)(ℓ + 1)Frℓ −Tℓ)ax = ((−1)
k+j
2
−1TℓFrℓ −(ℓ + 1))(a − ps(something)) (5.10)

on Tm, where, denoting with a bar the reduction to Tm,s,

• āx = κ[n,t](Frλ) in Tm,s;

• ā = −κ[nℓ,t](σ̃ℓ) in Tm,s

for any fixed lifting σ̃ℓ of σℓ to Gal(K̄λ/Kur
λ ). Notice that both members of equation

(5.10) are divisible by ps, hence we can first divide and then quotient by ps, obtaining

((−1)
ω(n)(ℓ + 1)
ps

Frℓ −
Tℓ
ps
) āx =

⎛
⎝
(−1)

k+j
2
−1Tℓ

ps
Frℓ −

ℓ + 1
ps
⎞
⎠
ā on Tm,s.
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By Remark 4.1.19, Frℓ acts as the complex conjugation c on Tm,s. Applying the
isomorphism β−1ℓ to both members of the previous equation, Lemma 5.5.9 yields

(±(ℓ + 1)
ps

c − Tℓ
ps
)ϕfsλ (resλκ[n,t]) = −(

±Tℓ
ps

c − ℓ + 1
ps
) (resλκ[nℓ,t] ⊗ σℓ),

where ϕfsλ is the finite-singular isomorphism defined in Definition 4.2.11. Thanks
to Conjecture 5.5.7, applying semilocal Shapiro’s map followed by corestriction we
obtain the relation

(±(ℓ + 1)
ps

− Tℓ
ps
)ϕfsλ (resλκn) = −(

±Tℓ
ps
− ℓ + 1

ps
) (resλκnℓ ⊗ σℓ)

in H1
s (Kλ, Tm,s,t)⊗Gℓ. Since λ ∈ P ′m,s, point (a) of Lemma 5.5.6 implies that the co-

efficients in the last relation are not divisible by p, hence they are units of Rm,s,t. The
± signs in the previous relation are either fixed or depend only on ω(n). Therefore,
applying point (b) of Lemma 5.5.6, we find elements un ∈ R×m,s,t for every n ∈ N ′m,s
that depend only on ω(n) such that

resλκnℓ ⊗ σℓ = unℓϕfsλ (resλκn) on Tm,s,t. (5.11)

Set also u1 = 1 and take n ∈ N ′m,s. Factor n = ℓ1⋯ℓi as product of primes. We define

κ′n ∶= (u−1ℓ1 ⋅ u
−1
ℓ1ℓ2⋯u

−1
ℓ1ℓ2⋯ℓi)κn ⊗

⎛
⎝⊗ℓ∣n

σℓ
⎞
⎠
∈H1(K,Tm,s,t) ⊗ G(n).

Since um depends only on ω(m), the definition of κ′n does not depend on the chosen
order for the prime factors of n. Notice that κ′n ∈ SelFGr(n)(K,Tm,s,t) ⊗ G(n) by
Theorem 5.4.12. Equation (5.11) implies that

resλκ
′
nℓ ⊗ σℓ = ϕfsλ (resλκ′n) on Tm,s,t

for every nℓ ∈ Nm,s, therefore the set {κ′n}n∈N ′m,s
is a Kolyvagin system for the triple

(Tm,s,t,FGr,P ′m,s).

Denote by KS(TIw,FGr,P ′) ∶= lim←Ð(m,s,t)KS(Tm,s,t,FGr,P ′m,s). As in Subsection

5.4.4, denote by κ
(m,s,t)
n the elements κn, and similarly let κ(m,s,t)

′
n the elements κ′n,

in order to make clear the dependence on m,s, t. Recall that we defined

κ∞ = {κ(m,s,t)1 }m,s,t∈Z>0 = {κ∗[1,t]}t∈Z>0 .

Corollary 5.5.11. There is a universal Kolyvagin system κ̃ ∈ KS(TIw,FGr,P ′)
such that

κ̃1 = κ∞ ∈ lim←Ð
t

H1(Kt,T
†).

Proof. For a fixed n, the elements κ(m,s,t)
′

n defined in the previous theorem are com-
patible, thanks to Lemma 5.4.13 and to the fact that the factors un come from global
elements of R and depend only on n. Taking the inverse limit on m,s, t, we obtain
the claim.





Chapter 6

Anticyclotomic Iwasawa theory

In this chapter we study Iwasawa theory for the representation T†. The main goal is
to explain the connection between Kolyvagin systems for TIw and the Iwasawa main
conjecture for the representation T†. In particular, we will see that the existence of a
Kolvagin system with nontrivial first element implies one divisibility of the Iwasawa
main conjecture. The whole conjecture has been proven under mild hypotheses
(slightly different than ours) in [CW22] with a different method. We will instead
adapt some ideas from [Fou13] to our context.

For this chapter, we keep the setting of the previous one and further make the
following assumption, that is often satisfied (see for example [FO12, Lemma 2.7]).

Assumption 6.0.1. The ring R is regular.

6.1 The Iwasawa main conjecture

In this section we introduce the material that will be needed for the statement of the
Iwasawa main conjecture.

6.1.1 Duality

Let R be a complete noetherian regular local ring with maximal ideal mR, of Krull
dimension d ≥ 1, with finite residue field k = R/mRR of characteristic p. If M is an
R-module and I ⊆ R is an ideal, denote by M[I] the I-torsion R-submodule of M .

Definition. Denote by M∗ ∶= HomR(M,R) the R-linear dual of R (where HomR

denotes the set of R-linear homomorphisms) and by M∨ ∶= Homcont(M,Qp/Zp) the
Pontryagin dual of M (where Homcont denotes the set of continuous group homo-
morphisms).

By [Nek06, §2.9.1, §2.9.2], if M is a finitely generated R module or a discrete
cofinitely generated R-module then

M∨ = HomR(M,R∨). (6.1)

Following [Nek06, §0.4], define Φ(M) ∶=M ⊗R R∨. By [Nek06, (0.4.4)] we have that
(M∗)∨ ≅ Φ(M) and (Φ(M))∨ ≅ M∗. Further, by basic properties of Pontryagin
duality, if I is an ideal of R then (M[I])∨ ≅M∨/IM∨ and, if M is a G-module for
some profinite group G, we have (MG)∨ ≅ (M∨)G.

107
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6.1.2 Modules over Iwasawa algebras

In this subsection we specialize to the case R = R or RIw and study the properties
of some relevant modules, mainly following [KL23, §2]. Recall that R is a complete
Noetherian regular local domain of dimension 2, by Theorem 3.2.5 and Assumption
6.0.1.

Recall also that RIw = R ⊗Zp Λ
ac ≅ R[[Γac]] is isomorphic to the power series

ring R[[X]] via the map that sends a topological generator γ of Γac to 1 +X (see
[NSW13, Proposition 5.2.5]). Therefore, the Krull dimension of RIw is 3.

Proposition 6.1.1. The rings R and RIw are complete noetherian regular local
integrally closed UFDs whose height 1 prime ideals are principal.

Proof. The fact that RIw is a complete noetherian regular local ring descends from
[Mat89, Theorem 3.3, Exercise 8.6, Theorem 19.5]. Then, by Auslander-Buchsbaum’s
theorem (see [Mat89, Theorem 20.3]), both R and RIw are UFD. Then, they are also
integrally closed (see [Mat89, Example 1]) and every high 1 prime ideal is principal
by [Mat89, Theorem 20.1].

Remark 6.1.2. The proof of Proposition 6.1.1 goes through with Rf in place of R
and Rf [[Γac]] in place of RIw (see Subsection 3.2.3 for the definition and properties
of these objects), under the assumption that Rf is regular. Since, by Lemma 3.2.7,
R is the integral closure of Rf , we find that the regularity of Rf implies that Rf = R.
Therefore, all the work done in literature under the assumption that Rf is regular
fits also our hypotheses.

Following [Bou98, §VII.4.4] we now review the theory of pseudo-isomorphisms
and characteristic ideals for modules over RIw.

Definition. Let M be a module over a commutative ring R. We define SuppR(M)
to be the support of M over R, that is the set of all primes p of R such that the
localization Mp ≠ {0}.

Definition. ([Bou98, §VII.4.4, Definition 2]). A finitely generated RIw-module M
is said to be pseudo-null if SuppRIw(M) contains only prime ideals of height at
least 2.

Definition. Let M and N be finitely generated RIw-modules. We say that M is
pseudo-isomorphic to N if there is an exact sequence

0 A M N B 0

where A and B are pseudo-null RIw-modules. In this case, we write M ∼ N .

Remark 6.1.3. The relation of pseudo-isomorphism between finitely generatedRIw-
modules is not symmetric. Nevertheless, it can be shown that if we restrict to torsion
RIw-modules, then pseudo-isomorphism is an equivalence relation.

Proposition 6.1.4. Let M be a finitely generated RIw-module. Then

M ∼ (RIw)r ⊕ (
m

⊕
i=1
RIw/(gni

i ))

for some r, ni ≥ 0, m ≥ 1 and gi prime (hence irreducible) elements of RIw.
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Proof. By [Bou98, §VII.4.4, Theorem 4] we have that M is pseudo-isomorphic to
F × T where F is a free RIw-module and T is RIw-torsion. Then the result follows
from the explicit description of T made in [Bou98, §VII.4.4, Theorem 5] together with
the fact that all primes of height 1 of RIw are principal (see Proposition 6.1.1).

The elements gni
i of Proposition 6.1.4 are unique up to multiplication by units,

as stated in [Bou98, §VII.4.4, Theorem 5], and the number r is called the RIw-rank
of M . Therefore, we can make the following definition.

Definition. Let M be a finitely generated RIw-module and keep the notation of
Proposition 6.1.4. Define the characteristic ideal charRIw(M) of M to be 0 if
r ≠ 0 and

charRIw(M) = (
m

∏
i=1
gni
i ) ⊆ R

Iw

otherwise.

6.1.3 Iwasawa Selmer modules

In this subsection we introduce the objects that appear in the statement of the
Iwasawa main conjecture.

Definition. Define

A† ∶= Φ(T†) = T† ⊗RR∨ and AIw ∶= Φ(TIw) = TIw ⊗RIw (RIw)∨.

Remark 6.1.5. These definitions follow [KL23]. As noticed in [Nek06, §0.4], the
operator Φ on R and RIw-modules is the correct generalization of the operator
(−) ⊗Zp Qp/Zp on finite free Zp-modules. This last operator is frequently used to
define A-objects starting from representations attached to elliptic curves or modular
forms (see e.g. [How04b], [LV19]).

As remarked in [KL23, §2.4], there is an isomorphism

(RIw)∨ ≅ HomR(RIw,R∨),

where we use the standard RIw-action on HomR(RIw,R∨) induced by the relation
(γ ⋅ ϕ)(x) = ϕ(γ−1x) for γ ∈ Γac. We can hence endow AIw with a natural action of
GK . As explained in [KL23, §2.4] we have an isomorphism of RIw-modules

AIw ≅ HomR(RIw,A†).

Let v be a place of K dividing p. Applying the operator Φ to the filtrations of
Proposition 3.3.7 and Lemma 4.2.3 we obtain exact sequences of R[[GKv]]-modules

0Ð→ F +v (A) Ð→AÐ→ F −v (A) Ð→ 0

for A equal to A† and AIw respectively. Therefore, we can define the (strict)
Greenberg local conditions on A† and on AIw exactly as done in Definition 4.2.5
and the (strict) Greenberg Selmer modules SelFGr

(K,A†) and SelFGr
(K,AIw).

Lemma 6.1.6. Let γ be the profinite generator of Γac fixed in Definition 4.1.1. There
are Λ-modules isomorphisms



110 6. Anticyclotomic Iwasawa theory

(a) SelFGr
(K,TIw) ≅ lim←Ðm,s,t SelFGr

(K,Tm,s,t) = lim←Ðt SelFGr
(Kt,T

†), where the last
limit is taken with respect to corestriction maps in cohomology.

(b) SelFGr
(K,AIw) ≅ limÐ→t SelFGr

(K,AIw[γpt − 1]) = limÐ→t SelFGr
(Kt,A

†), where the
last limit is taken with respect to restriction maps in cohomology.

Proof. The proof goes through exactly as in [KL23, Lemma 2.8], applying limits,
Lemma 4.1.16 and taking track of the local conditions defining the appropriate Selmer
groups.

If M is either T†, TIw, A† or AIw and L/Q is a finite extension of fields, one has
also a family of extended Selmer groups H̃ i

f(L,M) defined by Nekovář [Nek06]
using similar local conditions to those defining SelFGr

, but with the local conditions
imposed to the level of cochain complexes rather than on cohomology. As noticed
in [KL23, (6), (7)] and [How07, (21)] (see also (6.3)), Assumption 5.4.7 implies that
there are isomorphisms

SelFGr
(Kt,A

†) ≅ H̃1
f (Kt,A

†) and SelFGr
(Kt,T

†) ≅ H̃1
f (Kt,T

†)

for every t ≥ 1 and, taking direct (resp. inverse) limits with respect to the canonical
restriction (resp. corestriction) maps,

SelFGr
(K,AIw) ≅ limÐ→

t

H̃1
f (Kt,A

†) and SelFGr
(K,TIw) ≅ lim←Ð

t

H̃1
f (Kt,T

†). (6.2)

Remark 6.1.7. The Selmer groups appearing in the equation (6.2) are sometimes
called Iwasawa Selmer modules (cfr. [How07, §3.3], [Büy14, §5] and [LV11,
§10.3]).

Proposition 6.1.8. The modules SelFGr
(K,T†) and SelFGr

(K,TIw) are R and RIw-
torsion-free respectively.

Proof. See [Büy16, Remark 4.5], [Fou13, Proposition 6.2, (ii)] or [CW22, Lemma
3.3]. If follows from the discussion of [Per00, §1.3.3].

Proposition 6.1.9. The modules SelFGr
(K,TIw) and SelFGr

(K,AIw)∨ have the
same RIw-rank.

Proof. See [CW22, Lemma 3.2].

6.1.4 The Iwasawa main conjecture

Recall that, thanks to Theorem 5.4.14, there is a universal Kolyvagin system in
κ̃ ∈KS(TIw,FGr,P) such that κ̃1 = κ∞ ∈ SelFGr

(K,TIw). We are now ready to state
our version of the anticyclotomic Iwasawa main conjecture for the representation T†

(see [How07, Conjecture 3.3.1], [LV11, Conjecture 10.8] and [Fou13, (1.1.2)]).

Conjecture 6.1.10. Assume that κ∞ ≠ 0. Then the modules SelFGr
(K,TIw) and

SelFGr
(K,AIw)∨ have RIw-rank 1 and

charRIw (SelFGr
(K,TIw)/(κ∞))

2 = charRIw (SelFGr
(K,AIw)∨tors)

Remark 6.1.11. A few comments about this conjecture:
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(i) A conjecture of this form for Hida families was first stated in [How07, Con-
jecture 3.3.1] as an extension of the Heegner point main conjecture for elliptic
curves formulated by Perrin-Riou in [Per87]. It is usually stated using Nekovář’s
extended Selmer groups, but we will see in the next chapter that our formula-
tion is equivalent to the classical one.

(ii) Howard’s conjecture was generalized to the quaternionic setting in [LV11, Con-
jecture 10.8] and [Fou13, (1.1.2)]. It has been proven by Castella and Wan in
[CW22, Theorem 5.5] with a slightly different set of hypotheses than ours.

(iii) The assumption that κ∞ ≠ 0 is a counterpart of [LV11, Conjecture 10.3]. Fou-
quet noticed after [Fou13, Theorem 6.3] that it should hold in general, thanks
to some results of Cornut and Vatsal. Castella and Wan, at the end of [CW22,
§4], claim that the class κ∞ is not zero thanks to a generalization of the argu-
ments in [CV07].

6.2 Kolyvagin systems and the Iwasawa main conjecture

The main goal of this section is to show that the existence of a nontrivial Kolyvagin
system yields a proof of one divisibility of Conjecture 6.1.10. The arguments are
quite standard and we mainly follow [Fou13, §5-6].

6.2.1 Specializations

In Subsection 3.2.4 we defined arithmetic specializations for finite ΛF -algebras. We
generalize now this concept with the following definition.

Definition. Let A be a complete local Noetherian ΛF -algebra.

(i) An OF -algebra morphism s from A to a complete local Noetherian domain S
with finite residue field of characteristic p is called an S-specialization of A.

(ii) If T is an A module, denote by Ts ∶= T ⊗s S the specialization of T associated
with the S-specialization s.

If s is an S-specialization of RIw, the Greenberg local conditions on TIw induce
local conditions on TIw

s (to be denoted in the same way) and a canonical map

s ∶KS(TIw,FGr,P ′) Ð→KS(TIw
s ,FGr,P ′)

induced by the natural map H1(Kv,T
Iw) ⊗s S → H1(Kv,T

Iw ⊗s S), as noticed in
[MR04, Remark 3.1.4] and [How07, Remark 1.2.4]. From now on we will denote TIw

s

with Ts.

Definition. Let s ∶ RIw → S be a specialization of R to a discrete valuation ring
S finite over OF . Define Vs, As, F±v (Ts), F ±v (Vs) and F±v (As) to be Ts ⊗S Frac(S),
Ts ⊗S (Frac(S)/S), F±v (TIw) ⊗s S, F±v (Ts) ⊗S Frac(S) and F±v (Ts) ⊗S (Frac(S)/S)
respectively.

Definition. A specialization Ts of TIw is said to be exceptional if there exists a
finite extension L of Qp such that H0(L,F −v (Ts)) ≠ 0.
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The natural maps
ι ∶ Ts → Vs and η ∶ Vs → As

induce maps ι ∶ H1(L,Ts) → H1(L,Vs) and η ∶ H1(L,Vs) → H1(L,As) for every
finite extension L of K.

Definition. ([Fou13, Definition 5.20]). Let L be a finite extension of K and s be a
non-exceptional specialization of RIw to a discrete valuation ring S finite over OF .
Define the Bloch–Kato Selmer structure FBK on Ts by setting local conditions
as

H1
FBK
(Lv, Ts) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ι−1(H1
ur(Lv, Vs)) if v ∣ N

ι−1(H1(Lv, F +v (Vs))) if v ∣ p
H1

f (Lv, Ts) if v ∤ Np.

Similarly, we define the Bloch–Kato Selmer structure FBK on As by setting local
conditions as

H1
FBK
(Lv,As) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

η(H1
ur(Lv, Vs)) if v ∣ N

η(H1(Lv, F +v (Vs))) if v ∣ p
H1

f (Lv,As) if v ∤ Np.

The Bloch–Kato Selmer module for the specialization Ts is then

SelFBK
(L,Ts) ∶= ker (H1(L,Ts) Ð→∏

v

H1(Lv, Ts)/H1
FBK
(Lv, Ts))

where v runs over all places of L. In the same way we can define the Bloch–Kato
Selmer module for As. In next subsection we see how to relate the Bloch–Kato Selmer
group with the Greenberg Selmer group. We remark here that there are inequalities

SelFGr
(L,Ts) ⊆ SelFBK

(L,Ts) and SelFGr
(L,As) ⊇ SelFBK

(L,As)

that descend directly from the definitions and [Rub00, Lemma 3.5]. Also, one can
define the S-module of universal Kolyvagin systems KS(Ts,FBK,P ′) with respect
to the Bloch–Kato local conditions following what was done in Chapter 4 using
Greenberg local conditions. The inclusion FGr ⊆ FBK in the cohomology of Ts yields
an injective map

KS(Ts,FGr,P ′) Ð→KS(Ts,FBK,P ′),

as noticed in [MR04, Remark 3.1.4].
Now we state the first fundamental step in the proof of the Iwasawa main conjec-

ture. For every S-module M we denote by ℓS(M) the lenght of M as an S-module

Theorem 6.2.1. Let s ∶ RIw → S be a non-exceptional specialization with values in a
discrete valuation ring S flat over Zp, and let κ ∈KS(Ts,FBK,P ′) with the property
that κ1 ≠ 0. Then SelFBK

(K,Ts) is free of rank 1 over S and there exists a torsion
module M finitely generated over S with

ℓS(M) ≤ ℓS(SelFBK
(K,Ts)/(κ1))

such that
SelFBK

(K,As) ≅ Frac(S)/S ⊕M ⊕M.
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Proof. The arguments in the proof of [Fou13, Corollary 5.21] carry over verbatim
to our setting. They consist in checking that the module Ts and the condition FBK

satisfy the conditions (H1)-(H5) of [How04a, §2.2] (or, equivalently, conditions (H0)-
(H5) of [How04b, §1.3]) in order to apply [How04a, Theorem 2.2.2] (or, equivalently,
[How04b, Theorem 1.6.1]).

We now apply this result to the Kolyvagin system κ̃ of Theorem 5.4.14.

Corollary 6.2.2. In the setting of Theorem 6.2.1, if the image κ̃∞,S of κ̃∞ under
the map induced by s is not zero then SelFBK

(K,Ts) is free of rank 1 over S and
there exists a torsion module M finitely generated over S with

ℓS(M) ≤ ℓS(SelFBK
(K,Ts)/(κ̃∞,S))

such that
SelFBK

(K,As) ≅ Frac(S)/S ⊕M ⊕M.

6.2.2 Relations between Bloch–Kato and Greenberg Selmer groups

In this subsection we restrict to consider specializations s ∶ RIw → S where S is a
discrete valuation ring flat over Zp and finite over Im(s). In concrete examples, S is
usually the integral closure of Im(s).

Lemma 6.2.3. Let G be a profinite group, T be an RIw[G]-module and call Ts the
specialization via s. Then the residual G-representation T s is equivalent to T up to
a finite base change.

Proof. With the obvious notations, there is an isomorphism

Ts/mSTs ≅ T /mRIwT ⊗FRIw
FS ,

where the residue field FS of S is a finite extension of FRIw by assumption.

Corollary 6.2.4. With the notation as above, if T isRIw-torsion-free and H0(G,T ) =
0 then H0(G,Ts) = 0.

Proof. Combine Lemma 6.2.3 with Proposition 4.1.10.

As a consequence of Assumptions 5.2.3 and 5.4.7 we obtain the following result.

Proposition 6.2.5. Let s ∶ RIw → S be a specialization where S is a discrete valua-
tion ring flat over Zp and finite over Im(s). Then

SelFBK
(K,Ts) = SelFGr

(K,Ts) and SelFBK
(K,As) = SelFGr

(K,As).

Proof. We check that the local conditions FGr and FBK coincide at every place v of
K. Let X denote Ts or As.

If v ∤ p, [Rub00, Lemma 3.5, (iii) and (iv)] together Proposition 5.2.4 imply that
H1
FGr
(Kv,X) =H1

FBK
(Kv,X).

Let now v ∣ p. There is a commutative diagram with exact rows

0 H1(Kv, F
+
v (Ts)) H1(Kv, Ts) H1(Kv, F

−
v (Ts)) 0

0 H1(Kv, F
+
v (Vs)) H1(Kv, Vs) H1(Kv, F

−
v (Vs)) 0.
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The module H1
FGr
(Kv, Ts) is the kernel of the third upper horizontal arrow, whereas

H1
FBK
(Kv, Ts) is the kernel of the map from H1(Kv, Ts) to H1(Kv, F

−
v (Vs)). In

order to show the desired equality, it is enough to prove that the right-most vertical
arrow is injective. Its kernel coincides with H0(Kv, F

−
v (As)) and this group is trivial

combining Assumption 5.4.7 together with Corollary 6.2.4, recalling that F−v (As) =
F−v (Ts) ⊗S Frac(S)/S.

Consider now the commutative diagram with exact rows

0 H1(Kv, F
+
v (Vs)) H1(Kv, Vs) H1(Kv, F

−
v (Vs)) 0

0 H1(Kv, F
+
v (As)) H1(Kv,As) H1(Kv, F

−
v (As)) 0.

The module H1
FGr
(Kv,As) is the image of the second bottom horizontal arrow,

whereas H1
FBK
(Kv,As) coincides with the image of H1(Kv, F

+
v (Vs)) in H1(Kv,As).

In order to show that they are equal, it is enough to prove that the left-most vertical
arrow is surjective. Its cokernel coincides with H2(Kv, F

+
v (Ts)) and this group is

trivial combining Corollary 6.2.4 with Assumption 5.4.7 (and local duality), exactly
as done at the beginning of the proof of Proposition 5.4.9.

Combining the exact sequence of [Fou13, (5.1.4)] with Assumption 5.4.7 and
Corollary 6.2.4, we have isomorphisms

SelFGr
(K,X) ≅ H̃1

f (K,X) (6.3)

where H̃1
f (K,X) is Nekovář’s extended Selmer group and X coincides with one of

TIw, T† or Ts.

6.2.3 Main result

The results of the previous subsections enable us to apply the machinery of [Fou13,
§6.3], and to obtain the following result.

Theorem 6.2.6. Assume that κ̃1 = κ∞ ≠ 0. Then the modules SelFGr
(K,TIw) and

SelFGr
(K,AIw)∨ have RIw-rank 1 and

charRIw (SelFGr
(K,AIw)∨tors) ⊇ charRIw (SelFGr

(K,TIw)/(κ∞))
2
.

Proof. We first recall that equation (6.2) yields an isomorphism

SelFGr
(K,AIw) ≅ H̃1

f (K,AIw)

where H̃1
f (K,AIw) = limÐ→t H̃

1
f (Kt,A

†) is Nekovář’s extended Selmer group (see [Nek06,
§0.11-0.13]). As noticed in [How07, Remark 3.3.3], the global duality of [Nek06, §0.13]
yields an isomorphism

SelFGr
(K,AIw)∨ = H̃2

f (K,TIw)

where, again, H̃2
f (K,TIw) is Nekovář’s extended Selmer group. Using also the iso-

morphism of (6.3), we can translate the statement of the theorem as

charRIw (H̃2
f (K,TIw)tors) ⊇ charRIw (H̃1

f (K,TIw)/(κ∞))
2
.
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Let s ∶ RIw → S be a specialization to a discrete valuation ring flat over Zp and finite
over Im(s). Combining Corollary 6.2.2 with Proposition 6.2.5, if the image κ∞,S of
κ∞ via the map induced by s is non-zero, there is an inequality of lengths

ℓS(H̃2
f (K,Ts)tors) ≤ 2ℓS(H̃1

f (K,Ts)/(κ∞,S)). (6.4)

Then, the arguments of [Fou13, §6.3] carry on verbatim, with the easier equation
(6.4) in place of [Fou13, (6.3.2)]. Our claim then follows from the same arguments
that occur in the proof of [Fou13, Theorem 6.3]. See also [CW22, Theorem 5.5].

Remark 6.2.7. As noticed in point (iii) of Remark 6.1.11, under our assumptions
the class κ∞ should always be nontrivial.





Appendix A

Some Galois cohomology

A.1 (Semi-)local Galois cohomology

The aim of this section is to study the commutativity properties of restriction and
corestriction in Galois cohomology, that are intensively used in Chapter 5. We will
mainly rely on [NSW13, §1.5].

For this section, let L/K be a Galois extension of number fields, let v be a prime
of K and fix a decomposition group Dv of v in GK . Let w1, . . . ,wn be the primes
of L above v, where w1 has fixed decomposition group Dw1 = Dv ∩GL in GL. For
any element σ ∈ Gal(L/K) fix a lifting σ̃ to GK . Let also σi ∈ Gal(F /K) such that
wi = w1 ○ σi and set Dwi ∶= σ̃−1i Dw1 σ̃i. Then, Dwi is a fixed decomposition group for
wi. Let Iwi be the inertia inside Dwi and fix a GK-module T .

Proposition A.1.1. (a) If v is split in L then Dw1 =Dv, Iw1 = Iv and there is a
commutative diagram

H1(L,T ) ⊕n
i=1H

1(Dwi , T ) ⊕n
i=1H

1(Iwi , T )Dwi/Iwi

H1(K,T ) H1(Dv, T ) H1(Iv, T )
Dv/Iv .

corL/K

⊕i reswi ⊕i res

resresv

∑i σ̃i ∑i σ̃i

(b) If v is totally ramified in L there is a commutative diagram

H1(L,T ) H1(Dw1 , T ) H1(Iw1 , T )Dw1/Iw1

H1(K,T ) H1(Dv, T ) H1(Iv, T )Dv/Iv .

corL/K

resw1

resv

corDw1 /Dv

res

corIw1 /Iv

res

(c) If v is inert in L then Iw1 = Iv and there is a commutative diagram

H1(L,T ) H1(Dw1 , T ) H1(Iw1 , T )Dw1/Iw1

H1(K,T ) H1(Dv, T ) H1(Iv, T )Dv/Iv .

corL/K

resw1

resv

corDw1 /Dv

res

TrDv/Dw1

res

Proof. Point (a) descends directly from [NSW13, Proposition 1.5.6] and [NSW13,
Proposition 1.5.4]. Point (b) is a consequence of [NSW13, Corollary 1.5.8]. Point (c)
again descends from [NSW13, Proposition 1.5.6].

117
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We don’t usually need Proposition A.1.1 in its full power, so we state here an
easier-to-remember corollary.

Corollary A.1.2. In the setting of this section, there are two morphisms ϕ and ψ
that make the following diagram

H1(L,T ) ⊕n
i=1H

1(Dwi , T ) ⊕n
i=1H

1(Iwi , T )Dwi/Iwi

H1(K,T ) H1(Dv, T ) H1(Iv, T )Dv/Iv

corL/K

⊕i reswi

resv

ϕ

res

ψ

res

commutative.

Proof. Just decompose the extension L/K into a chain of split, inert and totally
ramified extensions and apply Proposition A.1.1.

A.2 Tame ramification and cohomology

In this section we review the structure of the maximal tamely ramified extension
of a local field and investigate its role when computing the first cohomology group
of some relevant Galois representations. Let ℓ be a prime of Q and L be a finite
extension of Qℓ.

Definition. The maximal tamely ramified extension Lt of L is the union of
all finite tamely ramified extensions of L, i.e. the union of all finite extensions of L
whose ramification index is coprime with ℓ.

Lemma A.2.1. With the notation as above, we have that

(i) The profinite group Gal(Q̄ℓ/Lt) is a pro-ℓ-group.

(ii) Gal(Lt/Lur) ≅ ∏q≠ℓZq.

(iii) Gal(Lt/L) ≅ Gal(Lt/Lur) ⋊ Gal(Lur/L) ≅ ∏q≠ℓZq ⋊ Ẑ, where the action of
Gal(Lur/L) ≅ Ẑ on Gal(Lt/Lur) ≅ ∏q≠ℓZq, defined by the relation σ ⋅τ ∶= στσ−1
for any σ ∈ Gal(Lur/L) and τ ∈ Gal(Lt/Lur), is via the product of the q-adic
cyclotomic characters.

Proof. Point (i) is [Cla10, Theorem 2.64]. Point (ii) and (iii) descend from [Cla10,
Theorem 2.67].

Aiming to include the action of the semidirect product in the notation, we will
write

Gal(Lt/L) ≅∏
q≠ℓ

Zq(1) ⋊ Ẑ

in order to say that the action of Ẑ on ∏q≠ℓZq(1) is via the product of the q-adic
cyclotomic characters prime to ℓ.

Let ℓd be the cardinality of the residue field of L. The procyclic group Ẑ ≅
Gal(Lur/L) is topologically generated by FrL, and the q-adic cyclotomic character
computed at FrL equals ℓd, for any q ≠ ℓ. This implies that, if τ is a topological
generator for Gal(Lt/Lur), the action of Gal(Lur/L) on Gal(Lt/Lur) is characterized
by the relation

FrL τ Fr
−1
L = τ ℓ

d

.
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Lemma A.2.2. Let p be a prime different from ℓ and let T be an unramified Zp[GL]-
module with the property that ℓd is not an eigenvalue for the action of FrL on T . Then
the inflation map

inf ∶H1(Lur/L,T ) H1(L,T )

is an isomorphism.

Proof. Since T is unramified, we have that

H1(Lt, T ) = Hom(Gal(L̄/Lt), T ) = {0},

the last equality coming from the fact that Gal(L̄/Lt) is a pro-ℓ-group by Lemma
A.2.1 and T is a Zp-module. This implies that

inf ∶H1(Lt/L,T ) Ð→H1(L,T ).

is an isomorphism. The inflation-restriction sequence yields the exact sequence

{0} H1(Lur/L,T ) H1(Lt/L,T ) H1(Lt/Lur, Ts)Gal(Lur/L)inf res .

Again, the unramifiedness of T yields

H1(Lt/Lur, T ) = Hom(Gal(Lt/Lur), T ).

Looking just at the group structure, we have that

Hom(Gal(Lt/Lur), T ) ≅ Hom(∏
q≠ℓ

Zq, T ) ≅ Hom(Zp, T ) ≅ T

as groups, where the isomorphism is induced by the evaluation at a fixed generator
τ of Gal(Lt/Lur). Let now σ be an element of Gal(Lur/L), σ̃ be a lifting of σ to
Gal(Lt/L) and ξ ∈ Hom(Gal(Lt/Lur), T ). Then, by Lemma A.2.1 we have that

(σ ⋅ ξ)(τ) = σ̃ξ(σ̃−1τ σ̃) = σ̃ξ(τ∏q≠ℓ εq(σ−1)) = ε−1p (σ)σ̃ξ(τ)

where εq is the q-adic cyclotomic character. This implies that we have an isomor-
phism

Hom(Gal(Lt/Lur), T ) ≅ T (−1)

as Gal(Lur/L)-modules, where T (−1) is T with the Galois action twisted by the
inverse of the p-adic cyclotomic character. We must show that T (−1)Gal(Lur/L) = {0}.
Notice that

T (−1)Gal(Lur/L) = {t ∈ T ∶ (FrL −ℓd)(t) = 0},

where ℓd is the cardinality of the residue field of L. Since ℓd is not an eigenvalue for
the action of FrL on T , we conclude that T (−1)Gal(Lur/L) = {0}.

A.3 Kolyvagin’s corestriction and Nekovář’s work

In this section we generalize the ideas of [Nek92, §7-9] to our context. These results
are the key for the proof of Theorem 5.4.14. We collect them here because the work
is quite long and general.
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A.3.1 Kolyvagin’s corestriction

Let M ∈ Z>0, G be a topological group, H be a closed normal subgroup of G such
that G/H is cyclic of order M . Fix a generator σ of G/H and let Ā be a G-module
killed by M . Let [x] ∈H1(H, Ā) be a cohomology class with corHG [x] = 0 ∈H1(G, Ā).

Call D ∶= ∑M−1i=1 iσi. Choosing a cocycle x representing [x], we find that corHG [x]
can be represented by the cocycle

corx ∶ GÐ→ Ā

hz→
M−1
∑
i=0

σ̃ix(σ̃−ihσ̃i) for h ∈H

σ̃ z→ x(σ̃M)

for a fixed lifting σ̃ of σ to G. Since corHG [x] = 0, on the cocycle level we also have
that

corx ∶ GÐ→ Ā

g z→ (g − 1)ā
(A.1)

for some ā ∈ Ā. Notice that the element ā is determined modulo ĀG, therefore when
ĀG = 0 we have that ā is uniquely determined. Define the cocycle

Dx ∶ H Ð→ Ā

hz→
M−1
∑
i=1

iσ̃ix(σ̃−ihσ̃i).

Then Nekovář proved in [Nek92, §7] that the function

fx ∶ GÐ→ Ā

hz→ (Dx)(h) for h ∈H
σ̃ z→ −σ̃ā

(A.2)

defines a cocycle which satisfies resGH fx = Dx. Moreover, when ĀG = {0}, the class
[fx] ∈H1(G, Ā) depends only on [x] and satisfies

resGH[fx] =D[x].

A.3.2 Localization of Kolyvagin’s corestriction

We set up some more notation, following [Nek92, §9].

(i) Let G̃ be a profinite group, ℓ and p be two distinct odd prime numbers. Let
H ⊴ G ⊴ G̃ be a chain of normal closed subgroups with G̃/H = ⟨σ⟩⋊⟨c⟩ dihedral,
where ⟨σ⟩ is cyclic of orderM , ⟨c⟩ is cyclic of order 2 acting on ⟨σ⟩ by cσc = σ−1.
Moreover, G/H = ⟨σ⟩ and G̃/G = ⟨c⟩.

(ii) Let G̃0 be a closed subgroup of G̃ and call G0 ∶= G̃0 ∩ G and H0 ∶= G0 ∩H.
Suppose that G0/H0 is cyclic of order M , generated by an element σ0 and that
G̃0/H0 = ⟨σ0⟩ ⋊ ⟨c0⟩ is dihedral with c0 element of order 2.
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(iii) The group G̃0 is equipped with a surjective homomorphism

π ∶ G̃0 Ð→∏
q≠ℓ

Zq(1) ⋊ Ẑ,

where ∏q≠ℓZq(1) and Ẑ have fixed generators τ and ϕ respectively, satisfying
the relation ϕτϕ−1 = τd for some integer d prime to p. One also requires π to
induce surjections

G0 Ð→∏
q≠ℓ

Zq(1) ⋊ 2Ẑ, H0 Ð→M∏
q≠ℓ

Zq(1) ⋊ 2Ẑ,

and we also want the generator σ0 of G0/H0 to correspond to τ modulo M
(i.e., τ is a lift of σ0 to G0).

(iv) Let A be a torsion-free module of finite rank over a finite extension S of Zp
with a continous action of G̃.

(v) G̃0 acts on A through its quotient Ẑ, ker(π) has order prime to p as a profinite
group and every arrow in the diagram

H1(G0,A) H1(∏q≠ℓZq(1) ⋊ 2Ẑ,A)

H1(2Ẑ,A)

H1(H0,A) H1(M∏q≠ℓZq(1) ⋊ 2Ẑ,A)

inf−1

inf−1

inf−1

inf−1

is an isomorphism.

(vi) ϕ2 acts as the identity on A/psA for some s ≥ 1 such that ps ∣M .

(vii) Let y ∈H1(H,A) and x ∈H1(G,A) with corHG (y) =M1x with M1 ∈ S divisible
by ps.

(viii) (A/psA)G = 0.

We now combine all these assumptions in order to find a relation between x and
y that has a particular importance for us. First, notice that assumption (v) yields

H1(H0,A) ≅H1(G0,A) ≅H1(2Ẑ,A) ≅ A/(ϕ2 − 1)A, (A.3)

where the last isomorphism is given by evaluating cocycles at ϕ2 (see [Rub00, Lemma
B.2.8]). Equation (A.3) is true also with A replaced by any of its finite quotients.

Let now F ∈ Z1(∏q≠ℓZq(1)⋊ 2Ẑ,A) be a 1-cocycle. Assumption (v) implies that
F is inflated by an 1-cocycle F̃ ∈ Z1(2Ẑ,A), up to summing a coboundary. Hence

F (τuϕ2v) = F̃ (ϕ2v) + (τuϕ2v − 1)b = (1 + ϕ2 + ⋅ ⋅ ⋅ + ϕ2(v−1))F̃ (ϕ2) + (ϕ2v − 1)b

for any u, v ∈ Z≥0 and some b ∈ A, where we used the fact that τ acts trivially on A (see
assumption (v)). Calling aF ∶= F̃ (ϕ2) ∈ A, the cohomology class of F corresponds to
[aF ] ∈ A/(ϕ2 − 1)A via the last isomorphism in equation (A.3). A similar argument
can be pursued starting from a cocycle F ∈ Z1(M∏q≠l Zq(1) ⋊ 2Ẑ,A).
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Consider now the following commutative diagram with exact rows

H1(G,A/psA) H1(H,A/psA)

0 H1(G0/H0,A/psA) H1(G0,A/psA) H1(H0,A/psA)

res

res

resinf

res

where (A/psA)H0 = A/psA, since by point (v) and (vi) the action of H0 is trivial on
A/psA. Call x̄ ∈ H1(G,A/psA) and ȳ ∈ H1(H,A/psA) the elements corresponding
respectively to x and y via the natural projection map. Thanks to assumptions
(vii) and (viii) the cocycle fȳ ∈ Z1(G,A/psA) defined in equation (A.2) that has the
following property

resGH([fȳ]) =Dȳ ∈H1(H,A/psA),

where D = ∑M−1i=1 iσi. By assumptions (iii), (v) and (vi), one can prove (exactly as in
the first step of the proof of Proposition 5.4.3) that the image of the operator D in
H1(H,A/psA) goes to zero when restricted to H1(H0,A/psA)1, hence resGH0

([fȳ]) is
trivial. Following the diagram above, we find an element y0 ∈ H1(G0/H0,A/psA) =
Hom(G0/H0,A/psA) such that inf

G0/H0

G0
y0 = resGG0

[fȳ].
We now have to do some computations at the level of cocycles, to be denoted

with the same letters as their cohomology class. According to assumption (vii) there
is an element a ∈ A such that

(corHG (y))(g) −M1x(g) = (g − 1)a

for every g ∈ G. When quotienting A by psA, the explicit description of the corestric-
tion from the previous section yields that the element a is congruent modulo psA to
the one defined in equation (A.1), and its class modulo psA is uniquely determined.
Then, the definition of fȳ (see equation (A.2)) implies that, for any lifting σ̃0 of σ0
to G0 whose projection to 2Ẑ is trivial,

y0(σ0) = (resGG0
fȳ)(σ̃0) = fȳ(σ̃0) = −σ̃0ā = −ā (A.4)

since σ̃0 acts trivially on A by assumption (v), where ā is the reduction of a modulo
psA. Since τ is a lifting of σ0 to G0, we can choose σ̃0 = τ .

Restricting to g = g0 ∈H0, we get the relation

M−1
∑
i=0

y(τ−ig0τ i) −M1x(g0) = (g0 − 1)a.

The isomorphisms in equation (A.3) (coming from assumption (v)) allows us to
consider resGG0

x and resHH0
y coming (via inflation) from cocycles on the abelian

quotient 2Ẑ of G0 and H0, respectively. This implies that the previous relation
becomes

My(g0) −M1x(g0) = (g0 − 1)a.
1By (A.3) it is enough to prove that (Dξ)(ϕ2

) = 0 for every cocycle ξ ∈ Z1
(H0,A/p

sA). By (iii)
and (v), τ is a lift of σ0 and it acts trivially on A/psA. By (A.3), the cocycle ξ is inflated by an
element of Z1

(2Ẑ,A/psA) and therefore τξ = ξ. This implies that (Dξ)(ϕ2
) =

M(M−1)
2

ξ(ϕ2
), that

is zero in A/psA.
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Moreover, the computations above yield, for π(g0) = τuϕ2v, the following

x(g0) = (1 + ϕ2 + ⋅ ⋅ ⋅ + ϕ2(v−1))ax + (ϕ2v − 1)bx
y(g0) = (1 + ϕ2 + ⋅ ⋅ ⋅ + ϕ2(v−1))ay + (ϕ2v − 1)by

for some ax, ay, bx, by ∈ A, where ax and ay correspond, modulo (ϕ2−1)A, to resGG0
(x)

and resHH0
(y) respectively via the last isomorphism of equation (A.3). When v = 1,

putting the last three equations together we obtain

May −M1ax = (ϕ2 − 1)(a −Mby +M1bx) (A.5)

on A. We impose the last two assumptions

(ix) ay ≡ εϕ(ax) (mod (ϕ2 − 1)A) for some ε ∈ {±1};

(x) ϕ2 − δM1ϕ + d = 0 on A for some δ ∈ {±1}.

Using Assumption (ix), relation (A.5) becomes

(εMϕ −M1)ax = (ϕ2 − 1)(a − ps(something))

on A. Applying assumption (x), we obtain the key formula

(εMϕ −M1)ax = (δM1ϕ − (d + 1))(a − ps(something)). (A.6)
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