
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, VOL. 20, 2023 1002405
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Abstract— In recent years, opportunistic rainfall sensing
exploiting commercial microwave links (CMLs) has become
popular for real-time monitoring of rainfall events. Among such
systems, satellite-to-Earth microwave links (SMLs) are gaining
great interest. An important information to extract from the
collected data is whether or not an SML observation corresponds
to a rain condition. This letter proposes an online training
procedure to keep the algorithms that classify this condition up
to date, overcoming the problem of data seasonality. Specifically,
we propose to retrain the algorithms after one day of observations
by applying a forgetting mechanism, where the oldest data are
removed from the training dataset. Data were collected by the
Smart Rainfall System (SRS) SML-type sensors located in the
city of Genoa (Italy). We compare three classification algorithms:
one based on an anomaly detection method and two based on
machine learning (ML) algorithms. The outcomes of this analysis
pave the way for implementing artificial intelligence models on
embedded systems with limited resources such as the electronic
units of SML sensors, hence reducing the data flow from the
peripheral sensor network to the central data acquisition and
integration server.

Index Terms— Machine learning (ML), rainfall prediction,
satellite microwave links, Smart Rainfall System (SRS).

I. INTRODUCTION

REAL-TIME monitoring of precipitations in local areas
is essential for effective emergency management [1],

[2], [3]. Typically, professional rain gauge networks and
long-range weather radars are used to collect and transmit pre-
cipitation measurements to National Weather Services (NWS),
to provide regional and interregional monitoring of severe
weather events [4], [5].

In recent years, there has been growing interest in oppor-
tunistic systems for real-time precipitation monitoring in
local areas [6]. An example of such an approach is the
Smart Rainfall System (SRS) that exploits the microwave
links of the satellite broadcasting infrastructure and was
conceived and validated at the University of Genoa (Italy)
along with Artys (now a division of the Italian SME Darts
Engineering srl) [7], [8]. Other researchers have experi-
mented with other systems to reconstruct rainfall fields,
such as those used in mobile communications networks
(e.g., [9], [10]).
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With the developments of enabling technologies for IoT
applications [11], it is becoming feasible to embed algo-
rithms in the sensor electronic units to process information
and provide real-time monitoring for precipitation monitoring
systems. As an example, Ostrometzky et al. [12] proposed
an IoT-based system where Kalman filters were implemented
on the cloud to recognize wet/dry periods to further estimate
the rain intensity. In real-time precipitation monitoring adopt-
ing satellite-to-Earth microwave link (SML)-based systems,
the initial step involves identifying wet and dry periods to
estimate rainfall intensity (RI) from raw data. Specifically,
RI is determined by measuring the attenuation of the received
signal power during rainy conditions in comparison to power
measurements taken during dry periods [7]. Importantly, raw
data processing is energy-efficient, which is advantageous for
hardware equipment and allows for the use of self-powered
batteries. Machine learning (ML) and signal processing algo-
rithms have been explored in the literature to cope with the
instantaneous recognition of rain/nonrain conditions, as sum-
marized below. In [13], an artificial neural network (ANN)
identified rain/nonrain periods from an SML in the K u-band,
showing promising results to estimate rainfall from signal
attenuation. Arslan et al. [14] adopted the instantaneous bit
error rate (BER) measurements computing the average and
the standard deviation on the received signals. A logistic
regression analysis based on BER measurements is used to
identify wet and dry periods. In [15], two Kalman filters
were used to detect precipitation events and estimate rainfall
from attenuation in the downlink channel of a commercial
DVB satellite signal. He et al. [16] adopted a long short-
term memory network (LSTM) for classifying rain/nonrain
observations from SML signals. Xian et al. [17] used a support
vector machine (SVM) to identify rain/nonrain periods from
SML signals and determined the attenuation baseline during
rainy periods by adopting an LSTM. Giro et al. [18] trained
a randomized trees classifier to assess precipitation presence
and estimated the rain attenuation from the received power
signal to compute the rain rate with a 1-min time resolution.
Gianoglio et al. [19] compared four ML algorithms (MLAs)
with reduced computational complexity to classify rainy and
nonrainy periods based on SML data. The results demonstrated
the potential of using shallow MLAs to improve rain moni-
toring by SMLs. In general, the MLAs need to be trained
with a large amount of data to include the large variety of
signal singularities that are commonly due to spurious factors
and that may affect the rain/no-rain classification accuracy
[7]. This letter extends the outcomes of [19] presented by the
same authors. Here, the authors propose a two-step method for
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training the MLAs for classifying rain/nonrain events to avoid
collecting a large amount of data before training the models.
This helps the adoption of a monitoring system without the
requirement of a large historical dataset available and inde-
pendently of the SML setup. First, the algorithms are trained
with a small amount of labeled data related to a few days
of observations sensed by the SRS. Next, new observations
are collected and classified by the algorithms. At the end
of each test day, the measurements of a tipping-bucket rain
gauge (TBRG) are taken into consideration and used as labels
for the training procedure. The SRS data are then added to
the training set by applying a forgetting mechanism where
the oldest observations are removed from the training set
and the new ones are added. This approach overcomes the
problem of the seasonality of data that can significantly affect
classification accuracy. Finally, the results obtained with the
three algorithms, two based on supervised ML and one on an
anomaly detection approach, are compared. All of them are
designed to be implemented on resource-constrained devices
and allow for fast retraining when a new observation day is
acquired, as the forgetting mechanism avoids storing a large
amount of data on the edge device.

II. DATA ACQUISITION SYSTEM

The data were collected between 2017 and 2019 using two
SRS sensors, described in detail in [7]. The SRS sensors
measure the power of the K u-band signal received from
satellites and provide the corresponding data to a server. The
sensors were installed on the rooftop of the DITEN department
at the Polytechnic School in the city of Genoa, Italy, and
were connected to the low-noise block (LNB) converters
mounted on parabolic dishes with diameters of 60 and 85 cm,
respectively. The dishes were aligned toward the Turksat
42◦E constellation with an elevation angle θ = 29.2048◦.
To label the dataset, the reference observations for rainfall
were measured using a TBRG located on the rooftop of the
DICCA department [20], which is about 500 m away from the
SRS sensors and below the link.

The dataset, available at SRS Github and denoted as D,
comprises Ntot = 88 days of labeled 1-min observations
spanning from May 2017 to April 2019. The dataset consists
of 50 days of nonrainy observations and 38 days containing
rain events. It can be formalized as

D =
{
(X , y)i , Xi ∈ RNo×1, yi ∈ {0, 1}No

}
(1)

with i = 1, . . . , Ntot, where Xi is the set of SRS measurements
(i.e., the raw data at the LNB measured in mV) of the
i th day consisting of No = 1440 observations, and yi is
the corresponding set of no-rain/rain labels. Every minute
SRS signals were transmitted to an Artys server via the
internet connection of the DITEN department. To ensure a
fair comparison, the two-year dataset has been cleaned from
events with incomplete time series. The principal cause of
data exclusion is related to the occurrence of interrupted time
series related to the sensor operation conditions, often due to
temporary power interruption or connectivity problems of the
data transmission chain. The authors are currently improving

the acquisition system to minimize these errors and ensure
continuous monitoring.

III. METHODOLOGY

The algorithms, entitled to real-time monitoring of rain-
fall events, require offline training before providing the
rain/no-rain classification, and they must be updated with
new observations. The learning procedures and the differ-
ences between the algorithms are described in Sections III-A
and III-B.

A. Learning Procedure

The learning strategy schema that applies to all the algo-
rithms is shown in Procedure 1. In the following, the subscript
α ∈ {1, 2, 3} will identify the specific algorithm. In the begin-
ning, Nα days containing No observations each are extracted
from the raw dataset D (1) using an initial part of observation
history. The resulting dataset is

Tα =
{
(X , y) j , X j ∈ RNo×1, y j ∈ {0, 1}No

}
(2)

with j = 1, . . . , Nα . A preprocessing of the data in Tα

is performed with an algorithm-specific procedure (step 1.2)
generating a new dataset T̃α

T̃α =
{
(X̃α, y) j , X̃ j,α ∈ RNo×Fα , y j ∈ {0, 1}No

}
(3)

where Fα represents the number of extracted features for
the αth algorithm. Such procedures will be described in
Section III-B. The algorithms are then trained offline with
this initial T̃α (step 1.3) to fix a starting point for an online
procedure.

Afterward, the online phase is carried out: it consists of a
sequence of two operations. First, the real-time rain condition
ŷ is assessed by the algorithm for each minute of observation
(steps 2.3–2.6). Second, at the end of each day, the classifica-
tion algorithm is updated using the SRS signals, as well as the
actual rain condition provided by the TBRG (steps 2.10–2.11).
However, to prevent both Tα and T̃α from becoming too large,
a forgetting mechanism is applied beforehand (steps 2.7–2.9).
This mechanism removes the measures corresponding to the
oldest day of observations from Tα while adding the new day.
By doing so, the number of data in the set remains constant
during training, which helps mitigate the bias introduced by
the seasonality of the data [21].

B. Algorithms

1) Anomaly Detection Algorithm: It is currently the operat-
ing algorithm in the SRS. It functions as an anomaly detection
method, where we define nonrainy observations as normal
data and rainy observations as anomalies. Consequently, the
training dataset exclusively comprises nonrainy data, which
is used to establish thresholds for normal data, aiding in the
identification of anomalies. In particular, anomaly detection
algorithm (ADA) relies on the heuristic evaluation of three
parameters: the minimum signal power Pmin

R , the maximum
difference between two consecutive observations 1PR , and the
standard deviation stdev, which are computed over a window

https://github.com/cosmiclabunige/SRS_dataset_88_days
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Procedure 1 All Algorithms: Learning Procedure
Input: Number of days for offline training Nα

1. Offline Training
1: Collect Nα days made of No observations in Tα from D
2: Preprocessing of data in T → T̃α

3: Train the algorithm with T̃α

2. Online Procedure
1: for a new day d do
2: Xd ← empty
3: for each new observation xt in d do
4: Classify xt ⇒ ŷt ∈ {0, 1}
5: Append xt to Xd

6: end for
7: Remove (X , y)1 from Tα

8: Collect the true labels yd from the TBRG
9: Append (X , y)d to Tα

10: Apply the preprocessing of step 1.2 on T → T̃α

11: Retrain the algorithm with T̃α

12: end for

of previous observations. The offline training of the algorithm
occurs during step 1.3 of Procedure 1 and involves analyzing
the first N1 days (being α = 1) of D, which do not include
any rainfall observation. As result, the training set T̃1 with
F1 = 1 is generated. During step 1.3, the algorithm determines
the three statistic parameters whose computations are detailed
in SRS Github. ADA identifies the starting and end points of
the rain by the evaluation of the three parameters. The criteria
are described in SRS Github.

The algorithm updates its parameters (following step 2.11 of
Procedure 1) after one day of observations only if the TBRG
has not detected any rainfall on that day.

2) ML Algorithms: The ADA is evaluated alongside two
MLAs: an ANN with only one hidden layer and a convo-
lutional neural network (CNN). Unlike the ADA, the MLAs
require a training set that includes both rainy and nonrainy
observations. As a result, Nα/2 rainy days and Nα/2 days
without rainfall are collected from D in Tα . In addition,
the ANN requires feature extraction from the dataset Tα .
Thus, a moving window with a fixed length l (being l =
30 as in [19]) is applied to the SRS signals in Tα . For
each observation xt ∈ Tα , an array is created from which
the features are computed. This array contains the previous
l − 1 observations and the current one and is denoted by
wt = [xt−l+1, xt−l+2, . . . , xt ]. In detail, the extracted features
from each wt are: mean(wt ), std(wt ), mean(1wt ), std(1wt ),
min(wt ), max(wt ), min(1wt ), and max(1wt ) (where 1 indi-
cates the difference between two consecutive measurements).
The features selected for the MLAs were based on a previous
study [19] while considering the feasibility of implementing
processing techniques on a resource-constrained device meet-
ing energy-efficient algorithm requirements. As a result, the
ANN is trained with T̃2 in (3) with F2 = 8 (being α = 2).

The CNN is fed directly with the arrays wt as time series,
resulting in T̃3 with F3 = 30 (being α = 3).

Before training the MLAs, the T̃α datasets are balanced to
address the lower number of rainfall observations compared
with the nonrainy ones. Since training the MLAs requires
both rain and nonrain observations, the forgetting mechanism
(steps 2.7–2.9 of Procedure 1) is applied by keeping two
buffers of events, one with rainfall events and one without,
consisting of a maximum of Nα/2 events both. Each day
of new observations is appended to the appropriate buffer
based on whether the TBRG detects rain. The oldest event
is removed from the buffer to ensure that it does not exceed
the maximum capacity. In this way, the dataset Tα used to
compute T̃α for updating the MLAs in steps 2.10–2.11 always
includes observations related to rainfall conditions.

C. Experimental Setup

The ADA was trained by setting N1 = 5, which represents
a tradeoff choice between the need to consider a sufficient
number of days to compute robust signal statistics and the
need to take into account recent trends in signal behavior.
As a consequence, the first five days of dataset D without any
rain precipitation were collected in step 1.1 of Procedure 1.

The MLAs were trained offline by setting Nα = 10 cor-
responding to five events per buffer, including the same five
events collected for ADA, and adding the first five events in
D that contain rain values.

The hyperparameters for the training procedure of the
algorithms are defined as follows. For the ANN, we set
the possible number of neurons in the hidden layer as
[25, 50, 100, 200] and the L2 regularizer = [10i , with
i = −4,−3, . . . , 4]. For CNN, we choose two convo-
lutional layers with the possible configuration of filters
as [(4, 4), (4, 8), (8, 8), (8, 16), (16, 32)] and kernel size as
[3, 5, 7]. Each convolutional layer has been followed by a
pooling layer with a size of 2. After the last pooling layer,
a fully connected layer consisting of ten neurons was added.
The convolutional and fully connected layers adopted the
ReLU function as activation introducing nonlinearity in the
network. For the MLAs, during the offline step, the best
configuration of the hyperparameters was chosen by randomly
splitting the training dataset into train and validation sets, using
80% of data for training and 20% for the model evaluation,
keeping the configuration of hyperparameters that led to the
highest classification accuracy on the validation set. The model
selection procedure was not involved during the online step
where the best models have just been tuned with the new SRS
observations.

IV. RESULTS AND DISCUSSION

A. Metrics Evaluation

The following notation is used: true positives (TPs) are
rainy observations correctly classified, false positives (FPs)
are nonrainy observations incorrectly classified as rainy, true
negatives (TNs) are nonrainy observations correctly classified,
and false negatives (FNs) are rainy observations misclassified
as nonrainy.

For the evaluation and comparison of the performance of
the algorithms, three metrics were computed.
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Fig. 1. (a) Specificity boxplots for each algorithm on nonrainy days.
(b) Specificity (blue boxes), recall (black boxes), and HM (green boxes) for
rainy days.

1) Recall (Rec) or sensitivity, Rec = TP/(TP+ FN),
indicates how much a model is accurate to predict the
rainfall;

2) Specificity (Spe), Spe = TN/(TN+ FP), indicates how
much a model is accurate to predict the nonrainy con-
dition;

3) Harmonic mean (HM) between Spe and Rec, computed
as HM = 2*Spe*Rec/(Spe+ Rec), trade-offs between
the two metrics indicating how much they are balanced.

The metrics were evaluated on events not used during the
offline training procedure of any algorithms by adopting only
the data measured with the 85-cm dish since algorithms
presented similar results concerning the 60-cm one (more
details are given in SRS Github). It is worth noting that
only specificity was computed for nonrainy days because the
number of TP samples is 0, making Rec not computable.

Fig. 1 reports the results for the three algorithms on nonrainy
and rainy days, divided into two subfigures. Fig. 1(a) displays
the boxplots representing the Spe metric computed on non-
rainy days. Because five out of 50 nonrainy days have been
used for offline training, 45 nonrainy days from D were tested.
Fig. 1(b) shows the boxplots concerning the three metrics
(Spe represented by blue boxes, Rec by black boxes, and HM
by green boxes) computed on rainy days. Straightforwardly,
33 rainy days from D were tested. In the figures, the lower
and upper parts of the boxes delimit the first (Q1) and third
(Q3) quartiles, while the whiskers (computed as whupper =

Q3+ 1.5 ∗ (Q3− Q1) and whlower = Q1− 1.5 ∗ (Q3− Q1))
denote the variability outside the quartiles. A diamond symbol
represents the average value of the metrics, while horizontal
lines refer to the median values (i.e., Q2) for metrics.

In Fig. 1(a), CNN has the highest median score, while
ANN has the highest mean, indicating that ADA and CNN
misclassify more nonrainy data on a few days, which are
considered outliers in the boxplot and are not visible in the
figure. In Fig. 1(b), the CNN has the highest median and mean
scores in terms of the Spe metric, but it exhibits the lowest
median and mean scores for the Rec metric compared with
the ANN and ADA models. As a result, ANN presents the
best HM metric with the highest median and mean scores and
the lowest variability. In general, ANN can be considered the
most robust classifier for rainy/nonrainy periods.

In Fig. 2, all the three metrics are computed on observations
from the 33 tested rainy days. Fig. 2(a) shows the Rec
metric computed for three intervals of rainfall based on the
TBRG measurements: low-level rain (TBRG < 2 mm/h),
intermediate-level rain (2 ≤ TBRG < 6 mm/h), and high-level

Fig. 2. Metrics computed on the 33 rainy days for each algorithm. (a) Recall
(Rec), divided into three intervals. (b) Specificity (Spe) and the HM for both
the dishes.

rain (TBRG > 6 mm/h). Examining the results, we can
observe that all the classifiers have a better recall in the high-
level rain interval, indicating that heavier rainfall is detected
more easily. The ADA outperforms all others in all the three
rainfall intervals but also had the worst specificity [blue bars in
Fig. 2(b)]. CNN shows the worst HM [green bars in Fig. 2(b)]
since it has the worst Rec metric scores. As an eventual
result, ANN presents the most balanced scores even in this
experiment, confirming the previous results.

B. Classification Results

Fig. 3 provides three examples of SRS signals classified by
the ANN using the 85-cm dish showing the best performance
in the previous experiments. Each panel reports 1440 observa-
tions, with the y-axis representing the SRS signal in dBm and
the RI measured by TBRG in mm/h, while the x-axis depicts
time. The blue dots represent nonrainy observations correctly
classified, the purple ones are nonrainy observations classified
as rain, the green ones are rainy observations correctly classi-
fied, and the red dots represent rainy observations classified as
not rain. The cyan bars represent TBRG measurements higher
than 0 mm/h, i.e., associated with the rain observations.

Fig. 3(a) refers to a day that contains 328 rain observations
with a maximum rain intensity of 146.8 mm/h. Most of the
precipitation data are correctly classified, achieving a high Rec
score, while the classifier presents a higher misclassification
rate (i.e., lower Spe) for nonrain data. It is worth noting that
two dips in the SRS time series, after 00:00, are classified
as rain but the TBRG did not measure any precipitation. One
possible explanation for such behavior is that a small cluster
of rain crossing the microwave link was located between the
sensors and the satellite, but it did not fall over the TBRG,
and consequently, it was not observed by the latter. In addition,
another group of misclassified data as rain (FP), before 16:00,
is between two groups of rain observations, and hence the
data could have similar features to the rainy ones or they are
associated with a rain condition not measured by the TBRG
as mentioned before. Fig. 3(b) presents an example where
both rain and nonrain data are well-classified, achieving high
Spe and Rec. The last example, in Fig. 3(c), shows a high
misclassification rate for rain observations (i.e., a low Rec
score), where 112 observations were labeled as rain with a
maximum rain intensity of 13.3 mm/h. The misclassified data
concern the beginning of the rain phenomenon, i.e., at the
beginning of the two SRS dips (before 8:00 and 16:00).
Moreover, the ANN classifies most of the data of the two
peaks as rain, presenting some FPs. As before, these data may
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Fig. 3. Examples of classification results of ANN classifier on three rainy
days, reporting the Spe, Rec, and HM scores. (a) ANN classification on
2017-09-09 85-cm dish. (b) ANN classification on 2018-01-01 85-cm dish.
(c) ANN classification on 2019-04-07 85-cm dish.

be related to rain not observed by the TBRG, possibly due
to the actual position and extent of the rainfall shower. It is
worth noting that the ANN presents a poorer Rec on a day
when the RI is lighter. The attenuation of the SRS signal due
to rain is lower for previous cases, thus hindering the ANN
from correctly classifying these observations.

V. CONCLUSION

This study proposes an effective strategy for updating
algorithms that recognize rainfall conditions in real-time from
SML signals, overcoming the issue of data seasonality. Each
algorithm was tested with a new 1-min observation, which
was then stored for the updating step at the end of each
observed day. ANNs were found to have the best tradeoff in
classifying rainy and nonrainy observations. These networks
demonstrated a high recall metric, particularly for intense rain
events. Future work will focus on implementing the algorithms
on embedded systems to enable data processing next to the
sensors, thereby avoiding continuous transmission to a central
server. In addition, the study will enhance the performance
of the ADA since both the inference and parameters update
on a resource-constrained device could be faster than MLAs.
One potential approach could be combining the ADA with
ANNs to identify the onset and conclusion of rainfall events,
increasing the overall performance. Furthermore, to address
data imbalance during training, it could be beneficial to imple-
ment a weighting mechanism. This approach would allow us
to leverage all the collected observations, preventing the loss
of potentially valuable information that might occur when
attempting to balance the dataset.
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