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Abstract
As robots are being increasingly used in close proximity to humans and objects, it is imperative that robots operate safely
and efficiently under real-world conditions. Yet, the environment is seldom known perfectly. Noisy sensors and actuation
errors compound to the errors introduced while estimating features of the environment. We present a novel approach (1) to
incorporate these uncertainties for robot state estimation and (2) to compute the probability of collision pertaining to the
estimated robot configurations. The expression for collision probability is obtained as an infinite series, and we prove its
convergence. An upper bound for the truncation error is also derived, and the number of terms required is demonstrated by
analyzing the convergence for different robot and obstacle configurations. We evaluate our approach using two simulation
domains which use a roadmap-based strategy to synthesize trajectories that satisfy collision probability bounds.

Keywords Motion planning · Belief space planning · Collision probability

1 Introduction

Planning and decision making under uncertainty are funda-
mental requirements for autonomous robots. Uncertainties
often arise due to insufficient knowledge about the environ-
ment, imperfect sensing and inexact robot motion. In these
conditions, the robot poses or other variables of interest can
only be dealt with in terms of probabilities. Planning is there-
fore performed in the belief space, which corresponds to
the set of all probability distributions over possible robot
states [22]. At a given time instant, we consider the belief
or the belief state of the robot which corresponds to a prob-
ability distribution of the robot state (or other variables of
interest) given the measurements and controls thus far [32].
Consequently, for efficient planning and decision making, it
is required to reason about future belief distributions due to
candidate actions and the corresponding expected observa-
tions. Such a problem falls under the category of partially
observable Markov decision processes (POMDPs) [10].
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Robots are becoming ubiquitous in our day-to-day lives
and are being increasingly used in close proximity to humans
and other objects in service-oriented scenarios such as facto-
ries, living spaces, or elderly care facilities. It is therefore of
vital importance that robots operate efficiently and safely in
real-world conditions. Localization is a key aspect for safe
and efficient robot motion as it is a precursor to solve the
problems “where to move to” and “how to reach there”. A
robot perceives the environment through its sensors and dis-
tinct objects known as landmarks aid the robot in localizing.
However, most approaches assume that these landmarks are
known with high certainty. For example, given the map of
the environment, while planning for future actions the stan-
dardMarkov localization1 does not take into account themap
uncertainty, that is, the landmark location uncertainties are
ignored and the locations are assumed to be perfectly known.
This means that given the map and the sensor range2, for any
landmark, there exists a set of viewpoints from which an
observation may be obtained. Let us consider, for example, a
robot equippedwith a laser range finder and observing a land-

1 The application of Bayes filter to the localization problem is called
Markov localization [31].
2 Note that the concepts discussed here are applicable to any sensor
used for robot localization. In particular, in this work (Section 5) we
use a laser range finder and beacons that give signal measurements in
terms of the distance to the beacons.
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mark. Whenever the robot location is such that the landmark
falls within the sensing range, a measurement is obtained.
Thus, there exists a set of robot locations or viewpoints from
which a measurement of the landmark may be obtained.
Therefore, when the landmark locations are assumed to be
perfect, this set of viewpoints can be easily determined since
it depends on the environment map and the sensing capa-
bilities of the sensor employed. Yet, this might not be true
in practice. For example, consider the map of an environ-
ment obtained froma simultaneous localization andmapping
(SLAM) session. Due to the dynamic nature of the environ-
ment, the objects of interests could be occluded when viewed
from the set of viewpoints which would have otherwise
produced a full observation.Moreover, an erroneous localiza-
tion, for example due to wrong data association, could lead to
wrongly estimated object poses. Thus, in such cases it ismore
fitting to consider the uncertainty in the landmark locations.
This landmark uncertainty directly translates to the fact that
the viewpoints whence the object can be observed are uncer-
tain. This is visualized in Fig. 1. As seen on the left-hand side
of the figure, when the object location is known perfectly,
there exists a region (green) from which the object can be
observed. Note that as discussed before, this region is deter-
mined from the environment map and the sensor capabilities.
Some of the viewpoints inside this region are shown in black.
On the right-hand side of the figure, we consider the uncer-
tainty in landmark location; the red shaded region denotes the
uncertainty in landmark location. Since the object location
is not known precisely (object can be anywhere within the
uncertainty region), given a viewpoint, it cannot be said with
certainty that the object will be observed. This is so because
given a viewpoint, a landmark is observed if it falls within the
sensing range. However, since the landmark location is not
fixed and is uncertain, the landmarkmay ormay not bewithin
the sensing range. For example, if the landmark location is
Gaussian distributed, then the landmark, in practice, can be
anywhere within the (say) 3-σ uncertainty region. Thus, we
cannot define a precise region from which the landmark can
be observed. Therefore, one can only reason in terms of the
probability of observing the object from the considered view-
point. This results in a probability distribution function for
the viewpoints. Consequently, not considering this uncer-
tainty can wrongly localize the robot, leading to inefficient
plans causing catastrophes. From now on, we will use the
term object uncertainty to refer to the notion of uncertainty
in landmark location.

In order to ensure safe robots’ motion, it is also essen-
tial to consider collision avoidance strategies. As robots are
being increasingly used in service-oriented scenarios with
both static and dynamic obstacles, deterministic approaches
do not fare well. Moreover, in the case of dynamic obsta-
cles, their future states have to be predicted. Yet this is an

Fig. 1 The red blob denotes an object in the environment. The green
region corresponds to the set of viewpoints from which the object can
be observed; some of these viewpoints are shown as black dots. On the
right-hand side, the red shaded region denotes the uncertainty in object
location, with the red blob denoting its mean position. The correspond-
ing viewpoint region is visualized as the intersection between different
viewpoint regions that correspond to the object being at different loca-
tions (left-hand side shows one instance of this)

added difficulty due to the lack of perfect knowledge of their
motions. As a result, providing safety guarantees is difficult.

1.1 Notations and Problem Definition

Throughout this paper, vectors will be assumed to be column
vectors and will be denoted by lower case letters, that is, x.
The transpose of x will be denoted by xT and its Euclidean
norm by ‖x‖ = √

xT x. A multivariate Gaussian distribu-
tion of x with mean µ and covariance � will be denoted
using the notation x ∼ N (µ, �). Matrices will be denoted
by capital letters. The trace of a square matrix M will be
denoted by tr(M). The identity matrix will be denoted by
I or In when the dimension needs to be stressed. A diago-
nalmatrixwith diagonal elements λ1, . . . , λn will be denoted
by diag(λ1, . . . , λn). Sets will be denoted using calligraphic
capital letters like S or R. Unless otherwise mentioned,
subscripts on vectors/matrices will be used to denote time
indexes and (whenever necessary) superscripts will be used
to indicate the robot or the object that it refers to. For example,
xik represents the state of robot i at time instant k. The notation
P(·) will be used to denote the probability of an event, and
the probability density function (pdf) will be denoted by p(·).
While deriving the belief space planning (BSP) framework
to incorporate object uncertainties, we will mainly follow the
notations and formalisms in [31].

We now formally define the problem that we tackle in this
paper. Consider a robot operating in a partially observable
environment. The map of the environment is either known
a priori or is built using a standard SLAM algorithm. At
any time k, we denote the robot pose (or configuration) by
xk

.= (xk, yk, θk), the acquired measurement from objects
is denoted by zk , and the applied control action is denoted
as uk . Note that by objects we refer to both the landmarks
and the obstacles in the environment. We consider a standard
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motion model with Gaussian noise

xk+1 = f (xk,uk) + wk , wk ∼ N (0, Rk) (1)

where wk is the random unobservable noise, modeled as
a zero mean Gaussian. We note that modeling the random
unobservable noise variables as Gaussians with zero mean is
a common practice in robotics [31]. The objects are detected
through the robot’s sensors and, assuming data association is
known, the observation model can be written as:

zk = h(xk, Oi
k) + vk , vk ∼ N (0, Qk) (2)

where Oi
k is the detected i-th object and vk is the zero mean

Gaussian noise. The function h(xk, Oi
k) denotes the fact that

at time k, the measurement zk is obtained by observing the
i − th object Oi

k from viewpoint (robot location) xk . In the
case of a laser-range finder, the function h could be defined
as the distance between xk and the location of the object
(or any particular point on the object) Oi

k . If we consider
the case of a camera, h may be defined as a pinhole pro-
jection operator, projecting the object Oi

k onto the image
plane. Given the models in (1) and (2), in this paper we focus
on two aspects. First, we consider the object uncertainties
while localizing the robot. Second, we compute the exact
probability of collision under obstacle uncertainty, which
is modeled as a Gaussian distribution. Finally, we evaluate
our approach in two simulation domains: a 2D mobile robot
domain and a 2D manipulator domain. It is to be noted that
for the manipulator domain we will be concerned with the
collision avoidance of the manipulator’s end-effector.

1.2 RelatedWork

BSP has been researched extensively in the past with appli-
cations spanning a variety of areas including autonomous
navigation,multimodal planning, and active SLAM[1,11,16,
20,23,29,30,32]. [11] consider object uncertainty since they
are planning in an unknown environment and require sev-
eral measurements to obtain confidence estimates of object
locations. Thus, they perform active perception, that is, to
look for robot actions that enhance information to reduce
the object uncertainty. This context is different from ours
since we consider a known environment with object uncer-
tainty and focus on active localization incorporating these
uncertainties. In [20], the concept of object uncertainty is
commented upon (they call it scene uncertainty); however,
they do not show how it affects the state estimation. Dynamic
environments are considered in [1,16]; however, the land-
mark/beacon locations are assumed to be known perfectly;
[29,30] also consider perfect landmark locations in the con-
text of task and motion planning. Thus, most active and
passive localization-based approaches focus on robot state

uncertainty and assume perfect knowledge about the loca-
tion of the objects in the environment. However, in practice,
the environment is seldom known with high certainty and
hence, providing formal guarantees for safe navigation is
imperative.

Patil et al. [21] estimate the probability of collision under
robot state uncertainty by truncating the state distributions. In
[3], future state distributions are predicted and the uncertain-
ties are used to compute bounded collision probabilities. Lee
et al. [18] use sigma hulls3 to formulate collision avoidance
constraints in terms of the signed distance to the obstacles.Du
Toit and Burdick [5], Park et al. [19] compute the collision
probability by marginalizing the joint distribution between
the robot andobstacle location. The distributions are assumed
to be Gaussian, and the marginalization is computed with an
indicator function that is true under the collision condition.
However, since there is no closed-form solution to this for-
mulation, an approximation is assumed. Furthermore, Park et
al. compute an upper bound for the collision probability. An
approximation is computed using Monte Carlo integration
in [17], albeit computationally intensive. Another impres-
sive work that uses Monte Carlo approach is Monte Carlo
motion planning (MCMP) [8]. This approach first solves a
deterministic motion planning problem with inflated obsta-
cles and then adjusts the inflation to compute a path that is
exactly as safe as desired.

Linear chance constraints are used to compute bounded
collision-free trajectories with dynamic obstacles in [33].
Axelrod et al. [2] focus exclusively on obstacle uncertainty.
They formalize a notion of “shadows”, which are the geomet-
ric equivalent of confidence intervals for uncertain obstacles.
The shadows fundamentally give rise to loose bounds, but the
computational complexity of bounding the collision proba-
bility is greatly reduced. Uncertain obstacles are modeled
as polytopes with Gaussian-distributed faces in [28]. Plan-
ning a collision-free path in the presence of “risk zones” is
considered in [27] by penalizing the time spent in these risk
zones. Risk contour maps which give the risk information
(uncertainties in location, size and geometry of obstacles) in
uncertain environments are used in [9] to obtain safe paths
with bounded risks. A related approach for randomly mov-
ing obstacles is presented in [7]. Formal verificationmethods
have also been used to construct safe plans [4,26].

Most approaches discussed above compute the collision
probability along a path by summing or multiplying the
probabilities along different waypoints in the path. Boole’s
inequality is used to decouple the total probability in terms
of individual waypoint probabilities. Such approaches tend
to be overly conservative and rather than computing bounded
collision probabilities along a path, the bound should be

3 Sigma hulls are convex hulls of the geometry of individual robot
links transformed according to the sigma points in joint space [18].
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checked for each configuration along a path. Moreover, in
most approaches, the collision probability computed along
each waypoint is an approximation of the true value. On the
one hand, such approximations can overly penalize paths
and could gauge all plans to be infeasible. On the other hand,
some approximations can be lower4 than the true collision
probability values and can lead to synthesizing unsafe plans.

1.3 Contributions

In this paper, two main theoretical contributions are pre-
sented. First, we incorporate object uncertainties in the BSP
planning framework and derive the resulting Bayes filter
in terms of the prediction and measurement updates of the
extendedKalmanfilter (EKF). The second is the computation
of the probability of collision under environment uncer-
tainty. We formulate the collision avoidance constraint as
a quadratic form in random variables. This provides an exact
expression for the collision probability in terms of a con-
verging infinite series. A notion of safety is also formalized
to compute configurations that satisfy the required collision
probability bounds.

Wemake the following assumptions: (1) The uncertainties
are modeled using Gaussian distributions; (2) while formu-
lating the collision constraint, we assume that the robot and
obstacles have circular geometries. However, this is by no
means a limitation and the approach can be extended to
objects with different geometries by considering the con-
figuration spaces.

2 Object Uncertainty

In this section, we focus on a BSP formulation that incorpo-
rates object uncertainties, that is, the viewpoints whence the
objects can be observed are not precisely known. We define
the object spaceO = {Oi |Oi is an object, and 1 ≤ i ≤ |O|}
to be the set of all objects in the environment. The motion (1)
and observation (2) models can be written in a probabilistic
framework as p(xk+1|xk,uk) and p(zk |xk, Oi

k), respectively.
Let us consider that at time k the robot received a measure-
ment zk which was originated by observing object Oi

k . Given
an initial distribution p(x0), and the motion and observa-
tion models p(xk+1|xk,uk) and p(zk |xk, Oi

k), the posterior
probability distribution at time k is the belief b[xk] and
can be written as p(xk |zk, Oi

k, z0:k−1,u0:k−1), where Oi
k is

the object observed at time k, z0:k−1
.= {z0, ..., zk−1} is

the sequence of measurements up to k − 1 and u0:k−1
.=

{u0, ...,uk−1} is the sequence of controls up to k − 1. Using

4 For example, the approach in [5] computes a value lower than the
actual when the robot state covariance is small.

Bayes rule and theorem of total probability, b[xk] can be
expanded as:

p(xk |zk , Oi
k , z0:k−1,u0:k−1)

=ηk p(zk |xk , Oi
k)p(O

i
k |xk)

∫
xk−1

p(xk |xk−1,uk−1)b[xk−1] (3)

where ηk = 1/p(zk |z0:k−1,u0:k−1) is the normalization con-
stant and b[xk−1] ∼ N (µk−1, �k−1) is the belief at time
k − 1. The term p(Oi

k |xk) denotes the probability of observ-
ing the object Oi

k from the pose xk and models the object
uncertainty. Similarly, given an action uk , the propagated
belief can be written as:

b[ ¯xk+1] =
∫
xk

p(xk+1|xk,uk)b[xk] (4)

Given the current belief b[xk] and the control uk , the prop-
agated belief parameters, that is, mean and covariance, can
be computed using the standard EKF prediction as:

µ̄k+1 = f (µk, uk)

�̄k+1 = Fk�k F
T
k + Rk

(5)

where Fk is the Jacobian of f (·) with respect to xk . To com-
pute the posterior belief using EKF update equations, we first
need to model the term p(Oi

k |xk). In this work, we model the
object distribution as a Gaussian distribution given by

p(Oi
k |xk) ∼ N (µOi

k
, �Oi

k
) (6)

where µOi
k
is the mean viewpoint/pose that corresponds to

the maximum probability of observing Oi
k and �Oi

k
is the

associated covariance.
For convenience, we state the probability density func-

tion (pdf) of multivariate Gaussian distributions. For x ∼
N (µ, �), the pdf is of the form:

p(x) = det (2π�)−
1
2 exp

(
−1

2
(x−µ)T�−1(x − µ)

)
(7)

where det(·) denotes the determinant. Expanding the right-
hand side of (3), we have b[xk+1] = η′

k

∫
exp(−Jk+1),

where η′
k contains the non-exponential terms and Jk+1 is

given by

Jk+1 = 1

2

(
zk+1 − h

(
µ̄k+1

) − Hk+1
(
xk+1 − µ̄k+1

))T
Q−1

k+1

(
zk+1 − h

(
µ̄k+1

) − Hk+1
(
xk+1 − µ̄k+1

))

+1

2
(xk+1 − µOi

k+1
)T�−1

Oi
k+1

(xk+1 − µOi
k+1

)

+1

2
(xk+1 − µ̄k+1)

T �̄−1
k+1(xk+1 − µ̄k+1) (8)
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where Hk+1 is the Jacobian of h(·) with respect to xk+1.
We note that when object uncertainty is not considered, the
second term in (8) disappears and the results that we derive
below reduce to that of the standard EKF update case. The
parameters of this Gaussian can be obtained by taking the
first and second derivatives of Jk+1 with respect to xk+1,

∂Jk+1

∂xk+1
= −HT

k+1Q
−1
k+1

(
zk+1 − h(µ̄k+1)−

Hk+1(xk+1 − µ̄k+1)
) + �−1

Oi
k+1

(
xk+1 − µOi

k+1

)
+

�̄−1
k+1

(
xk+1 − µ̄k+1

)
(9)

∂2Jk+1

∂x2k+1

= HT
k+1Q

−1
k+1Hk+1 + �−1

Oi
k+1

+ �̄−1
k+1 (10)

The term (10) is the inverse of the covariance of b[xk+1] [31],
that is,

�k+1 =
(
HT
k+1Q

−1
k+1Hk+1 + �−1

Oi
k+1

+ �̄−1
k+1

)−1

(11)

Since the mean of b[xk+1] is the value that minimizes
Jk+1, it is obtained by equating (9) to zero

HT
k+1Q

−1
k+1

(
zk+1 − h

(
µ̄k+1

) − Hk+1 (xk+1 − μ̄k+1)
)

= �−1
k+1

(
µk+1 − µ̄k+1

) − �−1
Oi
k+1

(
µOi

k+1
− µ̄k+1

)

�⇒ µk+1 = µ̄k+1 + Kk+1
(
zk+1 − h

(
µ̄k+1

))
+�k+1�

−1
Oi
k+1

(
µOi

k+1
− µ̄k+1

)
(12)

where Kk+1 = �k+1HT
k+1Q

−1
k+1 is the Kalman gain.

As in the case of standardEKF, the gain Kk+1 can be trans-
formed to an expression that does not depend on �k+1, by
post-multiplying with an identity matrix I = AA−1, where

A = (
Hk+1�̄k+1

(
�̄k+1

+�Oi
k+1

)−1
�Oi

k+1
HT
k+1 + Qk+1

)
(13)

This gives

Kk+1 = �k+1

(
HT
k+1Q

−1
k+1Hk+1�̄k+1

(
�̄k+1 + �Oi

k+1

)−1

�Oi
k+1

HT
k+1 + HT

k+1

)
A−1 (14)

In order to simplify the above expression for Kk+1, we first
compute the inverse of the term

�̄k+1

(
�̄k+1 + �Oi

k+1

)−1
�Oi

k+1
(15)

The inverse is computed as:

(
�̄k+1

(
�̄k+1 + �Oi

k+1

)−1
�Oi

k+1

)−1

= �−1
Oi
k+1

(
�̄k+1 + �Oi

k+1

)
�̄−1

k+1

= �−1
Oi
k+1

�̄k+1�̄
−1
k+1 + �−1

Oi
k+1

�Oi
k+1

�̄−1
k+1

= �−1
Oi
k+1

+ �̄−1
k+1 (16)

Using (16) and (11), the expression in (14) simplifies to

Kk+1 = �k+1

(
HT
k+1Q

−1
k+1Hk+1 + �−1

Oi
k+1

+ �̄−1
k+1

)
�̄k+1

(
�̄k+1 + �Oi

k+1

)−1
�Oi

k+1
HT
k+1(

Hk+1�̄k+1

(
�̄k+1 + �Oi

k+1

)−1
�Oi

k+1
HT
k+1 + Qk+1

)−1

= �̄k+1

(
�̄k+1 + �Oi

k+1

)−1
�Oi

k+1
HT
k+1(

Hk+1�̄k+1

(
�̄k+1 + �Oi

k+1

)−1
�Oi

k+1
HT
k+1 + Qk+1

)−1

(17)

By treating the sum�−1
Oi
k+1

+ �̄−1
k+1 in (11) as a single term

and applying the matrix inversion lemma on the right-hand
side of (11) and further simplifying using the expression for
the inverse computed in (16), it can be shown that

�k+1 = (I − Kk+1Hk+1) �̄k+1

(
�̄k+1 + �Oi

k+1

)−1
�Oi

k+1

(18)

We note that when no object uncertainty is considered
the update step of the standard EKF gives µk+1 = µ̄k+1 +
Kk+1

(
zk+1 − h

(
µ̄k+1

))
and�k+1 = (I − Kk+1Hk+1) �̄k+1.

The additional term in (12) rightly adjusts the mean µk+1
accounting for the fact that the object location is uncertain.
Similarly, the extra terms in (18) account for the object uncer-
tainty and scale the posterior covariance accordingly.

3 Collision Probability

LetR represent the set of all points occupied by a rigid-body
robot at any given time. Thus,R represents the collection of
points that form the rigid-body robot. Similarly, let S repre-
sent the set of all points occupied by a rigid-body obstacle. A
collision occurs ifR∩S 
= {φ} and we denote the probabil-
ity of collision as P (R ∩ S 
= {φ}). In this work, we assume
circular geometries for R and S with radii r1 and s1, recep-
tively, and we denote the center of mass of the robot and
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the obstacle by xk and s, receptively. By abuse of notation
we will use xk and s equivalently to R and S. The collision
condition will be written in terms of the center of mass as
Cxk ,s : R∩S 
= {φ}. It is noteworthy that both xk and s are not
known precisely but can only be estimated probabilistically,
as seen in the previous section. At this point, we would like
to stress the fact that the concepts and the derivations herein
are valid for any 2D rigid-body robot. Amobile robot may be
represented by a minimum area enclosing circle. In the case
of a 2D manipulator robot, each link can be approximated
by bounding circles that tightly enclose the link. For such
robots, the collision with an obstacle has to be checked for
each bounding circle. For example, consider a manipulator
robot with l bounding circles. Then, the collision condition
for the i−th circle (1 ≤ i ≤ l) is given by Cxik ,s, where x

i
k is

the center of the i−th circle.
Let us now consider an obstacle at any given time instant,

distributed according to the Gaussian s ∼ N (s̄, �s), where s̄
represents the mean and �s the uncertainty in the estimation
of the object. Given the belief at time k, that is, b[xk], the
probability of collision is given by

P
(Cxk ,s) =

∫
xk

∫
s
Ic(xk, s)p(xk, s) (19)

where Cxk ,s as defined above represents the fact that robot
configuration xk and its collision with obstacle at location s
is considered, and Ic is an indicator function defined as:

Ic(xk, s) =
{
1 ifR ∩ S 
= {φ}
0 otherwise.

(20)

Du Toit and Burdick [5], Park et al. [19] approximate the
integral in (19) as V p(xk, s), where V is the 2D footprint
(area) occupied by the robot. For this approximation, in [5]
it is assumed that the robot radius ε is negligible and a point
obstacle is considered for this derivation.

To do away with this approximation, we formulate the
above problem by considering an alternative approach. Since
the robot and obstacle are assumed to be spherical objects,
the collision constraint can be written as:

‖xk − s‖2 ≤ (r1 + s1)
2 (21)

where xk and s are the random vectors that denote the robot
and obstacle pose, respectively. Here, xk and s correspond to
the body-fixed frames in the global frame. As noted before,
the two random vectors in (19) are distributed according to
s ∼ N (s̄, �s) and xk ∼ N (

µk, �k
)
. Let us denote by w =

xk − s, the difference between the two random variables.
Then, we know that w is also a Gaussian, distributed as w ∼
N (

µk − s̄, �k + �s
)
. The collision constraint can now be

written as:

v = ‖w‖2 = wTw ≤ (r1 + s1)
2 (22)

where v is a random vector distributed according to the
squared L2-norm of w. Now, given the probability density
function (pdf) of v, the collision constraint in (21) reduces to
solving the integral

P
(Cxk ,s) =

∫ (r1+s1)2

0
p(v) (23)

where p(v) = Pv(v = v) is the pdf of v. It is notewor-
thy that the above expression is the cumulative distribution
function (cdf) of v, which is defined as: Fv

(
(r1 + s1)2

) =
P

(
v ≤ (r1 + s1)2

)
.

3.1 Quadratic Form in RandomVariables

A quadratic form in random variables is defined as [24],

Definition 1 Let x = (x1, . . . , xn)T denote a random vector
with mean µ = (μ1, . . . , μn)

T and covariance matrix �.
Then, the quadratic form in the random variables x1, . . . , xn
associated with an n × n symmetric matrix A = (ai j ) is

Q(x) = Q(x1, . . . , xn) = xT Ax =
n∑

i=1

n∑
j=1

ai j Xi X j (24)

Let us define y = �− 1
2 x and define a random vector z =(

y − �− 1
2µ

)
. The resulting distribution of z is thus zero

mean with covariance being the identity matrix. Thus, the
quadratic form becomes

Q(x) =
(
z + �− 1

2µ
)T

�
1
2 A�

1
2

(
z + �− 1

2µ
)

(25)

Suppose there exists an orthogonal matrix P , that is,

PPT = I whichdiagonalizes�
1
2 A�

1
2 , then PT�

1
2 A�

1
2 P =

diag (λ1, . . . , λn), where λ1, . . . , λn are the eigenvalues of

�
1
2 A�

1
2 . The quadratic form can now be written as:

Q(x) =
(
z + �− 1

2µ
)T

�
1
2 A�

1
2

(
Z + �− 1

2µ
)

= (u + b)T diag (λ1, . . . , λn) (u + b)

(26)

where u = PT z = (u1, . . . , un)T and b = PT�− 1
2µ =

(b1, . . . , bn)T . The expression in (26) can be written con-
cisely

Q(x) = xT Ax =
n∑

i=1

λi (ui + bi )
2 (27)

123



Intelligent Service Robotics

Theorem 1 The cdf of Q(x) = y = xT Ax with A = AT >

0, x ∼ N (µ, �),� > 0 is

Fy(y) = P(y ≤ y) =
∞∑
k=0

(−1)kck
y

n
2+k

�
( n
2 + k + 1

) (28)

and its pdf is given by

py(y) = P(y = y) =
∞∑
k=0

(−1)kck
y

n
2+k−1

�
( n
2 + k

) (29)

where � denotes the gamma function and

c0 = exp(−1

2

n∑
i=1

b2i )
n∏

i=1

(2λi )
− 1

2

ck = 1

k

k−1∑
i=0

dk−i ci

dk = 1

2

n∑
i=1

(
1 − kb2i

)
(2λi )

−k

The proof of the above theorem is beyond the scope of this
paper, and we refer the interested readers to [24]. It is easily
seen that the left-hand side of (22), is in the quadratic form
Q(y) with A = I , the identity matrix. Thus, the collision
probability can be computed from (28) as:

P
(Cxk ,s) = Fy

(
(r1 + s1)

2
)

(30)

3.2 Convergence and Truncation Error

In this section, we will prove the convergence the infinite
series in (28) and (29). Note that the series expansion of the
pdf in Theorem 1 is of the form:

py(y) =
∞∑
k=0

ckhk(y) (31)

From [14], we have the following lemma.

Lemma 1 Let {hk}∞0 be a sequence of measurable complex-
valued functions on [0,∞] and {ck}∞0 be a sequence of
complex numbers such that

∞∑
k=0

|ck ||hk(y)| ≤ αe(β y) for y ∈ [0,∞] (32)

where α, β are real constants. Then, L (hk(y)) and
L(py(y)) exist for Re(s) > β, and

L(py(y)) =
∞∑
k=0

ck L(hk(s)) (33)

where L(·) denotes the Laplace transform. Let us now define
the term M(θ) such that

M(θ) =
∞∑
k=0

ckθ
k (34)

where the infinite series is a uniformly convergent series
for θ in some region with M(θ) > 0. Let the Laplace
transform of hk(y) be the form L(hk(y)) = ξ(s)ηk(s),
where for Re(s) > β with β being a real constant, ξ(s)
is a non-vanishing analytic function and η(s) is an analytic
function with an inverse function η(ζ(θ)) = θ . For hk(y)
in (29), we have ξ(s) = (2s)−n/2, η(s) = −(2s)−1 and
ζ(θ) = −(2θ)−1. Now let us define

M(θ) = (
L(py) ◦ ζ/ξ ◦ ζ

)
(θ) =

∞∑
k=0

ckθ
k (35)

where ◦ denotes function composition. Using Cauchy’s
inequality, we get

|ck | ≤ m(ρ)

ρk
, m(ρ) = max|θ |=ρ |M(θ)| (36)

Since hk(y) is bounded and, using (36), the condition (32)
in Lemma 1 is satisfied and the series py(y) converges uni-
formly in every bounded interval of y > 0. As a result,
integrating py(y) term-by-term, the obtained series Fy(y) is
uniformly convergent in every bounded interval of y > 0.

If the series in (29) is truncated after N terms, the trunca-
tion error is

e(N ) =
∞∑

k=N+1

|ckhk(y)| =
∣∣∣∣∣

∞∑
k=N+1

ck
y

n
2+k−1

�
( n
2 + k

)
∣∣∣∣∣ (37)

Using (36), an upper bound for the truncation error can hence
be obtained as:

e(N ) ≤ m(ρ)

ρk

∣∣∣∣∣
∞∑

k=N+1

y
n
2+k−1

�
( n
2 + k

)
∣∣∣∣∣ (38)
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where the summation term can be further simplified using
the gamma function identity, ∀ς > 0, �(ς + 1) = ς�(ς),
giving

e(N ) ≤ m(ρ)
(
�

(n
2

)
N !

)−1
(
y

2
)
n
2 −1(

y

2ρ
)N+1exp(

y

2ρ
)

(39)

The truncation error for (28) is obtained in a similar manner

E(N ) ≤ m(ρ)
(
�

(n
2

)
(N + 1)!

)−1 ( y

2

) n
2

(
y

2ρ

)N+1

exp

(
y

2ρ

)

(40)

The expression for m(ρ) is obtained from [15]

m(ρ) =
n∏
j=1

λ
− 1

2
j exp

⎛
⎝−1

2

n∑
j=1

b2jλ j

λ j + ρ

⎞
⎠ n∏

j=1

(1 − ρ

λ j
)−

1
2

(41)

The expression in (41) is valid only if ρ < λ j [14]
and hence ρ < min λ j . Thus, we have m(ρ) → 0 with∑n

j=1 b
2
j → ∞. The larger the distance from the obsta-

cles and the higher the certainty in the robot and obstacle
positions, the greater is the b j (see 26) value. In such scenar-
ios, convergence is often attained within the first few terms
of the series. For a given robot configuration and obsta-
cle parameters, we see that the only varying term in (40)
is (y/2ρ)N+1/(N + 1)! which depends on λ j ’s, that is,
the eigenvalues of �k + �s . Clearly, at time instant k, the
parameter that influences the convergence is the degree of
uncertainty in both the robot and obstacle location, that is,
�k + �s .

The convergence is visualized for different configura-
tions in Fig. 2. The blue and green circles represent a
robot and an obstacle, respectively. The red ellipses cor-
respond to the 3σ uncertainties for different covariances
diag(0.04, 0.04), diag(0.08, 0.08), . . . , diag(0.74, 0.74).
InFig. 2(a), the robot and theobstacle are touching eachother.
For each of these covariances, the number of terms for con-
vergence is shown in Fig. 2(b). The worst case corresponds
to the covariance of diag(0.04, 0.04), requiring 16 terms for
convergence (dashed blue line with spikes in Fig. 2(b)). In
Fig. 2(c), the distance between the robot and the obstacle
is increased by 0.2m and the covariance diag(0.04, 0.04)
needed 12 terms for convergence. The distances are fur-
ther increased by 0.4m and 0.8m in Fig. 2(e), (g) and their
worst-case convergences are 9 and 5, respectively, as seen
in Fig.2(f), (h). The number of terms for worst-case conver-
gence that corresponds to covariance diag(0.04, 0.04) and

Table 1 The maximum number of terms required for convergence and
the corresponding collision probability computation time. The values
correspond to the covariance diag(0.04, 0.04) for each of the configu-
rations

Configuration Terms for convergence Computation time (s)

A 16 0.0412 ± 0.0086

B 12 0.0044 ± 0.0041

C 9 0.0008 ± 0.0003

D 5 0.0004 ± 0.0002

the respective time for collision probability computation are
shown in Table 1.

3.3 Safe Configuration

In the presence of perception and motion uncertainty, pro-
viding safety guarantees for robot motion is imperative. Let
us assume that the obstacle position is known with high
certainty as a result of perfect sensing. However, since the
true state of the robot is not known and only a distribution
of these states can be estimated, collision checking has to
be performed for this distribution of states. Moreover, in
practice, the observations are noisy and this renders the esti-
mated obstacle location (and shape) uncertain. Hence, this
uncertainty should be taken into account while considering
collision avoidance.

Given a robot configuration xk , we define the following
notion of ε−safe configuration.

Definition 2 A robot configuration xk is an ε−safe configu-
ration with respect to an obstacle location s, if the probability
of collision is such that P

(Cxk ,s) ≤ 1 − ε.

For example, a 0.99−safe configuration implies that the prob-
ability of this configuration colliding with the obstacle is at
most 0.01.We use the sampling-based probabilistic roadmap
(PRM) [13] to computemotion plans.As a result, we can only
guarantee probabilistic completeness for returning ε−safe
configurations since the PRMmotion planner is probabilisti-
cally complete [12], that, is the probability of failure decays
to zero exponentially with the number of samples used in the
construction of the roadmap. The failure to find an ε−safe
configuration might be because such a configuration indeed
does not exist or simply because there were not enough sam-
ples.

3.4 Complexity Analysis

It is known that for m nodes, the computational complexity
of PRM is O(m logm) [12]. First let us consider the case of
belief space planning over the PRM graph, without comput-
ing the collision probabilities. Finding a trajectory to the goal
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Fig. 2 Different configurations
for a robot of radius 0.3m and
obstacle of radius 0.5m. For
each configuration, the
evolution of probability of
collision is plotted for different
covariances. In each of the 4
configurations, maximum terms
for convergence are for the
minimum covariance of
diag(0.04, 0.04)

(a) Configuration A (b) Collision probability evo-
lution

(c) Configuration B (d) Collision probability evo-
lution

(e) Configuration C (f) Collision probability evo-
lution

(g) Configuration D (h) Collision probability evo-
lution
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requires performing Bayesian (EKF) update operations. This
basically involves performing matrix operations—matrix
multiplication and inversion of matrices. For a state of
dimension n, the covariance matrix is of dimension O(n2).
Therefore, each step of the Bayesian update has a complexity
of O(n3). If T denotes the number of time steps in the trajec-
tory, then the overall computational complexity is O(n3T ).
Let us now analyze the complexity of collision probability
computation. From (40), we see that for each iteration, the
truncation error varies with (y/2ρ). Therefore, to achieve

E(N ) ≤ δ, for an ε−safe configuration, k = O
(
log δρ

y(1−ε)

)
iterations are required. We note that for each obstacle, the
runtime is increased by this factor.

4 Cost Function

At each time instant, the robot is required to minimize its
control usage and proceed towards the goal xg , while mini-
mizing its state uncertainty.We quantify the state uncertainty
by computing the trace of themarginal covarianceof the robot
position. As a result, we have the following cost function:

c
.= ‖ξ(uk)‖2Mu

+ ‖xk − xg‖2Mg
+ tr

(‖M�‖2�k

) + MC P(C) (42)

where‖x‖S = √
xT Sx is theMahalanobis norm,Mu, Mg, MC

are weight matrices and ξ(uk) is a function that quantifies
control usage. The choice of weight matrices and the control

function vary with application. The term tr
(
‖M�‖2�k

)
=

tr
(
MT

��kM�

)
, returns the marginal covariance of the robot

location. Therefore,M� = τ M̄� , where τ is a positive scalar
and M̄� is a matrix filled with zero or identity entries. P(C)

represents the probability of collision, and MC penalizes the
belief states with higher collision probabilities.

The failure to find an ε−safe configuration might be
because such a configuration indeed does not exist or sim-
ply because there was not enough samples in the roadmap.
In such scenario, the roadmap has to be extended. Differ-
ent strategies could be implemented to efficiently extend
the roadmap but is not the main focus of the current paper.
Therefore, we follow a straightforward approach to addmore
samples when an ε−safe configuration cannot be found.
Given a node from which no ε−safe configuration can be
found, a circle of certain radius (half the maximum dis-
tance allowed between two edges) is drawn. Samples are
then added to the roadmap, and the PRM graph is updated
until an ε−safe configuration is found or until time-out.

Fig. 3 Comparison of our approach to other methods. (a) The robot
state is known perfectly; however, the obstacle location is uncertain. (b)
Robot state uncertainty is considered (contours in blue). The collision
probability value computed with [19] gave a much higher value. (c) A
point-like robot and obstacle are considered. The values computed with
[5,19] are much lower than expected

5 Simulation Results

In this section, we first provide a comparison of our approach
with [19] and [5]. We then explore the capabilities of our
approach in two simulation domains. Performance is eval-
uated on an Intel® Core i7-6500U CPU@2.50GHz×4 with
8GB RAM under Ubuntu 16.04 LTS.

5.1 Comparison to Other Approaches

Park et al. [19] approximate the integral in (19) as
V p(xk, s), where V is the 2D footprint or area occupied by
the robot. For computing p(xk, s), they first assume a dis-
tribution centered around the obstacle with the covariance
being the sum of the robot and obstacle location uncertain-
ties. The collision probability is then computed by finding the
xk that maximizes p(xk, s) and formulate the problem as an
optimization problem with a Lagrange multiplier. In [5], the
density of the center of the robot is used. For comparing with
these approaches, we formulate the problem as given in each
of these works5. In order to validate the values computed
using our approach, we perform numerical integration of the
expression in (19), which gives the exact collision probability
value.

Three different cases are considered as shown in Fig. 3.
The solid green circle denotes an obstacle of radius 0.5m,
and its corresponding uncertainty contours are shown as
green circles. The solid blue circle denotes a robot of radius
0.3m with the blue circles showing the Gaussian contours.
We define a collision probability threshold of 0.1, that is,
a 0.9−safe configuration. The collision probability values
and the computation times are provided in Table 2. In
Fig. 3(a), the robot position known with high certainty and
our approach compute collision probability as 4.61% and

5 For the comparison, the approaches in [5,19] have been reproduced
to the best of our understanding and the reproduced codes (including
numerical integration and our approach) can be found here—https://
bitbucket.org/1729antony/comparison_cp_methods/src/master/
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Table 2 Comparison of
collision probability methods

Case Algorithm Collision probability Computation time (s) Feasible

(a) Numerical integral 4.62% 0.8896 ± 0.0356 Yes

Du Toit and Burdick [5] 5.84% 0.0026 ± 0.0003 Yes

Park et al. [19] 33.26% 0.2367 ± 0.2081 No

Our approach 4.61% 0.0232 ± 0.0024 Yes

(b) Numerical integral 8.25% 1.2309 ± 0.0298 Yes

Du Toit and Burdick [5] 14.20% 0.0021± 0.0001 No

Park et al. [19] 36.31% 0.2108 ± 0.3067 No

Our approach 8.22% 0.0208 ± 0.0021 Yes

(c) Numerical integral 14.82% 1.2450 ± 0.0301 No

Du Toit and Burdick [5] 0.46% 0.0019 ± 0.0004 Yes

Park et al. [19] 0.61% 0.3145 ± 0.4610 Yes

Our approach 14.83% 0.0271 ± 0.0087 No

hence, the given configuration is a 0.9−safe configuration.
The numerical integral provides the actual value and as seen
in Table 2, and it is computed to be 4.62%, thus proving
the exactness of our method. However, the collision prob-
ability computed as given in [19] is 33.26% (almost seven
times our value), predicting the configuration to be unsafe.
The approach in [5] gave the value of 5.84%, a much tighter
upper bound. In Fig. 3(b), there is robot uncertainty along the
horizontal axis and the collision probability computed using
our approach is 8.22%. The actual value is computed to be
8.25%. As compared to the previous case, the probability
has almost doubled. This is quite intuitive as seen from the
robot uncertainty spread and hence, there is greater chance
for intersection between the robot and the obstacle. The value
computed using the approach in [19] is 36.31% (4.5 times
our value). The approach in [5] also gave a higher value
of 14.20%. Unlike the approaches in [5,19], our approach
rightly predicts the configuration to be a 0.9−safe configu-
ration. The higher values obtained using [5,19] are due to the
overly conservative nature of the estimates.

The approach of Park et al. [19] and [5] assumes that the
robot radius is very small. We also compute the collision
probabilities for a robot and an obstacle with radius 0.05m
each,where the robot and the obstacle are touching each other
(Fig. 3(c)). The obstacle location is also much more certain,
with the uncertainty reduced by 97% as compared to cases in
Fig. 3(a),(b). Actual value obtained using numerical integral
is 14.82%. The probability of collision computed using our
approach is 14.83%, whereas, using the approach in [19] the
computed value is 0.61% and the approach in [5] computes
it to be 0.46%. Thus, our approach predicts the configuration
to be unsafe. To get a sense of the actual value, we compute
the area of the covariance matrix, which is 6.28 × 10−4m2.
This clearly indicates that 0.61% is too small a value and
the configuration is not 0.9−safe configuration. Using the
approaches in [5,19] would lead to collision as it predicts the

configuration to be safe. Our approach computes the exact
probability of collision and outperforms the approaches in
[5,19].

5.2 2D Environment Domain

We consider the case of an environment where a mobile
robot is moving in an environment of 30m × 20m. A scaled-
down top view is seen in Fig. 4(a). The underlying PRM
graph, the start (S in the figure) and goal (G in the figure)
locations can also be seen. The gray circles denote the obsta-
cles in the environment. Figure 4(b) shows a Pioneer P3DX
robot at the start location. For the robot motion model, we
consider the following nonlinear dynamics [31]:

xk+1 = xk + δtrans cos(θk + δrot1)

yk+1 = yk + δtrans sin(θk + δrot1)

θk+1 = θk + δrot1 + δrot2

(43)

where xk
.= (x, y, θ) is the robot pose at time k and

uk
.= (δrot1, δtrans, δrot2) is the applied control. The model

assumes that the robot ideally implements the following com-
mands in order: rotation by an angle of δrot1, translation of
δtrans and a final rotation of δrot2 orienting the robot in the
required direction. The robot accrues translational and rota-
tional errors while executing uk and localizes itself by esti-
mating its position using signal measurements from beacons
b̄1, . . . , b̄7, which are located at (xb̄1 , yb̄1), . . . , (xb̄7 , yb̄7).
The signal strength decays quadratically with the distance
to the beacon, giving the following observation model with
sensor noise vk ,

zk =
⎡
⎢⎣
1/

(
(xk − xb̄1)

2 + (yk − yb̄1)
2 + 1

)
...

1/
(
(xk − xb̄7)

2 + (yk − yb̄7)
2 + 1

)

⎤
⎥⎦ + vk (44)
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Fig. 4 Simulation environment. (a) Scaled-down (× 1
4 ) top view of the environment with the sampled roadmap and start and goal locations of the

robot. (b) Pioneer robot at the starting node of the roadmap

Table 3 Different configurations used for the 2D environment domain

Approach Robot radius Obstacle uncertainty Beacon (object) uncertainty Planned trajectory

Our Point No No Fig. 5(a)

Our Point Yes No Fig. 5(b)

Our 0.3 m No No Fig. 5(a)

[5] 0.3 m No No Fig. 5(a)

[19] 0.3 m No No Fig. 5(d)

Our 0.3 m Yes No Fig. 5(c)

Our 0.3 m No Yes Fig. 5(e)

Our 0.3 m No No (true beacon location) Fig. 5(f)

Our 0.3 m No No (mean beacon location) Fig. 5(a)

We validate our approach in the above discussed environ-
ment by varying different parameters, a summary of which is
provided inTable 3. Belowwedetail each of cases considered
in Table 3. We first consider the motion planning approach
for a point-like robot. The cost function is of the form in (42)
with Mu = 0.3, Mg = diag(0.8, 0.8), M� = diag(1, 1)
and MC = 10. The underlying PRM graph with 65 nodes is
shown in Fig. 5, with the green dots denoting the sampled
nodes. The robot, starting from its initial belief state (mean
pose denoted byS in the figure), has to reach the node xg (G in
the figure), while reducing its uncertainty. The blue triangles
denote the beacons that aid in localization. The solid black
circles with radius 0.5m, represent obstacles in the environ-
ment, and the red ellipses denote the 3σ covariances (only the
(x ,y) portion is shown). Unless otherwise mentioned, in all
the experiments, 0.99−safe configurations are solicited and
the total planning time is the average time for 25 different
runs.

We first consider a case with a point robot and no uncer-
tainty in obstacle location. The planned trajectory in this
case is seen in cyan in Fig. 5(a) with total planning time
of 0.0051s(±0.0008s). Please note that the total planning
time also includes the collision probability computation time.

Next, we consider uncertainty in one of the obstacle loca-
tions, whose covariance ellipse is shown in gray. The planned
trajectory is seen in cyan in Fig. 5(b), and the planning was
completed under 0.0279s(±0.0043s). Due to the uncertainty
in the obstacle location, the robot takes a longer route to
avoid collision.A robot of radius 0.3m and certain (negligible
uncertainty) obstacles gave the same trajectory as in Fig. 5(a)
with a planning time of 0.0055s(±0.0009s). However, when
the obstacle location is uncertain, the resulting trajectory is as
shown in Fig. 5(c). A change in the trajectory is observed, as
compared to the case of a point robot in Fig. 5(b). The plan-
ning time in this case is 0.0294s(±0.0047s). It is also worth
mentioning that in Fig. 5(b) and (c), the roadmapwas updated
by adding a node since a 0.99−safe configuration could not
be found. The added node is seen in brown, with its coordi-
nates being approximately (9, 11). We also run the case with
no obstacle uncertainty and a robot of radius 0.3m using the
approach of Park et al. [19]. In this case, the planned trajec-
tory is as given in Fig. 5(d). Note that using our approach,
the same scenario gives a shorter trajectory (Fig. 5(a)). The
longer trajectory computed using the approach in [19] is due
to the fact that a loose upper bound is computed for the col-
lision probability. As a result, a longer trajectory is obtained.
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Fig. 5 Trajectory and the
covariance evolution for single
planning instantiations are
shown. Different cases with
obstacle uncertainty for a point
robot and a robot of radius 0.3m
are shown in (a), (b), (c) and (d).
(e) The planned trajectory when
there is uncertainty in beacon
locations. (f) True beacon
locations are shown in yellow

Contrary to this, we compute the exact collision probabil-
ity and hence, a shorter trajectory is synthesized. The same
scenario is also run with the approach in [5] and produced
a trajectory similar to ours. However, since the uncertainties
are significantly lower, the approximate collision probability
values computed using [5] are much smaller than the actual
values.

Next, we consider the case with uncertainty in the loca-
tion of the beacons. The considered robot radius is 0.3m
with the bottom obstacle being uncertain with covariance
diag(0.49, 0.49). Taking object uncertainty into account, the
planned trajectory with covariance evolution is as shown in
Fig .5(e). Figure 5(f) shows the trajectory planned with true
beacon locations. The beacons are shown in yellow to denote
the true location. Considering only the mean position of the
beacons and neglecting the position uncertainty, the planned

trajectory is as shown in Fig. 5(a). Actual execution of this
would lead to collision with the bottom obstacle. However,
executing the planned trajectory obtained by considering the
uncertainty in beacon locations does not violate the ε−safety
criterion, and all the configurations are 0.99−safe.

It is noteworthy that though we have discussed a 2D envi-
ronment, the approach directly extends to a mobile robot
navigating in a 3D environment. In such domains, the mobile
robot may be represented by a minimum volume enclosing
sphere. Similarly, the obstacles can also be approximated
by their corresponding minimum volume enclosing spheres.
Hence, the collision condition is the same as given in (21),
and therefore, the approach discussed in this paper remains
valid.
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Fig. 6 Trajectory of the
end-effector; green dots denote
its mean and the red ellipses
denote the covariance matrix.
The puck is shown in black, and
the end-effector is shown to its
right. (a) Trajectory and
covariance evolution when
object uncertainty is not
considered and (b) when object
uncertainty is considered

Fig. 7 Green dots denote the
mean of the state trajectory, and
the red ellipses denote the
covariance matrix. Mean
position of the obstacle at each
time instant is visualized in
blue. (a) State trajectory and
covariance evolution during
offline collision avoidance
planning. (b) More information
is acquired during online
planning, reducing the
uncertainty of the obstacle and
thereby leading to a change in
the planned trajectory

5.3 Laser-grasp Domain

We consider two modified versions of the laser-grasp
domain as suggested in [22]. In this domain, a planar robot
manipulator must locate and proceed towards a round puck.
The state space is the position of the manipulator’s end-
effector relative to a grasping point defined directly in front
of the puck. Though the end-effector position is assumed to
be known completely, the state is not directly observed since
the puck position is unknown. Its position can be determined
using the laser range finder that points out as a horizontal line
from the end-effector. The underlying system dynamics is

f (xt ,ut ) = xt + ut (45)

where x ∈ R
2 denotes the state space and u ∈ R

2 is the
end-effector velocity. The cost function is of the form in (42)
with Mu = diag(10, 10), Mg = diag(100, 100), M� =
diag(10000, 10000) and MC = 10.

First, we consider a scenario wherein an additional object
is placed that aids in localization. In this scenario, the state
is the end-effector position which is not known precisely
due to actuation errors. The goal is to place the end-effector
directly in front of the puck so as to be able to grasp it. Both
the object and the puck can be detected by the horizontal
laser. However, the object location is not known exactly, and
the 3σ uncertainty ellipse is shown in light blue in Fig. 6(a)

and (b). The mean position is visualized by the blue blob,
and the yellow blob denotes the actual object location. The
red ellipses represent the state covariance at different points
along the trajectory. Figure 6(a) shows the case in which
object uncertainty is not considered and the object is assumed
to be its mean position. The manipulator moves toward the
object first, localizing the end-effector position and then pro-
ceeds further to place the end-effector at the grasping point.
However, as seen in Fig. 6(a), while executing this plan pro-
duced offline, not considering the object uncertainty leads
to the collision of the end-effector with the true object (in
yellow). When the object uncertainty is considered, the exe-
cution of the plan do not lead to collision, as it can be seen in
Fig. 6(b). This illustrates the fact that not considering object
uncertainty can wrongly localize the robot, leading to catas-
trophes.

Next, we consider a scenario wherein the state space is
the position of the manipulator’s end-effector relative to a
grasping point defined directly in front of the puck. The state
is not directly observed since the puck position is unknown.
However, as soon as the manipulator starts to move, a ball
starts to roll in between the manipulator and the puck. The
ball follows a Gaussian velocity distribution, and therefore at
each time instant, the mean position of the ball and the cor-
responding uncertainty can be estimated. The mean position
of the ball at each time instant is shown in blue in Fig. 7(a)
and (b). The green dots denote the mean of the state trajec-
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tory. As seen in Fig. 7(a), the manipulator initially moves
downwards. However, as the ball comes closer, the manipu-
lator retraces its path and move upwards toward its starting
position to avoid collision. This is so because the safety con-
straint for ε = 0.99 is violated. As the ball keeps moving
upwards, after a while, it is seen that the manipulator takes
a downward action just before reaching its starting position
since the configuration is a 0.99−safe configuration.

The scenario in Fig. 7(b) is similar to that of Fig. 7(a).
However, it is seen that once the manipulator retraces its
path backward towards the starting position, it takes a down-
ward action much earlier. This is because more information
is acquired during online planning and the uncertainty bound
on the obstacle changes with time.

The 2D manipulator domain studied here directly extends
to 3D manipulator scenarios for both static and mobile
manipulators. In the case of static manipulators, the end-
effector is approximated as a sphere. Each link is approx-
imated as a set of spheres kept side by side. However, in
heavily cluttered environments such an approximation can
be computationally intensive since each sphere has to be
checked for collisionwith obstacles.An alternative and effec-
tive approach is to consider the minimum-volume enclosing
ellipsoid for each link [25]. It is known that for every
convex polyhedron, there exists a unique ellipsoid of min-
imal volume that contains the polyhedron and is called the
Löwner–John ellipsoid of the polyhedron [6]. Thus, each
link can be represented by their corresponding Löwner–John
ellipsoids. The distance between two ellipsoids is used to
modify the collision condition in (21). For mobile manipula-
tors, the collision condition should also checked for the base
as discussed in the 2D robot section.

6 Conclusion

In this paper, we have addressed a novel approach to com-
pute the probability of collision under robot and obstacle
pose uncertainties. The collision probability is computed as
an infinite series whose convergence is proved. An upper
bound for the truncation error is also derived. As shown in
Fig. 2, convergence analysis is performed for different con-
figurations and it is seen that our approach is of the order
of milliseconds and therefore can be used in online plan-
ning. We also provide a comparison with the approaches in
[5,19]. In addition, we incorporate landmark uncertainties
in belief space planning and derive the resulting Bayes fil-
ter in terms of the prediction and measurement updates of
the EKF. Finally, experimental evaluation for a mobile robot
scenario and a 2D manipulator is performed to illustrate our
approach. We have considered static obstacles in this paper,
and the immediate future work is to realize the approach in

simulated and real-world environments with dynamic obsta-
cles.
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