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Abstract—The hydromechanics analysis of floating offshore
wind turbines is a fundamental and time consuming part of the
design process, traditionally analysed with methods of computa-
tional fluid dynamics. In this work, an alternative computational
framework is suggested, able to significantly accelerate the design
process with minimal accuracy loss. Through the use of a state-of-
the-art potential-flow code, a surrogate model is developed with
the aim to approximate the Response Amplitude Operators of any
arbitrary floating offshore wind turbine of the spar buoy type.
The results, measured in terms of accuracy and computational
effort, demonstrate that this approach is able to approximate the
potential-flow solver with very high accuracy at a fraction of the
computational cost.

Index Terms—Surrogate models, Extreme Learning Machines,
Response Amplitude Operators, Floating Offshore Wind Turbine,
Hydromechanics Analysis

I. INTRODUCTION

Wind energy is expected to make significant contributions

in the achievement of energy policy commitments in the

global power sector. Currently, onshore wind farms are the

major contributor, however, recent trends in the renewable

energy industry indicate that offshore wind farms will soon

be at the forefront of the fight against climate change [1].

Therefore, far, offshore wind farms have been developed in

near-shore and shallow waters, utilising mostly fixed bottom

structures. Nonetheless, it has been identified that the best

wind resources exist beyond the reach of these structures, in

deeper locations where the wind speed is higher and more

consistent, larger areas are available, and the use of large

and costly installation vessels can be potentially avoided.

These locations can be accessed by Floating Offshore Wind

Turbines (FOWT), however, the harsh operating conditions

and the lower level of maturity pose significant engineering

challenges in the design and construction of FOWTs. Among

these challenges is the development of accurate modelling

tools with increased flexibility, to facilitate the complex and

iterative design process [2]–[4].

In order to shorten the lengthy design cycles, part of the re-

search community has focused on reducing the computational

time requirements of the necessary modelling tools. To this

end, several researches have proposed the use of surrogate

models in the design and optimisation of wind turbines.

Surrogate models have had several successful applications in

the field of Computational Fluid Dynamics (CFD), and are

known for their high computational efficiency and the ability

to represent functions of very high complexity [5]–[9]. In [10],

a surrogate optimisation framework was developed for the

aerodynamic design of wind-turbine rotors, using a three-

dimensional viscous-inviscid interaction code. The proposed

methodology was compared to the blade element-momentum

theory approach, with the final results showing remarkable

similarities at a fraction of the computational cost. A Response

Surface Model (RSM) was developed in [11] to reduce the

computational time of a complex two-step, multi-objective

optimisation of a wind turbine blade. RSMs were also utilised

in [12], [13], where expensive numerical computations of the

Navier-Stokes equations were originally used to design wind-

turbine airfoil profiles. Similarly, Kriging and Artificial Neural

Networks (ANNs) were also shown to be preferable in the

design of wind turbine airfoils than traditional CFD methods

in [14], [15], respectively.

Although these approaches clearly demonstrate that sur-

rogate models exhibit a favourable trade-off between com-

putational complexity and accuracy, the design process of

FOWT structures poses additional challenges that remain to

be addressed. One of these challenges, and a fundamental part

of the conceptual and preliminary design, is the assessment

of the hydromechanics characteristics of these structures, and

more precisely: the added mass matrix, the radiation damping

matrix, and the wave load transfer functions, as functions of

the frequency of oscillation.

In practice, several configurations are initially considered,

and their dynamic response to the environmental loads is

assessed. Based on these initial evaluations, one or more

new configurations are proposed and assessed once again.

The current state-of-the-art high accuracy approaches for this

analysis are based on CFD and Higher Order Boundary

Element Methods (HOBEM) [16]–[18]. However, their high

computational cost and the large number of load cases that
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need to be considered restrict the full exploration of the design

space due to practical limitations: the standard resources

that are usually available to engineers involved in FOWT

analysis and design are not sufficient to sustain the necessary

iterations [19]. This severely limits the speed of the design

process, and as such, the quality of the final configuration.

Despite the increasing efforts to incorporate surrogate mod-

els in several areas of wind turbine design and analysis, their

application on hydrodynamic response estimation of FOWT

structures has yet to be addressed. For this reason, this work

demonstrates the feasibility and assesses the performance of

a surrogate model in this particular design aspect. Namely,

the hydrodynamic response of FOWT foundation structures of

the spar-buoy type. For the reasons that are discussed in the

sections that follow, a particular sub-family of ANNs has been

employed, known as Extreme Learning Machines (ELMs),

developed utilising a dataset of simulations from a state-of-the-

art, potential-flow-based computational code [20]. The dataset

will serve as input to the Model Selection (MS) and Error

Estimation (EE) phases, while the remaining part of the data

will be used for validation and verification. In particular, to

assess the ability of the ELM to approximate the results of the

computationally expensive potential-flow solver, we evaluated

two different scenarios: an interpolation scenario, in which

the design parameters lie within the design space sampled

to develop the ELM, and an extrapolation scenario, in which

the foundation parameters lie outside the boundaries of the

original design space.

This paper is organised as follows: Section II gives an

overview of the computational code employed to generate a

limited dataset of the hydrodynamic responses, in terms of

Response Amplitude Operators (RAOs), of FOWT structures

with different geometries. Section III describes the sampling

methodology used to select specific geometries from the

design space as input to the ELM, and Section IV discusses the

process of learning the RAOs. Finally, Section V discusses the

performance and time requirements of the proposed method,

and Section VI gives the conclusion and recommendations for

further work.

II. HYDROMECHANICS ANALYSIS

The system of equations of motion for a floating body in

regular waves is [21]:

6∑
j=1

ξj
[
−ω2 (Mkj + akj) + iωbkj + ckj

]
= ηXk, (1)

k = 1, ..., 6

where M is the total system matrix, akj is the hydrody-

namic added mass coefficient, bkj is the radiation damping

coefficient (no viscous forces have been considered), and ckj
is the sum of the hydrostatic and mooring system stiffness

coefficients. ξj is the j-th degrees of freedom displacement

(rigid platform global response), η is the wave amplitude, and

Xk is the first order wave load transfer function.

These are six simultaneous linear equations of motion,

which can be solved to obtain the body displacement in the

j-th DOF:

ξj = η
6∑

k=1

Xk

−ω2 (Mkj + akj) + iωbkj + ckj
(2)

The complex response transfer function between the ampli-

tude of the wave and the amplitude of the oscillation of the

system in the j-th DOF is therefore:

Hj =
ξj
η

=
6∑

k=1

Xk

−ω2 (Mkj + akj) + iωbkj + ckj
(3)

The RAO in the j-th DOF is defined as the complex

magnitude of the transfer function Hj :

RAOj = |Hj | (4)

A. Hydrodynamics analysis

The software NEMOH is a Boundary Element Methods

(BEM) code calculating the wave loads on offshore structures

(added mass, radiation, damping, diffraction forces), developed

by researchers at Ecole Centrale de Nantes. In the present

work, it has been used to estimate the dynamic response of

the floating support structures analysed. Differently from other

BEM softwares, NEMOH’s approach decouples the resolution

of the linear free surface Boundary Value Problem (BVP) and

the definition of the boundary condition on the body (body

condition). For further details, please refer to [20].

In particular, for the present work, NEMOH has been used

to derive

• the A6×6(ω) and B6×6(ω) added mass and radiation

damping matrices, function of the frequency;

• the Xk(ω) first order wave load transfer functions (inci-

dent and diffraction potential);

• the C6x6 hydrostatic restoring matrix.

It should be noted that, in the present work, being the

floating support structures analysed always axisymmetric, only

one incident wave direction has been considered.

B. Mass matrix and centre of gravity

At this preliminary design stage, the support structure mass

is usually estimated as a fraction of the mass of displace water

[22], and in the present case this fraction is equal to 0.26.

Then, the support structure mass matrix Mss
6x6 is estimated by

considering each frustum of a cone element mass distributed

on the external panel, also allowing the estimation of its centre

of gravity CoGss
1×3.

The wind turbine mass matrix, Mwt
6x6, and its centre of

gravity, CoGwt
1×3, is an input to the problem, and the ones

assumed here are those of the open access NREL 5 MW

reference offshore wind turbine [23].

The ballast mass can be therefore calculated using the

floatability requirement, i.e., the sum of the wind turbine

weight, the support structure weight, and the ballast weight
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has to be equal to the total buoyancy force. The ballast mass

matrix Mbal
6x6 and the ballast centre of gravity CoGbal

1×3 are

then derived, considering the ballast filling the lowest part of

the support structure. The material considered for the ballast

is a mix of seawater and heavy solid material, with a density

equal to ρ = 1800 kg
m3 .

Therefore, the mass matrix and the centre of gravity of the

whole system are derived as follow

M6x6 = Mss
6x6 +Mwt

6x6 +M bal
6x6 (5)

CoG1×3 =
mssCoGss +mwtCoGwt +mbalCoGbal

m
(6)

where mi = M i(1, 1) is the mass of the i−th subsystem.

C. Mooring system restoring forces

The mooring system stiffness matrix has been considered

constant and equal to the one provided for the open access

OC3 Spar floating offshore wind turbine [24].

III. DATASET CREATION

Our ability to generate input data for the learning phase

can be exploited to positively affect the performance of the

surrogate model. As such, special consideration was given

in the careful sampling of the design space, to generate a

limited set of representative geometries. We defined the design

space on the basis of the foundation’s draft and the external

radii of the axi-symmetric platform, at six different depths

along the vertical axis of the structure. To sample the design

space, the external radii were varied between one and six

meters, with a discretization interval of one meter, whereas the

foundation draft was varied between 50 and 140 meters, with

a discretization interval of 10 meters. A full factorial design

of the experiments was employed to allow us to capture the

joint effects of all the design parameters on each of the RAOs.

Given the discretization used, a total of 2187 geometries were

generated.

Finally, the mesh of each geometry, along with the load

cases to be evaluated were inserted into the potential-flow

based code to derive the global rigid-body response of each

platform quantified by the 6DOF RAOs. Examples of gener-

ated geometries are given in Fig. 1.

IV. LEARNING THE RAO

The problem of learning the RAO based on the data

described in Section III can be easily mapped in the now-

classical Machine Learning regression problem [25]. However,

our scope is broader, and we want to learn a model with limited

computational requirements, namely, the computational effort

to compute the model output given its inputs should be

as limited as possible. As we will see in this section, this

constraint will guide us to a particular solution.

Let us recall the now-classical Machine Learning regression

problem [25]. Let X ⊆ R
d be the input space consisting

of f features, and let Y = R be the output space. Let

(a) Example Geometry 1 (b) Example Geometry 2

(c) Example Geometry 3 (d) Example Geometry 4

Fig. 1. Sample of geometries for the learning phase.

TABLE I
LIST OF FEATURES IN THE DATASET

Name Description

r1×6 External radii of the platform
T Foundation draft
CoGwt

1×3 Wind turbine center of gravity
zssG Support structure center of gravity - vertical position
ztsG Total structure center of gravity - vertical position
Mss

6×6 Support structure mass matrix
M ts

6×6 Total structure mass matrix
Cm

6×6 Mooring system restoring matrix

Chst
6×6 Hydrostatics and ballast restoring matrix

ω1×207 Frequency vector

Dn = {(X1, Y1), . . . , (Xn, Yn)}, where Xi ∈ X and Yi ∈ Y
∀i ∈ {1, · · · , n}, be a sequence of n ∈ N

∗ samples drawn

independently from an unknown probability distribution μ over

X ×Y . Let us consider a model (function) f : X → Y chosen

from a set F of possible ones. An algorithm AH : Dn×F → f
characterised by its hyperparameters H selects a model inside

a set of possible ones based on the available dataset.

Note that many algorithms for solving regression problems

exist in the literature [25]. In particular, it is possible to

identify three main different families of methods which are

mostly effective in practice [25]–[27]: the kernel methods, the

ensemble methods, and the neural networks. As we will see

later, our constraints on the computational requirements of the

final learned model will guide us to the use of a particular

sub-family of neural networks called ELM [28], [29]. In fact,
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kernel methods [30] and ensemble methods [31], [32] are

known to be very effective, but the computational requirements

grow a lot if we want to increase the accuracy. ELM, instead,

allows to easily build and learn highly non-linear regressors

with the use of random projection. Even if this approach is

quite effective, still the computational requirement of an ELM

can be high since many random projection may be not very

useful for increasing the accuracy. For this reason, we will

purpose to clean up the number of random projections by

keeping just the ones which are really useful and effective

in improving the regressors accuracy.
The error of f in approximating P{Y | X} is measured

by a prescribed metric M : F → R. Note that many different

metrics are available in the literature for regression, which may

provide insights on the performance of the model [33]. In our

case, we will make use of the Mean Absolute Percentage Error

(MAPE). In order to define it, let us first consider a subset

of the available data Tt, also called test set, coming from μ
but different from Dn since the data that have been used to

learn f should be different to the ones exploited to evaluate its

performance so to avoid overfitting [34]. Then we can define

the MAPE as

MAPE(f)=MAPE(f, Tt)=
100

t

∑
(X,Y )∈Tt

∣∣∣∣
f(X)− Y

Y

∣∣∣∣ (7)

Finally, to tune the performance of the AH, namely to select

the best set of hyperparameters, and to estimate the perfor-

mance of the final model according to the desired metrics,

a MS and EE phase needs to be performed [34]. Finally we

will also measure the time, in seconds, of computing f(X)
(TIME(f)) on the same infrastructure where the BEM Model

has been run (see Section II).

A. The Proposed Model
As we previously described, the method that we propose is

based on ELM, plus a smart cleaning strategy of the random

generated features in the ELM.
The ELM approach was originally introduced to overcome

problems posed by back-propagation training algorithm in

classical neural networks; specifically, potentially slow con-

vergence rates, the critical tuning of optimisation parameters,

and the presence of local minima that call for multi-start and

re-training strategies [28], [29]. ELM was originally developed

for the single-hidden-layer feed-forward neural networks and

then generalised in order to cope with cases in which the ELM

is not neuron alike.

f(X) =

h∑
j=1

wjgj(X), (8)

where gj : R
d → R, j ∈ {1, · · · , h} is the hidden-layer

output corresponding to the input sample X and w is the

output weight vector between the hidden layer and the output

layer.
In our case, the input layer has d neurons and connects to

the hidden layer (having h neurons) through a set of weights

vj ∈ R
d, j ∈ {1, · · · , h}, (9)

the j-th hidden neuron embeds a bias term,

v0j , j ∈ {1, · · · , h}, (10)

and a nonlinear activation function, ϕ : R → R (in our case the

hyperbolic tangent). Thus, the neuron’s response to an input

stimulus, X , is

ϕ(vj ·X + v0j ), j ∈ {1, · · · , h}. (11)

Note that Eq. (11) can be further generalised to include a

wider class of functions; therefore, the response of a neuron

to an input stimulus X can be generically represented by any

nonlinear piece-wise continuous function characterised by a

set of parameters. In ELM, these parameters (vj and v0j ) are

set randomly (in our case these parameters are sampled from

the Normal distribution). A vector of weighted links, w ∈ R
h,

connects the hidden neurons to the output neuron without any

bias. The overall output function, f(X), of the network is

f(X) =
h∑

j=1

wjϕ(vj ·X + v0j ). (12)

It is convenient to define an activation matrix V ∈ R
n×h, such

that the entry Vi,j is the activation value of the j-th hidden

neuron for the i-th input pattern. The V matrix is

V=

⎡
⎢⎣
ϕ(v1·X1+v01) · · · ϕ(vh·X1+v0h)

...
. . .

...

ϕ(v1·Xn+v01) · · · ϕ(vh·Xn+v0h)

⎤
⎥⎦=

⎡
⎢⎣
φT (X1)

...

φT (Xn)

⎤
⎥⎦. (13)

In the ELM model, the quantities {vj , v
0
j } in Eq. (11) are

set randomly and are not subject to any adjustment, and the

quantity w in Eq. (12) is the only degree of freedom. Hence,

the training problem reduces to minimisation of the convex

cost

w∗ = argmin
w

‖Vw − y‖2 . (14)

A matrix pseudo-inversion yields the unique L2 solution

w∗ = V +y. (15)

The simple, efficient procedure to train an ELM therefore

involves the following steps

1) Randomly generate hidden node parameters (in or case

vi and bias v0i ) for each hidden neuron;

2) Compute the activation matrix V , of Eq. (13);

3) Compute the output weights by solving the pseudo-

inverse problem of Eq. (15).

Despite the apparent simplicity of the ELM approach, the

crucial result is that even random weights in the hidden

layer endow a network with notable representation ability.

Moreover, regularisation strategies can further improve the

approach’s generalisation performance. As a result, the cost

function of Eq. (14) is augmented by a regularisation factor

as follows

w∗ = argmin
w

‖Vw − y‖2 and ‖w‖ , (16)
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where ‖w‖ can be any suitable norm of the output weights.

A common approach is then to use the L2 regularizer

w∗ = argmin
w

‖Vw − y‖2 + λ ‖w‖2 , (17)

and consequently the vector of weights w∗ is then obtained

as follows

w∗ = (V TV + λI)−1V Ty, (18)

where I ∈ R
h×h is an identity matrix.

Note that, also intuitively, not all the random projection will

be useful for actually improving the accuracy of the model.

For this reason, we propose to incrementally add random

projection. In particular, instead of contemporary extracting

all the h projections (Step 2 in the ELM), the model is built

incrementally adding nh projections at the time and keeping

only if the increment in accuracy is at least ph%. This simple

strategy helps the model in generating only informative ran-

dom projection, reducing the number of parameters required

by the regressor to reach a good accuracy.

B. Model Selection and Error Estimation

MS and EE deal with the problem of tuning and as-

sessing the performance of a learning algorithm [34]. Re-

sampling techniques like k-fold cross validation and non-

parametric bootstrap are often used by practitioners because

they work well in many situations [35]. Other alternatives

exist, which represent bases in the Statistical Learning Theory

and give more insight into the learning process. Examples

of methods in this last category are: the seminal work of

the Vapnik-Chervonenkis Dimension, its improvement with

the Rademacher Complexity, the theory of compression, the

Algorithmic Stability breakthrough, the PAC-Bayes theory,

and more recently the Differential Privacy theory [34].

In this work, we will exploit the resampling techniques

which rely on a simple idea: the original dataset Dn is resam-

pled once or many (nr) times, with or without replacement, to

build three independent datasets called learning, validation and

test sets, respectively Lr
l , Vr

v , and T r
t , with r ∈ {1, · · · , nr}.

Note that Lr
l ∩ Vr

v = �, Lr
l ∩ T r

t = �, Vr
v ∩ T r

t = �, and

Lr
l ∪ Vr

v ∪ T r
t = Dn for all r ∈ {1, · · · , nr}.

Then, to select the best combination of the hyperparameters

H in a set of possible ones H = {H1,H2, · · · } for the

algorithm AH or, in other words, to perform the MS phase,

the following procedure has to be applied

H∗ : arg min
H∈H

nr∑
r=1

M(AH(Lr
l ),Vr

v ), (19)

where AH(Lr
l ) is a model built with the algorithm A with

its set of hyperparameters H and with the data Lr
l and

where M(f,Vr
v ) is a desired metric. Since the data in Lr

l are

independent from the ones in Vr
v , the idea is that H∗ should

be the set of hyperparameters that allows to achieve a small

error on a data set that is independent from the training set.

Then, to evaluate the performance of the optimal model,

which is f∗
A = AH∗(Dn) or, in other words, to perform the

EE phase, the following procedure has to be applied

MAPE(f∗
A ) =

1

nr

nr∑
r=1

MAPE(AH∗(Lr
l ∪ Vr

v ), T r
t ). (20)

Since the data in Lr
l ∪ Vr

v are independent from the ones in

T r
t , M(f∗

A ) is an unbiased estimator of the true performance,

measured with the metric M , of the final model [34].

If nr = 1, if l, v, and t are aprioristically set such that

n = l + v + t, and if the resampling procedure is performed

without replacement, the hold out method is obtained [34].

For implementing the complete nested k-fold cross validation,

instead, it is needed to set nr ≤
(
n
k

)(n−n
k

k

)
, l = (k − 2)nk ,

v = n
k , and t = n

k and the resampling must be done

without replacement [35]. Finally, for implementing the nested

non-parametric bootstrap, l = n and Lr
l must be sampled

with replacement from Dn, while Vr
v and T r

t are sampled

without replacement from the sample of Dn that has not been

sampled in Lr
l [35]. Note that for the bootstrap procedure,

nr ≤
(
2n−1

n

)
. In this paper, the complete nested k-fold cross

validation is exploited because it represents the state-of-the-art

approach [34], [35].

V. EXPERIMENTS RESULTS

We built a model using the MS strategy where we set k = 10
and nr = 1000. During the MS, we searched the hyperpa-

rameters using the following ranges: h ∈ 10{1.0,1.2,1.4,··· ,4.0},

λ ∈ 10{ − 6.0,−5.8, · · · ,+4.0}, nh = h/{10, 20, 40, 80, 160},

and ph ∈ {0.5, 1.0, 2.0, 4.0, 8.0, 16}.

All the developed models have a TIME (f) of a few

milliseconds maximum.

Two modelisation scenarios have been investigated

• Interpolation Scenario: in this case the models try to

predict the RAOs in various, but different, configurations

of the design parameters, as discussed in Section III,

within the ones exploited for building the model. In other

words, this scenario is accounting for configurations that

belong inside the search space used to build the dataset;

• Extrapolation Scenario: in this scenario, the models try to

predict the RAOs in various, but different, configurations

of the design parameters, with respect to those exploited

for building the model. This second scenario, instead

is considering configurations that belong outside of the

search space used to build the dataset.

Basically the two scenarios just differ in the definitions

of Ll, Vv , and Tt, that are the subset of data exploited for

building, tuning, and testing the models.

The interpolation scenario is obviously the simplest one. In

this scenario Ll, Vv , and Tt have been created by splitting ran-

domly all the samples of the datasets described in Section III.

In this way the models have been tested in their ability to

predict the RAO in various, but different, conditions within

those exploited for building the models.

On the contrary, the extrapolation scenario tests the ca-

pability of the models to predict the RAO for cases not
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included in the variable domain of the data used to build

them. The practical application of the extrapolation scenario

is to demonstrate that the regression model can be utilised

outside the limits of the design variables (external radii and

foundation drafts). As such, the proposed model can be

embedded within a broader optimisation framework, having

a much broader search space for the design variables. In order

to obtain an indication of the extrapolation performance, the

authors performed a number of extrapolations scenarios, one

for each design variable (ri, i ∈ 1, ..., 6, and T ), and one

additional scenario, for the extrapolation of all design variables

simultaneously. The results are reported in Table II.

From the results, we can note that an average MAPE of 2%
is achieved across the different RAOs for the interpolation

scenario. As expected, a higher MAPE is observed for all

the considered extrapolation scenarios. The highest MAPE is

obtained when all design variables lie outside the initial search

space X . Nonetheless, it is worth noting that, in the worst

case scenario, an average MAPE of 5% is reported. A more

detailed description of the results for the surge, heave, and

pitch motions is given in Figs. 2 - 4. We can observe that

for the majority of the geometries, the ELM forecast is very

close to the BEM-based solution (vertical distance between the

blue circles and the red line). Moreover, the error distribution

for the surge and heave motions for both the interpolation and

extrapolation scenarios reveals that for 98% of the geometries,

the MAPE is less than 2%. While, for the pitch motion, the

same error is less than 1%, which is also verified by the smaller

variance presented in Fig. 4.

To better illustrate the ability of the regression model to

accurately predict the 6 RAOs, and to provide the reader with

a visual impression of the results, the authors report the RAOs

predicted with the high-fidelity BEM solver and the ELM

in Fig. 5, for the geometry of Fig. 6, characterised by the

following design parameters: X = {1, 1, 5, 5, 1, 5, 120} (all

the quantities are reported in meters).

Due to the fact that the wet geometry is axisymmetric,

the only incident wave direction considered has been 0 deg

(i.e., aligned with x), and therefore the only RAO considered

are those in surge, heave, pitch, and yaw, since the sway

RAO will be equal to the surge RAO, and the one in roll

equals the pitch RAO. Again, due to the wet geometry being

axysimmetric, the excitation in yaw is minimal, negligible with

respect to the others. Nevertheless, we can safely state that

the ELM is able to predict the behaviour of the BEM solver,

even purely in terms of numerical noise. Moreover, the RAOs

for surge, heave, and pitch motions are well captured for the

entire frequency spectrum. It is worth noting that the learning

phase has been carried out in a base-10 logarithmic scale, to

properly capture the behaviour of the RAOs near the resonance

frequencies for all geometries. For the sake of consistency, we

have reported the results of Fig. 5 in base-10 logarithmic scale.

VI. CONCLUSIONS & DISCUSSION

In this paper, the authors presented a surrogate model

for the hydromechanics analysis of floating offshore wind

(a) Interpolation scenario - scatter (b) Interpolation scenario - histogram

(c) Extrapolation on X - scatter (d) Extrapolation on X - histogram

Fig. 2. Surge motion ELM forecast

(a) Interpolation scenario - scatter (b) Interpolation scenario - histogram

(c) Extrapolation on X - scatter (d) Extrapolation on X - histogram

Fig. 3. Heave motion ELM forecast
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TABLE II
MEAN ABSOLUTE PERCENTAGE ERROR

Scenario Surge Heave Pitch

Interp 2.52± 0.30 2.52± 0.33 1.43± 0.20
r1 3.51± 0.43 4.11± 0.33 2.11± 0.23
r2 4.11± 0.39 3.76± 0.47 2.00± 0.22
r3 3.45± 0.25 3.62± 0.48 2.17± 0.25
r4 3.65± 0.34 3.45± 0.30 2.22± 0.15
r5 3.41± 0.43 3.57± 0.30 2.07± 0.21
r6 3.82± 0.44 3.36± 0.29 2.02± 0.22
T 3.40± 0.28 3.82± 0.51 2.00± 0.16
X 5.78± 0.27 5.51± 0.62 3.75± 0.49

(a) Interpolation scenario - scatter (b) Interpolation scenario - histogram

(c) Extrapolation on X - scatter (d) Extrapolation on X - histogram

Fig. 4. Pitch motion ELM forecast

turbines. The authors proposed an alternative computational

framework to accelerate the design process with minimal

accuracy loss and minimal computational requirements. Based

on the results of a state-of-the-art potential-flow code on a

limited set of geometries, an ELM-based surrogate model

has been developed to approximate the Response Amplitude

Operators of any arbitrary floating offshore wind turbine of

the spar buoy type. The results demonstrate the feasibility

of replacing the computationally expensive BEM solver with

a fast, yet accurate surrogate model. More specifically, the

surrogate ELM-based model can predict the RAOs of any

FOWT geometry with an average MAPE of 2% across all

the DOFs, when the design variables are within the limits

of the search space used to learn the surrogate model. In

the more challenging extrapolation scenario, in which the

design variables lie outside the limits of the original search

(a) Surge Motion

(b) Heave Motion

(c) Pitch Motion

Fig. 5. Interpolation scenario results

Fig. 6. Interpolation scenario geometry
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space, the average MAPE increases up to 5% for all the

DOFs. The current state-of-the-art, high fidelity approaches for

this analysis are based on CFD and HOBEM. However, the

computational cost of these methods limits their application

in optimisation, restricting the number of configurations that

can be investigated, thus limiting the assessed designs. The

proposed ELM-based surrogate model, when exploited within

an optimisation framework, can overcome this limitation by

enabling fast, robust, and highly accurate hydrodynamics

analysis, built-on high-accuracy numerical simulation data.

We expect that the proposed approach will pave the way

towards innovative support platform geometries investigation

and design, optimising the hydrodynamics response, which can

substantially enhance the performance of FOWTs.
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M. Abdel-Maksoud, “A panel method for floating offshore wind turbine
simulations with fully integrated aero-and hydrodynamic modelling in
time domain,” Ship Technology Research, vol. 65, no. 3, pp. 123–136,
2018.

[19] M. Muskulus, “Designing the next generation of computational codes
for wind-turbine simulations,” in The Twenty-first International Offshore
and Polar Engineering Conference. International Society of Offshore
and Polar Engineers, 2011.

[20] A. Babarit and G. Delhommeau, “Theoretical and numerical aspects of
the open source bem solver nemoh,” in LHEEA, 2015.

[21] J. N. Newman, Marine hydrodynamics. MIT press, 2018.

[22] O. Anaya-Lara, J. O. Tande, K. Uhlen, and K. Merz, Offshore Wind
Energy Technology. Wiley Online Library, 2018.

[23] J. Jonkman, S. Butterfield, W. Musial, and G. Scott, “Definition of a 5-
mw reference wind turbine for offshore system development,” National
Renewable Energy Lab.(NREL), Golden, CO (United States), Tech.
Rep., 2009.

[24] J. Jonkman, “Definition of the floating system for phase iv of oc3,”
National Renewable Energy Lab.(NREL), Golden, CO (United States),
Tech. Rep., 2010.

[25] S. Shalev-Shwartz and S. Ben-David, Understanding machine learning:
From theory to algorithms. Cambridge university press, 2014.

[26] M. Fernández-Delgado, E. Cernadas, S. Barro, and D. Amorim, “Do we
need hundreds of classifiers to solve real world classification problems?”
The journal of machine learning research, vol. 15, no. 1, pp. 3133–3181,
2014.

[27] M. Wainberg, B. Alipanahi, and B. J. Frey, “Are random forests truly the
best classifiers?” The Journal of Machine Learning Research, vol. 17,
no. 1, pp. 3837–3841, 2016.

[28] G. Huang, G. B. Huang, S. Song, and K. You, “Trends in extreme
learning machines: A review,” Neural Networks, vol. 61, pp. 32–48,
2015.

[29] S. Ding, H. Zhao, Y. Zhang, X. Xu, and R. Nie, “Extreme learning
machine: algorithm, theory and applications,” Artificial Intelligence
Review, vol. 44, no. 1, pp. 103–115, 2015.

[30] J. Shawe-Taylor and N. Cristianini, Kernel methods for pattern analysis.
Cambridge university press, 2004.

[31] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5–32, 2001.

[32] R. Blaser and P. Fryzlewicz, “Random rotation ensembles,” The Journal
of Machine Learning Research, vol. 17, no. 1, pp. 126–151, 2016.

[33] C. C. Aggarwal, Data Mining: the Textbook. Springer, 2015.

[34] L. Oneto, Model Selection and Error Estimation in a Nutshell. Springer,
2019.

[35] R. Kohavi, “A study of cross-validation and bootstrap for accuracy
estimation and model selection,” in International Joint Conference on

Artficial Intelligence, 1995.

Authorized licensed use limited to: Universita degli Studi di Genova. Downloaded on June 01,2022 at 19:09:31 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


