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Ultrafast charging in a two-photon Dicke quantum battery
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We consider a collection of two level systems, such as qubits, embedded into a microwave cavity as a
promising candidate for the realization of high power quantum batteries. In this perspective, the possibility
to design devices where the conventional single-photon coupling is suppressed and the dominant interaction
is mediated by two-photon processes is investigated, opening the way to an even further enhancement of the
charging performance. By solving a Dicke model with both single- and two-photon coupling we determine the
range of parameters where the latter unconventional interaction dominates the dynamics of the system leading
to better performances both in the charging times and average charging power of the QB compared to the
single-photon case. In addition, the scaling of the maximum stored energy, fluctuations and charging power
with the finite number of qubits N is inspected. While the energy and fluctuations scale linearly with N , the
quadratic growth of the average power leads to a relevant improvement of the charging performance of quantum
batteries based on this scheme with respect to the purely single-photon coupling case. Moreover, it is shown that
the charging process is progressively faster by increasing the coupling from the weak to the ultra-strong regime.
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I. INTRODUCTION

Recent advances in quantum technologies [1–4] allow to
access and manipulate microscopic systems at the single-atom
or single-photon level with very high precision. Here, quan-
tum features, such as phase-coherence or entanglement, play
an essential role both from a fundamental and an applicative
point of view. Great interest revolves around the possibility
to exploit quantum resources to bypass bottlenecks posed by
classical physics, improving performances both in computa-
tion and information schemes [5].

These concepts have been recently addressed also in the
fast developing field of quantum thermodynamics [6–14],
where energy flows, and related work, between micro-
scopic systems are considered in a fully quantum setting. In
this context, so-called ‘quantum batteries” (QBs) have been
proposed [15–20], and are currently under experimental in-
vestigations, as small devices where energy can be stored
in faster or more efficient ways compared to their classical
counterpart. Several studies focused on the understanding of
how the presence of quantum coherences or entanglement can
affect energy storage in individual [21–26] and many-body
QBs [17,27–35], with the aim to find and demonstrate the so-
called quantum advantage for QBs. Experimentally feasible
nanodevices based on engineered two-level systems (TLSs)
realized by means of superconducting qubits [36] or semicon-
ducting quantum dots [37] have been also put forward.

Circuit-QED [36,38] represents another interesting plat-
form where light-matter interactions can be engineered and
exploited to build QBs playing with the interplay between
solid-state devices and photonic degrees of freedom. Here, a
paradigmatic model is the so-called Dicke model [39], where

a collection of TLSs interacts with a single-photon mode
of a cavity, representing one of the most studied model in
quantum optics. Despite its simplicity, it is still of great in-
terest, with the recent realization of coupled systems even at
ultrastrong coupling (USC) [40–47]. Further, the possibility
to host superradiant phase transition [48–50] is an on going
subject of research. Recently, QBs based on the Dicke model
have been introduced [51], assuming a conventional dipole
coupling between the TLSs and photon radiation of the cavity,
where it has been reported that a

√
N speed up in the charg-

ing process can be achieved, compared to an analog parallel
charging scheme, where each TLS is coupled with its own
cavity. This enhancement of the performance is ultimately
related to the renormalization of the coupling constant due
to many-body interaction [52]. Moreover, the possibility to
increase the electrostatic capacity of the system exploiting the
interplay between TLS-TLS interaction and coupling with the
radiation has been also investigated [53].

Some recent proposals, based on trapped ions [54] or
superconducting flux qubits [55], suggested the possibility
to suppress the dipole contribution, linear in the photon
coupling, and to enhance the two-photon coupling. This con-
figuration is predicted to lead to new and interesting physics,
enhancing the visibility of a superradiant phase transition and
hinting at a spectral collapse at high coupling [56–61].

It is therefore natural to ask if this two-photon configura-
tion can lead to further improvement of the functionality of
a QB. In the present paper we address this issue comparing
a single- and two-photon coupling. By numerically solving a
Dicke Hamiltonian with both contributions we determine in
which regime of the parameters the single-photon coupling
has only marginal effect on the physics and the two-photon
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contribution dominates. This analysis can have relevant ex-
perimental implications, leading to less strict constraints for
the observation of purely two-photon effects. We investigate
the behavior of physically relevant quantities in characterizing
a QB such as stored energy, averaged charging power and en-
ergy fluctuations. This figure of merit is frequently neglected
even if it can strongly affect the functionality of the considered
devices [62,63]. The main result of this study is that a two-
photon interaction leads to better performances in terms of
charging times and charging power of the QB compared to
the single-photon case. Moreover, a two-photon coupling can
lead to a charging N times faster with respect to the parallel
charging case and an enhancement of the averaged charging
power which scales as N2, with an evident advantage with re-
spect to the single-photon case. This improvement is achieved
both in the weak coupling regime, where the main physics
of the model can be investigated relying on the rotating-wave
approximation [54,55], and in the USC regime, where the
coupling with the radiation is a consistent fraction of the TLS
energy gap.

The paper is organized as follows. In Sec. II we introduce
a generalized Dicke model that takes into account both single-
and two-photons coupling. We also define the relevant phys-
ical quantities (stored energy, averaged charging power, and
energy fluctuation) needed to properly characterize the behav-
ior of the QBs. Section III is devoted to the analysis of the
two-photon contribution in comparison with the single-photon
one to identify the parameter regimes where an advantage in
term of charging time and averaged charging power can be
observed. The scaling of the various quantities as a function
of the number of TLSs is reported in Sec. IV. Section V is
devoted to the conclusions. Additional details on the exact
diagonalization procedure are given in Appendix A, a com-
parison between our numerical results in the weak coupling
regime and the ones obtained considering the simplified Tavis-
Cummings (TC) model [64,65], rotating wave approximation
of the Dicke model, are presented in Appendix B, while a dis-
cussion of the parallel charging in the weak coupling regime
is provided in Appendix C.

II. MODEL

We consider a QB modeled as a set of a finite number N
of identical and independent TLSs coupled to a unique cavity
mode [see Fig. 1(a)].

The system can be described using the so-called Dicke
model [39]. In particular, we want to consider N TLSs coupled
to a single cavity mode via both a single-photon [21,51] and
a two-photon coupling [60,61], for which the Hamiltonian is
(hereafter we set h̄ = 1)

H = ωca†a + ωaJz + θ (t )H1ph
I + θ (t )H2ph

I , (1)

where

H1ph
I = g1Jx(a† + a), (2)

H2ph
I = g2Jx[(a†)2 + (a)2] (3)

represent the interaction terms in the case of a single- and two-
photon coupling, respectively.

FIG. 1. (a) Scheme of a QB where a set of N identical and inde-
pendent TLSs with energy separation ωa interact with a unique cavity
mode of frequency ωc via photon coupling. Processes of (b) creation
and destruction of photons involved in the single-photon and (c) in
the two-photon Dicke regimes in the resonant conditions ωa = ωc

and ωa = 2ωc, respectively.

Here, ωc is the frequency of the photons in the cavity, ωa is
the energy splitting between the ground state |g〉 and excited
state |e〉 of each TLS, g1 and g2 are the coupling strengths
for the single-photon and the two-photon interactions, respec-
tively. The notation

Jα = 1

2

N∑
i=1

σα
i (4)

with α = x, y, z indicates the components of a pseudospin op-
erator expressed in terms of the Pauli matrices of the ith TLS.
Finally, a (a†) annihilates (creates) a photon in the cavity, as
represented in Fig. 1(b) and a2 [(a†)2] annihilates (creates) a
pair of photons in the cavity, as in Fig. 1(c). We also assume
that the coupling between the TLSs and the cavity, used as a
charger for the QB (Jz), is switched on at t = 0, as indicated
by the θ (t ) functions in Eq. (1).

Moreover, we notice that the interaction term in Eq. (2)
is related to a conventional linear coupling with the cavity
electric field [66], while the one in Eq. (3) is quadratic. In
experiments realized in the framework of circuit quantum
electrodynamics, the dominant light-matter interaction contri-
bution is usually the dipolar one which is linear in the photon
annihilation/creation operators [67–69]. However, theoretical
proposals, with the aim of enhancing the two-photon con-
tribution (quadratic in the electric field), have been recently
presented. It has been shown that by properly engineering the
device configuration it is possible to suppress, or even elimi-
nate, one-photon contribution, thus promoting the two-photon
as the dominant one [42,54,55]. In particular, Refs. [54,55]
discussed the case of trapped ions subject to a bichromatic
driving and the case of a flux qubit coupled with a symmetric
dc superconducting quantum interference device (SQUID),
respectively. In both these scenarios, the authors claim the
possibility to span from the weak coupling to the USC regime
in realistic experimental configurations. It is important to
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underline that the technologies introduced in these works are
commonly used for the implementation of qubits and have
reached great experimental control opening to the possibility
of actually realizing devices showing a relevant two-photon
coupling in the near future.

Notice that in Eq. (1) we used the notation already con-
sidered in Refs. [51,70]. However, other definitions for the
coupling constants (e.g., rescaled with respect to the number
of TLSs N) can be found in the literature [52,54,60,61]. While
the first are often used in context dealing with finite-size
systems with small number of TLSs, the second are more
conventional for studying the large N limit, being consistent
with the expected thermodynamic limit N → ∞ [28].

Here, we consider the dynamics of a closed quantum sys-
tem. Interactions with the external environment can lead to
relaxation and loss of photons in the cavity characterized
by typical time scales tr and tγ , respectively [23,36,71–73],
therefore, in the following, we restrict the analysis to evo-
lution times such that t � tr, tγ where dissipation effects
can be neglected. According to the acquired experimental
level of control of the qubits this condition is typically ful-
filled in state of the art circuit quantum electrodynamics
devices [36]. It is important to underline that usually tr > tγ ,
so experimentally it is important to consider stable cavities.
Depending on the considered technology typical values of
tγ range from ∼ μs in transmon qubits [36,74] to ∼ ms in
trapped ions [75], which need to be compared to the effec-
tive Rabi frequency characterizing the time evolution of the
system.

In addition, we focus on the two resonant regimes, namely
ωa = ωc [see Fig. 1(b)] where one expects a dominant con-
tribution from the single-photon process and ωa = 2ωc [see
Fig. 1(c)] where the two-photon interaction should be more
relevant. Off-resonance cases (ωa �= ωc, ωa �= 2ωc) will not
be discussed due to the fact that they are characterized by
a less efficient energy transfer between the cavity and the
TLSs [66].

This allows us to consider initial states of the form

|ψ (0)〉 = |sN〉 ⊗ |g, . . . , g〉︸ ︷︷ ︸
N

. (5)

Here, s = 1 for the first resonant case and s = 2 for the
second, the N TLSs are prepared in the ground state |g〉
and the cavity mode is in the sN Fock states. It is worth
stressing that, even if other initial states can be studied in
analogy with what done in Ref. [22], this particular choice
guarantees to have initial states carrying the minimum num-
ber of photons necessary for the radiation to work as a
charger for the QB in the single-photon or in the two-photon
resonance.

A. Figures of merit

To characterize a QB we study the total energy that can
be stored, the corresponding charging time and the average
charging power, namely the energy stored in a given time in-
terval. Moreover, we also consider energy fluctuations, to see
how their detrimental effects can influence the functionality
of the QB [22,62].

1. Stored energy and charging power

At time t the energy stored is given by [51]

E (t ) = ωa[〈ψ (t )|Jz|ψ (t )〉 − 〈ψ (0)|Jz|ψ (0)〉], (6)

where |ψ (t )〉 = e−iHt |ψ (0)〉.
We also define the average charging power at time t as [21]

P(t ) = E (t )

t
. (7)

In both cases we are looking for the fastest possible storage of
energy and the greater charging power (occurring at times tE
and tP, respectively). We then define [21,51]

Emax ≡ max
t

[E (t )] ≡ E (tE ), (8)

Pmax ≡ max
t

[P(t )] ≡ P(tP ). (9)

We underline that the above equations strongly depend on the
value of the coupling strengths g1, g2 as it will be clearer in
the following.

2. Energy fluctuations

As another useful quantifier of the QB performance we
consider the quantum fluctuations of the energy. To do so we
analyze the fluctuations between the initial and final time of
the charging process represented by the correlator [62]

�2(t ) = ω2
a

[√〈
J2

z (t )
〉 − (〈Jz(t )〉)2 −

√〈
J2

z (0)
〉 − (〈Jz(0)〉)2

]2
,

(10)

where Jz(t ) is the Heisenberg time evolution of the operator Jz

and the averages are taken with respect to the initial state in
Eq. (5). We emphasize that �(t ) is related to the inverse of the
so-called reverse quantum speed limit which can be used to
characterize the discharging of the QB [24]. Moreover another
correlator [22,62], representing fluctuations at equal time, can
be considered, but for the chosen initial states it is identical to
�(t ), as also explained in Ref. [22].

B. Numerical approach

As already discussed in the single-photon case [51] to
evaluate the energy, power, and fluctuations in Eqs. (6), (7),
and (10) starting from the Dicke model in Eq. (1) we need to
use a numerical approach (see Appendix A for more details).
The reason for this is that the Dicke model does not conserve
the number of excitations, as it can be clearly seen from the
interaction term g1θ (t )Jx(a† + a) + g2θ (t )Jx[(a†)2 + (a)2] of
Eq. (1) which contains counterrotating terms of the form
a†J+, (a†)2J+ and aJ−, a2J−. However, we notice that J2 =
J2

x + J2
y + J2

z is a conserved quantity for the Hamiltonian in
Eq. (1). This allows us to work in the basis |n, j, m〉, where n
is the number of photons, j( j + 1) is the eigenvalue of J2 and
m is the eigenvalue of Jz. Within this notation the initial state
in Eq. (5) can be written as

|ψ (0)〉 = |sN, N/2,−N/2〉. (11)

Even in this basis the numerical problem we have to solve
is rather difficult, and it requires, at least in principle, an
infinite Hilbert space because the Dicke Hamiltonian is not
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FIG. 2. Behavior of the stored energy and its fluctuations (in units of Nωa) as a function of the time (in units of ω−1
a ) for the single-photon

Dicke regime at (a) g1 = 0.005ωa and g2 = 0 and for the two-photon Dicke regime at (b) g1 = 0 and g2 = 0.005ωa. Behavior of P(t ) (in units
of N2ω2

a) as a function of the time (in units of ω−1
a ) for the single-photon Dicke regime (c) (g1 = 0.005ωa and g2 = 0) and for the two-photon

Dicke regime (d) (g1 = 0 and g2 = 0.005ωa). All the plots show the case N = 10. Different timescales in the panels have been used to better
determine the position of the maxima of the various quantities in the two cases.

bounded from above. Within our finite-size numerical diago-
nalization, we extensively checked the numerical convergence
of the results (energy, averaged charging power, and energy
fluctuations) and verified that, even in the worst case scenario
of large N , setting the maximum number of photons to Nph =
4N there is a difference below 10−5 between the results at
Nph + 1 and the one at Nph [51,76]. This allows us to chose
for all the following plots Nph = 4N .

III. IMPROVED CHARGING VIA TWO-PHOTON
COUPLING

Here we describe our main results obtained using the fully
numerical approach just introduced. We present an analysis
of different regimes for the Dicke model, starting from weak
coupling and then considering the interesting USC regime,
where we expect a faster charging and a further enhancement
of the average charging power in analogy with what observed
for a purely single-photon coupling [51]. For the sake of
clarity, we will compare the two-photon case, g1 = 0 and

ωa = 2ωc in Eq. (1), with the charging performance of the
single-photon one, g2 = 0 and ωa = ωc in Eq. (1), already
discussed in Ref. [51]. In each subsections we will also con-
sider how the presence of the g1 interaction can affect the
g2 contribution, taking into account the total Hamiltonian in
Eq. (1) in the two-photon resonance regime (ωa = 2ωc).

A. Weak coupling regime

We first analyze what happens for the two different cases
considering small couplings gi � ωa, with i = 1, 2 denoting
the single- and two-photon coupling constant, respectively. In
the following analysis we consider gi = 0.005ωa as a rep-
resentative value, however, other coupling constants in this
regime lead to similar features. In this limit we can compare
our results with the one obtained within the TC model [64,65],
rotating wave approximation of the Dicke model. More details
are reported in Appendix B.

In Figs. 2(a) and 2(b) we report the energy E (t ) and its
fluctuations �(t ) at a given number of TLSs N = 10 for a
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purely single- and two-photon coupling, respectively. Notice
that, throughout the paper, we will consider the (constant)
energy scale ωa as a reference of all energy (and time) scales.
From the plots we can observe that the maximum of the
stored energy, defined in Eq. (8), of the single-photon Dicke
case (E (1ph)

max /Nωa ∼ 0.886) is higher than the two-photon one
(E (2ph)

max /Nωa ∼ 0.710), however, the charging time in the first
case is ωat (1ph)

E = 127.33, while in the second it is way faster
(ωat (2ph)

E = 19.17). Therefore, introducing the ratio

R = t (1ph)
E

t (2ph)
E

, (12)

one achieves here the value R ∼ 6.64. We want to underline
that this advantage in the charging times of the QB is achieved
both for small and large N . In the first case this is ultimately
related to the bosonic nature of the photon interaction (cavity),
see also Appendix C for the illustrative case N = 1, while in
the second also the collective behavior of the N TLSs coupled
to the single cavity plays a role. The second point will be
better discussed in Sec. IV.

Energy quantum fluctuations are reported in Figs. 2(a)
and 2(b) (dashed curves). For the functionality of the QBs it
is important to consider the value of �(t ) at the time tE where
the maximum of the energy occurs, defined as

�̄ ≡ �(tE ). (13)

We can observe that in the single-photon case �̄(1ph)/Nωa =
0.119, while in the two-photon one �̄(2ph)/Nωa = 0.141. This
result is directly linked to the fact that, due to the interaction
between the N TLSs and the cavity mode, the two cases do not
reach the full charging of the QB. Indeed, according to what
reported in Ref. [22], energy fluctuations are absent only if the
total charge of the QB is reached.

From Fig. 2 we can see an enhancement of the maximum
of the averaged charging power [defined in Eq. (9)] in the two-
photon regime P(2ph)

max /N2ω2
a ∼ 0.005 [Fig. 2(d)] compared

to the one in the single-photon case where P(1ph)
max /N2ω2

a ∼
0.0008 [Fig. 2(c)] with a ratio

L = P(2ph)
max

P(1ph)
max

(14)

given here by L ∼ 6.25, proving the better performances of
the two-photon Dicke regime [77].

We conclude this section analyzing how the two-photon
Dicke regime at resonance can be affected by the single-
photon contribution. We then consider the complete Hamil-
tonian in Eq. (1) and we define the ratio

k = g1

g2
. (15)

In Fig. 3 we report the behavior of the E (t ) for different
values of k at fixed g2 = 0.005ωa.

We start from the case already considered in Fig. 2(b)
(g1 = 0), where the single-photon coupling is absent (black
curve) and we examine what happens when we increase the
strength of the single-photon interaction. From the plots we
can see that when the two couplings are identical (dash-dotted
red curve at k = 1) we obtain roughly the same behavior of

FIG. 3. Behavior of E (t ) (in units of Nωa) as a function of
the time (in units of ω−1

a ) for the Dicke model in Eq. (1) at the
two-photon resonance (ωa = 2ωc) for different values of k. Other
parameters are g2 = 0.005ωa and N = 10.

a purely two-photon contribution. Increasing g1 (dotted blue
curve at k = 2) differences in the maximum of the energy
start to emerge. At even higher values of g1 (dashed green
curve at k = 5) the discrepancy with respect to the two-photon
case in Fig. 2(a) is marked and the maximal stored energy is
lower. This analysis allows us to understand that, in the weak
coupling regime (gi � ωa), for ratios up to k ≈ 2 (g1 ≈ 2g2),
the system behaves mainly as a two-photon Dicke case (with
associated better performances). This represents an interesting
fact for future experimental implementation, meaning that it
is not required to completely “switch off” the single-photon
contribution for the system to effectively work in the resonant
two-photon regime.

Notice that for the value N = 10 considered in this section
a universal behavior of the discussed physical quantities is
reached (see below). However, one needs to keep in mind that
preserving the coherence over such a large number of cavity
photons and TLSs is a challenging task from the experimental
point of view [52,78]. This is because the lifetime of a both the
Fock state |N〉 and the many-body state of the TLSs decrease
with the dimension of the system [79].

B. Ultra-strong coupling regime

We now discuss coupling strengths in the USC regime,
namely with higher values of gi up to g1,2 � ωa [40–42,80],
to investigate the advantages we can get in the charg-
ing of the QB with respect also to the weak coupling
case. Notice that we have not considered higher values of
coupling in order to avoid possible effects associated to
the spectral collapse intrinsic of the considered two-photon
regime [56–61].

We start by considering the stored energy and its fluctu-
ations in the single-photon case and by comparing them with
the results obtained in the two-photon one. In Figs. 4(a) to 4(d)
we report the behavior of E (t ) and �(t ) for the single-photon
Dicke regime [g2 = 0 in Figs. 4(a) and 4(c)] in comparison
with the two-photon one [g1 = 0 in Figs. 4(b) and 4(d)].
The main result one can infer is that also in this case the
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FIG. 4. (a)–(d) Behavior of E (t ) and �(t ) (in units of Nωa) as a function of the time (in units of ω−1
a ) for the single-photon Dicke regime

with N = 10 at (a) g1 = 0.1ωa and g2 = 0, (c) g1 = 0.5ωa and g2 = 0 and for the two-photon Dicke regime with N = 10 at (b) g1 = 0 and
g2 = 0.1ωa, (d) g1 = 0 and g2 = 0.5ωa. Behavior of P(t ) (in units of N2ω2

a) as a function of the time (in units of ω−1
a ) for (e) the single-photon

Dicke regime with N = 10 at g1 = 0.1ωa and g2 = 0 (red curve), g1 = 0.5ωa and g2 = 0 (blue curve), and for (f) the two-photon Dicke regime
with N = 10 at g1 = 0 and g2 = 0.1ωa (red curve), g1 = 0 and g2 = 0.5ωa (blue curve). In panels (b) and (f) the timescale is different to
properly show the maximum of the energy and charging power.

two-photon regime (g1 = 0) requires less time to achieve the
maximal charging of the QB (see also Table I). In particular,
we observe that in the intermediate case of g1,2 = 0.1ωa the
ratio in Eq. (12) becomes R ∼ 11.75 while for g1,2 = 0.5ωa

we obtain R ∼ 6.24. We also underline that the USC regime
leads to faster charging times compared to the weak coupling
case we investigated in Sec. III A, both in the single-photon
and two-photon cases. Moreover we observe that within the
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TABLE I. Maximum of the stored energy E (tE ) (in unit of Nωa)
and corresponding charging time tE (in units of ω−1

a ) for the single-
photon (g2 = 0) and two-photon (g1 = 0) Dicke regimes for g1,2 =
0.1ωa, g1,2 = 0.5ωa, and N = 10.

Dicke 1ph (g2 = 0) Dicke 2ph (g1 = 0)

Emax ωatE Emax ωatE

g1,2 = 0.1ωa 0.793 5.431 0.681 0.462
g1,2 = 0.5ωa 0.677 0.580 0.699 0.093

USC regime we obtain better performances with higher cou-
pling constant (g1,2 = 0.5ωa).

Concerning the energy, in general we can see that the
maximum value we obtain is similar for all the considered
cases.

As we can see from Fig. 4 energy fluctuations are un-
avoidable and finite in all the considered range of parameters
and for both the considered couplings. The maximum of the
correlator is around �̄/Nωa ∼ 0.35 in all the reported cases,
except for Fig. 4(a) where a better charging is achieved and
consequently we obtain �̄/Nωa ∼ 0.14. This confirms the
fact that interactions between N TLSs mediated by the cavity
radiation leads to fluctuations due to the fact that the condition
Emax = Nωa is never achieved.

We now consider the charging power P(t ) as defined in
Eq. (7) reported in Figs. 4(e) and 4(f).

From Table II, both the maxima of the charging power and
the times at which they occur are better in the two-photon
regime. In particular, the ratio in Eq. (14) is L ∼ 7.44 for
g1,2 = 0.1ωa and of L ∼ 5.08 for g1,2 = 0.5ωa. This is an-
other signature of the fact that the two-photon coupling can
lead to a greater charging power with respect to the single-
photon one. Furthermore we can state that within the USC
regime we also obtain an improved charging power for higher
coupling constant (g1,2 = 0.5ωa).

To conclude this section we observe that, in general, cou-
pling constant in the USC regime lead to better performances
compared to the weak coupling one both in the single-photon
and two-photon coupling. However, to fully understand ad-
vantages and drawbacks of the USC case we analyze how
the single-photon contribution can affect the results we just
obtained in the two-photon case. To do so, we consider again
the total Hamiltonian in Eq. (1) at the two-photon resonance
(ωa = 2ωc). In Fig. 5 we report E (t ) for different values of
k [defined in Eq. (15)] in the USC regime, where deviations
from the two-photon case (k = 0) are already observed in

TABLE II. Maximum of the charging power (in unit of N2ω2
a)

and corresponding tP (in units of ω−1
a ) for the single-photon (g2 =

0) and two-photon (g1 = 0) Dicke regimes for g1,2 = 0.1ωa, g1,2 =
0.5ωa, and N = 10.

Dicke 1ph (g2 = 0) Dicke 2ph (g1 = 0)

Pmax ωatP Pmax ωatP

g1,2 = 0.1ωa 0.018 1.770 0.170 0.328
g1,2 = 0.5ωa 0.134 0.419 0.865 0.067

FIG. 5. Behavior of E (t ) (in units of Nωa) as a function of time
(in units of ω−1

a ) for the Dicke model in Eq. (1) in correspondence
of the two-photon resonance (ωa = 2ωc) for different values of k, in
panel (a) for g2 = 0.1ωa and in panel (b) for g2 = 0.5ωa at N = 10.

both Figs. 5(a) and 5(b) at k = 1. By increasing the values
of the ratio k these deviations are further enhanced (see red
dash-dotted curve, blue dotted curve, and green dashed curve).
Therefore, compared to the weak limit regime in Fig. 3,
the presence of the single-photon interaction has a stronger
impact in the USC regime. Thus in this regime, in view of
actual experimental implementations, it would be necessary to
properly engineer the single- and two-photon coupling to ac-
cess a regime where the physics associated to the two-photon
coupling clearly emerges.

IV. COLLECTIVE POWER ENHANCEMENT

We now analyze the scaling of the maximum of the energy
Emax in Eq. (8), the maximum of the power Pmax in Eq. (9) and
the value of the energy fluctuations �̄ at the maximum of the
energy in Eq. (13) as a function of the number N of TLSs. We
recall that in Ref. [51] it has been shown that for the single-
photon interaction the energy scales extensively with N , while
the power shows a super-extensive behavior with N , i.e., P ∝
N3/2 for large N . Here we focus our attention on the case of
the pure two-photon coupling. We thus set g1 = 0. Note that
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FIG. 6. (a) Maximum of the energy and (b) maximum of the
energy fluctuations evaluated at the maximum of the energy (in units
of Nωa) as a function of N . (c) Maximum of the charging power
(in units of g2N2ωa) as a function of N as function of N . Notice
that here the power is rescaled by the effective couplings g2/ωa to
better elucidate the results at different g2. Other parameters are g2 =
0.005ωa (black squares), g2 = 0.1ωa (red circles), and g2 = 0.5ωa

(blue diamonds) and g1 = 0 (pure two-photon coupling).

TABLE III. Large N steady values of Emax, �̄ (in units of Nωa)
and Pmax (in units of g2N2ωa) for g2 = 0.005ωa, g2 = 0.1ωa, and
g2 = 0.5ωa at g1 = 0.

Emax �̄ Pmax

g2 = 0.005ωa 0.730 0.140 1.010
g2 = 0.1ωa 0.700 0.350 1.710
g2 = 0.5ωa 0.710 0.345 1.720

here the maximum of the charging power is rescaled also by
the effective coupling g2/ωa to elucidate the results obtained
at different g2.

In Fig. 6 we report the above quantities as a function
of N for the three different values of the coupling constant
considered in Sec. III.

We note that all the quantities converge, for quite large N
to a steady value, reported in Table III. This consideration has
been verified numerically also for higher values with respect
to the ones reported in the plots (up to N = 30).

This shows that, for large but finite value of N , Emax, �̄ and
Pmax follow the scaling laws

Emax ∝ N, (16)

�̄ ∝ N, (17)

Pmax ∝ N2. (18)

In particular, the finite scaling obtained for the maxi-
mum charging power shows that in the two-photon case
the quantum advantage related to the parallel charging in
the single cavity is even greater compared to the single-
photon one, where in Ref. [51] it has been obtained P ∝
N3/2. For comparison in Appendix C we demonstrate that
the corresponding scaling for a parallel charging, where
every TLS is coupled with a different cavity radiation, is
linear in N for both the maximum energy and averaged
charging power. However, both in the single-photon and two-
photon regimes these scalings in the thermodynamics limit
do not hold and the scaling with N of the charging power is
recovered [28,81].

Looking at the data corresponding to g2 = 0.1ωa (red cir-
cles) we can note an interesting behavior. The system for
low number of TLSs (N = 1, 2) behaves like it belongs to
the weak coupling regime (represented by g2 = 0.005ωa),
while for larger N it converges to the USC regime (repre-
sented by g2 = 0.5ωa). This is a consequence of the fact
that the system is not simply controlled by the coupling
strength g2 but it is greatly influenced by the number of
TLSs, making the renormalized quantity g2N the relevant
control parameter for the behavior of the system as can
be also deduced by the scaling of the average charging
power.

Apart from the scaling behavior ∝ N2, it is also interesting
to remark that this trend changes with the number of TLSs for
intermediate coupling strengths. Indeed, this can constitute an
important hint for the development and consequent realization
of QBs consisting of finite number of cells.
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FIG. 7. Behavior of tE (in units of 1/g2N) as a function of N
for the two-photon case at g2 = 0.005ωa (black squares), g2 = 0.1ωa

(red circles), and for g2 = 0.5ωa (blue diamonds).

From Fig. 6 we can also observe that, while the steady
value of the energy is higher when the coupling strength is
smaller, the gain in power is greater for bigger g2 leading to
an interesting trade-off with potential implication for practical
implementations. Moreover, the system is less affected by
fluctuations in the weak coupling limit.

Other important considerations about the advantage of the
two-photon interaction with respect to the single-photon one
can be drawn from the behavior of the charging times tE
at large N . As we can see from Fig. 7, the time obtained
at the maximum of the energy scales as tE ∝ 1/g2N . This
means that for large N the Rabi oscillations characterizing the
charging timescales occurs with a characteristic time t ∝ G−1

with G a renormalized many-body interaction such that G ∝
g2N for the two-photon case. In the single-photon case [52]
G ∝ g1

√
N , proving once more that the two-photon interac-

tion leads to better performances of the QB compared to the
single-photon one. As shown before (see Sec. III A), faster
charging times tE are achieved in the two-photon case even
at small N due to the bosonic nature of the cavity, however
in this case the collective behavior related to an increasing N
results in an additional speed up mechanism.

V. CONCLUSION

We considered a quantum battery described by a Dicke
model where N two-level systems interact with a cavity

radiation by means of both a single- and a two-photon cou-
pling. We determined the range of parameters where the
former has a negligible contribution in the dynamics of the
systems. The effects of pure two-photon interaction on several
figures of merits for the QB, such as the energy stored in the
battery, its fluctuations and the associated charging power, has
been investigated as a function of time as well as their scaling
with the number of TLSs N . This kind of interaction, for a
finite size system, can lead to a faster charging of the battery
(scaling as N−1) and to a consequent higher averaged charg-
ing power (scaling as N2) with respect to the conventional
single-photon contribution with relevant implication in the
performance of the quantum battery. This interesting behavior
can be further enhanced by moving from the weak to the
ultra-strong coupling regime.

Our analysis can be extended also to processes involving
higher-order photon interaction. However, such kind of non-
conventional coupling requires a very complex engineering to
be actually implemented in realistic devices [82].
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APPENDIX A: ENTRIES OF THE HAMILTONIAN MATRIX
FOR THE EXACT DIAGONALIZATION

This Appendix is devoted to the derivation of the explicit
form of the entries of the Hamiltonian matrix in Eq. (1). Using
the following relations for ladder operator of photons and
pseudospin:

a†|n, l, m〉 = √
n + 1|n + 1, l, m〉, (A1)

a|n, l, m〉 = √
n|n − 1, l, m〉, (A2)

J±|n, l, m〉 =
√

l (l + 1) − m(m ± 1)|n, l, m ± 1〉, (A3)

together with

a†a|n, l, m〉 = n|n, l, m〉, (A4)

Jz|n, l, m〉 = m|n, l, m〉, (A5)

and recalling that Jx = (J+ + J−)/2, it is possible to write
the matrix elements of the Dicke Hamiltonian in Eq. (1) at
positive times as

〈n′,
N

2
,

N

2
− q′|H |n,

N

2
,

N

2
− q〉

= ωa

2
(n + N − 2q)δn′,nδq′,q + g1[

√
(n + 1)[N + q(N − q − 1)]δn′,n+1δq′,q+1 +

√
(n + 1)[q(N − q + 1)]δn′,n+1δq′,q−1

+
√

n[N + q(N − q − 1)]δn′,n−1δq′,q+1 +
√

n[q(N − q + 1)]δn′,n−1δq′,q−1]

+ g2[
√

(n + 1)(n + 2)[N + q(N − q − 1)]δn′,n+2δq′,q+1 +
√

(n + 1)(n + 2)[q(N − q + 1)]δn′,n+2δq′,q−1

+
√

n(n − 1)[N + q(N − q − 1)]δn′,n−2δq′,q+1 +
√

n(n − 1)[q(N − q + 1)]δn′,n−2δq′,q−1] (A6)
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over the basis |n, j, m〉, where n is the number of photons,
j( j + 1) is the eigenvalue of J2, and m is the eigenvalue of Jz

(see main text).
As discussed in the main text, this infinite Hilbert space

can be safely truncated considering a maximum number of
photons Nph = 4N , higher values of photons leading only to
a marginal correction of the values of the physical quantities
considered.

APPENDIX B: COMPARISON WITH THE
TAVIS-CUMMINGS MODEL

The TC Hamiltonian is obtained from the Dicke Hamilto-
nian in Eq. (1) by performing the rotating-wave approxima-
tion and it has the following form:

HTC = ωca†a + ωaJz + θ (t )g1[a†J− + aJ+]

+θ (t )g2[(a†)2J− + a2J+], (B1)

where J± = Jx ± iJy and all the parameters are the same as the
one in the Dicke Hamiltonian. The advantage of this limit is
that counterrotating terms are absent, meaning that the number
of excitations is always conserved and the diagonalization of
the Hamiltonian is way easier than the one of the Dicke model.
Indeed the matrix elements of the TC Hamiltonian can be
obtained from Eq. (A6) by imposing the further constraints
n = q and n′ = q′.

This approximation is useful to further check the validity
of our numerical results achieved in the limit of the weak
coupling regime. Here, in Fig. 8, as a representative case, we
report this check for the two-photon case g1 = 0 and g2 =
0.005ωa. As we can see the curve obtained with the numeric
approach described in Appendix A and the one obtained with
the TC model, just described, perfectly agree for this choice
of parameters. This is also true for other values in the weak
coupling regime where gi � ωa (i = 1, 2).

FIG. 8. Behavior of E (t ) (in units of Nωa) as a function of time
(in units of ω−1

a ) for the two-photon Dicke model (full red curve) and
for the TC model (dotted black curve) in the weak coupling regime
at g1 = 0 and g2 = 0.005ωa for N = 10.

APPENDIX C: ENERGY, FLUCTUATIONS, AND AVERAGE
CHARGING POWER FOR N INDEPENDENT TLSs

We now study the stored energy, its fluctuations, and the
average charging power for N independent TLSs to com-
pare them to the collective case discussed in Sec. III. To
do so, and for sake of simplicity, we show the results ob-
tained in the framework of the two-photon Jaynes-Cummings
model [83,84], valid for N independent TLSs and small cou-
plings g2 � ωa. We stress that the following considerations
about the scaling with N also hold true for greater values of
the coupling. To make fair comparison with what discussed in
the main text, here again we choose the representative value
g2 = 0.005ωa.

We recall the Jaynes-Cummings Hamiltonian with a two-
photon coupling in the resonant case (ωa = 2ωc):

HJC = ωa

2
(a†a + σz ) + g2[σ+(a)2 + σ−(a†)2], (C1)

FIG. 9. (a) Behavior of E (t ) and �(t ) in units of Nωa and as a
function of time (in units of ω−1

a for the Jaynes-Cummings model
with n = 2. (b) Behavior of P(t ) in units of N2ω2

a for the Jaynes-
Cummings model as a function of time (in units of ω−1

a with n = 2.
Insets illustrates the corresponding E (t ), �(t ) (in units of Nωa) and
P(t ) (in units of N2ω2

a) in the Dicke model. Other parameters are
N = 10 and g2 = 0.005ωa.
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where we defined σ± = (σx ± iσy)/2. This Hamiltonian can
be solved analytically. Considering the basis |ψ1,n〉 = |n, g〉
and |ψ2,n〉 = |n − 2, e〉 one has the matrix representation

HJC =
(

(n − 1)ωa
2 g2

√
n(n − 1)

g2
√

n(n − 1) (n − 1)ωa
2

)
. (C2)

Now, considering the system being initially in the ground
state |ψ1,n〉 with n = 2 at the initial time t = 0, we can write
the energy at a given time t for a single TLS as

EJC = ωa sin2(g2

√
n(n − 1)t ). (C3)

We can also define the fluctuations of this system using
Eq. (10) as

�JC (t ) = ωa

2
| sin(2g2

√
n(n − 1)t )|. (C4)

In Fig. 9(a) we report the energy and fluctuations for the
Jaynes-Cummings model for N = 10 independent TLSs.

As we can see from Fig. 9 and also from Eq. (C3), we
obtain Emax = Nωa. Looking at the inset in Fig. 9(a), for
identical parameters the charging is worse for the Dicke model
(ED

max ∼ 0.710Nωa). This shows that the interaction between

the TLSs mediated by the cavity has detrimental effects on the
maximal achievable stored energy.

Moreover, it is interesting to note that here the system
does not fluctuate where the energy has its maximum since
we reach the full charging. We want to underline that with a
parallel charging [21,51] we can reach the full charging and a
corresponding absence of fluctuations, however, the charging
times in the Dicke model are way faster (the advantage scale
as N−1) compared to the one of a QB made of independent
TLSs. Moreover, considering the charging times, comparing
the two-photon and single-photon Jaynes-Cummings model
we obtain that t2ph

E /t1ph
E = √

n − 1. This justifies the fact that
also in the case of one TLS the two-photon interaction can
lead to better charging performance.

In addition, the major disadvantage of the JC QB is the
amount of power that we can obtain from it. If one considers
the charging power of N = 10 independent TLSs reported in
Fig. 9(b) the value of the maximum obtained in the JC model
is only P(JC)

max ∼ 5 × 10−5. This shows how a collective charg-
ing, reported in the inset of Fig. 9(b), can enhance by a great
factor (∼100) the charging power of the QB. Moreover, the
maximum average charging power in the JC limit is obtained
for longer times compared to the collective case.
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