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Abstract 

Background: In recent years, many studies focused on the use of robotic devices for both the assessment and the 
neuro-motor reeducation of upper limb in subjects after stroke, spinal cord injuries or affected by neurological dis-
orders. Contrarily, it is still hard to find examples of robot-aided assessment and rehabilitation after traumatic injuries 
in the orthopedic field. However, those benefits related to the use of robotic devices are expected also in orthopedic 
functional reeducation.

Methods: After a wrist injury occurred at their workplace, wrist functionality of twenty-three subjects was evaluated 
through a robot-based assessment and clinical measures (Patient Rated Wrist Evaluation, Jebsen-Taylor and Jamar 
Test), before and after a 3-week long rehabilitative treatment. Subjects were randomized in two groups: while the 
control group (n = 13) underwent a traditional rehabilitative protocol, the experimental group (n = 10) was treated 
replacing traditional exercises with robot-aided ones.

Results: Functionality, assessed through the function subscale of PRWE scale, improved in both groups (experimen-
tal p = 0.016; control p < 0.001) and was comparable between groups, both pre (U = 45.5, p = 0.355) and post (U = 47, 
p = 0.597) treatment. Additionally, even though groups’ performance during the robotic assessment was comparable 
before the treatment (U = 36, p = 0.077), after rehabilitation the experimental group presented better results than the 
control one (U = 26, p = 0.015).

Conclusions: This work can be considered a starting point for introducing the use of robotic devices in the orthope-
dic field. The robot-aided rehabilitative treatment was effective and comparable to the traditional one. Preserving effi-
cacy and safety conditions, a systematic use of these devices could lead to decrease human therapists’ effort, increase 
repeatability and accuracy of assessments, and promote subject’s engagement and voluntary participation. Trial 
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Background
Wrist traumatic injuries usually lead to hand motor 
control deficits and loss of functionality, as direct con-
sequences of both the lesion itself and the following 

immobilization period. Actually, occurrence of tissue 
rigidity, lack of stretch, muscle strength reduction, pain 
and edema could bring to a limited Range Of Motion 
(ROM) along some directions of movement [1]. Moreo-
ver, long periods of immobilization could take to pro-
prioceptive deficits, preventing post-traumatic subjects 
to have a proper control of movements and worsening 
their performance during fine manipulation tasks [2–4]. 
Wrist injuries could differ in terms of severity and site: 
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lesions may involve flexor or extensor tendons, com-
plexes made of fibrocartilage, ligaments, bones or more 
than one of these tissues [1]. Each tissue presents a differ-
ent vascularization and consequently a different healing 
time [5], while the site of the lesion has a direct influ-
ence on the resulting functional impairment, such as the 
movement direction more compromised [6]. For these 
reasons and because of age differences, both orthopedic 
treatments and following rehabilitative approaches could 
differ between subjects [7–10]. In terms of orthopedic 
treatments, we can identify conservative and surgery 
interventions: while the former implies the application of 
a cast or a splint, the latter allows to shorter periods of 
immobilization, decreasing all the related problems, such 
as rigidity, loss of strength and altered proprioception 
[11]. Generally, the choice of a surgical or non-surgical 
approach seems to have an influence on the grip force, 
reduced for non-surgical cases, but it has been demon-
strated the absence of significant differences in terms of 
motor and sensory impairments [3]. Removed the cast 
or splint, rehabilitation programs should begin as soon 
as possible. Rehabilitative interventions have the goal 
of restoring functional abilities and subject’s self-suffi-
ciency: therapists tailor these protocols to meet the need 
presented by individual patients, in terms of duration, 
intensity and exercises. A large variety of exercises is con-
ventionally used in clinics: active and passive joint mobi-
lizations, continuous motion and strengthening exercises 
supervised and assisted by physical therapists, supportive 
splints, physical methods of pain management, but also 
occupational therapy programs and self-administered 
exercises [7–10]. However, some standardized protocols 
of ordinary physical interventions are usually applied 
[10]: treated the presence of pain and edema, initially 
only active exercises to stretch soft tissues and improve 
the range of motion are allowed; passive mobilizations, 
strengthening and proprioceptive exercises are gradu-
ally introduced in the following weeks [7, 8]. Particularly, 
both active and passive exercises for increasing the ROM 
have a relevant level of evidence supporting their usage 
[12].

Nowadays, physical therapists work with traditional 
devices for therapeutic exercise, common in every reha-
bilitative center, or employ their own strength for manual 
mobilizations. In contrast to what has been happening in 
the neuro-rehabilitative field [13–15], in the orthopedic 
one examples of robot-aided assessment and rehabilita-
tion of wrist injuries are hard to find [16, 17]. However, 
analogously to what has been observed in the neuro-
motor reeducation of the upper limb in subjects after 
stroke or spinal cord injuries [18–21], advantages are 
expected from the use of these devices for the functional 
reeducation after wrist traumatic injuries. Robot-assisted 

therapy meets the need of orthopedic patients for a per-
sonalized protocol and a maximized training effect, 
allowing levels of assistance or resistance tailored on 
the real-time performance. Actually, high-resolution 
recording of spatial and temporal data allows to com-
pute novel performance indicators [6, 22, 23] and docu-
ment constantly progresses related to therapy, assessed 
under repeatable and safe conditions. For these reasons, 
the use of a robotic system with post-traumatic subjects 
could decrease human therapists’ effort and increase the 
efficiency in terms of both treatment duration and final 
reached functionality. Finally, the possibility to couple 
therapy with a virtual reality environment could be useful 
to increase patient’s participation, engagement and moti-
vation, demonstrated to be related to the treatment suc-
cess or failure [17, 24–26].

For all the above-mentioned reasons, this randomized 
clinical trial aimed to address three main questions about 
the use of a robotic device for the rehabilitative train-
ing of subjects presenting wrist injuries: (1) whether a 
robot-based rehabilitative approach is effective on wrist 
functionality; (2) whether the effects of robot-based 
rehabilitation are different from those achieved through 
a conventional therapy; (3) which is the acceptability of 
this novel approach perceived by patients. In the present 
work, we introduce the structure of the clinical trial and 
the results obtained from robotic evaluations, clinical 
measures and asked approval rating.

Methods
Experimental setup
The study was carried out at the INAIL Motor Rehabili-
tation Center (Volterra, Italy) and involved the employ-
ment of the WRISTBOT, a robotic device developed at 
the Istituto Italiano di Tecnologia (Genoa, Italy) [27, 28]. 
This robot was designed for and is currently employed 
in motor control and rehabilitation studies of the human 
wrist [23, 29–31]. The WRISTBOT is a fully backdriv-
able manipulandum that allows for movements along its 
3 Degrees of Freedom (DoFs) in a human-like Range Of 
Motion (ROM) of the wrist: ± 62° flexion/extension (FE), 
−  40°/ + 45° in radial/ulnar deviation (RUD), and ± 60° 
pronation/supination (PS). In addition, the robot permits 
motions along planes that involve combined multi-DoFs 
movements. Mechanically, the robot was developed to 
have low values of inertia, emulating the fluency of natu-
ral movements. Each DOF is measured by high resolu-
tion incremental encoders and actuated by one brushless 
motor or two in case of the RUD planes, providing both 
gravity compensation and continuous torque values nec-
essary to manipulate the human wrist joints. The torque 
ranges at the different wrist joints are 1.53 Nm on FE, 
1.63 Nm on RUD and 2.77 Nm on PS. Depending on the 
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torques exerted, the device can be used in either active 
or assistive/passive modality. While the active modal-
ity requires only subject’s active muscle work, the assis-
tive/passive one was implemented using an impedance 
control scheme, based on the real-time relative position 
between the target and the end-effector, with a 1  kHz 
sampling frequency. The system is integrated with a Vir-
tual Reality environment (VR), useful to provide a visual 
feedback to the user while he/she is requested to com-
plete the tasks.

Subjects and experimental protocol
The design of this study was an interventional, parallel, 
and randomized clinical trial on a consecutive conveni-
ence sample of 27 subjects. Using a computer, a thera-
pist randomly assigned subjects to each group, whose 
main characteristics are reported in Table  1. Twenty-
three subjects completed the entire protocol, because 
of three dropouts in the experimental group (n = 10) 
and one among control subjects (n = 13). The dropouts 
were due to the impossibility to have a constant routine 
of at least 4 training sessions performed each week. In 
particular, some inclusion criteria have to be fulfilled 
to participate the study: adults of both sexes, aged 
between 18 and 65  years, presenting functional and 
spatial limitations of the wrist joint, following an injury 
occurred at their workplace. Participants’ injuries 
included scapholunate ligament injuries, distal radius/ 
ulnar fractures, carpal bones fractures or dislocations, 
triangular fibrocartilage complex (TFCC) injuries. In 
details, subjects had to be in the post-immobilization 
phase and the temporal distance from the acute event 
did not have to exceed 6  months. Exclusion criteria 
were non-compliance with study requirements, preg-
nancy or breast feeding, prior history of malignancy, 
contraindications to wrist passive movements, acute 
inflammatory arthritis of the wrist, open skin at the 

level of the patient-device interface. The research was 
performed in accordance with the Declaration of Hel-
sinki and approved by the local ethics committee (pro-
tocol number 76, code CRMINAIL03). An informed 
consent was signed to participate to the study.

During robot-aided sessions, subjects sat on a chair in 
front of a screen, holding the handle of the robot, with 
their forearm strapped to the robot support to assure a 
correct alignment between the axes of the mechanical 
structure and the wrist’s rotational ones (Fig. 1).

The protocol included both assessment and rehabili-
tative sessions (Fig. 2). All subjects performed the same 
sessions of assessment, which included two evaluations 
through the robotic system and clinical measures at 
the beginning  (Tb) and at the end  (Te) of the rehabilita-
tive training, and a follow up through phone call, three 
months after the end of the treatment  (Tf).

Three clinical measures were assessed at  Tb and  Te as 
primary outcomes:

1. Jamar Test [32]: using a hand dynamometer, subjects 
performed three trials to evaluate the mean static 
palmar force exerted in kg.

2. Jebsen Taylor Hand Function Test (JTHFT) [33, 34]: 
consisting of six items, its aim was to evaluate dexter-
ity in terms of fine motor skills, weighted functional 
tasks and non-weighted functional tasks. Each item 
is scored according to the time taken to complete the 
task.

3. Patient Rated Wrist/Hand Evaluation (PRWE) [35–
37]: a questionnaire composed of a pain (PRWE-P) 
and a function (PRWE-F) subscale. Each subsec-
tion has a maximum score of 50 and a minimum of 
0, where less score points out a better performance. 
PRWE was the only assessment involved also in the 
follow-up call  (Tf).

Table 1 Subjects’ characteristics and distribution in the experimental and control group

Experimental (n = 10) Control (n = 13)

Sex (male/female) 5/5 9/4

Age (mean ± std) 48.7 ± 11.8 years 50.9 ± 9.1 years

Right-handed 9 11

Dominant side injured 6 8

Lesion:
Fractures/dislocations

5 8

Ligament injuries 3 5

Both 1 –

Others (TFCC lesion) 1 –

Orthopedic treatment (surgery intervention/conservative treatment) 8/2 10/3

Temporal distance between the acute event and the 1st evaluation (days, mean ± SD) 98.5 ± 44.0 101.60 ± 43.3
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On the same days  (Tb and  Te), subjects performed also 
the robot-aided evaluation. Each robotic assessment 
lasted around 45  min and followed a 15-min session to 
familiarize with the device, assuring all subjects to be 
similarly acquainted with the device. Rehabilitative train-
ing was not performed during assessment days.

Robot-aided evaluative session included five exercises, 
useful to assess robotic primary outcomes as ROM, 
exerted forces, dexterity, and wrist position sense acuity:

1. Passive ROM Starting from the neutral position (0° 
along each DoF), the device moved the wrist of the 
subject along different directions until subject’s maxi-
mum tolerance, notified by himself/herself pushing 
a button with the not injured hand. Subjects let the 
robot moving their wrist passively, without opposing 
or facilitating the motion. Target directions were 8 
equally distributed in the FE/RUD space [radial devi-
ation (RD), ulnar deviation (UD), flexion F, exten-
sion (E), ulnar flexion (UF), ulnar extension (UE), 
radial flexion (RF) and radial extension (RE)], and 
2 along PS [pronation (P), supination (S)]. Passive 
ROM assessment was necessary to choose appropri-
ate target positions and distances in some of the fol-
lowing exercises (Target Tracking and Joint Position 
Matching), suitable for the severity of the injury of 
the single subject and his/her level of healing. Out-
come measures consisted in the maximum ROM in 
degrees achieved along each direction.

2. Active ROM From the initial neutral position, sub-
jects moved actively the device as far as they could, 
along the same directions of the previous exercise. 
Any assistive force was applied, but the weight of the 
device was compensated during active motions. The 
outcome measure was the maximum active ROM in 
degrees achieved along each direction.

3. Isometric Force While the device kept subjects on the 
wrist neutral position, they were requested to per-
form a maximal contraction toward different direc-
tions. While subjects pushed towards each target 
direction, the device resisted to the imposed force, 
such that no motion was performed. The outcome 
measure was maximal peak force in Newton meas-

Fig. 1 The experimental setup. Subjects’ placement and virtual reality 
during an illustrative example of a tracking task

Fig. 2 The experimental protocol
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ured along each direction (same directions as in 
ROM assessment).

4. Target Tracking Subjects had to follow a target mov-
ing on a first order Lissajous trajectory, showed on 
the screen two-dimensional space. Subjects per-
formed two laps, actively moving in two different 
directions of rotation (counter and clockwise) across 
the space described by combinations of FE and RUD 
motions. The size of the figure was determined by the 
75% of the smallest assessed ROM among UD, RD, 
F and E directions. The resulting outcome measure 
was the mean figural error in degrees, i.e. the aver-
age angular distance between target and end-effector 
trajectory in each sampled point [38].

5. Joint Position Matching While the subject was blind-
folded, the device moves his/her wrist in a defined 
direction, until the 75% of the subject’s ROM along 
that direction. After 3  s, the wrist was passively 
brought back to the neutral position. Then, main-
taining the blindfolded condition, the subject was 
asked to reproduce the joint configuration previously 
assumed passively. Target directions corresponded to 
the same directions along which the ROM has been 
assessed. Performance was measured in terms of 
matching error, i.e., the Euclidean distance between 
target and matched points. Matching error was 
measured in degrees, since each-DoF rotational 
measurements were considered as single coordinates 
to compute distances [39].

In order to avoid inflammatory issues, each exercise 
was repeated once during each evaluation.

Finally, subjects were asked to indicate their approval 
rating through a Numerical Rating Scale (NRS) [40, 41]: 
subjects’ level of satisfaction about treatment was asked 
as secondary outcome at the end of the rehabilitative 
treatment  (Te).

Concerning the rehabilitative training, the proto-
col included a three-week long rehabilitation, during 
which subjects performed 4/5 sessions per week, since 
the first and the last day were exclusively dedicated to 
the assessment. Each session lasted around 90  min 
and its structure was individually chosen by the medi-
cal specialist, according to the severity of the injury 
of each single subject. The control group was treated 
with conventional rehabilitative treatments, supervised 
and assisted by a therapist, using traditional tools and 
devices necessary for therapeutic exercises.

The experimental group underwent a comparable 
rehabilitative treatment, decided and supervised by the 
medical specialist, except for the replacement of some 
traditional manual exercises with robot-based ones. In 

details, replaced training exercises aimed to improve 
the ROM, muscle strength and dexterity (Table 2).

Before each robotic training session, the passive ROM 
of participants was assessed through the dedicated exer-
cise, because of safety reasons and in order to tailor tar-
get positions in the immediately following rehabilitative 
session. To avoid a learning effect related to a more pro-
longed use of the device in the experimental group, ther-
apeutic robot-aided exercises were designed with the aim 
to be deeply different from those used in the sessions of 
assessment.

Data processing
Given each-DoF encoder recordings during robotic 
assessments, data of joint rotations were re-sampled 
at a uniform 100 Hz sample rate by linear interpolation 
and filtered with a sixth order Savitzky-Golay low-pass 
filter (8  Hz cut-off frequency). While these represented 
performed angular displacements, the amount of cur-
rent delivered by motors was used to estimate the forces 
exerted to assist or resist to subjects’ motion.

Computed the above-mentioned outcome measures for 
each exercise (see “Subjects and experimental protocol”), 
we obtained and statistically tested single-subject per-
formance along each direction involved in the five exer-
cises included in the assessment. Data smaller than 1.5 of 
the interquartile range (IQR) from the first quartiles or 
bigger than 1.5 IQR from the third one were considered 
outliers.

Additionally, we chose to inspect the whole perfor-
mance of single exercises. The issue we had to face here 
was that, even in healthy populations, motor or percep-
tive performance along different directions is not compa-
rable. For these reasons, we normalized single-direction 
performance of each subject respect to our sample per-
formance along that direction. In details, for each subject 
and exercise, each single-direction outcome measure x 
was normalized as shown in the following equation:

where xbest and xworst represent respectively the best and 
worst performance found along that specific direction of 
the considered exercise, among all the subjects and eval-
uations. In particularly, while in case of ROM or force 
exerted a better performance is reflected in higher output 
values, in all the other exercises higher outcome measures 
represented worse performances, since in those cases our 
metric was an error. Since our sample presented a wide 
range of injuries and different functional issues, some 
subjects showed values comparable to not-injured sub-
jects [22, 39], already at the first evaluation. Therefore, 

(1)xnorm =

xbest − x

xbest − xworst
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this normalization scaled our measures respect to a range 
from a not injured to an injured wrist performance, along 
each specific direction of each exercise. Computed values 
resulted to be in a [0, 1] range, where lower values repre-
sented a better performance.

Next, for each exercise, we computed the median 
value within normalized single-directions, getting a 
single outcome measure in the [0, 1] range for each 
exercise ( outcomeexercise ), whose meaning was how far 
from a healthy-like wrist functionality goal the subject 
performed.

Finally, given one outcome indicator for each out 
of the five exercises in each session of assessment 
( outcomeexercise ), we compute an equally-weighted linear 
combination of them (Eq. 2):

Briefly, for each subject, this score (Robotic Assessment 
Index) reflected the global performance during single ses-
sions of robotic assessment, with lower values suggesting 
a better performance.

Statistical analysis
Statistical analysis involved single-direction measures, 
single-exercise outcomes, the Robotic Assessment Index, 
clinical measures and NRS results. Normality of data was 
inspected through Shapiro–Wilk Tests: these revealed 
presences of non-normally distributed data, which led to 
choose non-parametric tests for the statistical analysis. 
Mann–Whitney U tests have been performed to statisti-
cally analyze between-group performance at each session 
of assessment  (Tb,  Te and  Tf). Dependent non–para-
metric Wilcoxon Matched Pairs tests have been used to 

(2)

Robotic Assessment Index =

5∑

exercise=1

outcomeexercise

compare outcome metrics at  Tb with those at  Te, within 
each group (experimental/ control). Conversely, since 
PRWE was the only metric assessed three times  (Tb,  Te 
and  Tf), PRWE of each group was statistically analyzed 
through Friedman tests. Whether a main effect of meas-
urement time was found, post-hoc pairwise comparisons 
were conducted through Durbin-Conover tests. Multiple 
comparisons were adjusted with a Bonferroni correction. 
Differences were considered significant when p < 0.050. 
Jamovi Statistical Data Analysis tool (JSDA, version 
1.2.27) was used to conduct statistical analysis.

Results
Clinical measures
Figure  3 show what has been found from clinical tests 
conducted by therapists, on the same days during which 
the robotic assessments were performed. The Jamar Test, 
assessing the grip force, showed values at  Te greater than 
 Tb: even though groups did not present significant dif-
ferences both pre (U = 57, p = 0.642) and post rehabilita-
tion (U = 45, p = 0.222), the grip force increase from  Tb 
to  Te was significant in the control group (experimental: 
W = 6, p = 0.058; control: W = 12, p = 0.021). Conversely, 
in the Jebsen-Taylor test, only the experimental group 
presented a significant improvement (experimental: 
W = 52, p = 0.010; control: W = 43, p = 0.126), despite 
initial and final scores comparable between groups  (Tb: 
U = 58.5, p = 0.710;  Te: U = 42, p = 0.387). Friedman tests 
on PRWE revealed that rehabilitation had effects mainly 
on the function subscale: pain subscale results presented 
neither significant difference between groups at all eval-
uations  (Tb: U = 49.5, p = 0.774;  Te: U = 46, p = 0.594; 
 Tf: U = 26, p = 0.372), nor single-group improvements, 
represented by absence of significantly different scores 
among evaluations (experimental: χ2 = 2.82, p = 0.244; 

Fig. 3 Median values and IQR of clinical tests scores. Panels presented results for Jamar Test (A), Jebsen-Taylor test (B), PRWE subscale pain (C) and 
PRWE subscale function (D). Grey and black lines stay for control and experimental group, respectively. Significant results in Wilcoxon Matched Pairs 
tests (p < 0.05) are identified by a “*”, black or grey depending on the tested group
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control: χ2 = 2.17, p = 0.338). On the other hand, both 
rehabilitative treatments had a significant effect on the 
function subscale (experimental: χ2 = 2.84, p = 0.016; 
control: χ2 = 16.8, p < 0.001). Pairwise comparison 
showed that, while the control group kept on improving 
also after 3 months  (Tb vs  Te: D–C = 5.49, p < 0.001;  Tb vs 
 Tf: D–C = 7.82, p < 0.001;  Te vs  Tf: D–C = 2.32, p = 0.012), 
the experimental group did not reveal any significant 
change from the end of the treatment to the follow-up 
call  (Tb vs  Te: D–C = 2.65, p = 0.036;  Tb vs  Tf: D-C = 4.08, 
p = 0.088;  Te vs  Tf: D–C = 1.43, p = 1.000). Nevertheless, 

independent Mann–Whitney U tests revealed that group 
scores were anyhow comparable at each evaluation  (Tb: 
U = 45.5, p = 0.355;  Te: U = 47, p = 0.597;  Tf: U = 37, 
p = 0.703).

Robotic Assessment Index
Figure 4 shows the scores of each group during single ses-
sions of robotic assessment, computed considering the 
performance of all the five exercises. Wilcoxon Matched 
Pairs tests showed that both robotic and traditional 
training led to an improved performance in the robot-
aided assessment after rehabilitation (experimental: 
W = 54, p = 0.004; control: W = 87, p = 0.002). However, 
although groups were comparable before the rehabilita-
tive treatment (U = 36, p = 0.077), Mann–Whitney U 
tests revealed that the experimental group presented a 
significantly lower Robotic Assessment Index after the 
rehabilitative treatment (U = 26, p = 0.015), pointing out 
a final performance better than the control group. Given 
this global idea, we moved to analyze single exercises of 
assessment, with the aim of understanding the weight 
each component had on the whole assessment.

Range of motion
As described by median values and IQRs in Table  3, 
groups presented comparable values of both active and 
passive ROM at  Tb (outcomepassiveROM: U = 53, p = 0.483; 
outcomeactiveROM: U = 64, p = 0.976). However, after 
three weeks of rehabilitative exercises, the experimental 
group presented a ROM greater than the control group 
(outcomepassiveROM: U = 15, p = 0.001; outcomeactiveROM: 
U = 22, p = 0.006) and showed significant different val-
ues respect to pre-treatment ones (outcomepassiveROM: 
W = 54, p = 0.004; outcomeactiveROM: W = 53, p = 0.006). 
Conversely, the control group presented a significant 
improvement from  Tb to  Te only for active ROM (out-
comepassiveROM: W = 68, p = 0.127; outcomeactiveROM: 
W = 78, p = 0.021).

Detailed results related to single directions are 
reported in Table 4 and showed in Figs. 5, 6. Their trend 

Fig. 4 Median values and IQR of Robotic Assessment Index. Grey and 
black lines stay for control and experimental group, respectively. 
Significant results in Wilcoxon Matched Pairs tests are identified by a 
“*”, black for the experimental group and grey for the control one. Red 
“*” identified significant differences found after independent Mann–
Whitney U tests

Table 3 Median normalized values (outcomeexercise) and IQR of each exercise. For all the exercises, lower values stay for a better 
performance

Median values (IQR) Tb Te

Experimental Control Experimental Control

Passive ROM 0.108 (0.202–0.082) 0.161 (0.24–0.103) 0.0841 (0.0999–0.0501) 0.114 (0.241–0.105)

Active ROM 0.615 (0.631–0.496) 0.619 (0.722–0.475) 0.354 (0.414–0.171) 0.466 (0.521–0.438)

Isometric force 0.663 (0.809–0.576) 0.836 (0.877–0.771) 0.433 (0.556–0.309) 0.550 (0.759–0.483)

Target tracking 0.197 (0.288–0.124) 0.207 (0.369–0.132) 0.122 (0.209–0.089) 0.170 (0.279–0.149)

Joint position matching 0.298(0.389–0.185) 0. 352(0.424–0.288) 0. 285 (0.456–0.199) 0.318 (0.352–0.160)
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and significance in both Mann–Whitney U and Wilcoxon 
Matched Pairs tests confirmed what has been found from 
exercise median normalized results (outcomepassiveROM 
/ outcomeactiveROM): despite initial comparable values, in 
the second evaluation the experimental group showed 
a larger set of directions presenting significant ROM 
improvements, particularly in the passive assessment 
(Table 4).

Isometric force
Globally, subjects’ isometric force (outcomeisoforce) 
increased in both groups. Groups presented compara-
ble values of force at  Tb (U = 38, p = 0.101), not only 
considering outcomeisoforce, but also single directions 
(Table  4 and Fig.  7). After rehabilitation, both groups 
improved (experimental: W = 50, p = 0.020; control: 
W = 88, p = 0.001): this force growth was similar in 
the two groups and Mann–Whitney U tests showed 

Fig. 5 Median values of passive (A) and active (B) ROM. Black and grey lines stay for experimental and control group, respectively. Dotted and 
solid lines stay for  Tb and  Te assessment, respectively. Red dotted lines represented data used to normalize each direction, i.e., the best and worst 
performance  (xbest and  xworst) found along that specific direction, among all the subjects and evaluations

Fig. 6 Median values of passive (A and C) and active (B and D) ROM for pronation (A and B) and supination movements (C and D). Black and grey 
stay for experimental and control group, respectively. Red dotted lines represented data used to normalize each direction, i.e., the best and worst 
performance (xbest and xworst) found along that specific direction, among all the subjects and evaluations
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that achieved force values were still comparable at  Te 
(U = 34, p = 0.057) (Table 3).

Target tracking
Differently from the previous analyzed tasks, target 
tracking performance was evaluated only through a sin-
gle outcome measure, i.e., the mean figural error in the 
two completed laps (see “Subjects and experimental 
protocol”), without any distinction about movement 
direction and single DoFs. This indicator metric was 
processed as described in Eq. 1: normalized median val-
ues are shown in Table 3 (outcometracking computed with 
xbest = 0.6°, xworst = 5.9°), while median figural errors in 
degrees of each group at each assessment are reported 
in the following lines. Statistical analysis revealed that 
target tracking performance was comparable between 
groups both before (U = 57, p = 0.648; experimental: 
1.7°, control: 1.7°) and after three weeks of rehabilita-
tion (U = 36, p = 0.077; experimental: 1.2°, control: 1.5°). 
Although groups presented comparable final errors, only 
the experimental group resulted to be improved signifi-
cantly from  Tb to  Te (experimental: W = 47, p = 0.049; 
control: W = 53, p = 0.635).

Joint position matching
Analogously to what presented for the Target Track-
ing outcomes, also matching errors were comparable 

between groups both before (U = 43, p = 0.186) and after 
three weeks of rehabilitation (U = 53, p = 0.483).

As can be guessed by Fig. 8, for the experimental group 
neither most single directions (Table 4) nor median out-
comejpm (Table  3) showed improvements in the percep-
tion of wrist position (W = 22, p = 0.625). Conversely, 
control subjects showed a slight improvement in their 
performance (W = 77, p = 0.027).

Perceived satisfaction and acceptability
After the last robotic evaluation, subjects’ experienced 
robotic training and/or assessment was scored with a 
median value of 10 out of 10 (mean: 9.67, SE: 0.333) by 
the experimental group, and 9.5 (mean: 9.33, SE: 0.333) 
by the control group. In both groups, no important harm 
or adverse event was reported.

Discussion
This randomized controlled trial tested the efficacy of a 
robot-based rehabilitative protocol to recover wrist func-
tionality after traumatic injuries. The efficacy of robotic 
devices in the orthopedic field was investigated in a 
restricted number of studies [16, 17], whose main limita-
tion can be found in the absence of a comparison with 
a traditional treatment. To investigate the efficacy of this 
novel rehabilitative approach, our protocol involved ses-
sions of assessment pre- and post-rehabilitation, includ-
ing both robot-aided measurements and evaluations 
through traditionally used clinical scales. The assessed 

Fig. 7 Median values of isometric force. A showed directions on the FE-RUD space, while B, C pronation and supination direction, respectively. 
Black and grey lines stay for experimental and control group, respectively. In panel A dotted and solid lines stay for  Tb and  Te assessment, 
respectively. Red dotted lines represented data used to normalize each direction, i.e., the best and worst performance (xbest and xworst) found along 
that specific direction, among all the subjects and evaluations



Page 12 of 15Albanese et al. J NeuroEngineering Rehabil          (2021) 18:130 

measurements aimed to point out whether robot-based 
rehabilitation (10 experimental subjects) had an effect, in 
terms of presence of improvements in functionality, and 
whether the final performance was comparable to that 
achieved after a traditional rehabilitative protocol (13 
control subjects). The structure of both the robot-based 
rehabilitative protocol and the traditional one was always 
chosen by the medical specialist, tailoring the treat-
ment accordingly to the severity and the level of healing 
achieved by each subject. Robot-based exercises replaced 
traditional exercises preserving the corresponding goal, 
such as reducing rigidity [6] or improving stretch, muscle 
force or dexterity [7, 10, 42].

Clinical results revealed that the robot-based reha-
bilitative approach was effective and that its results were 
comparable to those achieved through traditional exer-
cises. Actually, the function subscale of PRWE pointed 
out that both robot-aided and traditional rehabilitation 
led to a recover of wrist functionality and that experi-
mental and control group were comparable both before 
and after rehabilitation.

The entire set of clinical measures, Jamar Test, Jebsen-
Taylor Test and PRWE, showed that grip force, dexterity, 
pain, and functionality were comparable between groups, 
both pre- and post-treatment, stating the comparability 
between robot-based and traditional approaches. Con-
sidering long-term effects, in our study only the control 
group resulted to have further improved its score in the 
function subscale of the PRWE at the follow-up assess-
ment. Retaining improvements beyond the period of 

training is a crucial goal for rehabilitation and evidences 
of a long-term retention after robotic rehabilitation 
have already been found in the neuro-rehabilitative field 
[43–46]. Whether and how retention of functionality is 
related to the employment of robotic devices for ortho-
pedic rehabilitative treatments should be investigated 
further.

Robotic assessments showed that both the experimen-
tal and the control group significantly improved their 
performance in robot-based tasks, however, subjects that 
underwent robot-aided rehabilitation presented a bet-
ter outcome performance respect to traditionally treated 
ones. It is crucial to highlight that, since we aimed to 
avoid speculating on results derived from a more inten-
sive use of the device by the experimental group, tasks 
used for the robot-aided assessment were designed to 
be deeply different from those used to treat subjects. 
Additionally, at each assessment, all subjects had time to 
familiarize with the device before being tested. Despite 
this, subjects were also evaluated through clinical scales 
and their results discussed, removing any possible effect 
affecting the comparison, related to a more prolonged 
use of the device.

In details, greater improvements were found in ROM 
and measures of isometric forces in both groups: sub-
jects’ rigidity decreased, allowing wider movements, 
and muscle force increased in the isometric task. The 
improvements in ROM and force generation capacity, 
reported for the experimental group, are in accordance 
with what was found for the lower limb by Deuthsch 

Fig. 8 Median values of matching error. A showed directions on the FE-RUD space, while B, C pronation and supination direction, respectively. 
Black and grey lines stay for experimental and control group, respectively. In panel A dotted and solid lines stay for  Tb and  Te assessment, 
respectively. Red dotted lines represented data used to normalize each direction, i.e., the best and worst performance (xbest and xworst) found along 
that specific direction, among all the subjects and evaluations
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et al. [17], using a haptic interface for rehabilitation after 
ankle injuries.

Contrarily, improvements were not so great and clear 
in the Joint Position Matching and in the Tracking task. 
It is worth remembering that these tasks were tailored 
accordingly to subjects’ passive ROM. However, the 
influence of movement amplitude on wrist propriocep-
tive acuity and tracking accuracy is well known [39, 47]: 
presence of different ROM among subjects and between 
assessments, and the subsequent testing with dispa-
rate movement amplitudes, could have led to increase 
the variability of our results, hiding any possible change 
exclusively related to an improved perception of wrist 
position. Additionally, another limitation of our study 
was related to the size of the Lissajous figure considered 
in the Tracking task: although the size changed accord-
ingly to a percentage of subjects’ passive ROM, the track-
ing task required active movements and, as shown in 
Fig. 5, at the first evaluation the median active ROM was 
visibly smaller than the passive one.

Although this study evaluated subjects’ performance 
through indicators widely used in robotic rehabilita-
tion [38, 39], future studies should address the above-
presented issues and, still preserving safe conditions in 
presence of reduced ROM, find novel tasks and outcome 
measures of assessment independent from movement 
amplitude.

Interestingly, even though our sample presented a wide 
variety and differently treated injuries [1], before reha-
bilitation groups were comparable in both outcome met-
rics of each robotic task and clinical measures assessed. 
Since inclusion criteria did not restricted participants 
on the basis of the wrist injury or conservative/surgery 
treatment they got, statistical dispersion of our results 
was broad: one limitation of this study was related to the 
high variability of our sample in terms of both sensory 
and motor performance, that led subjects to be impaired 
along specific and different directions of movement.

Overall, robotic and clinical results agreed in stat-
ing that robot-based rehabilitation was effective and 
comparable with a traditional protocol. Future studies 
should address a deeper knowledge about the correla-
tion between clinical and robotic outcomes and whether 
different robot-based metrics [22, 48] could assess other 
components influencing wrist recovery of functional-
ity in post-traumatic subjects. Although the correlation 
analysis was not a primary objective of this study, we per-
formed some potentially interesting correlations on our 
sample of clinical and robotic measures. From prelimi-
nary Pearson correlation analyses, we obtained a signifi-
cant correlation between isometric force (outcomeisoforce) 
and grip force measured in the Jamar test (r = −  0.36, 
p = 0.013), where the negative correlation results from 

the processing and computation of  outcomeisoforce, with 
lower values indicating higher forces exerted (see “Data 
Processing”). Additionally, the Robotic Assessment Index 
resulted significantly correlated with the function sub-
scale of the PRWE (r = 0.326, p = 0.033), with lower 
values of both metrics pointing out improved wrist func-
tionality. Even though these analyses showed a relation 
between novel robotic outcomes and largely employed 
clinical measures, more interesting and robust results 
could be obtained in future studies involving larger 
samples.

Given our results, it is evident that research should 
particularly focus on developing both somatosensory 
robot-aided assessments and trainings [19–21], suitable 
for orthopedic subjects. However, although the proposed 
robot-aided training employed exercises designed for 
neuro-rehabilitative purposes [38, 49, 50], these resulted 
well-tolerated by post-traumatic subjects. Similarly to 
what other studies reported using a different robotic 
device for orthopedic rehabilitation [16], our sample of 
patients resulted satisfied and well-accepted the device: 
acceptability was rated with excellent scores, even higher 
in the experimental group, whose both rehabilitation and 
assessment were centered on its employment.

The potential of a systematic use of robotic devices in 
orthopedics is twofold: besides increasing accuracy and 
repeatability in the assessment of functionality, robot-
based rehabilitation could be maximally exploited tailor-
ing rehabilitative protocols real-time to target to subject’s 
specific functional deficits and promote his/her voluntary 
participation [51], minimizing time duration and thera-
pists’ effort during rehabilitation.

Conclusions
This work aimed to test a robot-based rehabilitative 
approach on orthopedic subjects. Our results showed 
that the robot-aided protocol of treatment was effective 
and comparable to the traditional one. Despite our sam-
ple presented a wide variety of wrist injuries, subjects’ 
wrist functionality was comparable before the treat-
ment considering both robotic evaluations and assessed 
clinical measures and scales. After the three-week long 
rehabilitation, clinical results showed that groups did 
not differ in terms of functionality, pain, grip force and 
dexterity. The robotic assessment showed that the experi-
mental group presented greater improvements than the 
control group, particularly in terms of reduced tissue 
rigidity and increased muscle force. This work can be 
considered as a starting point for introducing the use of 
robotic devices in the orthopedic field, where a system-
atic use of these devices could assist therapists’ work and 
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increase accuracy in tailoring treatments to target spe-
cific injury-related issues.
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