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Abstract

This work deals with the problem of modelling the effect due to an interphase zone

between inclusion and matrix in particulate composites to better estimate the bulk

modulus of materials with inclusions. To this end, in this paper the problem of a body

containing a hollow or solid spherical inclusion subjected to a spherically symmetric

loading is investigated in the framework of the elasticity theory. The interphase zone

around the inclusion is modeled by considering the elastic properties varying with the

radius moving away from the interface with inclusion and, asymptotically approaching

the value of the homogeneous matrix. The explicit solutions are obtained in closed
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form by using hypergeometric functions and numerical investigations are performed

to highlight the localised effects of the graded interphase in the stress transfer between

inclusion and matrix. Finally, the exact solutions are used to estimate the effective bulk

modulus of a material containing a dispersion of hollow or solid spherical inclusions with

graded interphase zone.

Keywords: Elasticity; Particle reinforced-composites; Bulk modulus; Spherical inclusions.

1 Introduction

In many particulate-reinforced composites the interface between the matrix and the inclu-

sion plays an important role to estimate their effective elastic properties. From the first

papers in which inclusion/matrix interface are assumed perfectly bonded together, a num-

ber of researchers have attempted to account for interface effects by using analytical and

numerical approaches. Furthermore, in some cases, the inclusions are surrounded by thin

interface layers whose thickness is usually much smaller than the inclusion sizes and, as

a consequence, the properties of the interface layer do not significantly affect the elastic

constant of the composite; on the contrary, if the interface thickness is comparable with the

inclusion size, the effect of the interface zone properties may be substantial on the evaluation

of the elastic properties of the composite: i.e. nanoparticle reinforced materials (Sevostianov

and Kachanov, 2007), hollow particle filled composites (Tagliavia et al., 2011), as well as

concrete (Lutz and Zimmerman, 1996a).

In 1964 Hashin and Rosen developed a model to take into account the interphase effects,

by considering an homogenous interphase zone around the inclusion with different elastic

properties from those of matrix or inclusion; but, starting from 1990, some authors pre-

sented models in which a distinct inhomogeneous interphase zone with step by step (Herve

and Zaoui 1993) or smooth variation of the elastic moduli is introduced (Jayaraman and Reif-

snider, 1992). Indeed, Lutz and Zimmerman (1996a) investigated the transfer of the stress

between solid spherical inclusion and matrix to predict the bulk modulus of the composite,
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modelling the interphase as a layer with elastic properties variable in the radial direction

but with a smooth transition between interphase and matrix. A similar approach is also

used by authors to estimate the thermal/electrical conductivity of particulate composites

that contain a dispersion of solid spherical inclusions (Lutz and Zimmerman, 1996b; Lutz

and Zimmerman, 2005).

Though great of attention has been paid to the study of solid inclusions with interphase

zone (Wang and Jasiuk, 1998; Shen and Li, 2003, 2005); starting from 1970, the demand

for light weight and high strength materials have increased the use of micro hollow spheres

(Lee and Westmann, 1970; Huang and Gibson,1993). Some papers are devoted to estimating

the elastic properties of hollow-sphere-reinforced composite with perfect interface (Bardella

and Genna,2001; Marur, 2005; Porfiri and Gupta, 2009) or imperfect interface (Tagliavia

et al. 2011; Marur, 2014). But, experimental results and application to nanocomposites

also suggest investigating the effects of an inhomogeneous interphase zone around inclusion

which, when the inclusion geometry is comparable with the thickness of the interphase,

allows to a stress concentration around the inclusion that may affect the elastic properties of

the composite (Shen and Li, 2005; Sevostianov and Kachanov, 2007). As far as the author

knows, in the literature are not present elastic analytical solutions in closed form for spherical

solid or hollow inclusions taking into account graded interphase effects.

This work deals with the problem introduced above. In particular, in this paper an

elastic analytical solution is developed in closed form for the problem of hydrostatic pressure

of a homogeneous body containing a hollow spherical inclusion, and the solution for solid

inclusion is determined as a consequence. In section 2, assuming spherically symmetric

loading, the mathematical model is formulated with the introduction of an inhomogeneous

interphase around the inclusion to describe the transition zone between the inclusion and

the matrix; in other words, this interphase is considered as a functionally graded material

(FGM) with radial variation of the elastic moduli from the centre of the inclusion that

asymptotically assumes the homogeneous elastic properties of the matrix. Similar elastic

solutions are obtained by the author to study both the effects of a FGM thin layer on the
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inner surface of a cylinder under pressure (Sburlati, 2012) and how the stress concentration

factor is altered by a layer around a hole in a plate subjected to uniaxial load (Sburlati,

2013). In section 3 the analytical solution is obtained in the framework of the elasticity

theory by applying the theory of hypergeometric functions (Abramovitz and Stegun, 1964;

Erdelyi, 1953). The explicit solution is written in closed form in section 4 and permit us to

understand the manner in which the interphase affects the stress transfer between spherical

inclusions and matrix. The solution is also written in detail for solid inclusion without

interphase. In section 5 the in closed-form analytical solution is used to obtain effective

bulk modulus of the equivalent composite, by adopting the energy approach (Willis, 1981).

Numerical examples are performed in section 6 to highlight the effects of the geometric and

physical properties of the interphase on the stress transfer and the bulk modulus.

The results obtained in the paper may be the starting point to predict other elastic

properties of the equivalent homogeneous composite as the thermal expansion coefficient

and the conductivity. Furthermore, we remark that the interphase region may describe

phenomena occurring during the material processing stage but the understanding of the

role of the interphase may also permit us to tailor the interphase properties around the

inclusions in order to enhance the mechanical properties of composites (i.e: Paskaramoorthy

et al. 2009; Batra, 2011; Yao et al. 2013; Zhang Y. et al. 2013).

2 Mathematical model

In this section a two-phase model is introduced to evaluate the effects of a graded interphase

on the stress transfer mechanism between a spherical inclusion and a matrix in a particulate

composite subjected to a spherically symmetric loading. We start to analyse the case of

hollow spherical inclusion and then we obtain the solution for solid spherical inclusion.

The three-dimensional problem studied for the hollow spherical inclusion case is shown in

Figure 1. A single, homogeneous, isotropic, spherical hollow inclusion of inner radius a and

outer radius b is embedded in a matrix and subjected to a remote hydrostatic load p. The
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matrix is modelled as an isotropic graded material in radial direction in order to describe an

interphase zone of thickness t around the inclusion in which the elastic properties, moving

away from the interface with the inclusion, asymptotically approach the constant values of

the elastic properties of the matrix without inclusion. The interface between inclusion and

interphase is assumed still distinct since the inhomogeneous region is restricted to the matrix

region around the inclusion. Again, the graded interphase zone and the matrix are described

with a power variation law in radial direction.

By using a spherical coordinate system (0; r, θ, φ), the load symmetry permits us to

reduce the problem to determine the radial displacement u and the radial and hoop stresses:

σr, σθ = σφ. The stresses and the displacement in inclusion and in matrix will be index with

the superscript (i) and (m) respectively. Then, the power laws for the Lamé moduli in the

isotropic graded interphase/matrix region (m) are assumed as

λ(r) = λm + λ̄

(
b

r

)β

, μ(r) = μm + μ̄

(
b

r

)β

, (2.1)

where

λ̄ = λip − λm, μ̄ = μip − μm. (2.2)

and the Lamé constants λm, μm are the asymptotic values of the matrix and λip, μip the

values of the interphase elastic constants at the interface between inclusion and interphase

(r = b). The parameter β > 0 is called the inhomogeneity parameter and permits us

to control the interphase thickness, indeed high beta values correspond to small interphase

thickness and viceversa. Furthermore, the sign of the quantities λ̄ and μ̄ describe hard or soft

interphases in which the elastic properties respectively decrease (λ̄ > 0, μ̄ > 0) or increase

(λ̄ < 0, μ̄ < 0) away from inclusion/interphase interface.

To complete the mathematical problem, we write the boundary and the asymptotic con-

ditions in the following form (Love, 1944):

σ
(i)
r (a) = 0, (2.3)

lim
r→∞ σ(m)

r (r) = −p. (2.4)
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where p > 0 is the remote hydrostatic pressure. Then, the interphase and the inclusion in

r = b are assumed perfectly bonded together as

σ
(i)
r (b) = σ

(m)
r (b), u(i)(b) = u(m)(b). (2.5)

3 Analytical solution

The field elasticity equation in terms of radial displacement, for inhomogeneous isotropic

material with elastic properties described by equation (2.1) and (2.2) and subjected to a

radially symmetric load, assumes the following form (Sokolnikoff, 1956):

((r
b

)β

L− 1

)
u′′ (r) +

(
2
(r
b

)β

L+ β − 2

)
1

r
u′ (r)−

(
2
(r
b

)β

L− N̄

)
1

r2
u (r) = 0,

(3.1)

where

L = −2μm + λm

2μ̄+ λ̄
, N̄ =

2(2μ̄+ λ̄(1 + β))

2μ̄+ λ̄
. (3.2)

and the quantity L may take positive (soft interphase) or negative (hard interphase) values

while the quantity N̄ is always positive.

We remark that the second-order, linear, ordinary differential equation with variable

coefficients assumes the same form as equation (10a) of Lutz and Zimmerman (1996a) and

that these authors solved this equation for solid spherical inclusion by using the method of

Frobenius series. Instead, in this paper we perform a suitable rewriting of (3.1) in order to

obtain the solution in closed form using the hypergeometric functions (Erdelyi, 1953).

To this end, the following transformation

u(r) =
(r
b

)β−1
2

T (r), (3.3)

and the change of variable in the form

s(r) =
(r
b

)β

L, (3.4)

are introduced. Substituting equations (3.3) and (3.4), the equation (3.1) for L > 0 (μip <
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μm and λip < λm), is written as

s (1− s)T ′′ (s) + (1− 2s)T ′ (s)−
(
1

4
+

G2

s
− 9

4β2

)
T (s) = 0, (3.5)

while, for L < 0 (μip > μm and λip > λm), instead it assumes the form

s (1 + s)T ′′ (s) + (1 + 2 s)T ′ (s) +
(
1

4
− G2

s
− 9

4β2

)
T (s) = 0, (3.6)

where the always positive quantity is introduced as

G2 =
1

4

(
1− 2

β
+

4N̄ + 1

β2

)
> 0. (3.7)

We observe that the equation (3.6) may be reduced to equation (3.5) by putting s = −s;

in this way, the solution of the differential equations (3.5) and (3.6) may be written in a

unique form as a linear combination of two hypergeometric functions, that we choose regular

at infinity to be able to manage asymptotic boundary condition (Erdelyi, 1953, (see vol.1,

p.75)). So we write the solution of (3.6) in the form of a linear combination of the following

two functions:

T1(s) = −s−
3+β
2β 2F1

(
1

2
−G+

3

2β
,
1

2
+G+

3

2β
; 1 +

3

β
;−s−1

)
,

T2(s) = −s
3−β
2β 2F1

(
1

2
−G− 3

2β
,
1

2
+G− 3

2β
; 1− 3

β
;−s−1

)
.

(3.8)

where 2F1 (a, b; c; s) is the hypergeometric function (Abramovitz and Stegun, 1964 (see p.563

eqs.15.5.7-8)). Then, we introduce the following expressions

Θ1(r) = 2F1

(
1

2
−G+

3

2β
,
1

2
+G+

3

2β
; 1 +

3

β
;

bβ

rβL

)
,

Θ2(r) = 2F1

(
1

2
−G− 3

2β
,
1

2
+G− 3

2β
; 1− 3

β
;
bβ

rβL

)
,

Θ3(r) = 2F1

(
3

2
−G+

3

2β
,
3

2
+G+

3

2β
; 2 +

3

β
;

bβ

rβL

)
,

Θ4(r) = 2F1

(
3

2
−G− 3

2β
,
3

2
+G− 3

2β
; 2− 3

β
;
bβ

rβL

)
,

(3.9)

where, to help reading, we recall that

Θ3(r) =
rβ+1

bβc1β
Θ′

1(r), Θ4(r) =
rβ+1

bβc2β
Θ′

2(r), (3.10)

and, we also introduce the quantities

c1 =
(2Gβ + β + 3)(2Gβ − β − 3)

4β L(β + 3)
,

c2 =
(2Gβ + β − 3)(2Gβ − β + 3)

4β L(β − 3)
,

(3.11)
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that can be rewritten in the following form

c1 =
4 (μip − μm)

(λm + 2μm) (β + 3)
,

c2 = − (3 (λip − λm) + 2 (μip − μm))

(λm + 2μm) (β − 3)
.

(3.12)

We observe that these quantities are zero in absence of the interphase zone (λip = λm, μip =

μm).

So, using (3.4) and (3.3) and introducing two integration constants A1 and A2, we obtain

the radial displacement in the graded material as

u (r) =
A1

r2
Θ1(r) +A2 rΘ2(r). (3.13)

Consequently, the stress field is

σr (r) =
A1

r3
f1(r) +A2 f2(r),

σθ(r) =
A1

r3
f3(r) +A2 f4(r),

(3.14)

where

f1(r) =
λ(r) + 2μ(r)

rβ
bβc1βΘ3(r) − 4μ(r)Θ1(r),

f2(r) =
λ(r) + 2μ(r)

rβ
bβc2Θ4(r) + (3λ(r) + 2μ(r)) Θ2(r),

f3(r) =
λ(r)

rβ
bββ c1Θ3(r) + 2μ(r)Θ1(r),

f4(r) =
λ(r)

rβ
bββ c2Θ4(r) + (3λ(r) + 2μ(r)) Θ2(r),

(3.15)

in which λ(r) and μ(r) are the functions introduced in (2.1) (2.2).

The integration constants A1, A2 of (3.13) and (3.14), will be determined to find the

explicit solution of the problem of Figure 1, by using interface and asymptotic conditions as

detailed in the next section.

In the case of homogeneous material the field equation (3.1) becomes (Love, 1944):

u′′ (r) +
2

r
u′ (r)− 2

r2
u(r) = 0, (3.16)
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whose solution is

u (r) =
B1

r2
+B2r, (3.17)

and the stresses are

σr (r) = −4μ
B1

r3
+ (3λ+ 2μ)B2,

σθ (r) = 4μ
B1

r3
+ (3λ+ 2μ)B2.

(3.18)

We remark that as a consequence of the form of (3.12), in absence of interphase zone,

(λip = λm, μip = μm), we obtain: G = 1/2 and Θi(r) = 1, for (i = 1, 2, 3, 4). In this way,

the solution (3.13,14) assumes the form of equations (3.17,18).

This solution will be assumed to describe homogeneous inclusion in the problem of Figure

1 with λ = λi, μ = μi.

4 Explicit in closed-form solution

In this section the explicit solution of the problem studied is obtained by applying the equa-

tions (3.13) and (3.14) for the matrix (m), in terms of the constants A1, A2, and the equations

(3.17) and (3.18) for the inclusion (i), in terms of the constants B1, B2. Using boundary con-

dition (2.3) and the asymptotic condition (2.4), together with interface conditions (2.5), the

four constants are explicitly determined. In the following subsections we explicitly write the

constant values respectively for hollow and solid inclusions. But, first of all, we observe that

to introduce the condition (2.4) due to the remote load on the matrix it may be convenient to

write the asymptotic expressions for the graded solution (3.13,14) obtained in the previous

section.

4.1 Asymptotic form of the solution for inhomogeneous material

For a generic hypergeometric function 2F1(A,B;C; s) we write its asymptotic expansion

(Abramovitz and Stegun, 1965) as

2F1(A,B;C; s) = 1 +
BAs

C
+O(s2). (4.1)
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Neglecting higher order terms in (4.1) and using expression (3.13) for the displacement in

graded material, we obtain

u(a)(r) =

(
1− bβc1

rβ

)
A1

r2
+

(
1− bβc2

rβ

)
rA2, (4.2)

and for the stresses (3.14)

σ
(a)
r (r) =

A1

r3
f̄1(r) +A2 f̄2(r),

σ
(a)
θ (r) =

A1

r3
f̄3(r) +A2 f̄4(r),

(4.3)

with

f̄1(r) =
4 (μm − μip) b

β

rβ
+

((λm + 2μm)β + 4μm)bβ

rβ
c1 − 4μm,

f̄2(r) =
(3 (λip − λm) + 2 (μip − μm)) bβ

rβ
+

((λm + 2μm)β − 3λm − 2μm) bβ

rβ
c2 + 3λm + 2μm,

f̄3(r) =
2(μip − μm)bβ

rβ
+

(βλm − 2μm)bβ

rβ
c1 + 2μm,

f̄4(r) =
(3 (λip − λm) + 2 (μip − μm)) bβ

rβ
+

(λmβ − 3λm − 2μm) bβ

rβ
c2 + 3λm + 2μm.

(4.4)

where the superscript (a) denotes the asymptotic expressions of the displacement and stresses.

4.2 Explicit solution for a hollow inclusion with and without inter-

phase

Now, we assume solution (3.13-14) for the matrix (m) and the solution (3.17-18) for the

inclusion (i). To determine the constant values we impose the condition (2.3-5) of section 2.

The condition (2.3) permits us to obtain

B1 =
(3λi + 2μ1)a

3

4μi
B2, (4.5)

and the asymptotic form (4.3) used to apply the radial stress condition due to remote load

(2.4) gives rise to

A2 = − p

3λm + 2μm
. (4.6)
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The constants A1 and B2 are determined using interface conditions (2.5) at r = b on the

displacement and the radial stress. So, we explicitly obtain the remaining constants for

hollow spherical inclusion with interphase in the following form:

A1 =
NA

D
, B2 =

NB

D
,

where

NA = p b3 β c2 (λip + 2μip)
(
(3λi + 2μi) a

3 + 4 b3μi

)
Θ4 (b)+

+p b3
(
(3λip + 2μip + 4μi) (3λi + 2μi) a

3 − 4μi (3λi + 2μi − 3λip − 2μip) b
3
)
Θ2 (b) ,

NB = −4 p b3μi (λip + 2μip) ((Θ3 (b)β c1 − 3Θ1 (b))Θ2 (b)−Θ1 (b)Θ4 (b) c2β) ,

and

D = β c1 (3λm + 2μm) (λip + 2μip)
(
(3λi + 2μi) a

3 + 4 b3μi

)
Θ3 (b)+

+4 (3λm + 2μm)
(
(μi − μip) (3λi + 2μi) a

3 − μi (3λi + 2μi + 4μip) b
3
)
Θ1 (b) ,

(4.7)

where the quantities Θ1(b),Θ2(b),Θ3(b),Θ4(b), are obtained by putting r = b in (3.9).

The constants A1 and B2 for hollow spherical inclusion without interphase assume the

forms (4.5,6) while the (4.7) become

A1 =
p b3

(
(3λm + 2μm + 4μi) (3λi + 2μi) a

3 − 4μi (3λi + 2μi − 3λm − 2μm) b3
)

4 (2μm + 3λm) (((μi − μm) (2μi + 3λi) a3 − μi (4μm + 3λi + 2μi) b3))
,

B2 =
3 p b3μi (λm + 2μm)

(2μm + 3λm) ((μi − μm) (2μi + 3λi) a3 − μi (4μm + 3λi + 2μi) b3)
.

(4.8)

Indeed, the hypergeometric functions for homogeneous matrix are equal to one and further-

more c1 = c2 = 0 from (3.12).

The solution for the problem shown in section 2 is thus solved in closed form substituting

the constants (4.6,7 or 8) in the equations (3.13,14) and (3.17,18) respectively to explicitly

obtain the elastic response in the matrix and in the inclusion.
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4.3 Explicit solution for a solid inclusion with and without inter-

phase

In this section we also explicitly write the constant forms for the case of spherical solid

inclusion of radius b. In this case the condition (2.3) gives B1 = 0 and the remote load

condition is in the same form as (4.6). The remaining constants are obtained putting a = 0

in (4.7) and rewritten to help reading as

A1 =
p b3 ((3λi + 2μi − 3λip − 2μip)Θ2 (b)− β c2 (λip + 2μip)Θ4 (b))

(3λm + 2μm) ((4μip + 3λi + 2μi) Θ1 (b)− β c1 (λip + 2μip)Θ3 (b))
,

A2 = − p

3λm + 2μm
,

B1 = 0,

B2 =
p (λip + 2μip) ((c1Θ3 (b)Θ2 (b)−Θ4 (b)Θ1 (b) c2)β − 3Θ2 (b)Θ1 (b))

(3λm + 2μm) ((4μip + 3λi + 2μi)Θ1 (b)− β c1 (λip + 2μip)Θ3 (b))
.

(4.9)

The case without interphase is obtained from (4.9) for λip = λm, μip = μm, and c1 =

c2 = 0, in the simple form

A1 =
pb3 (3λi + 2μi − 3λm − 2μm)

(3λm + 2μm) (3λi + 2μi + 4μm)
,

B2 = − 3 p (λm + 2μm)

(3λm + 2μm) (3λi + 2μi + 4μm)
.

(4.10)

5 Effective bulk modulus of a material containing a dis-

persion of hollow or solid inclusions

The explicit solution obtained in the previous section permit us to determine the effective

bulk modulus in a particulate composite that contains a random dispersion of spherical

inclusions, taking into account the effect of an interphase zone. As in previous section 4, the

hollow inclusion case with interphase is firstly studied by using an energy approach and the

solid case is obtained as a consequence.

The strain energy of a body Ω can be computed as

U =
1

2

∫
Ω

σ · ε dV. (5.1)

This energy is written for two different spherical bodies of radius R and same hydrostatic

pressure load in r = R. The first one is an inhomogeneous solid with a single, centered
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spherical, hollow inclusion of inner radius a (with σr(a) = 0) and outer radius b. By using

the divergence theorem, the equation (5.1) assumes the form

Ucomp = 2 π u (R)σr (R)R2. (5.2)

In similar way, we write the strain energy for the second homogeneous solid (with 0 < r < R)

in the form

Uh =
2π R3 (σr (R))2

3Keff
, (5.3)

where Keff is the effective bulk modulus of the equivalent homogeneous solid, determined

assuming Ucomp = Uh (Willis, 1981). The comparison of the strain energy of two solids is

performed by introduction the assumption of infinite bodies (R → ∞); so doing, we get

Keff = lim
R→∞

σr(R)R

3 u(R)
. (5.4)

Now, we consider the ratio c = (b/R)3, that denotes the volumetric fraction of the

inclusion in the matrix, and the ratio α = a/b; furthermore, we assume that these parameters

are fixed in this limit. In order to explicitly get the effective bulk modulus of equation (5.4),

we write the radial stress and the displacement in r = R in terms of c :

σ (R) = 4
(
(μm − μip) c

β
3 − μm

)
p h1 (c)Nc+

+
(
c

β
3 (λm + 2μm) + c

2β
3 (2 (μip − μm) + λip − λm)

)
c1β p h3 (c)Nc+

−3λm + 2μm + c
β
3 (3 (λip + λm) + 2 (μip − μm))

3λm + 2μm
p h2 (c)+

−c
2β
3 (2 (μip − μm) + λip − λm) + c

β
3 (λm + 2μm)

3λm + 2μm
c2β p h4 (c) ,

u (R) =

(
h1 (c)Nc− h2 (c)

3λm + 2μm

)
Rp,

(5.5)

where we have set hi(c) = Θi(b/c
1/3), i = 1, ..4 (see equations (3.9)) and N =

A1

p b3
is
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written in terms of the ratio α as:

N =
N1

N2
,

N1 = (2μi + 3λi) ((2μip + λip)Θ4(b)β c2 + (3λip + 4μi + 2μip)Θ2(b))α
3+

+4 (2μip + λip)μiΘ4(b)β c2 − 4μi (3λi + 2μi − 3λip − 2μip)Θ2(b),

N2 = (2μi + 3λi) (2μm + 3λm) ((λip + 2μip)Θ3(b)β c1 + 4 (μi − μip)Θ1(b))α
3+

+4 (2μm + 3λm)μi ((2μip + λip)Θ3(b)β c1 − (3λi + 2μi + 4μip)Θ1(b)) .

(5.6)

Substituting equations (5.5) in (5.4) we obtain an expression not depending from the

radius R but only from c; in this way, the effective bulk mdulus in terms of elastic and geo-

metric properties is obtained in closed form for the case of nondilute inclusions (Christensen,

2005).

Then, in order to obtain the bulk modulus for c << 1 (dilute inclusion case), we assume

β > 3 (see section 6 for a discussion on this assumption) and neglect higher terms in c in

equations (5.5). So doing, we obtain

σr (R) = − (4μmN c+ 1) p,

u (R) =

(
N c− 1

2μm + 3λm

)
pR,

(5.7)

and substituting equations (5.7) in (5.4) we perform an expansion in c and consider only

the first term in c. So the bulk modulus for a dilute dispersion of hollow inclusions with

interphase becomes

Keff

Km
= (3Km + 4μm)N c+ 1, (5.8)

where Km = (3λm + 2μm)/3.

Now, the bulk modulus for hollow inclusion without interphase is obtained by using

equations (5.4-5) or (5.8) with

N =
(2μi + 3λi) (3λm + 4μi + 2μm)α3 − 4μi (3λi + 2μi − 3λm − 2μm)

(4 (2μi + 3λi) (μi − μm)α3 − 4μi (3λi + 2μi + 4μm)) (2μm + 3λm)
, (5.9)

that, gives a result in agreement with the effective bulk modulus obtained by Porfiri and

Gupta (2009).
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The case of solid inclusion with interphase is obtained assuming

N =
(2μip + λip)Θ4(b)β c2 − (3λi + 2μi − 3λip − 2μip)Θ2(b)

((2μip + λip)Θ3(b)β c1 − (3λi + 2μi + 4μip)Θ1(b)) (2μm + 3λm)
. (5.10)

Finally, for solid inclusion without interphase case, assuming λip = λm, μip = μm and

c1 = c2 = 0 in (5.6), we get (i.e. Christensen (2005)):

N =
3λi + 2μi − 3λm − 2μm

(3λi + 2μi + 4μm) (2μm + 3λm)
. (5.11)

Furthermore, we remark that formula (5.8), in the case 1/L << 1, corresponding to small

differences between the elastic properties of the interphase (λip
∼= λm, μip

∼= μm), assumes a

simplified form by using the following asymptotic expansions (4.1) for Θi(b) :

Θ1 (b) = 1− c1, Θ2 (b) = 1− c2, Θ3 (b) = 1, Θ4 (b) = 1. (5.12)

6 Numerical results

In this section we numerically investigate the elastic solutions obtained in the previous sec-

tions by introducing three numerical examples. The first permits us to check the elastic

solution of subsection (4.2.3) using the data of the paper of Lutz and Zimmerman (1996a),

for the solid inclusion case of radius b with and without inclusion. The second example

investigates the graded interphase effects in hollow inclusions for different inhomogeneity

parameter values in comparison with the case without inclusion. The third example con-

cerns the investigation of the interphase effects on the effective bulk modulus obtained in

section 5.

Firstly, in this section, the behaviour of the distribution law in the interphase zone for

the hard interphase case is shown in Figure 2 in terms of the β−parameter that describes the

interphase thickness t; in particular, we assume that the elastic modulus value in r = b+ t is

obtained to less than d% of the asymptotic value of the matrix. So, for the hard interphase,

we write

t =

(
100

d

)1/β (
λip − λm

λm

)1/β

b− b, (6.1)
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and so we explicitly obtain

β = ln

(
100 (λip − λm)

λm d

)(
ln

(
b+ t

b

))−1

(6.2)

and by solving with respect to β, we determine the value that gives the required interphase

thickness in terms of the elastic properties λip and λm; in a similar way, for the other

Lamé modulus. Larger values of β−parameter correspond to interphase zones that are

more localized and viceversa. In Figure 2 the behaviour of the distribution law for different

interphase thicknesses (t = b − a, t = b/2, t = a, t = b) is shown for hard interphases

assuming respectively λip = 1.5λm, μip = 1.5μm. By equation (6.2), assuming d = 1, the

values of the inhomogeneity parameters respectively become: β = 21.46, 9.65, 6.65, 5.64.

In a similar way it is possible to obtain the distribution law behaviour for soft interphase

assuming λip = 0.5λm, μip = 0.5μm that permit us to determine the same corresponding β

values.

Example 1. In this example a solid inclusion of radius b embedded in a matrix is

considered assuming soft and hard interphase with elastic properties of Figure 2 and d = 1.

The interphase thickness ratio t = 0.25 b is considered and corresponds, by equations (6.2),

to β = 17.53. For the comparisons with the case without interphase we will put λip = λm and

μip = μm. We observe that the value β = 10, assumed in the paper of Lutz and Zimmerman

(1996a), allow us to get: (λ(b + t)− λm)/λm ≈ 5% .

The normalized radial displacement is shown in Figure 3 for soft and hard interphases

and the case without interphase; we observe that the effect of the interphase is localized

around the interphase zone and the behaviour is similar to the case without interphase. The

effect of interphase in matrix decreases quickly and disappears at r = 2a. In Figure 4 the

normalized radial stress shows an increase in inclusion and matrix, for hard interphase, while

a decrease for soft inclusion, with respect to the absence of interphase zone. The normalized

hoop stress σθ = σφ is shown in Figure 5. The gap due to the mismatch between the elastic

properties of inclusion and interphase increases for soft interphase and the effects, also in

this case, are confined to inside and around inclusion.
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The numerical results obtained by the solution from Section 4.2.2 are in perfect agreement

with the results obtained by Lutz and Zimmerman (1996a).

Example 2. In this example hollow inclusions are investigated by assuming the nu-

merical values of the elastic properties of the previous example in the cases of hard and

soft interphase. The hollow inclusion is considered with ratio radius a/b = 0.8 and the

responses to different interphase thicknesses are shown assuming the ratios: t/b = 0.25, 1, 2

corresponding, from equation (5.2) respectively at β = 17.53, 5.64, 3.56. Larger values of in-

terphase thickness are not usual in application, however, these cases are presented to better

highlight the effects of the interphase zone thickness.

In Figure 6 the normalized radial displacement is shown; we observe that the displacement

in inclusion decreases for soft interphase and increases for hard interphase with respect to

the case without interphase; the decrease is more significant for soft interphase and augments

with the increase of the interphase thickness. The displacement in matrix increases or

decreases respectively for soft or hard interphase. In Figure 7 the consequence of the graded

interphase on the normalized radial stress is shown to be localized outside the inclusion where

the stress increases, for hard interphase, or decreases, for soft interphase. Furthermore, the

effects increase with larger interphase thickness. Instead, the hoop stress shown in Figure 8

presents different behaviour in which the gap at the interface increases, in the case of soft

interphase with respect to the hard interphase case and the case without interphase. In

addition, the stress inside inclusion is perturbed and, in the case of soft interphase, increases

with a greater interphase thickness. We observe that the interphase effects decrease more

quickly with respect to the radial stress and displacement.

Example 3. Now, the effective bulk modulus for hollow or solid inclusions obtained in

section 5 is studied in order to shown how the interphase thickness alters the bulk modulus

of the composite. In particular, in Figure 9 the normalized effective bulk modulus vs the

volumetric fraction c is obtained for solid and hollow inclusions with and without interphase.

By assuming numerical parameters of the previous examples with β = 10 (Lutz et al.(1997)),

we observe the interphase sensitivity on bulk modulus in solid and hollow inclusions for
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nondilute and dilute cases.

7 Conclusions

Explicit elastic solutions in closed forms are obtained for hollow and solid inclusions with

graded interphase zone around the inclusion subjected to a radially symmetric load. The dif-

ferent effects of the interphase zone in solid or hollow inclusions are highlight with numerical

investigations and shown how the thickness of the interphase alters the stress concentration

around the inclusion and so may affects the bulk modulus of the composite. The presence of

the interphase zone was found to have effect inside hollow inclusion for the radial displace-

ment and hoop stress and in particular for the case of soft inclusion; on the contrary, for the

radial stress no particular effect are present in inclusion and the maximum radial stress, that

occurs at the interface between inclusion and interphase, is greater than the remote load.

On the contrary, the maximum hoop stress occurs on the inner surface of the inclusion with

values much greater than the load applied. Outside the inclusion the effect of interphase

is localized around inclusion and decreases more quickly for the hoop stress compared to

radial stress. The stresses in inclusion and the maximum stress value at the interface are

quite sensitive at the interphase thickness for hard interphase; instead, for soft interphase

the interphase thickness affects the maximum hoop stress and the displacement in the inclu-

sion. Then, the explicit solutions determined are used to estimate the bulk modulus for a

distribution of spherical hollow or solid inclusion with interphase; numerical results permit

us to investigate also the variation of the bulk modulus with the volumetric fractions of the

particulate composite.

Finally, we observe that the solution of section 4 may be the starting point to estimate

other elastic properties, as the effective thermal expansion coefficient and the thermal-electric

conductivity, in a particulate composite with a dispersion of hollow or solid spherical in-

clusions taking into account physical and geometric interphase properties and, will be the

subject of a future paper.
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Figure 1. Sketch of the mathematical problem studied.

Figure 2. Distribution law of the graded matrix elastic properties in radial direction for

different interphase thickness.

Figure 3. Normalized radial displacement for a solid inclusion with hard and soft inter-

phase.

Figure 4. Normalized radial stress for a solid inclusion with hard and soft interphase.

Figure 5. Normalized hoop stress for a solid inclusion with hard and soft interphase.

Figure 6. Normalized radial displacement for a hollow inclusion with hard or soft inter-

phase and different interphase thickness.

Figure 7. Normalized radial stress for a hollow inclusion with hard or soft interphase and

different interphase thickness.

Figure 8. Normalized hoop stress for a hollow inclusion with hard or soft interphase and

different interphase thickness.

Figure 9. Normalized bulk modulus vs volumetric fraction c for solid and hollow inclu-

sions.
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Figure 1: Sketch of the mathematical problem studied.
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Figure 2: Distribution law of the graded matrix elastic properties in radial direction

for different interphase thickness.
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Figure 3: Normalized radial displacement for a solid inclusion with hard and soft

interphase.
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Figure 4: Normalized radial stress for a solid inclusion with hard and soft interphase.
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Figure 5: Normalized hoop stress for a solid inclusion with hard and soft interphase.
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Figure 6: Normalized radial displacement for a hollow inclusion with hard or soft

interphase and different interphase thickness.
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Figure 7: Normalized radial stress for a hollow inclusion with hard or soft interphase

and different interphase thickness.
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Figure 8: Normalized hoop stress for a hollow inclusion with hard or soft interphase

and different interphase thickness.
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Figure 9: Normalized bulk modulus vs volumetric fraction c for solid and hollow

inclusions.
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