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Abstract. We estimate the spectral radius of perturbations of a particular

family of composition operators, in a setting where the usual choices of norms

do not account for the typical size of the perturbation. We apply this to estimate

the growth rate of large moments of a Thue–Morse generating function and of the

Stern sequence. This answers in particular a question of Mauduit, Montgomery
and Rivat (2018).

1 Introduction

The present note is concerned with a case of asymptotic perturbation of a linear

operator, which is a widely studied subject; we refer to the monograph [8] and

to the recent work [11] for references. There are well-understood general results

which deal with the behavior of the spectrum of the perturbation T +ε of a bounded

linear operator T , granted one can find a norm with respect to which ε can indeed

be considered a perturbation.

In the recent works [4, 12], instances of this question arose which do not fall in

the scope of the general analysis, the reason being that the natural norms one has

do not account for the true expected magnitude of the perturbation. The purpose of

this note is to present an alternate argument, which relies on an ad-hoc construction

but allows to answer completely the questions in [4, 12]. We begin by a discussion

of the two arithmetic applications we are considering.

1.1 Moments of a Thue–Morse generating function. In this section

only, for all m ∈ N, we let t(m) ∈ {±1} denote the parity of the sum of digits of m

in base 2, so that (t(m))m≥0 is the celebrated Prouhet–Thue–Morse sequence [1].
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336 S. BETTIN AND S. DRAPPEAU

For all n ∈ N, we let Tn : R/Z → C be defined as

Tn(x) =
∏

0≤r<n

(1 − e(2rx)) =
∑

0≤m<2n

t(m)e(mx).

In [12], the authors study the moments

Mk(n) :=

∫ 1

0

|Tn(x)|2kdx, k ∈ N.

Upper bounds on Mk(n) are an important ingredient in works on the level of

distribution of the Thue–Morse sequence, in particular in [6, 13] where estimates

of M1/2(n) = ‖Tn‖1 and limk→∞ Mk(n)1/(2k) = ‖Tn‖∞ are used to obtain asymptotic

formulas for the number of integers with multiplicative constraints (primes or

almost-primes) having a predetermined parity of their sum-of-digits modulo 2.

In [12], the authors show that the sequence (Mk(n))n≥0 satisfies a linear recur-

rence equation, and they deduce for each k > 0 the existence of constants Ck > 0

and ̺k > 0 such that

(1.1) Mk(n) ∼ Ck̺
n
k (n → +∞).

The behavior of the constant ̺k as k → +∞ was left as an open question in [12].

The authors conjectured that ̺k = 1
2
3k(1+O(k−2)) for k ≥ 1. Towards this estimate,

they show the upper-bound ̺k ≤ 1
2
(3k + 42k/3).

Using Theorem 3 below we are able to prove this conjecture, isolating also a

secondary term of size exponentially smaller.

Theorem 1. For δ1 =
∏

n≥1
2√
3

sin(π
3
(1 + (−1)n

2n )) = 0.6027 . . . and η = 0.506,

we have

̺k =
1

2
3k(1 + δ2k

1 + O(η2k)).

1.2 Moments of the Stern sequence. Our second application concerns

the Stern sequence (s(n))n∈N>0
, defined by s(1) and the recursion formula

s(2n) = s(n), s(2n + 1) = s(n) + s(n + 1).

This sequence has been widely studied due to its links with Farey fractions and enu-

meration of the rationals [9], automatic sequences [2], or the Minkowski function

and the thermodynamic formalism of the Farey map [15, 5, 10, 4].

For all τ ∈ C and N ∈ N>0, define the moment sequence

Mτ(N) :=
∑

2N<n≤2N+1

s(n)τ.
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In [4], the asymptotic estimation of Mτ(N) as N → ∞ for τ in a neighborhood

of 0 led to a central limit theorem for the values log s(n). The asymptotic behavior

of Mτ(N) for τ away from 0 is an interesting question. Let us focus on large integer

moments, τ = k ∈ N. It is not difficult to show, in analogy with (1.1), that the

sequence (Mτ(N))N≥0 satisfies a linear recurrence equation, from which we deduce

the following statement, to be proven in Section 4 below: for all k ∈ N, there are

constants Dk > 0 and σk > 0 such that

(1.2) Mk(N) ∼ Dkσ
N
k (N → +∞).

It is well-known [3, eq. (1.4)] that σ1 = 3 (in fact, M1(N) = 3N exactly). The

constant σk is related to the pressure function associated to the Farey system [10, 5],

and one can show1 that σk = exp(P(−k/2)), where P(θ) denotes the pressure

function of the Farey system [10, p. 135].

In Proposition 4.4.(8) of [10], the authors show by combinatorial arguments

that

φk ≤ σk ≤ φk(1 + (1 − φ−6)k) (φ = 1+
√

5
2

).

Note that 1 − φ−6 ≈ 0.944 · · · ; we also refer to [5, Theorem 4.15] for a qualitative

estimate. Also in this case we are able to identify a secondary term in the asymptotic

expansion.

Theorem 2. Let φ = 1+
√

5
2

. For δ2 = 2√
5

= 0.8944 . . . and η = 0.837, we have

σk = φk(1 + δk
2 + O(ηk)).

Using a suitable uniform version of our arguments, particularly the size of the

series
∑

r V+
r ,
∑

r V−
r (x) in Lemma 2 below, one could deduce an upper bound for

the number of very large values of s(n) (see [14] for works on related questions).

1.3 Perturbations of composition operators. We will obtain Theo-

rems 1 and 2 as consequences of a more general result on perturbations of compo-

sition operators, for which we need to introduce some notation.

Let X be a set, a, b : X → X be two maps and κ : X → C be a bounded map.

We assume that a has a unique fixed point x0 ∈ X, which is attracting on X; we

will assume stronger estimates below. Denote L∞(X) the set of bounded functions

from X to C, and define T : L∞(X) → L∞(X) by

(1.3) T[f ](x) = (f ◦ a)(x) + κ(x)(f ◦ b)(x).

1This requires a slight alteration of the argument in Lemma 5 below, since the pressure function
in [10] involves sums of (s(n)s(n + 1))τ rather than s(n)τ.
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Note that for κ = 0, the operator T0 : f 7→ f ◦ a has spectral radius 1, and in this

case 1 is an eigenvalue. A corresponding eigenfunction is 1, with eigenprojection

given by f 7→ f (x0)1. Define

κ0 := κ(x0).

An application of [8, th. VIII.2.6] (see also Theorem 1.6 of [11]) shows that if T0

is compact, if 1 is an isolated simple eigenvalue of T0, and if ‖κ‖∞ is small enough

in terms of a, then the spectral radius of T is asymptotically 1 + κ0 + O(‖κ‖2
∞). In

order for this estimate to be useful, it is crucial that ‖κ‖2
∞ = o(κ0). The setting in

which we are interested here is one where such a bound is not satisfied because κ

does not decay uniformly in X.

We will answer this question, in the special case κ ≥ 0 and under the specific

conditions stated below, by constructing an approximate eigenfunction and taking

into account the interaction of a and b on X. For k1, k2, . . . ∈ N≥0 and x ∈ X, we

will use the shorthand notation ak1bk2 · · · x for (ak1 ◦ bk2 ◦ · · · )(x).

Let (α+
k ), (α−

k ), (βℓ), (δℓ) (with indices k, ℓ ∈ N≥0) be sequences of non-negative

real numbers. Assume that γ > 0, β0 ≥ 1, and

c1 :=
∑

k≥0

α+
k < +∞,

∑

ℓ≥1

δℓβ1 · · ·βℓ−1 < +∞,(1.4)

η :=γ +
∑

k≥0

α−
k +

∑

ℓ≥2

β1 · · ·βℓ−1 < +∞.(1.5)

We make the following hypotheses:

κ(bℓx) ≤ βℓ (ℓ ≥ 0),(1.6)

0 < κ0 − α−
k ≤ κ(akx) ≤ κ0 + α+

k (k ≥ 0),(1.7)

κ(akbax) ≤ κ0 + γα+
k (k ≥ 1).(1.8)

Finally, let g : X → R>0 be such that

(1.9) sup
x∈X

(

g(x) +
1

g(ax)

)

< ∞, sup
x∈X

g(x)

g(bℓx)
+ sup

x,y∈X

g(x)

g(bℓay)
≤ δℓ.

Let T[g] act on functions on X by T[g][f ] := gT[g−1f ] (this is well-defined by (1.9)).

Theorem 3. Under the conditions (1.4)–(1.9), if κ0 and η are small enough

in terms of c1, then the series

(1.10) Fx(z) =
∑

r≥0

zrTr
[g][1](x) (x ∈ X), F+(z) =

∑

r≥0

zr‖Tr
[g][1]‖∞

have radius of convergence 1 − κ0 + Oc1
(ηκ0 + κ2

0), where the implied constant

depends at most on c1. In particular,

lim sup
r→∞

‖Tr
[g]‖

1/r
∞ = 1 + κ0 + Oc1

(ηκ0 + κ2
0).
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Translating Theorem 3 in terms of an expansion of the leading eigenvalue of T ,

instead of the spectral radius, would a priori require additional hypotheses on a

and b, at the cost of restraining the applications. In the applications mentioned

above, the objects of interest are, in fact, the iterates of some fixed function.

The method could in principle be extended to provide further lower order terms,

under a strengthening of the condition (1.7), but this is not straightforward to carry

out, especially compared with the methods of [8, 11].

Acknowledgments. The authors wish to thank L. Spiegelhofer for discus-

sions on the topics of this work, and the anonymous referee for suggestions which

helped improve the manuscript.

S. Bettin is a member of the INdAM group GNAMPA and his work is partially

supported by PRIN 2017 “Geometric, algebraic and analytic methods in arithmetic”

and by INdAM.

2 Proof of Theorem 3

The proof of Theorem 3 is simply based on an explicit estimation of iterates of T[g].

In the proof, we denote c2 > 0 any number satisfying

β0 +
∑

ℓ≥1

δℓβ1 · · ·βℓ−1 + sup
x∈X

(

g(x) +
1

g(ax)

)

≤ c2.

The value of c2 will not affect the uniformity of the error term.

Given a word w = w1 · · ·wn ∈ {a, b}∗, of length |w| = n, and x ∈ X, we

interpret wx to mean w1 ◦ · · · ◦ wn(x). Let ε denote the empty word. For all

w ∈ {a, b}∗ and x ∈ X, we define u(w, x) recursively by

(2.1) u(ε, x) = 1, u(wa, x) =
g(x)

g(ax)
u(w, ax), u(wb, x) =

g(x)

g(bx)
κ(x)u(w, bx).

It is easily seen, by induction, that

(2.2) u(w, x) =
g(x)

g(wx)

∏

v ∈{a,b}∗

w∈{a,b}∗bv

κ(vx),

where the product is over all words v such that bv is a suffix of w. For instance,

u(aba4b2aba, x) =
g(x)

g(aba4b2abax)
κ(a4b2abax)κ(babax)κ(abax)κ(ax).

By iterating the relations (2.1), we obtain that for all r ≥ 0,

(2.3) Tr
[g][1](x) =

∑

w∈{a,b}r

u(w, x).
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There are as many κ-factors in u(w, x) as occurrences of b in w. Since we expect κ

to typically have small value, the main contribution to the sum (2.3) is expected to

come from words containing few occurrences of b. For these terms, we expect the

product (2.2) to consist of words v starting with a long string of a, and so with an

associated κ-value close to κ0. Similarly, under some regularity assumptions on g

(which we eventually will not need), we expect g(wx) ≈ g(x0) for such words.

If |w|b denotes the number of occurrences of b in w, then we are indeed led to

expect

Tr
[g][1](x) ≈

g(x)

g(x0)

∑

w∈{a,b}r

κ
|w|b
0 =

g(x)

g(x0)
(1 + κ0)r.

We seek an upper bound for u(w, x) valid for all words w, and a lower bound

valid for specific words which are expected to yield the main contribution to the

sum (2.3). For ℓ ≥ 1, write

σℓ = β1 · · ·βℓ−1, δk,ℓ =







c2
2 (k > 0),

δℓ (k = 0),
γℓ =







γ (ℓ = 1),

1 (ℓ > 1),

with the convention σ1 = 1. To ease notations, we also denote

5(k0, . . . , kr) =

(

∏

1≤j≤r
j odd

σkj

)(

∏

1≤j≤r−3
j odd

(κ0 + γkj+2
α+

kj+1
)

)

.

Lemma 1. For r ≥ 2, k0 ∈ N≥0, k1, . . . , kr ∈ N>0 and x ∈ X, we have

u(ak0bk1 · · · akr , x) ≤ δk0,k1
(κ0 + α+

kr
)5(k0, . . . , kr) (r even)(2.4)

u(ak0bk1 · · · bkr , x) ≤ δk0,k1
β0(κ0 + α+

kr−1
)5(k0, . . . , kr) (r odd).(2.5)

Moreover, for r ≥ 0, k0, k1, . . . , kr ≥ 0 and x ∈ X, we have

u(ak0bak1 · · · bakr , x) ≥ c−1
2 g(x)

∏

1≤j≤r

(κ0 − α−
kj

).(2.6)

Proof. Let us examine the case of positive, even r. Then

u(ak0bk1 · · · akr , x) =
g(x)

g(ak0bk1 · · · x)

r−1
∏

j=1
odd

kj
∏

ℓ=1

κ(bkj−ℓakj+1 · · · x).

By (1.6), we have κ(bkj−ℓakj+1 · · · x) ≤ βkj−ℓ if 1 ≤ ℓ ≤ kj − 1. If ℓ = kj, then we

may use (1.7)-(1.8) to obtain κ(akj+1 · · · x) ≤ κ0 + γkj+2
α+

kj+3
if j ≤ r − 3, whereas

if j = r −1, then we use (1.7) to get κ(akr x) ≤ κ0 +α+
kr

. Finally, the hypotheses (1.9)

yield g(x)

g(ak0 bk1 ···x)
≤ δk0,k1

in all cases. The proof for odd r and for the bound (2.6) is

similar. �
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We now sum this over r ≥ 0. Let

Sσ(ρ) =
∑

ℓ≥1

ρℓσℓ, S+(ρ) =
∑

k≥1

ρk(κ0 + α+
k ),

Sδ(ρ) =
∑

ℓ≥1

ρℓδℓσℓ, S−(ρ) =
∑

k≥1

ρk(κ0 − α−
k ),

S∗(ρ) =
∑

k,ℓ≥1

ρk+ℓσℓ(κ0 + γℓα
+
k ).

Define further

Vr(x) :=
∑

k0,...,kr≥0

ρr+
∑

j kju(ak0bak1 · · · bakr , x),

V+
r :=

∑

k0≥0
k1,...,kr≥1

ρ
∑

j kj‖u(ak0bk1 · · · ∗kr , ·)‖∞,

where ∗ = a or b according to whether r is even or odd. Note that, by (2.3) and

positivity, for Fx and F+ as in (1.10) we have

(2.7)
∑

r≥0

Vr(x) ≤ Fx(ρ) ≤ F+(ρ) ≤
∑

r≥0

V+
r .

Lemma 2. For 0 ≤ ρ < 1, we have

• V+
0 ≤

c2
2

1−ρ
,

• V+
1 ≤ β0(Sδ(ρ) + c2

2
ρ

1−ρ
Sσ(ρ)),

• if r is even and r ≥ 2,

V+
r ≤ (Sδ(ρ) + c2

2

ρ

1 − ρ
Sσ(ρ))S∗(ρ)(r−2)/2S+(ρ),

• if r is odd and r ≥ 3,

V+
r ≤ β0(Sδ(ρ) + c2

2

ρ

1 − ρ
Sσ(ρ))Sσ(ρ)S∗(ρ)(r−3)/2S+(ρ),

• for all r ≥ 0,

Vr(x) ≥ c−1
2 g(x)

1

1 − ρ
(ρS−(ρ))r.

Proof. The first two inequalities follow easily as in the proof of Lemma 1.

Moreover, if r ≥ 2 is even, summing the estimate (2.4) we have

V+
r ≤

∑

k0≥0
k1≥1

ρk0+k1δk0,k1
σk1

∑

kr≥1

ρkr (κ0 + α+
kr

)

×

r−3
∏

j=1
j odd

∑

kj+1≥1,
kj+2≥1

ρkj+1+kj+2σkj+2
(κ0 + γkj+2

α+
kj+1

)

= (Sδ(ρ) + c2
2

ρ

1−ρ
Sσ(ρ))S+(ρ)S∗(ρ)(r−2)/2.

The last two inequalities can be obtained in a similar way. �
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We are ready to prove Theorem 3. On the one hand, we deduce that
∑

r≥0 V+
r

converges if ρ < 1 and S∗(ρ) < 1. But by (1.5) and the definition of S∗,

(2.8) S∗(ρ) ≤
κ0(1 + η)

1 − ρ
+ c1η,

so that S∗(ρ) < 1 if ρ ≤ 1−κ0−c′ηκ0, for some real number c′ depending on c1. We

conclude that the radius of convergence ρ+ of F+(z) satisfies ρ+ ≥ 1−κ0 +Oc1
(ηκ0).

On the other hand, we deduce that
∑

r≥0 Vr(x) diverges if ρS−(ρ) > 1. Since

S−(ρ) ≥
κ0ρ

1 − ρ
− η,

we deduce that ρS−(ρ) > 1 if ρ ≥ 1 − κ0 + c′(ηκ0 + κ2
0) if c′ is taken large enough.

We conclude that the radius of convergence ρ(x) of Fx(z) satisfies

ρ(x) ≤ 1 − κ0 + O(ηκ0 + κ2
0).

Theorem 3 then follows by (2.7).

3 Proof of Theorem 1

For all x ∈ [0, 1], define

a(x) = 1 −
x

2
, b(x) =

x

2
, S(x) =

2
√

3
sin
(πx

2

)

.

Note that

(3.1) an(x) =
2

3
+
(−1

2

)n(

x −
2

3

)

, bn(x) =
1

2n
x,

and S(2/3) = 1. Therefore, the product

(3.2) G(x) =
∏

n≥0

S(anx)

converges absolutely for x ∈ (0, 1]; note that, due to the n = 0 term, it vanishes at

order 1 at x = 0. Finally, let τ > 0, and g, ξ, κ : [0, 1] → [0, 1] be given by

ξ(x) :=
G(x/2)

G(1 − x/2)
, g(x) := G(x)τ, κ(x) := ξ(x)τ.

The functions G and ξ are depicted in Figure 1.

Lemma 3. The function ξ : [0, 1] → [0, 1] is of C1 class, increasing and

bijective.



ARITHMETIC APPLICATIONS OF PERTURBATIONS 343
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Figure 1. Approximate plots of G (up) and ξ (down).

Proof. The values ξ(0) = 0 and ξ(1) = 1 are simple to compute. The C1

regularity of ξ follows by the uniform convergence of the product defining G. To

see that ξ′ > 0, we define, for all x ∈ [0, 1] and n ≥ 0, with x 6= 0 if n = 0,

hn(x) = cot
(π

3
+

π

2

(−1

2

)n( x

2
−

2

3

))

+ cot
(π

3
+

π

2

(−1

2

)n(1

3
−

x

2

))

.

By the derivative cot′ = −1 − cot2 and since cot ≥ 0 on (0, π/2], we find h′
n ≤ 0.

Moreover, we have

h2n(1) − h2n+1(0) = cot
(π

3
−

π

12

1

4n

)

− cot
(π

3
+

π

6

1

4n

)

> 0.

We deduce that for all x, y ∈ (0, 1], we have h2n(x) > h2n+1(y), and so

ξ′

ξ
(x) =

π

4

∑

n≥0

(−1

2

)n

hn(x) > 0.
�
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We define the operator Tτ : L∞((0, 1]) → L∞((0, 1]) by

(3.3) Tτ[f ] := (f ◦ a) + κ · (f ◦ b).

Lemma 4. For k ≥ 1, we have ̺k = 3k

2
limr→+∞ ‖gTr

2k[g−1]‖
1/r
∞ .

Remark. Note that the operator f 7→ gT2k[g−1f ] is well-defined also as an

operator acting on C([0, 1]), since g ◦ a > 0 on [0, 1] and by extending g

g◦b

continuously at 0.

Proof. By Proposition 1 of [12] we have

̺k = lim
r→+∞

‖Pr
k[1]‖1/r

∞ ,

where Pk acts on continuous functions on [0, 1] by

Pk[f ](x) =
1

2

(

2 sin
(πx

2

))2k

f
( x

2

)

+
1

2

(

2 cos
(πx

2

))2k

f
(x + 1

2

)

.

Note that Pτ preserves the subspace of functions symmetric with respect to 1
2
. We

“desymmetrize” it by defining, for all τ > 0, an operator Uτ on C([0, 1]) by

Uτ[f ](x) = S(x)τ
(

f
(

1 −
x

2

)

+ f
( x

2

))

.

Then, writing f ∗(t) := f (1 − t), we have

Pk[f + f ∗](x) =
3k

2
(U2k[f ](x) + U2k[f ](1 − x))

=
3k

2
(U2k[f ](x) + U2k[f ]∗(x)),

and so, by induction, we have for all r ∈ N

(3.4) Pr
k[f + f ∗](x) =

(3k

2

)r

(Ur
2k[f ](x) + Ur

2k[f ]∗(x)).

We take f = 1, and deduce by positivity that

1

2
(
3k

2
)r‖Ur

2k[1]‖∞ ≤ ‖Pr
k[1]‖∞ ≤

(3k

2

)r

‖Ur
2k[1]‖∞.

In particular,

(3.5) ̺k =
3k

2
lim

r→+∞
‖Ur

2k[1]‖1/r
∞ .

By construction, we have Tτ[f ] = g−1Uτ[gf ] for all f ∈ C((0, 1]), in other

words, gTτ[g
−1f ] = Uτ[f ]. This yields the claimed formula. �
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We can now finish the proof of Theorem 1. Since G(x) vanishes at order 1

at x = 0, we may find c > 0 so that (cx)τ ≤ g(x) ≤ (x/c)τ. Also, note that

for 0 ≤ x ≤ y ≤ 1,

(3.6) ξ(y)τ − ξ(x)τ ≤ (y − x)‖ξ′‖∞τξ(y)τ−1.

Define κ0 := ξ(2/3)τ, and

βℓ = ξ(2−ℓ)τ,

α−
k =

2

3
2−k‖ξ′‖∞τξ

(5

6

)τ−1

,

α+
k =







1 (k ∈ {0, 1}),

2−k max(1, 2
3
‖ξ′‖∞τξ( 3

4
)τ−1) (k ≥ 2),

γ =
2

3
‖ξ′‖∞τξ(

7

8
)τ−1,

δℓ = c−2τ21+(ℓ+1)τ.

We apply Theorem 3 with κ = ξτ. The condition (1.6) follows from the fact that ξ

is increasing, and bℓ([0, 1]) = [0, 2−ℓ]. The condition (1.7) follows from (3.6)

and the inclusion ak[0, 1] ⊂ [ 2
3
(1 − 2−k), 2

3
(1 + 2−k)]. The condition (1.8) fol-

lows from the inclusion akba[0, 1] ⊂ [0, 7
8
], and the condition (1.9) follows

from a[0, 1] ⊂ [ 1
2
, 1]. The convergence of the series (1.4) is ensured by the fact

that ξ(2−ℓ) → 0 as ℓ → ∞. With η = O(τξ( 7
8
)τ), the above yields

lim sup
r→+∞

‖gTr
τ [g−1]‖1/r

∞ = 1 + κ0 + O(ηκ0).

Lemma 4 finishes the proof of Theorem 1. From Lemma 3, we have ξ( 7
8
) < 1; the

more precise bound ξ( 7
8
) ∈ [0.833, 0.835] is checked numerically by truncating

the product (3.2) at n = 11 and estimating the remainder.

4 Proof of Theorem 2

For x ∈ [0, 1], let

a(x) =
1

1 + x
, b(x) =

x

1 + x
,

and for all τ ≥ 0 define

g(x) = (φ + x)τ, ξ(x) =
1 + φx

φ + x
, κ(x) = ξ(x)τ.
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Note that ξ is an increasing function with ξ(0) = φ−1, ξ(1) = 1. It is easy to see that

if (Fn)n≥0 = (0, 1, 1, . . . ) denotes the Fibonacci sequence, then for all n ∈ N≥1,

an(x) =
Fn−1x + Fn

Fnx + Fn+1

, bn(x) =
x

1 + nx
.

Note also that the map κ : [0, 1] → [0, 1] is increasing, with κ(1) = 1.

For notation convenience, the variable k in the statement of Theorem 2 will be

renamed τ. In this section, τ is a positive integer.

We define an operator Tτ on C([0, 1]) by

Tτ[f ] = (f ◦ a) + κ · (f ◦ b).

Lemma 5. For all τ ∈ N>0, there exist constants στ, Dτ > 0 such that the

asymptotic formula (1.2) holds. Moreover, we have

στ = φτ lim sup
r→∞

‖gTr
τ [g−1]‖1/r

∞ .

Proof. We claim that for all N ≥ 1,

(4.1) Mτ(N) − Mτ(N − 1) =
1

2
PN

τ [1](1),

where Pτ acts on degree τ polynomials by

Pτ[f ](x) = (1 + x)τ
(

f
( 1

x + 1

)

+ f
( x

x + 1

))

.

To prove this, we let B0 =
(

0 1
1 1

)

and B1 =
(

1 0
1 1

)

. Then, by the chain rule [7,

eq. (2.3)], it follows that

(4.2) PN
τ [f ](x) =

∑

ε0,...,εN−1∈{0,1}
M=Bε0

···BεN−1

jM(x)τf (M · x)

where jM(x) = cx + d if M =
(

a b
c d

)

. We now recall that if 2N ≤ n < 2N+1 is

written n = 2N +
∑

0≤j<N εj2
j in base 2, then the formula [4, eq. (2.1)]

(4.3)

(

s(n + 1)

s(n)

)

= Aε0
· · · AεN−1

(

1

1

)

holds, where A0 =
(

1 1
0 1

)

and A1 =
(

1 0
1 1

)

. We wish to rewrite the sum (4.2)

in terms of products of A0 and A1. Let T =
(

0 1
1 0

)

, so that TA0 = A1T = B0,

and also TA1 = A0T . To each tuple (ε0, . . . , εN−1) ∈ {0, 1}N, we associate a

tuple (ε′
0, . . . , ε

′
N) ∈ {0, 1}N+1 such that

M := Bε0
· · · BεN−1

= Aε′
0
· · · Aε′

N−1
Tε′

N ,
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by writing B1 = A1, B0 = TA0, and then pushing all the occurrences of T to the

right, using T2 = id and TA0 = A1T . Then ε′
N is given by the sign of det(M).

We also always have ε′
0 = 1. Finally, the map (ε0, . . . , εN−1) 7→ (ε′

1, . . . , ε
′
N)

is injective, since B0 and B1 are free over GL2(N) (their transposes map (R>0)2

into {(x, y) ∈ R2, x > y > 0} and {(x, y) ∈ R2, y > x > 0} respectively), and thus

also bijective. Using this bijection in (4.2), we deduce

PN
τ [1](1) =

∑

ε′
1,...,ε

′
N∈{0,1}

M=A1Aε′
1
···Aε′

N−1
Tε′

N

jM(1)τ.

Now we note that T · 1 = 1, so that for each tuple (ε′
1, . . . , ε

′
N) in the sum,

jM(1) =
(

0 1
)

A1Aε′
1
· · · Aε′

N−1
Tε′

N

(

1

1

)

=
(

0 1
)

A1Aε′
1
· · · Aε′

N−1

(

1

1

)

= s(n′),

where

s′ = 2N +
∑

1≤j<N

ε′
j2

j + 1.

Note that this is independent of ε′
N . As (ε′

1, . . . , ε
′
N−1) runs through {0, 1}N−1, n′

runs through the odd integers in [2N, 2N+1). We deduce that

PN
τ [1](1) = 2

∑

2N≤n<2N+1

n odd

s(n)τ,

and finally (4.1) follows since s(2n) = s(n).

Since Pτ acting on the set Rτ[x] of real polynomials of degree ≤ τ with its

canonical basis is positive, by the Perron–Frobenius theorem it has a simple isolated

dominant eigenvalue στ > 0, equal to its spectral radius, and actually στ > 1

since P[1] ≥ 2 · 1. We have in particular, by positivity,

στ = lim sup
r→∞

‖Pr
τ[1]‖1/r

∞ .

By spectral decomposition, we deduce the existence of a constant D′
τ > 0 such

that, as N → ∞,

Mτ(N) − Mτ(N − 1) ∼ D′
τσ

N
τ ,

and therefore Mτ(N) ∼ Dτσ
N
τ with Dτ = D′

τστ/(στ − 1). To conclude the proof, it

suffices to remark that, by construction, Pτ[f ] = φτgTτ[g
−1f ]. �
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Note that ‖(a ◦ a)′‖∞ ≤ 1/2 and a( 1
φ

) = 1
φ

, so that for k ∈ N,

∥

∥

∥ak −
1

φ

∥

∥

∥

∞
≤ 21−k/2.

We let κ0 := κ( 1
φ

) = ( 2√
5
)τ. Define

βℓ = ξ(1/(ℓ + 1))τ,

α−
k = 21−k/2‖ξ′‖∞τξ

(1

φ

)τ−1

,

α+
k =







1 (k ∈ {0, 1}),

21−k/2 max(1, ‖ξ′‖∞τξ( 2
3
)τ−1) (k ≥ 2),

γ = ‖ξ′‖∞τξ
(3

4

)τ−1

,

δℓ = φτ.

We apply Theorem 3. The hypothesis (1.6) is satisfied since bℓ[0, 1] = [0, 1
ℓ+1

].

The hypothesis (1.7) is satisfied by the inclusion ak[0, 1] ⊂ [0, 2
3
] if k ≥ 2. The

hypothesis (1.8) follows by the inclusion akba[0, 1] = ak[ 1
3
, 1

2
] ⊂ [0, 3

4
]. Finally

the hypothesis (1.9) follows from φτ ≤ g(x) ≤ φ2τ. We obtain η = O(τξ( 3
4
)τ) and c1

bounded independently of τ, and deduce

lim sup
r→∞

‖gTr
τ [g−1]‖1/r

∞ = 1 + κ0 + O(ηκ0).

Theorem 2 then follows by Lemma 5.
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