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Abstract: The paper discusses the application of a motion profile with an elliptic jerk to Cartesian
space position control of serial robots. This motion profile is obtained by means of a kinematic
approach, starting from the jerk profile and then calculating acceleration, velocity and position by
successive integrations. Until now, this profile has been compared to other motion laws (trapezoidal
velocity, trapezoidal acceleration, cycloidal, sinusoidal jerk, modified sinusoidal jerk) considering
single-input single-output systems. In this work, the comparison is extended to nonlinear multi-input
multi-output systems, investigating the application to Cartesian space position control of serial
robots. As case study, a 4-DOF SCARA-like architecture with elastic balancing is considered; both an
integer-order and a fractional-order controller are applied. Multibody simulation results show that,
independently of the controller, the behavior of the robot using the elliptic jerk profile is similar to
the case of adopting the sinusoidal jerk and modified sinusoidal jerk laws, but with a slight reduction
in the position error (—3.8% with respect to the sinusoidal jerk law and —0.8% with respect to the
modified sinusoidal jerk law in terms of Integral Square Error) and of the control effort (—8.2% with
respect to the sinusoidal jerk law and —1.3% with respect to the modified sinusoidal jerk law in terms
of Integral Control Effort).

Keywords: elliptic jerk; motion profile; Cartesian space control; SCARA robot; Schoenflies’ motion;
multibody simulation

1. Introduction

The performance assessment of production systems, mechatronic devices and indus-
trial manipulators is a very complex issue, which involves and orients many different
design stages: analytical and computer-aided mechanical synthesis [1-3], control system
design [4], and motion planning [5]. In many robotic tasks the free motion time, without
forces exchanged with the environment, represents a significant part or even the whole
of the cycle time. Examples are pick-and-place, varnishing and laser welding tasks. Con-
sequently, the definition of innovative profiles for free motion is a motivating and useful
research area, since it can improve the system performance in a wide variety of automa-
tion applications. Depending on the specific task requirements, different benefits can be
pursued, for example, cycle time reduction, energy saving, and residual vibration lessening.

The motion profile of a dynamic system can be defined using dynamic or kinematic
approaches. The first class of methods exploits the dynamic model of the system, and
the motion profile is optimized while respecting kinematic and dynamic constraints, such
as limits on the actuation force/torque, on the acceleration and on the jerk [5,6]. On the
contrary, kinematic methods do not utilize the system dynamic model, and the motion
profile synthesis is purely kinematics, usually with assumptions and constraints in terms
of acceleration and jerk [5,7]. Kinematic methods are undoubtedly simpler, and therefore,
they are very widespread in industrial applications, even if the achievable performance is
only sub-optimal.
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Besides their simplicity, the scientific interest about kinematic methods has another
motivation: in the case of repetitive tasks the robot motion can be optimized offline to
maximize a specific performance index by dynamic methods. On the other hand, in some
cases, it is not possible to optimize the robot motion offline, since the trajectory must
be replanned depending on external events, not predictable a priori. An example, with
growing industrial importance, is collaborative robotics, in which the robot must modify
its trajectory when a human operator enters its workspace [8].

In these cases, the robot motion must be quickly replanned online without time-
expensive optimization techniques, but adopting predefined motion profiles. Commonly,
to avoid collisions with obstacles, the robot trajectory must be controlled in the Cartesian
space of the end-effector external coordinates.

In this paper, a recently proposed motion profile with elliptic jerk [9] is compared to
other profiles discussed in the scientific literature with reference to the position control of
robots. In [9,10] the elliptic jerk profile has been discussed with application to single-input
single-output (SISO) systems. In this work, the investigation is extended to a multi-input
multi-output (MIMO) system, a serial robot with Cartesian space position control.

As a case study, the SCARA-like RRFbR robot (Revolute, Revolute, Four-bar, Revolute)
with elastic balancing is considered [11]. As regards the algorithm for Cartesian space
position control, both an integer-order (I0) and a fractional-order (FO) scheme have been
taken into account. Classical Cartesian space controllers (KD) are IO, with a stiffness matrix
K that defines the end-effector stiffness in the external coordinates, and a damping matrix
D which expresses the end-effector damping, related to the first-order derivatives of the
end-effector coordinate errors. Consequently, the KD Cartesian space position control
represents a MIMO extension of the PD control for SISO systems, in which there is a term P
proportional to the error and a term D proportional to the first-order derivative of the error.

A possible FO extension of the KD controller is represented by the KDHD con-
troller [12], in which a damping of order 1/2 (half-derivative) is added, proportional
to the matrix HD. With reference to SISO systems, this FO extension of the KD controller
corresponds to the PDD'/2 scheme [13,14], in which the half-derivative damping is added
to the PD. In the present work, both the KD and the KDHD controllers are applied in
simulation, in order to evaluate the influence of the motion profile both on IO and on FO
controllers.

Simulation results indicate that the system behaves similarly using the elliptic jerk,
the sinusoidal jerk and the modified sinusoidal jerk motion profiles, but the elliptic jerk
law provides moderate advantages both in terms of accuracy and in terms of control effort.
Moreover, results show that the influence of the controller type is lower than the influence
of the motion profile, even if the KDHD controller is slightly more accurate for faster
motions, while the KD controller is slightly more accurate for slower motions.

2. Architecture of the RRFbR Robot

The considered architecture (Figure 1) is derived from the industrially widespread
SCARA manipulator, RRPR (Revolute, Revolute, Prismatic, Revolute [15]), by introducing
an articulated parallelogram (four-bar, Fb), which replaces the vertical prismatic joint.
This solution avoids the friction issues related to the prismatic joint and makes the static
balancing of the manipulator easier [11]. This 4-DOF manipulator has the same mobility as
the SCARA since the end-effector performs three translations and one rotation around a
vertical axis. This mobility, named Schoenflies” motion [16], is sufficient for a very wide
range of handling and assembly tasks, and this is the reason for the popularity of the
SCARA architecture.
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Figare 1. The RRFBR oot (edt: actuated nevelutejsints; grean: passive reveolute jioimts).

The seven links of the RRFbR manipulator, LO ... L6, are connected by seven revolute
joints. According to the Chebychev—Griibler-Kutzbach criterion [1], six moving rigid bod-
ies (L1... L6) and seven revolute joints correspond to 1-DOF mobility (6 x 6 —7 x 5 =1),
but the planar four-bar mechanism has three redundant constraints since its joint axes
are parallel. By eliminating these redundant constraints, the 4-DOF mobility is obtained.
The four actuated revolute joints (J1 ... J4) are represented in red in Figure 1. The corre-
sponding rotation angles, shown in the kinematic scheme of Figure 2, represent the internal
coordinates of the robot, collected in the vector © = [0, 6,, 03, 84]7. The four external
coordinates, composing the vector x =[x, y, z, 6]7, are the three Cartesian coordinates of the
end-effector central point E with respect to the frame O(x,y,z) and the end-effector rotation
6 about the z-axis of the same frame (Figure 2).

The kinematic and dynamic models of the manipulator are discussed in [11]. The
dynamic model defines the relationship between the robot motion, the vector of the actua-
tion torques T = [Ty, T2, T3, 74]7, and the vector of the generalized forces applied by the
end-effector to the environment in the directions of the four external coordinates, F = [Fy,
Fy, F,, M ]T [11].

Due to the robot architecture, gravity acts only on joint 3, since the rotations of joints
1, 2 and 4 do not influence the vertical position of the Center Of Mass (C.O.M.) of any
link. Therefore, static balancing can be applied by adding a torsional spring acting on
joint 3 in parallel with the actuator. The balancing spring, characterized by stiffness k3
and neutral position 63,, can be mounted on any joint of the four-bar mechanism without
changing its effect. As discussed in [17], even if the balancing spring should be tuned for
any task to minimize energy consumption, a suitable compromise is to impose that the
arm is exactly balanced when 63 = 0 and in the absence of payload. This condition, which
will be applied in this work, leads to a negative value of 63,. The equations that define the
spring parameters 03, and k3 fulfilling this condition as a function of the robot’s geometrical
and mass properties are discussed in [17].
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Figure 2. Kinematic notation.
Figure 2. Kinematic notation.
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The digital filter (3) considers only the time interval [t — nTs, t], while an exact calcu-
lation of a FO derivative involves all the time history of the original function. This intro-
duces an approximation in the calculation of the FO derivative that modifies the stiffness
imposed by the matrix Kkpup. To solve this problem, in Equation (2) a stiffness correction
term is present, the function of HDkoup and of the filter coefficients w;. The effectiveness
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of the control law (2) with the proposed correction is discussed in [12].
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Figure 3. Generic efiptic jerk profle.
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and null acceleration. Phases #5—#7 are characterized by negative acceleration, and their
overall duration is t,4 n,. Since the dimensionless duration of the motion is a unit, the
duration of the fourth phase is (1 — faq,pa — fad,na)-

Positive acceleration (phases #1-#3) is performed with a positive jerk in phase #1,
with duration #,4 papj, with a null jerk in phase #2, and with a negative jerk in phase #3,
with duration f,q panj- Consequently, the duration of phase #2 is faq pa — fad,papj — fad,panj
(Figure 3). Similarly, deceleration (phases #5—#7) is performed with a negative jerk in phase
#5, with duration #,4 nanj, with a null jerk in phase #6, and with a positive jerk in phase #7,
with duration f,q napj- Consequently, the duration of phase #6 iS taq na — fad,nanj — fad,napj
(Figure 3).

For the phases with a non-null jerk (#1, #3, #5, and #7), the jerk profile is assumed to
be elliptic. The jerk peaks of these phases are, respectively, +jaq1, —jad3, —Jad5, Hjad7- Conse-
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Similarly, deceleration (phases #5-#7) is performed with a negative jerk in phase #5, with
duration tadnanj, with a null jerk in phase #6, and with a positive jerk in phase #7, with
duration tad,napj. Consequently, the duration of phase #6 is tadna — tad,nanj — tadnapj (Figure 3917

be elliptic. The jerk peaks of these phases are, respectively, +jadi, —jad3, —jads, +jad7. Conse-
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In [10] the elliptic jerk motion profile (E]) has been compared to other motion laws

disculadd Gh the sllipligiierkeraatientReatis dEdidas breg@rameed o shenaetisy daavt
disenssedon phe arientidicliforature; g, raeeseidl vepretya il ¢l Vitle Births srarepek
prdfacelgrqtion), predilthermodirel(Siwiklid hgeskcistisilennaiSie (LY).[Shndhasinasoidal
ienkRofile £STTAQl, sk the modifiad sinksaidahiak prafiAdSh 12 Hhe Spaetheson law
danagibhe of tindtp iRhseswith Bl prbfitskyithardailtgeiicludesid inchsreampargsanihe.
Muidisies, théhdurhasssobfthieeBeprofiie. v phageaul ljeHd (#3, 44)) tediie poxedsed ull:
(1/4) [10]. With these assumptions, all the previously cited motion profiles are fully defined
in dimensionless formulation, except the MS] profile [10]. As a matter of fact, the MS]
profile is similar to the EJ profile, but each phase with a semi-elliptical jerk with a duration
of 1/4 is replaced by a triplet of subphases: sinusoidal, constant, and sinusoidal [21]. In the
comparison, these subphases have respective durations of 1/16, 1/8, and 1/16, with a total
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Moreover, the durations of the remaining phases (#1, #3, #5, #7) are imposed equally (1/4)
[10]. With these assumptions, all the previously cited motion profiles are fully defined in
dimensionless formulation, except the MS] profile [10]. As a matter of fact, the MS]J profile
is similar to the EJ profile, but each phase with a semi-elliptical jerk with a duration ebif#

4

parison, these subphases have respective durations of 1/16, 1/8, and 1/16, with a total du-

GHandf I 4/ Lveradlaimpesiimd hihth ditrusied MRpRHiREsss TR R o the siX
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POsition:

Figuze §: Kinematic comparison of motion profiles i temms off diimansisiiessjistkijxy, dimensionless
acceleration ﬁﬁ‘ig,d&fH?éﬁé%ﬂ?éés"%?&Pﬁ!y?%}%}&ﬂ&“&‘i’ﬁ’(éﬂ@iﬂﬁ?@sB SaRbes Slintp it etk (Esdled;
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4974, slightly higher than the €Y, 39.48; and the M§J, 3911, while the TA profile has the
lowest maximum jerk; 32.00: On the other haﬂéﬁgg%fk of i A profiie it dircomiimuos.
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ulator.
5. Multibody Model of the Manipulator

5. MultikodyoMogieldef ShenMRRIPRIAAT has been developed using Simscape Multibody ™
by MathiVatiks de glestislgdf idiioRRFRndsml he {betesidewglageposiion Sintljwd/heen
boplemanted atbingbkihribel kit apdribg dh dialgotiHnGadissiasep ivdSpdittion dakteol
tldassenhiergdemetiicdlwid s pacaKBterdohO K DBIDRIAIEEhms discussed in Section
3. TaBrepedingtthhcgpsink predmetemadopaharikirsonttallarankiataterdiagonal with
kip xRedaling f®coritfolpaPAnitary, fndikakDTchirolldt: Wawv/itadia Realisvilinganal
With 4 oy, = Ex109 N Aparid Kb, 105N 87 NindRedi kD i 1/eA BT Adth dio,x = dioy = dio,: =
5-103 Ns/m, and dxp,e = 7.5 Nms/rad.
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Table 1. Geometrical parameters and mass properties considered in the simulations.

Symbol  Parameter Value Unit

Iy link 0 length 900 mm

I link 1 length 330 mm

I3 links 3-4 length 330 mm

lg distance along z between point E and link 1~ 387 mm

Ig1 C.O.M. position of link 1 (Figure 2) 165 mm

Igs C.O.M. position of link 3 (Figure 2) 165 mm

Iga C.O.M. position of link 4 (Figure 2) 165 mm

my link 1 mass 10 kg

my link 2 mass 5 kg

ms link 3 mass 5 kg

My link 4 mass 5 kg

ms link 5 mass 12 kg

Mg link 6 mass 3 kg

O internal coordinates of the reference position [—45, 90, 0, —45] °

Xt exte.r.nal coordinates of the reference [467, 0, 513, 0] mm, °©
position

O3p neutral 63 angle of the balancing spring —15 °

ks stiffness coefficient of the balancing spring ~ 247.3 Nm/rad

For the KDHD controller, the stiffness matrix Kxpyp is equal to Kgp, all the values
of the Dxpyp matrix are halved with respect to Dgp, and this diminution is compensated
by the half-order damping, introduced by the HDkpyp matrix with hdxpyp x = hdkpup,y
= hdgpup = = 22,500 Ns!/2/m, and hdxpup g = 2.4 X 10* Nms!/2 /rad. These values have
been obtained using the tuning criteria discussed in [17]. For the half-derivative digital
filter of the KDHD controller, Ts = 0.005 s and n = 10; the same sampling time is used also
for the KD controller.

6. Simulation Results

The set-point motion is composed of six phases. The start position x,,f corresponds
to the robot arm semi-bent with internal coordinates Oref = [—45°,90°, 0°, —45°]T. In each
phase: the end-effector moves in a time T from x,.r along a straight line with length 4; it
stops at Xyef + Ax for Tstop; it returns to Xref along the same straight line; finally, it stops at Xref
for Tstop; then, the next phase begins. In the six phases, the displacements Ax are: d,0,0);
0,4,0); (0,0,4d); (—4d,0,0); (0, —=d, 0); (0, 0, —d); consequently, all the linear displacements
are along one axis of O(x,y,z).

In each phase, there are two linear motions with opposite directions, characterized by
the same duration T and displacement d. According to the definition of the dimensionless
position and dimensionless time discussed in Section 4, these two parameters are used to
scale in time and position the dimensionless profiles of Figure 5.

The end-effector rotation is maintained constant, since in robots with Schoenflies
motion, the vertical rotation is dynamically decoupled from the translations, and in the
following, the analysis is focused on the first three external coordinates.

Figures 6—14 show the comparison of the motion profiles for the discussed six-phase
motion withd =0.15m, T = 0.25 s, and Tstop = 3/5T = 0.15 s. In particular:

o  Figures 6-8 represent, respectively, the x, y and z end-effector errors (ex = x5 — x,

ey=Ya — Y, ez=24 — 2);

e  Figures 9-11 show, respectively, the x, y and z end-effector accelerations ay, a,, and a;;
e  Figures 12-14 represent, respectively, the torques 71, T, and 73.
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The torque T4 is not represented since it is null in the absence of friction and with
constant end-effector orientation 6, as in the considered motion. The maximum absolute
values of ey, ey, €z, dx, dy, 4z, T1, T2, and 73 are collected in Table 2.
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Table 2. Maximum absolute values of external coordinates errors ey, ey, e; [mm], end-effector

acceleration ay, ay, a; [m/ s?], and actuation torques 11, T2, T3 [Nm].

EJ SJ MS]J TV TA CY
ex [mm], KD 4.77 491 4.80 3.49 4.58 4.27
ex [mm], KDHD 4.79 493 4.82 3.41 4.60 420
ey [mm], KD 3.88 4.00 3.90 297 3.74 3.58
ey [mm], KDHD 3.85 3.95 3.87 292 3.71 3.51
ez [mm], KD 2.60 2.68 2.61 1.97 2.50 2.39
e; [mm], KDHD 2.56 2.65 2.57 1.93 2.46 2.34
ay [m/s?], KD 21.9 222 22.1 18.6 21.1 17.0
ay [m/s?], KDHD 22.5 23.1 22.7 18.1 21.5 17.3
ay [m/s?], KD 20.7 20.7 20.8 19.5 20.3 16.2
ay [m/s?], KDHD 20.9 21.1 21.1 19.1 20.5 16.2
a; [m/s?], KD 20.3 20.3 20.4 21.6 20.1 15.9
a; [m/s?], KDHD 20.5 20.6 20.7 21.8 20.3 15.8
71 [Nm], KD 265.3 266.8 268.5 226.7 259.9 206.5
71 [Nm], KDHD 268.1 271.6 271.2 236.4 264.4 207.2
Tp [Nm], KD 110.8 109.4 111.5 119.8 110.0 84.8
7y [Nm], KDHD 111.1 110.1 112.5 120.6 109.9 84.7
73 [Nm], KD 130.0 128.9 131.0 189.4 132.8 133.3
73 [Nm], KDHD 130.4 129.9 131.7 183.5 132.4 134.1

In all the figures starting from Figure 6:

continuous lines represent the results obtained with the KD controller, and dashed
lines the results obtained with the KDHD controller;

the colors of the graphs indicate the motion profile, with the same coding used in
Figure 5.

From the analysis of Figures 6-14 and of Table 2 it is possible to outline the follow-

ing’conclusions:

once a motion profile is selected, the performance differences between the KD and
KDHD controllers are not remarkable: as a matter of fact, all the graphs with continu-
ous lines (KD) are qualitatively similar to the graphs with dashed lines (KDHD) of
the corresponding color; as it will be discussed in the following, the benefits of the FO
controller are higher for faster motions (see Figures 15-18);

as in SISO systems [10], the behaviors of the robot controlled by using the EJ, SJ
and MS]J profiles are quite similar; nevertheless, observing the values of Table 2, it is
possible to notice that the E]J profile performs slightly better, having lower maximum
absolute values of the errors ey, ey, and e; than the S] and MS] profiles, but with similar
values of the actuation torques 71, T2, T3; also the acceleration values are slightly lower
adopting the EJ profile rather than the SJ or the MS]J law;

the TV, TA and CY laws allow to obtain lower errors; nevertheless, these profiles are
characterized by jerk discontinuities [10], and this may cause vibrational phenomena
which are not evidenced by the considered rigid body model; in particular, the TV
profile has higher order discontinuities, since it has discontinuous acceleration and
infinite jerk, while the TA and CY profiles have discontinuous but not infinite jerk; this
causes oscillations of the actuation torques and of the end-effector accelerations with
the TV profile (Figures 9-14).
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Figure 17. Maximum values of the actuation torques 71, 72, and 73 with different motion proi{les

(percentage ratios with respect to the elliptic jerk profile case).
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where Tg;,, is the simulation time, sufficient to evaluate adequately the residual vibrations.

In Figures 15-18, all the performance parameters are expressed as percentage ratios
of one parameter obtained with a specific motion law with respect to the same parameter
obtained with the EJ profile. From the observation of these graphs, it is possible to outline
the following conclusions:

e the benefits of the KDHD controller over the KD controller are greater for faster
motions, with lower motion duration T, and using motion laws with higher disconti-
nuities, in particular, TV and CY; for T = 0.1 s the percentage reduction in the maximum
x, y and z end-effector errors using the FO controller are, respectively, —5.1%, —7.8%
and —5.7% with the TV profile, and —0.9%, —3.4% and —5.8% with the CY profile
(Figure 15);

e also considering the ISE, for T = 0.1 s the percentage reduction with the KDHD
controller is —3.4% with the TV profile and —1.5% with the CY profile (Figure 18, left);

e this better accuracy is obtained even with a lower overall control effort: for T =0.1s
the ICE reduction with the KDHD controller is —6.7% for the TV profile and —2.1%
for the CY profile (Figure 18, right);

e on the other hand, if T increases (slower motions) the advantage of the KDHD con-
troller over the KD in terms of ICE decreases gradually (Figure 18, right); for T =0.5s
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the ICE is almost equal and the differences in terms of maximum absolute and integral
square errors are below 1%, with a slight advantage for the IO controller;

e focusing on the comparison among the motion profiles, it is possible to see that, with
the considered rigid body modeling, the profiles with higher discontinuities (TV, TA,
CY) have in general lower error, both in terms of maximum absolute values (Figure 15)
and of ISE (Figure 18, left), independently of the motion speed, but also higher torque
peaks for 15 up to +18%, and for 13, up to +47% (Figure 17);

e  limiting the comparison to the smoother profiles (E]J, SJ, MSJ), more suitable for real
systems, the E] profile performs better than the other two, in particular with respect to
the SJ: the increase in maximum absolute error with the SJ profile with respect to the
EJ is up to +3.3% for all the three coordinates (Figure 15), while the increase in ISE is
+3.8% (Figure 18, left); the error increase with the MS]J profile with respect to the EJ is
lower, up to +0.8% for the maximum absolute errors and up to +0.7% for the ISE;

e it is interesting that the EJ profile allows obtaining lower error with lower control
effort: the maximum ICE increase with respect to E] is +8.2% with the S law for T = 0.1,
and +1.3% with the MS]J law, for T = 0.16 (Figure 18, right); as regards the maximum
values of the actuation torques (Figure 17), they are higher for the S] and MSJ profiles
with respect to the EJ in almost all the range of motion duration T.

7. Conclusions

In this paper, the application of the elliptic jerk profile (EJ) to position control of
an RRFDbR robot has been studied, comparing it to other motion profiles: sinusoidal jerk
(S]), modified sinusoidal jerk (MS]J), cycloidal (CY), trapezoidal acceleration (TA), and
trapezoidal velocity (TV). Regarding the controller, both a classical 10 algorithm (KD)
and a FO alternative (KDHD) have been considered in order to evaluate how the type of
controller influences the motion profile comparison.

Simulation results have shown that the influence of the controller type is lower than
the influence of the motion profile, even if the KDHD controller is more efficient for fast
motions, allowing to obtain lower maximum and integral errors even if the control effort
is lower, especially in combination with the TV and CY profiles. On the contrary, for
slower motions, the KD controller is slightly more accurate, with similar control effort,
independently of the motion profile.

With the considered rigid body model, the TV, TA and CY profiles, with acceleration
discontinuities (TV) and jerk discontinuities (TA and CY) offer better performance (lower
maximum and integral errors in correspondence with lower control effort). Nevertheless, it
is well known that proper limitations on jerk discontinuities should be respected for limiting
vibrational phenomena in real systems with distributed elasticity, adopting smoother
motion profiles [5].

The proposed EJ profile has continuous jerk, as the S] and MSJ laws. The behavior of
the considered robotic system with these three profiles is quite similar, as it occurs for the
second-order SISO linear system discussed in [10]. As a matter of fact, this is due to the
similar concept of these profiles, which starts from an alternation of phases with null jerk
and phases with symmetrical jerk shape. For the SJ profile, the jerk shape is sinusoidal,
for the MS] the shape is sinusoidal modified with a constant section (constant maximum
jerk for a finite time), and for the EJ profile the shape is elliptic. Even if the conception of
these motion laws is similar, it is interesting to notice that the EJ profile shows a moderate
advantage over the S] and MS] laws both in terms of accuracy (lower maximum absolute
values of the end-effector errors, Figure 15, and of the ISE, Figure 18, left) and in terms of
control effort (lower ICE, Figure 18, right).

8. Future Work

In future work, some planned research directions dealing with the proposed motion
profile are the following:
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e  the comparison of the EJ profile to other motion laws with reference to second-order
SISO linear systems, already discussed in the time domain in [10], will be carried out
also in the frequency domain to obtain more general results;

e then the comparison will be extended to mechatronic axes with gearboxes, which are
SISO systems characterized by strong nonlinearities (static friction, backlash), both in
the case of ordinary gearheads [22] and of epicyclical gearboxes [23,24];

o the multibody simulation results on the RRFbR manipulator will be experimentally
validated realizing a prototype of the manipulator; the scope of this prototype is not
only related to motion planning but also to promote its usefulness in replacing the
widespread SCARA architecture in the industry with energy-saving purposes, thanks
to its static balancing;

e remaining in the fields of robotics, the EJ profile will be compared to other motion laws
for position control of flexible mechanisms, more subject to the problem of relevant
residual vibrations [25]; in particular, the prototype of a Cartesian parallel robot with
elastic joints realized by superelastic inserts [26] will be exploited.
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