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A B S T R A C T

Background: Maritime transportation accounts for around 80% of the world freight movements, remarkably
contributing to the global environmental footprint. Dual fuel engines, running on both gaseous and liquid fuels,
represent a viable way toward the reduction of emissions at the cost of additional complexity in monitoring
activities.
Motivation: Data-driven methods represent the frontier in research and in maritime industrial applications,
and they usually require a large amount of labelled data, i.e., sensor measurements plus the associated engine
status usually annotated by human operators, which are costly and seldomly available in the wild. Unlabelled
samples, instead, are commonly, cheaply, and readily available.
Hypothesis: The enabling technology for data-driven methods is the availability of a network of sensors and
an automation system able to capture and store the associated stream of data.
Methods: In this paper, we design and propose multiple alternatives toward the weakly supervised marine dual
fuel engines data-driven monitoring. To this aim, we will rely on a Digital Twin of the dual fuel engine or on
novelty detection algorithms and we will compare them against state-of-the-art fully supervised approaches.
Results: Results on data generated from a real-data validated simulator of a marine dual fuel engine
demonstrate that the proposed weakly supervised monitoring approaches lead to a negligible loss in accuracy
compared to costly and often unfeasible fully supervised ones supporting the validity of the proposal for its
application in the wild.
Conclusion: The main outcome is a guideline for selecting the best data-driven dual fuel engine monitoring
method according to the available data.
. Introduction

Maritime transportation accounts for around 80% of global freight
ovements (Mangan, 2017). With very few exceptions, vessels are
owered by internal combustion engines, burning conventional fossil
uels, producing a large amounts of undesired greenhouse and non-
reenhouse emissions (Reitz et al., 2020). In fact, carbon dioxide,
arbon monoxide, sulphur oxides, nitrogen oxides, methane, and par-
iculate matter (including black carbon) negatively affect the climate,
he environment, and the public health (Manisalidis et al., 2020).
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The use of alternative fuels including natural gas, methanol, and
biofuels has been proposed as a viable way toward the improvement of
the environmental sustainability of the maritime transportation (Hans-
son et al., 2019; Zuo et al., 2020a; Jiaqiang et al., 2019). In particular,
the use of Liquefied Natural Gas (LNG) as a fuel proved to be the most
viable solution due to the lower LNG fuel price levels compared to other
fossil fuels (Bae and Kim, 2017), the rapid development of the global
LNG infrastructure (Thomson et al., 2015), as well as the clean nature
of lean combustion, which leads to the reduction of the nitrogen oxides
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due to the low carbon to hydrogen ratio whilst almost eliminating most
of the particulate matter and sulphur oxide emissions (Hansson et al.,
2019; Louis, 2001; Zuo et al., 2020b; Qian et al., 2020).

The economic and environmental benefits of using LNG led the
marine engine manufacturers to the development of Dual Fuel (DF) ver-
sions of both two-stroke and four-stroke Diesel Engines (DEs) (Pavlenko
et al., 2020; Zhong et al., 2020) as well as retrofitting kits for converting
existing diesel engines (DE) to DF engines1,2 Moreover, a pure natural
gas fuelled vessel requires at least 48% more storage capacity (Boretti,
2019). Nevertheless, an obvious drawback of DF engines is the addi-
tional technological complexity of the engine fuel system as well as
the monitoring, control and safety systems (Boretti, 2019; Wang et al.,
2016) to keep their performance always at a desired level. In fact, the
degradation of marine engines performance decreases their operational
efficiency, leading to a higher fuel consumption and consequently to
an increase in greenhouse emissions. For this reason, the implemen-
tation of efficient and effective monitoring strategies is of paramount
importance to ensure availability, reliability, cost, and environmental
sustainability (Gratsos et al., 2009; Lloyd and Cackette, 2001; Xu et al.,
2002).

Marine engine manufacturers already provide turnkey monitoring
solutions for their DEs. For example, MaK DICARE (CAT, 2019) remote
engine monitoring system provides condition-specific maintenance sug-
gestions comparing in real time the engine condition to the desired
state and suggesting maintenance actions. Another example is MAN
Computer Controlled Surveillance (MAN, 2019), a diagnostic tool for
monitoring and storing DEs performance data, and trends dedicated
to assisting users in evaluating the machinery status and performance.
These systems are based on the knowledge of permissible operating
engine parameters and actions are triggered when the monitored pa-
rameters exceed their boundaries. The final decision on the actions to
undertake is usually left to the operators experience and knowledge,
and this needs to be addressed for enabling highly automated or
autonomous systems operation. In fact, operators need to be carefully
trained, their decisions are biased by their experience, too many de-
grees of freedom are left to their judgement, their ability to exploit the
automation data is limited, and the monitoring process may be stressful
and time consuming.

State-of-the-art methods try to overcome the limitations of exploit-
ing the human in the loop for monitoring activities by exploiting
instead numerical methods (Kowalski et al., 2017; Cipollini et al.,
2018a,b). For this purpose, a gold-standard solution is to compare the
engine behaviour in dynamic conditions with the normal (expected) be-
haviour provided by an accurate Digital Twin Grimmelius et al. (2007).
This solution enables the identification of unexpected behaviour and to
establish trends in temporal performance variation. Numerical methods
play a central role in developing an accurate Digital Twin of the engine
for the prediction of key performance parameters. In particular, engine
modelling has been performed by employing commercial or custom-
made tools based on first principles and thermo-physical processes
fundamentals. A number of engine models of varying complexity are
reported in the pertinent literature (Xiang et al., 2019; Baldi et al.,
2015; Reitz and Rutland, 1995). Detailed modelling approaches (of the
zero-dimensional to three-dimensional type) result in computationally
demanding simulations and consequently are unsuitable for real-time
engine monitoring applications (Stoumpos et al., 2018, 2020).

To develop models suitable for effective monitoring in real opera-
tional conditions, two main alternatives exist. The first one is to exploit
approximate but computationally efficient first-principle models of the
mean value type (Geertsma et al., 2017, 2018) or the combined mean

1 https://www.man-es.com/discover/pioneering-retrofit-to-reduce-diesel-
missions.

2 https://www.wartsila.com/media/news/22-10-2019-wartsila-retrofit-
ill-reduce-environmental-impact-of-ferry-operating-in-ecologically-

ensitive-waters-2555695.
2

value/0D type (Baldi et al., 2015), whilst the second one is to exploit
the historical data acquired by the modern automation systems to build
accurate data-driven models. The first approach results in faster but
often inaccurate predictions, which limits their effectiveness for engine
monitoring in real time operation (Geertsma et al., 2018). The second
approach represents the frontier in both research and industrial applica-
tion and is highly dependent on the availability of an adequate amount
of historical data (Talaat et al., 2018; Cipollini et al., 2018b). Their
enabling technology is then the availability of a network of sensors
and an automation system able to capture and store the associated
stream of data, which are nowadays readily available. This data, which
is often called unlabelled as there is usually no associated annotation
about the status of the engines, are commonly, cheaply, and readily
available (Munim et al., 2020). In fact, these annotations are costly
and rarely available in the wild since they require the supervision of
the engine performed by an human operator (Nixon et al., 2018). In
some cases, this labelling activity requires to reduce the operation or
to eventually stop the vessel or to maintain the engine. Consequently,
unlabelled data is available in large quantities for a large period of time
with a very high frequency and just a very small amount of these data
are actually labelled during planned maintenance (every few years) or
during exceptional disruptions (few time in the life of a vessel).

In this respect, this study aims at designing and proposing multi-
ple alternatives for the reduction of the use of labelled data toward
a weekly supervised monitoring for marine DF engines targeting to
reduce as much as possible, the necessity of labelled data at least to
a realistic level which is realistic to retrieve in the wild. Furthermore,
this study proves that the preceding proposal does not compromise
the modelling accuracy below a level that prevents their use in real
operations.

The approach employed in this study includes the following three
steps: (a) the Fully Supervised Performance estimation; (b) the Fully
Supervised Health Status Estimation, and; (c) the Weakly Supervised
Health Status Estimation. The Fully Supervised Performance Estimation
step includes the design of a Digital Twin, exploiting state-of-the-
art supervised data-driven methods for enabling the prediction of the
engine performance and emissions parameters based on the control
variables (e.g. engine load and engine speed), in healthy engine con-
ditions. This step actually does not employ labelled data; instead it
employs the acquired data from engine operation under healthy con-
ditions. The Fully Supervised Health Status Estimation step focuses on
developing models capable of classifying the status of the engines as
healthy or faulty and it is accomplished by employing two approaches.
The first one employs the Digital Twin developed in the first step to
estimate the deviation (drift) of the parameters of the actual engine
operation (based on the acquired data) from the respective Digital
Twin predicted parameters. The second one exploits state-of-the-art
supervised data-driven methods to classify the status of the investigated
engine based on the control and performance parameters. This step
requires labelled data with the engine under healthy and faulty con-
ditions. The Weakly Supervised Health Status Estimation step focuses
on reducing the amount of labelled data required to build the models
developed in the second step by employing two approaches. The first
one focuses on the estimation of the engine performance parameters
variation from the respective parameters calculated by the Digital Twin
by employing a limited amount of labelled data for tuning the drift
detection model. The second one, instead, will exploit state-of-the-
art unsupervised data-driven methods to detect abnormal conditions
(anomalies) of the investigated engine by employing as input the
considered control and performance parameters. The weakly supervised
health status estimation step employs the models trained just with
data acquired under the engine healthy conditions from the engine
monitoring system. These models are subsequently fine tuned with a
very small amount of labelled data. Fig. 1 depicts our proposal with a
simple graphical representation.

Based on the preceding methodology, this study contributes to

the better understanding of the effects of using, in multiple methods,
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Fig. 1. Our proposal in a Nutshell.
labelled and unlabelled data as well as to quantify the methods accu-
racy deterioration in cases when the available labelled data is limited.
Furthermore, it is demonstrated whether it is possible to monitor the
investigated engine status by employing a weakly supervised method
with a realistic amount of data.

It must be noted that a large amount of labelled data acquired
from marine DE and DF engines pertaining to faulty conditions are
not currently available in the literature. To overcome this limita-
tion, this study employs data generated from a validated simulator
of a marine DF engine capable of simulating both healthy and faulty
conditions (Stoumpos et al., 2020). This study demonstrate that the
proposed weakly supervised monitoring approaches lead to a negligible
deterioration of the prediction accuracy compared with the costly and
often unfeasible fully supervised ones, supporting the validity of the
proposal for its application in the wild.

The rest of the paper is organised as follows. Section 2 provides an
overview of the state-of-the-art on engine modelling with a particular
focus on maritime applications. Section 3 introduces the engine simu-
lator employed to generate the required data. Section 4 describes how
the dataset used in this study has been generated by using the simulator
described in Section 3. Section 5 presents our proposal. Section 6 tests
and demonstrates its validity employing the data described in Section 4.
Section 7 summarises the main findings of this study.

2. Related work

The marine DEs and DF engines design, development, optimisation,
and monitoring procedures are nowadays increasingly based on math-
ematical modelling, numerical simulations, and data-driven models,
rather than on experiments and prototyping (Lebedevas et al., 2020).
He and Rutland (2004), for example, developed a general DEs simu-
lation tool with a small computer resource footprint for engine design
based on Artificial Neural Networks.

Karlsson et al. (2010) and Stewart and Borrelli (2008) point out the
necessity of sophisticated control systems based on numerical and data-
driven models to respect the tightened legislation on emissions and to
provide a fast response to the operators to guarantee safe operation and
low fuel consumption. Hsieh and Wang (2009), Herceg et al. (2006)

and Zhao et al. (2013) developed a new Model Predictive Control

3

method showing its effectiveness at a cost of an increased compu-
tational complexity. Brzozowska et al. (2005), instead, identified six
independent engine control variables to approximate the measurement
results of the toxicity of exhaust gas compounds.

A considerable number of the past and current research studies
focuses on DEs behaviour (Wang et al., 2020; Wakode and Kanase-Patil,
2017; Syed et al., 2017) and very few studies have been published
dealing with marine DF engines (e.g. Stoumpos et al. (2020)), on
which this study is primarily focused on. Some DF engines monitoring
approaches have been developed for applications of the automotive
industry (Zhai and Yu, 2009; Shayler et al., 2000; Song et al., 2018;
Ahmed et al., 2015).

Whilst a number of studies have attempted to develop models for
monitoring the DEs performance and emissions (Shin et al., 2020;
Cai et al., 2017; Li et al., 2012), the majority of these works are
conducted in a simplified scenario, since they are based upon data
collected from experiments produced under controlled laboratory con-
ditions when usually the DE is not subjected to anomaly behaviour
or faulty conditions (Özener et al., 2013; Liu et al., 2018; Turkson
et al., 2016). Moreover, very few of these studies covered the interac-
tion of the engine performance monitoring with the maintenance and
failures (Muchiri et al., 2014). In fact, apart from monitoring purposes,
it is becoming increasingly important to develop fault detection systems
capable of detecting and preventing the system’s failures to reduce
maintenance costs and prevent accidents (Xi et al., 2018).

Data-driven approaches represent an effective choice in this context,
since they have proven to increase the reliability and decrease the
probability of producing false alarms (Ahmed et al., 2015). Ahmed et al.
(2015), for instance, proposed a combustion-related fault detection
method based on the calculation of the instantaneous angular speed of
a diesel engine. Li et al. (2012) developed a fault diagnosis technique
for marine DE utilising the information fusion of vibrations and wear
particle analyses (which are typically studied separately) by employing
a new Independent Component Analysis to identify the engine’s vibra-
tion source signals collected from multi channel sensors. This study also
employs a neural network for the integration of the features extracted
to detect faults in a supervised learning manner. Zabihi-Hesari et al.
(2019) discussed the importance of vibration monitoring for detecting

machine anomalies presenting a novel fault detection method based on
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Fig. 2. Wärtsilä 9L50DF Engine Layout.
Table 1
Wärtsilä 9L50DF engine characteristics.

Engine characteristics Unit Value

Model – 9L50DF
MCR Power [kW] 8775
MCR Speed [rpm] 514
No. of cylinders 9
BMEP at MCR [bar] 20
Bore / Stroke [mm] 500 / 580
Brake-specific fuel consumption (BSFC) at MCR (Diesel mode) [g/kWh] 190
Brake-specific energy consumption (BSEC) at MCR (Gas mode) [kJ/kWh] 7300
IMO compliance at: diesel mode / gas mode – TIER II /TIER III
Turbocharger units – 1
the power spectral density of vibration signal to differentiate between
faulty and normal DE status. Subsequently, an artificial neural network
was used to identify the fault location and the sensor placement. Cai
et al. (2017) proposed another fault detection approach for overcoming
the state-of-the-art DE fault prediction methods limitations. This study
employed a data-driven approach based on support vector machine
along with rule mining algorithms to acquire information about the
general status of the engine, without focusing on a specific signal nor a
specific fault, ensuring a complete fault diagnosis, independent from
experts’ judgement. Likewise, Song et al. (2018) proposed a novel
fault prediction method for city buses powered by LNG by collecting
different data types, such as bus daily schedules, maintenance occur-
rences, and relevant weather conditions and subsequently applying
a random forest algorithm. Ahmed et al. (2015) trained an artificial
neural network employing a new estimation strategy known as the
smooth variable structure filter to detect engine’s faults. This approach
demonstrated stability and generalisation accuracy exhibiting improved
performance compared with the first order back propagation algorithm
and similar performance compared with the extended Kalman filter.

3. Physical model description

3.1. The considered DF engine

This study investigates the Wärtsilä 9L50DF engine, which is a
marine four-stroke, turbocharged and intercooled DF engine (Wärtsilä,
2012) that is employed for ship propulsion or electrical generation, in
the latter case as part of a generator set (Wärtsilä, 2012). The engine
is capable of operating in two distinct modes: (i) the gas mode running
on natural gas and liquid pilot fuel, usually Light Fuel Oil, that is
injected in the engine cylinders for initiating the combustion of the
premixed natural gas–air mixture; and (ii) the diesel mode, in which
either Heavy or Light Fuel Oil is used as the main fuel. Both liquid fuels
(pilot and main) are injected within the engine cylinder (depending on
the operating mode) by a combined fuel injector located in the cylinder
head. The natural gas is injected in the inlet port of each cylinder during
4

the intake valve opening period, and subsequently is mixed with the
air; the mixture of air and gas is trapped in the engine cylinder. The
natural gas injection starts after the closing of the cylinder exhaust
valve for preventing natural gas leakages to the exhaust manifold. This
engine operates employing the lean-burn combustion concept, which is
associated with low nitrogen oxides emissions and thermal loading due
to the reduced in-cylinder peak temperature level. The engine complies
with the IMO Tier III nitrogen oxides limits when operating in the gas
mode, whereas the engine diesel mode operation is compliant with the
Tier II limits.

The engine achieves stable combustion conditions (avoiding the
instabilities of knocking and misfiring) by adjusting the airfuel ratio
via an electronically controlled exhaust waste gate, which bypasses a
part of the exhaust gas along the turbocharger turbine. In addition, the
gas admission valves as well as the diesel fuel injectors are electroni-
cally controlled to adjust the engine power output and speed in both
operating modes.

In this study, the investigated engine was considered as a part
of a generator set operating at a constant speed of 514 r/min. The
engine detailed description is reported in the manufacturer product
guide (Wärtsilä, 2012). The main engine characteristics are illustrated
in Table 1. The engine layout and components interconnections are
presented in Fig. 2.

3.2. Engine modelling description

The investigated engine and its control system have been modelled
in the GT-ISE software, which is a state-of-the-art tool for engine
modelling and analysis extensively used from academia and indus-
try (Gamma-Technologies, 2019). The complete engine model was
developed utilising the following assemblies of the GT-ISE software:
(i) engine thermodynamic model; (ii) user input; (iii) engine control
system; (iv) alarms and monitoring system.

The investigated engine model was developed in previous authors’
studies (Stoumpos et al., 2018, 2020) and is capable of simulating
both the engine steady state and transient conditions in both gas and
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Table 2
Envelope of engine input parameters employed in the DoE design.

Parameter Unit Diesel mode Gas mode

Load [%] 25, 50, 75, 100 25, 50, 75, 100
Fuel — diesel:1/gas:2 [–] 1 2
Ambient temperature [K] 298.1, 308.1, 318.1 298.1, 308.1, 318.1
Air cooler cooling water temperature [K] 298.1, 308.1, 318.1 298.1, 308.1, 318.1
GVU gas pressure [bar] 5.92 5.92, 5.96, 6.00
Diesel fuel LHV [MJ/kg] 42.0, 43.3, 44.6, 46.0 42.6
Gas LHV [MJ/kg] 50.0 45.0, 47.5, 50.0
t
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Table 3
Control variables (𝑪) and performance variables (𝑷 ).

Type Name Unit

𝐶1 Ambient temperature [K]
𝐶2 Air cooler temperature [K]
𝐶3 GVU gas pressure [bar]
𝐶4 Heating value of Diesel [MJ/kg]
𝐶5 Heating value of gas [MJ/kg]
𝐶6 Engine load [kW]
𝐶7 Engine speed (constant) [rpm]

𝑃1 Fuel rack position (Diesel mode)
𝑃2 Main gas pressure [bar]
𝑃3 Max cylinder pressure [bar]
𝑃4 Charged air pressure (Inlet section) [bar]
𝑃5 Exhaust gas temperature Turbocharger — inlet [K]
𝑃6 Turbocharger speed [rpm]
𝑃7 Waste gate opening [mm2]
𝑃8 Nitrogen oxide [g/kWh]
𝑃9 Carbon dioxide [g/kWh]
𝑃10 BSFC [g/kWh]

diesel operating modes. As it is reported in these studies, the model
was extensively validated based on experimental data available in the
literature for both steady-state conditions and transient conditions with
modes switching. In addition, this model was employed in Theotokatos
et al. (2020) to investigate the influence of the exhaust gas waste gate
valve behaviour on the engine operation. Therefore, only a succinct
summary of the modelling principles is provided herein.

The engine cylinder processes were modelled by using the zero-
dimensional approach that employs the energy and mass conservation
equations along with the ideal gas equation for the calculation of
the cylinder working media temperature, mass, pressure, and mixture
composition. An one-zone approach was used for modelling the gas
exchange and compression processes, whereas a two-zone approach
(an unburned mixture zone and a burned gas zone generated after
the combustion start) was employed for modelling the combustion and
expansion processes (Merker et al., 2005).

The cylinder gas-to-wall heat transfer coefficient was calculated by
employing the Woschni equation (Woschni, 1967). The Chen-Flynn
friction model (Rakopoulos and Giakoumis, 2007) was employed for
calculating the engine friction mean effective pressure. The extended
Zeldovich mechanism, which is described in Lavoie et al. (1970),
Hanson and Salimian (1984), Heywood (1988) for the estimation of
the nitrogen oxide emissions in both operating modes.

The combustion model employs a single-Wiebe function to calculate
the heat release rate at the diesel mode, whereas the ignition delay
is calculated by considering the Sitkey equation (Merker et al., 2005;
Sitkei, 2013). For the gas operating mode, the combustion is modelled
by employing a triple-Wiebe function (Xu et al., 2017) assuming that
each function represents the following consecutive combustion phases:
(a) the premixed combustion of a portion of the pilot fuel; (b) the dif-
fusive combustion of the remaining pilot fuel and the rapid burning of
the gaseous fuel, and; (c) the cylinder residuals tail combustion (Karim,
2015). The ignition delay is approximated by using the data reported

in Christen and Brand (2013) and Sixel et al. (2016).
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The cumulative burned fuel is calculated according to Gamma-
Technologies (2019)

𝑥𝑏 =
3
∑

𝑖=1
𝐹𝐹𝑖

(

1 − 𝑒𝑥𝑝

(

−𝛼
( 𝜃 − 𝜃𝑆𝐶,𝑖

𝛥𝜃𝑖

)𝑚𝑖+1

𝑖

))

, (1)

where the subscript 𝑖 denotes the Wiebe function; 𝐹𝐹 denotes the
weight of each Wiebe function; 𝑎 is the Wiebe function parameter
(considered 6.9); 𝜃 denotes the crank angle, 𝜃𝑆𝐶 denotes the start of
combustion; 𝛥𝜃 is the combustion duration and 𝑚 denotes the Wiebe
function shape factor.

The heat release rate is calculated according to Eq. (2), which
employs the fuel burning rate (time derivative of the cumulative burned
fuel from Eq. (1)) and the total energy from all the injected fuels

𝑄̇𝑏 = 𝑥̇𝑏
3
∑

𝑗=1
𝑚𝑓,𝑗 ⋅ 𝐿𝐻𝑉𝑗 , (2)

where 𝑥̇𝑏 denotes the fuel burning rate; 𝑗 denotes the fuel (main diesel,
pilot diesel, or natural gas); 𝑚𝑓 is the burned fuel amount; 𝐿𝐻𝑉
denotes the fuel lower heating value. It must be noted that only one
Wiebe function (𝑖 = 1) with weight equal to 1 was used for modelling
he combustion in the diesel operating mode.

The mass flow rates through the engine intake and exhaust valves
re calculated by using the quasi-steady adiabatic flow equation con-
idering the respective profiles (equivalent area versus crank angle)
nd pressure ratios (Heywood, 1988). The engine crank shaft rotational
peed is modelled by employing the angular momentum conservation
quation.

The engine inlet and exhaust manifolds were modelled by using a
ne-dimensional approach that employs the mass, momentum, and en-
rgy conversation equations for the calculation of the pressure, velocity,
emperature, and composition of the working media (air or exhaust gas)
long the manifolds length (Gamma-Technologies, 2019).

The model calibration process included the tuning of the Wiebe
unctions parameters at the considered operating points to achieve
dequate accuracy in comparison with the engine parameters experi-
entally obtained in the engine trials.

.3. Engine abnormalities modelling

The model described in Section 3.2 has been updated to take into
ccount the performance degradation of the DE air cooler due to fouling
nd corrosion mainly in the cooling water side.

As reported in Joshi et al. (2009), the degradation/fouling of the
harge-air cooler in turbocharged DEs has a significant impact on en-
ine performance resulting in lower air cooler effectiveness and higher
ressure drop, which, in turn, reduce the pressure and increase the
emperature at the engine inlet manifold. As a result, the engine power
utput reduces having an adverse effect on the engine fuel consumption
nd emissions.

In agreement with previous studies, (Müller-Steinhagen, 1999), the
ffect of fouling and corrosion in the cooling water and air sides is
imulated by considering a reduced value by 30% for the overall heat
ransfer coefficient compared with the respective values for healthy
onditions. This resulted in temperature levels of the inlet manifolds
lose to the manufacturer upper limit, beyond which an alarm is
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activated. Typically, fouling in the air side of the air cooler also
causes decrease of the overall heat transfer coefficient and additionally
increase of the friction factor (resulting in increase of the air cooler
pressure drop). However, the latter effect was not considered in this
study.

4. Dataset generation

For the reason described in the introduction and for confidentiality
issues, datasets corresponding to the investigated marine DF engine
under faulty conditions were not available to the authors, therefore,
this study employed the physical model of high fidelity that was devel-
oped and validated in previous authors’ studies (Stoumpos et al., 2018),
which was briefly described in Section 3.2, to generate it. For this
purpose, multiple simulation runs, corresponding to different scenario,
were performed collecting engine control and performance parameters
to generate this dataset.

Two of these datasets correspond to the engine operation at healthy
conditions in both the diesel mode (DBDM

Healthy) and the gas mode
(DBGM

Healthy). These datasets are referred as the ‘‘healthy status’’ datasets
henceforth. Moreover, a third dataset (DBDM

Faulty) is created and contains
the control and the performance variables corresponding to the de-
graded conditions described in Section 3.3 and the engine diesel mode.
This dataset is referred as the ‘‘faulty status’’ dataset henceforth.

The simulation runs were performed for the engine steady state
conditions in the diesel and gas modes at 25%, 50%, 75%, and 100%
loads considering the following engine operating parameters varying
within the ranges provided in Table 2: (a) ambient temperature; (b)
diesel fuel LHV; (c) gas fuel LHV (for the gas mode); (d) Gas Valve
Unit (GVU) pressure (for the gas mode); and (e) air cooler coolant
temperature. In this respect, a large number of simulation runs for all
combinations of possible engine operating conditions were performed.
For the engine model simulation runs design, the integrated GT-ISE
software Design of Experiments (DoE) tool was used. The parametric
runs were designed based on the full factorial DoE method (Antony,
2014), imposing for each considered parameter the minimum and
maximum values (factor).

The Control and performance variables collected from the physical
model are listed in Table 3. Note that these variables are the ones that
can be actually measured by current automation systems.

5. Methods

In this section, the proposed models are presented, which address
the problem described in Section 1 exploiting the datasets described in
Section 4.

The problem described in Section 1 can be associated to a conven-
tional ML framework (Shalev-Shwartz and Ben-David, 2014), in which
one has to consider an input space  ⊆ R𝑑 and an output space  and
the goal estimating the unknown rule 𝜇 ∶  →  which associates
an element 𝑦 ∈  to an element 𝒙 ∈  . ML techniques estimates
𝜇 through a learning algorithm 𝒜 ∶ 𝑛 ×  → 𝑓 , characterised
by its set of hyperparameters , which maps a series of examples of
he input/output relation contained in a datasets of 𝑛 samples 𝑛 ∶
{(

𝒙1, 𝑦1
)

,… ,
(

𝒙𝑛, 𝑦𝑛
)}

into a function 𝑓 ∶  →  chosen in a set of
possible ones  (see Section 5.1).

When 𝑛 contains both elements in the input space and the as-
sociated elements in the output space the problems is named super-
vised (Shalev-Shwartz and Ben-David, 2014). Regression and classifica-
tion are two of the most popular examples of supervised ML problems.
In regression  ⊆ R and the elements in the  have an associated
notion of distance, while in classification  ∈ {𝐶1,… , 𝐶𝑐} and the ele-
ments in  have no associated notion of distance. Binary classification
is a particular example of classification problem where  ∈ {±1}. When
𝑛 contains just elements in the input space, which means that it is
not explicitly known the associated element of the output space (or
6

we know it for just few elements), it has to be assumed that similar
inputs are associated with outputs where the concept of similarity is
something that needs to be defined based on 𝜇. In this last case, the
ML problems are called unsupervised (or weekly supervised) (Shalev-
Shwartz and Ben-David, 2014). Anomaly (novelty, outlier) detection is
a common example of unsupervised (or weekly supervised) learning
problem where the unknown 𝑦 ∈  can assume only two possible
values: −1 for ‘‘non-anomaly’’ and +1 for ‘‘anomaly’’.

The error that 𝑓 commits in approximating 𝜇 is measured with
reference to a metric (see Section 5.2) 𝑀(⋅, ⋅). This error need to
be optimised and estimated during the Model Selection and Error
Estimation phases (Oneto, 2020) (see Section 5.3) since, obviously,
the error that 𝑓 commits over 𝑛, is optimistically biased since 𝑛
as been used, together with  , for building 𝑓 itself. For this reason,
nother set of fresh data, composed of 𝑡 samples and called test set
𝑡 = {(𝒙′1, 𝑦

′
1),… , (𝒙′𝑡 , 𝑦

′
𝑡)}, needs to be exploited. Note that, 𝒙′𝑖 ∈  and

𝑦′𝑖 ∈  with 𝑖 ∈ {1,… , 𝑚}, and the association of 𝑦𝑡𝑖 to 𝒙𝑡𝑖 is again made
based on 𝜇. Moreover, both for supervised and unsupervised (or weekly
supervised) problems 𝑡 must contain both 𝒙′𝑖 ∈  and 𝑦′𝑖 ∈  with
𝑖 ∈ {1,… , 𝑚} to estimate the error of 𝑓 .

5.1. Machine learning algorithms

In this study, we will exploit different state-of-the-art algorithms for
both supervised and weakly supervised problems.

For the supervised case we will exploit: Random Forests (RF)
(Breiman, 2001), Kernel Methods (KM) (Shawe-Taylor and Cristianini,
2004), and Neural Networks (NN) (Goodfellow et al., 2016). RF, KM,
and NN are three state of the art methods coming from the three
main families of supervised data driven models, able to deal both with
regression and classification problems, that have shown to perform
quite well in many different applications (Fernández-Delgado et al.,
2014; Wainberg et al., 2016). RF (Breiman, 2001) technique relies on
the simple fact that combining the output of several classifiers results
in a much better performance than using any one of them alone. RF
combine many decision trees in order to obtain effective predictors,
which have limited hyperparameter sensitivity and high numerical
robustness. RF have two main hyperparameters: the numbers of trees
ℎ1 and the numbers of predictor to sample in each node creation ℎ2.
KMs are a family of ML techniques which exploits the Kernel trick
for distances in order to extend linear techniques to the solution of
non-linear problems (Scholkopf, 2001). In the case of classification,
KMs select 𝑓 as the function which minimises the trade-off between
the sum of the accuracy over the data, namely the empirical error,
and the complexity of the solution, namely the regularisation term.
The hyperparameters of the KM KM are: the kernel, which is usually
fixed and in this paper author chose the Gaussian Kernel for the
reasons described in Keerthi and Lin (2003), its hyperparameter ℎ1
and the regularisation hyperparameter ℎ2. NN (Goodfellow et al., 2016)
combine together many simple models of a human brain neuron, called
perceptrons, in order to build a complex network. The neurons are
organised in stacked layers connected together by weights that are
learned based on the available data via backpropagation. Since the data
employed in this study has no particular structure, a simple shallow
network is a natural choice (Goodfellow et al., 2016). In particular,
a NN can be interpreted as a KM where the kernel is not chosen
but learned from data. Then the hyperparameters of an NN NN are
the number of neuron in the hidden layer ℎ1 and the regularisation
hyperparameter on the last layer ℎ2.

For the weekly supervised problems, authors will exploit the most
known and effective techniques for solving these problems according
to Swersky et al. (2016). In particular (Swersky et al., 2016) shows that
two anomaly detection methods based on KM and K-Nearest Neigh-
bourhood (KNN) respectively, are the top choices in this context. In
particular One-Class Support Vector Machines (OCSVM) (Shawe-Taylor
and Cristianini, 2004) is a boundary-based anomaly detection method,
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inspired by KM, which enclose the inlier class in a minimum volume
hypersphere and like KM can also be extended to non-linearly trans-
formed spaces using the Kernel trick. The hyperparameters OCSVM
OCSVM are the same as the ones of KM. The Global KNN (GKNN),
inspired by the KNN, has been originally introduced as an unsupervised
distance-based outlier detection method (Ramaswamy et al., 2000).
The hyperparameter GKNN GKNN is the number of neighbours to be
considered ℎ1.

It is worth noting that there is no really particular strength or
weakness which distinguishes the ML methods. What changes is the
functional form of the different models and, as studied by the no-free-
lunch theorems (Wolpert, 1996), the only way to verify which is the
best method for a particular application is to test it empirically on real
data.

5.2. Metrics

In this work, many state-of-the-art techniques will be tested and
their performances will be compared. In order to perform this analysis,
authors have to define different metrics of performance 𝑀(⋅, ⋅), able to
well characterise the quality of the different models.

In regression the most natural choice metric is surely the Mean
Absolute Percentage Error (MAPE) which can be computed as follows

𝑀(𝑓, 𝑡) =
100
𝑡

∑

(𝒙,𝑦)∈𝑡

|𝑓 (𝒙) − 𝑦|, (3)

In the binary classification, the most natural metric is the one which
ounts the number of misclassified samples, namely the percentage of
isclassifications

(𝑓, 𝑡) =
100
𝑡

∑

(𝒙,𝑦)∈𝑡

[𝑓 (𝒙) ≠ 𝑦]. (4)

here the Iverson bracket notation is exploited. Moreover, this measure
ill be also used for the anomaly detection problems since, also in

his case, a binary output is considered (non-anomaly or anomaly).
ased on this metric it is possible to define other important indexes of
erformance (Powers, 2011) like the Confusion Matrix, which measures
our different quantities

• the percentage of true negative

TN = 100
𝑡

∑

(𝒙,𝑦)∈𝑡

[𝑓 (𝒙) = 𝑦 ∧ 𝑦 = −1]; (5)

• the percentage of true positive

TP = 100
𝑡

∑

(𝒙,𝑦)∈𝑡

[𝑓 (𝒙) = 𝑦 ∧ 𝑦 = +1]; (6)

• the percentage of false negative

FN = 100
𝑡

∑

(𝒙,𝑦)∈𝑡

[𝑓 (𝒙) ≠ 𝑦 ∧ 𝑦 = −1]; (7)

• the percentage of false positive

FP = 100
𝑡

∑

(𝒙,𝑦)∈𝑡

[𝑓 (𝒙) ≠ 𝑦 ∧ 𝑦 = +1]. (8)

5.3. Model selection and error estimation

Model Selection (MS) and Error Estimation (EE) techniques address
the problem of tuning and estimating the performance of a learning
algorithm.

Since the hyperparameters  influence the performance of 𝒜 , a
roper MS procedure needs to be adopted (Oneto, 2020). In this work
he Bootstrap procedure will be exploited. Bootstrap rely on a simple
dea: the original dataset 𝑛 is resampled 𝑟 times with replacement
o build a training set of size equal to the original one 𝑖

𝑙 while the
emaining samples are kept in the validation set  𝑖 , with 𝑖 ∈ {1,… , 𝑟}.
𝑣 o

7

n order to perform the MS phase, i.e. to select the best combination of
he hyperparameters  in the set of possible ones H = {1,2,…}
sing the algorithm 𝒜 , the hyperparameters which minimise the
erformance of the model measured with the preferred metric 𝑀(⋅, ⋅),
rained on the training set, have been searched on the validation set,
n formula:

∗ ∶ min
∈H

1
𝑟

𝑟
∑

𝑖=1
𝑀(𝒜,𝑖

𝑙
, 𝑖

𝑣), (9)

where 𝒜,𝑖
𝑙

is a model built with the algorithm 𝒜 with its set of
hyperparameters  and with the data 𝑖

𝑙. Since the data in 𝑖
𝑙 are

independent from the ones in  𝑖
𝑣, the idea is that ∗ should be the set

of hyperparameters which allows to achieve a small error on a dataset
that is independent from the training set.

Finally, we need to perform the EE phase of the optimal model with
a separate sets of data 𝑡 since the error that our model commits over
𝑛 would be optimistically biased since 𝑛 has been used to find 𝑓 .
For this reason we have to compute

𝑀(𝒜∗ ,𝑛
, 𝑡), (10)

since 𝑡 in independent from 𝑛.
Note that, for supervised learning problems 𝑖

𝑙, 
𝑖
𝑣 with 𝑖 ∈ {1,… , 𝑟},

and 𝑡 need to contain both inputs and outputs while for the weekly
supervised learning problems 𝑖

𝑙 with 𝑖 ∈ {1,… , 𝑟} can contains just
inputs and  𝑖

𝑣 with 𝑖 ∈ {1,… , 𝑟} and 𝑡 needs to contain both inputs
and outputs even if 𝑣 and 𝑡 can be very small (see Section 6).

5.4. The proposed approach

The problems described in Section 1 can be addressed in different
ways using the methods presented in this section. It is worth to remark
that the main aim of this work is to propose and validate a Weakly
Supervised approach which is able to reduce the amount of labelled
data to the minimum realistic requirement that can be readily available
in real word operations.

As a first step it is possible to build a Digital Twin Cipollini et al.
(2018b) able to estimate the performance variables 𝑷 based on the
control variables 𝑪 exploiting regression models. In particular, we
can exploit the dataset of normal (healthy) behaviour (DBDM

Healthy and
DBGM

Healthy) to train regression models to build a Digital Twin of the
engine that can be used for fast simulation and performance drift
detection problems. Note that for training, MS, and EE purposes of
the Digital Twin (the regressors) the datasets of normal behaviour are
enough.

If the Digital Twin is accurate enough it is possible to use it for
simulating the behaviour of the engine and for checking if there is
a large difference between the expected behaviour and the actual
one (Coraddu et al., 2019). A large deviation may (should) indicate
a malfunction. More formally, let us suppose to build a function 𝑓 able
to estimate 𝑷 based on 𝑪 such that

𝑷̂ = 𝑓 (𝑪),

then the distance between 𝑷̂ and 𝑷 measured with a proper dis-
tance (Adams and Fournier, 2003) ‖ ⋅ ‖𝑝 can be measured3

𝛥 = ‖𝑷̂ − 𝑷 ‖𝑝,

and if this 𝛥 is larger than a defined threshold 𝛿∗ then the behaviour
can be classified as abnormal. 𝑝 ∈ [0,∞) and 𝛥∗ ∈ (0,∞) are two
hyperparameter to be tuned in the MS phase, respectively ℎ1 and ℎ2.
Note that, for training the Digital Twin (the regressors) the datasets of
healthy (normal) behaviour are enough but for tuning ℎ1 and ℎ2, we

3 𝑝 is an hyperparameter of the distance which allow to spam multiple
otions of distance such as the Euclidean one with 𝑝 = 2, or the Manhattan
ne with 𝑝 = 1, or the Maximum Norm with 𝑝 → ∞.
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Fig. 3. Scenario 1 - Diesel Mode: scatter plot (true and predicted values), for the best performing model according to Table 4, of the main performance variables.

Fig. 4. Scenario 1 - Gas Mode: scatter plot (true and predicted values), for the best performing model according to Table 4, of the main performance variables.

8
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need both a dataset of healthy behaviour (e.g. DBDM
Healthy and DBGM

Healthy)
and a dataset of faulty (abnormal) behaviour (e.g. DBDM

Faulty).
If we have large datasets of normal and abnormal behaviour, instead

of using the indirect approach (based on a Digital Twin), we can use
a direct approach exploiting a binary classifier that based on 𝑷 and
𝑪 it has to predict if this combination refers to a healthy or faulty
behaviour (Cipollini et al., 2018b). In this case for training, MS, and
EE purposed a dataset of healthy behaviour and a dataset of faulty
behaviour are needed.

More realistically, in practical situations, it is common to have a
large datasets of healthy behaviour while the dataset of faulty be-
haviour is usually quite limited since engines work well for the majority
of their lifetime (Cipollini et al., 2018b). In this case, it is then more
appropriate and effective to use an anomaly detection method since,
for these methods, the dataset of faulty behaviour is exploited just for
MS and EE purposed and not for training the model (similarly to the
indirect approach based on the Digital Twin). This allows to met or
requirements: develop a model able to reduce the amount of labelled
data to the minimum realistic requirement that can be readily available
in real word operations.

6. Experimental results

In this section, we will present the results and the quality of the
methodologies presented in Section 5 for solving the problem described
in Section 1 (weekly supervised monitoring for marine DF engines
targeting to reduce, as much as possible, the necessity of labelled data
at least to a realistic level which is realistic to retrieve in the wild
without compromising the recognition accuracy) by means of the data
described in Section 4.

6.1. The scenarios

As described in Section 5, thanks to the use of data-driven methods,
we will be able to face different scenarios. In particular, based on the
available data it is possible to deal with

1. Fully Supervised Performance Estimation: In this setting it is
available a dataset were both the control and the performance
variables are available in healthy conditions of the engines. The
scope is then to estimate the performance variables based on
the control variables. This allows to build a Digital Twin of the
engine that can be used for fast simulation and performance drift
detection problems. As described in Section 4, in our study, it is
available this dataset for both diesel and gas mode (DBDM

Healthy and
DBGM

Healthy).
2. Fully Supervised Health Status Estimation: In this setting it is

available a dataset were both the control variables and the
performance variables are available in healthy and faulty con-
ditions. The scope is then to estimate the health status based on
the control and performance variables. As described in Section 4,
in our study, it is available this dataset for just the diesel mode
(DBDM

Healthy and DBDM
Faulty).

3. Weakly Supervised Health Status Estimation: In this setting, the
most realistic one, it is available a dataset were both the control
variables and the performance variables are available in healthy
and faulty conditions, but the dataset referring to faulty status
is very small (this is often the case in practice). The scope is
then to estimate the health status based on the control and
performance variables. As described in Section 4, in our study,
we can simulate this scenario just for the diesel mode since we
can use DBDM

Healthy and we can sub-sample the DBDM
Faulty.
9

6.2. Experimental setting

The datasets considered in Section 4 were divided into different
sets as reported in Section 5 based on the considered scenario (see
Section 6.1)

• Scenario 1: we use 70% of the data for training the models and the
remaining 30% for testing them for both DBDM

Healthy and DBGM
Healthy;

• Scenario 2: for the direct approaches we merged the DBDM
Healthy and

the DBDM
Faulty assigning respectively the label Healthy and Faulty

to the set of samples and we use 70% of the data for training the
models and the remaining 30% for testing them. For the Digital
Twin based methods we use 70% DBDM

Healthy to train the Digital
Twin and the remaining data in DBDM

Healthy and DBDM
Faulty to perform

the other step of the methods (validation of the threshold and
testing the model);

• Scenario 3: for both the direct approaches and the Digital Twin
based methods we exploit the 70% DBDM

Healthy to train the model
and the remaining data in DBDM

Healthy and DBDM
Faulty to perform the

other step of the methods (a very small amount for validation of
the hyperparameters and the rest for testing the model).

For each supervised classification method described in Section 5, an
MS procedure was performed, as described in Section 5.3. What follows
is the list of hyperparameters tested during the MS with their respective
intervals

• RF: the set of hyperparameters is 𝑁𝑁 = {ℎ1, ℎ2} and authors
chose it in HNN = {1000} × {𝑑1∕8, 𝑑1∕4, 𝑑1∕2, 𝑑3∕4, 𝑑7∕8}

• NN: the set of hyperparameters is 𝑁𝑁 = {ℎ1, ℎ2} and authors
chose it in HNN = {10, 101.2 ⋯ , 104} × {10−6, 10−5.8,… , 104};

• KM: the set of hyperparameters is 𝐾𝑀 = {ℎ1, ℎ2} and authors
chose it in HKM = {10−6, 10−5.8,… , 104} × {10−6, 10−5.8,… , 104};

• OCSVM: the set of hyperparameters is 𝑂𝐶𝑆𝑉𝑀 = {ℎ1, ℎ2}
and authors chose it in HOCSVM = {10−6, 10−5.8,⋯ , 104} ×
{10−6, 10−5.8,⋯ , 104} ;

• GKNN: the set of hyperparameters is 𝐺𝐾𝑁𝑁 = {ℎ1} and authors
chose it in HGKNN = {1, 3, 7, 13, 27, 51};

• Approaches based on Digital Twin: the set of hyperparameters
is DigitalTwin = {ℎ1, ℎ2} and authors chose it in HDigitalTwin =
{.001, .01, .1, 1, 10, 100, 1000} × {10−6, 10−5.999,⋯ , 106} ;

For the Scenario 3 the 𝑟
𝑣 cardinality was varied 𝑣 ∈ {10, 20, 40}, in

order to test the possibility of building an efficient model with a small
number of labelled samples.

The performances of each model are measured according to the
metrics described in Section 5.2. Each experiment was performed 30
times in order to obtain statistical relevant result, and the t-student 95%
confidence interval is reported when space in the table was available
without compromising their readability.

For RF the randomForest R package has been exploited.4 For KM and
KNN a custom Matlab5 implementation has been developed. For NN

he Python PyTorch library has been exploited.6 For OCSVM the e1071
package has been exploited.7

.3. Scenario 1 : Fully supervised performance estimation

Table 4 reports the error of the three different models (RF, KM and
N) for both diesel and gas modes. Moreover, scatter plots for the best
erforming model (according to Table 4) are available in Figs. 3 and 4
or diesel and gas modes respectively. For both modalities, the authors
eport the estimations of the most relevant performance variables under
nalysis (𝑃3, 𝑃8, 𝑃9 and 𝑃10).

4 https://cran.r-project.org/web/packages/randomForest/randomForest.
df.

5 https://it.mathworks.com/products/matlab.html.
6 https://pytorch.org/.
7 https://cran.r-project.org/web/packages/e1071/e1071.pdf.

https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://cran.r-project.org/web/packages/randomForest/randomForest.pdf
https://it.mathworks.com/products/matlab.html
https://pytorch.org/
https://cran.r-project.org/web/packages/e1071/e1071.pdf
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Table 4
Scenario 1: error, measured with the MAPE, of the different Models (RF, KM, and NN) in predicting the performance variables
(see Section 4) for both diesel and gas mode.
Table 5
Scenario 2: error (percentage of misclassification error) and confusion matrices (positive are faulty and
negative are healthy) of the different models (RF, KM, and NN) with a Direct Approach or with a Digital
Twin in predicting the health status conditions (see Section 4) of the engine in diesel mode.
Observing the results KM outperforms the other two models (RF
nd NN) for all the performance variables. Moreover models seems
o perform better for diesel model with respect to the gas mode. This
esults is reasonable given also the comments on the higher complexity
f DF engines. From a practical point of view, the accuracies of the
eveloped models is surely up to a level which is acceptable for their
se in the wild. In fact, as reported in Table 4, the MAPE of the
est performing model (KM) is always less than 4% (and in most
10
case less than 2%) for all the performance variables, in the considered
modalities.

6.4. Scenario 2 : Fully supervised health status estimation

In this section, the results of the engine’s health status classification
experiments are listed and analysed. As previously described in List 2,
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Table 6
Scenario 3: error (percentage of misclassification error) and confusion matrices (positive are faulty and
negative are healthy) of the different models with a Direct Approach (OCSVM and GKNN) or with a Digital
Twin (based on RF, KM, and NN) in predicting the health status conditions (see Section 4) of the engine
in diesel mode.
the experiments take into consideration only the diesel mode, merging
in the same dataset both healthy and faulty engine’s conditions. The
three different models (RF, KM and NN) have been applied to distin-
guish between two possible engine’s statuses: +1 for faulty condition
and −1 for healthy condition. Table 5 reports the misclassification
errors of the three models for the two different approaches under
analysis (Direct and Digital Twin).

Looking at the percentages listed in Table 5a, the Direct approach
outperforms the Digital Twin one in terms of misclassification errors for
all the exploited models. Furthermore, KM demonstrates to perform
better compared to RF and NN in accordance to what observed in
Section 6.3.

In order to better represent the quality of the developed model,
Tables 5b, 5c, 5d, 5e, 5f, and 5g report the confusion matrices for
each of the considered models and for both the adopted approaches.
By observing these confusion matrices it is possible to note that the
misclassification errors are well distributed and models do not tend
to predict more false positive than false negative. Also in this case
the quality of the developed models is surely up to a level which is
acceptable for their use in the wild with misclassification below the
5% (and in most case less than 3%). Note then that, switching from
Scenario 1 to Scenario 2 does not compromise the ability to make
accurate predictions.
11
6.5. Scenario 3 : Weakly supervised health status estimation

Table 6 reports the misclassification error percentages and the
related confusion matrices for the third and last scenario. Diesel engine
mode data and the Direct and Digital Twin approaches are exploited
in this context, in accordance with previous scenario’s experiments. In
this case, the experimental setup is slightly different, as described in
Section 6.1 by drastically reducing the need for labelled data.

For the Direct approach, OCSVM and GKNN models are taken into
consideration and compared against the ones based on the Digital Twin
(build with RF, KM and NN). In this setting, the validation set size
(which is the only actual labelled one) is a parameter to be considered
as another degree of freedom (which must be kept as small as possible
to be able to apply this methodology in the wild).

Observing Table 6a, the Direct approach outperforms again the Digi-
tal Twin-based one. For the Direct approach, OCSVM model outperform
the GKNN one. Meanwhile, for the Digital Twin-based approach, KM
model confirms to outperform both RF and NN models. As expected,
increasing the validation set size (the amount of labelled data), the
models performance decrease. For the Direct approach the improve-
ment is not so relevant, while for Digital Twin approach is more
relevant. This confirm the higher ability of the Direct approach to
deliver high performance with limited number of labelled samples.
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Tables 6b, 6c, 6d, 6e and 6f report the confusion matrices of all
he models under analysis for a validation set size equal to 10. Also
n this case, observing these confusion matrices it is possible to note
hat the misclassification errors are well distributed and models do not
end to predict more false positive than false negative. Also in this case
he quality of the developed models is surely up to a level which is
cceptable for their use in the wild with misclassification below the
% (and in most case less than 3%). Note then that, switching from
cenarios 1 and 2 to Scenarios 3 does not compromise the ability to
ake accurate predictions (the decrease in performance is less than
%).

. Conclusions

Marine dual fuel engines, running on both gaseous and liquid
uels, represent a viable way toward the reduction of emissions since
aritime transportation accounts for around 80% of the world freight
ovements, remarkably contributing to the global environmental foot-
rint. The side effect of this transition is in additional complexity in
onitoring activities which are required to keep their performance

lways at the desired level. In fact, the degradation of marine engines
erformance decreases their operational efficiency, leading to a higher
uel consumption and consequently to an increase in greenhouse emis-
ions. Moreover, losses in performance are often a precursor or signal
or the necessity of maintenance activities.

In this paper, we focus on data-driven monitoring models to be
mployed in the wild. Unfortunately data-driven methods often require
large amount of labelled samples which are rarely available. For

his reason, in this paper, we design and propose multiple alternatives
oward the weakly supervised marine dual fuel engines data-driven
onitoring. To this aim, we relied on a Digital Twin of the dual fuel

ngine or on novelty detection algorithms and compared them against
tate-of-the-art fully supervised approaches. The approach employed
n this study includes three steps. The first step was characterised
y a Fully Supervised Performance estimation scenario including the
esign of a Digital Twin, exploiting state-of-the-art supervised data-
riven methods for enabling the prediction of the engine performance
nd emission parameters based on the control variables (e.g. engine
oad and engine speed), in healthy engine conditions. The second
tep consisted in the development of a Fully Supervised Health Status
cenario, focusing on developing models capable of classifying the
tatus of the engines as healthy or faulty, and it was accomplished by
mploying two approaches. The first one employed the Digital Twin
eveloped in the first step to estimate the deviation (drift) of the
arameters of the actual engine operation (based on the acquired data)
rom the respective Digital Twin predicted parameters. The second one
xploited state-of-the-art supervised data-driven methods to classify the
tatus of the investigated engine based on the control and performance
arameters. Unfortunately, this approach required a large number of
abelled samples to be implemented, which are rarely available in the
ild. For this reason, in the third step a Weakly Supervised Health
tatus Estimation was proposed, focusing on reducing the amount of
abelled data required to build the models developed in the second step
y employing two approaches. The first one focused on the estimation
f the engine performance parameters variation from the respective
arameters calculated by employing the Digital Twin utilising a limited
mount of labelled data for tuning the drift detection model. The
econd one, instead, exploited state-of-the-art unsupervised data-driven
ethods to detect abnormal conditions (anomalies) of the investigated

ngine by employing as input the considered control and performance
arameters. The weakly supervised health status estimation step em-
loyed the models trained just on data acquired under the engine
ealthy conditions from the engine monitoring system. These models
ere subsequently fine tuned with a very small amount of labelled data.

Results on data generated from a real-data validated simulator
f a marine dual fuel engine demonstrate that the proposed weakly
12
supervised monitoring approaches lead to a negligible loss in accuracy
compared with costly and often unfeasible fully supervised ones sup-
porting the validity of the proposal for its application in the wild. In
particular, in the Fully Supervised Performance estimation scenario,
the error of the data-driven model is always less than 4% (and in
most cases less than 2%) for all the performance variables in the
considered modalities. This result is surely up to a level which is
acceptable for the utilisation of data-driven models for dual fuel engine
performance estimation. Considering the Fully Supervised Health Status
scenario, the error of the fault detection models is always below the
5%, and in most cases less than 2% which is again suitable for real
operational environment, but unfortunately it requires a number of
labelled samples which is not realistic to obtain in the wild. Finally,
in the Weakly Supervised Health Status Estimation scenario, we fill this
gap by remarkably decreasing the amount of labelled samples necessary
to train the model whilst obtaining an error below the 5% (and in most
cases less than 3%) and not compromising the ability to make accurate
predictions (the decrease in performance is less than 1%) for the use of
this model in real operational conditions.
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