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Abstract 1 
The reliable estimation of hydrological variables in space and time is of fundamental importance in 2 

operational hydrology to improve the flood predictions. Nowadays remotely sensed data can offer a 3 

chance to improve hydrological models especially in environments with scarce ground based data.  4 

The aim of this work is to update the state variables of a physically based, distributed and 5 

continuous hydrological model using four different satellite-derived data (three soil moisture 6 

products and a Land Surface Temperature measurement) and one soil moisture analysis. The 7 

experiments were carried out for a small catchment, in the northern part of Italy, for the period July 8 

2012-June 2013. The products were pre-processed according to their own characteristics and then 9 

they were assimilated into the model using a simple nudging technique. The benefits on the model 10 

predictions of discharge were tested against observations. The analysis showed a general 11 

improvement of the model discharge predictions for all the assimilation experiments, in particular 12 

an added value to the model was found in the rainfall season (autumn). This demonstrated that a 13 

distributed hydrological model, which works at fine scale resolution, can be ameliorated with the 14 

assimilation of coarse-scale satellite-derive data using a careful data pre-processing and a simple 15 

assimilation technique. The simplicity of this scheme makes it suitable to be applied in an 16 

operational framework to simulate flood predictions.   17 

 18 
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1 Introduction 3 
Nowadays many fields of research and operational applications, such as agricultural production, 4 

ecology, water resource management, rainfall-runoff prediction, weather/climate prediction and 5 

disaster management require reliable estimation of hydrologic variables (Seneviratne et al., 2010). 6 

Evapotranspiration, land surface temperature, soil moisture, snow water equivalent and others 7 

hydrologic variables can be observed at ground, predicted by models and observed from space. In 8 

particular, satellite observations related to land surface hydrological variables steadily increased in 9 

the past decade in quantity and variety (Njoku et al., 2003; Bartalis et al., 2007; Clifford 2010; 10 

Entekhabi et al., 2010; Gao et al., 2010; Kerr et al., 2010; Tedesco and Narvekar 2010;  Foster et al., 11 

2011; Liu et al.,2011; Parinussa et al., 2012). However, all the estimates of hydrologic variables are 12 

affected by errors and uncertainties: hydrological models suffer for uncertainties in model 13 

initialization, model parameters, forcing and physics representations; satellite data often measure 14 

indirect quantities and need forward models to retrieve hydrological variables; point measurements 15 

are representative of very small areas on ground. To overcome these issues and produce a more 16 

accurate hydrologic state estimation, different data-fusion and data assimilation techniques have 17 

been developed (Walker and Houser 2005; Houser et al., 2010; Houser et al., 2012). Using data 18 

assimilation techniques, satellite and/or ground observations can be merged into models to provide 19 

hydrological estimates that are generally more accurate with respect to the observations or model 20 

estimates alone (Liu et al., 2012). For more details about hydrologic data assimilation one may refer 21 

to the review chapter in Houser et al., 2012. Examples of data assimilation in hydrologic 22 

applications can be found for soil moisture (e.g. Houser et al., 1998; Pauwels et al., 2001; De 23 

Lannoy et al., 2007; Drusch 2007; Reichle et al., 2007; Scipal et al., 2008; Crow and Ryu, 2009; 24 

Draper et al., 2011; Brocca et al., 2012; Li et al., 2012; de Rosnay et al., 2012; Draper et al., 2012; 25 

Han et al., 2012; Sahoo et al., 2013), surface temperature and snow cover (e.g. Liston and Hiemstra, 26 

2008; Durand and Margulis, 2009; Kuchment et al., 2010; Reichle et al., 2010; Su et al., 2010; 27 

DeChant and Moradkhani, 2011; De Lannoy et al., 2012). However the design and implementation 28 

of a data assimilation scheme is still a research topic in hydrology, and it must be carefully 29 

performed for several motivations (Reichle et al. 2013): (1) the spatial resolution of satellite-based 30 

retrievals is usually much coarser than modelled one; (2) satellites observe electromagnetic 31 

properties such as backscatter and/or radiances (or brightness temperatures) that are only indirectly 32 

related to hydrological variables (Pierdicca et al., 2013a); (3) specific forward models and retrieval 33 

algorithms need to be developed to convert satellite observations into measures of the hydrological 34 
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variable of interest (Pierdicca et al., 2014); (4) soil moisture satellite-observed backscatter and 1 

radiances are sensitive to moisture in the top few centimetres of the soil, therefore information on 2 

root zone soil moisture must be gathered. Regarding the assimilation of remotely sensed soil 3 

moisture, most studies used land surface models or conceptual rainfall-runoff models (Weerts and 4 

El Serafy, 2006; Crow and Ryu, 2009; Sahoo et al., 2013; Alvarez-Garreton et al 2014; Renzullo et 5 

al., 2014); some of them explored the assimilation of satellite soil moisture estimates into physically 6 

based hydrological models (Chen et al., 2011; Draper et al.,2011; Draper et al.,2012; Han et al. 7 

2012; Flores et al. 2012; Wanders et al., 2014) and the most part of the studies used twin 8 

experiments with synthetic data (e.g., Kumar et al., 2009; Crow and Ryu, 2009). Concerning 9 

physically-based hydrological models, most of the soil moisture assimilation experiments on 10 

distributed models have been conducted at regional or national scale using model spatial resolutions 11 

at the order of 10 km or more (Draper et al., 2011; Daraper et al., 2012; Wanders et al., 2014); while 12 

assimilations at small watershed scale have been applied mainly to semi-distributed model (Chen et 13 

al., 2011; Han et al., 2012). Therefore, to our knowledge, there is still a lack of research on the use 14 

of remotely sensed data within physically-based, distributed continuous hydrological models 15 

working at spatial scales lesser than 1 km and applied to small basins (area less than 1000 km2). In 16 

particular some questions and issues are still open: (1) the correct procedure to assimilate satellite 17 

data (e.g. the definition of the observation operator and the bias handling), (3) how to face the 18 

different resolutions of observations and models and (4) how to quantify the impact of data 19 

assimilation on the hydrological cycle.  20 

This work is devoted to the assimilation of four different soil moisture products (three derived from 21 

ASCAT observations and one from SMOS mission) into the continuous, physically-based and 22 

distributed model Continuum (Silvestro et al. 2013) applied to a small catchment in Italy. The 23 

model is able to estimate, with a spatial resolution of 100 m, the soil moisture content over one 24 

single soil layer which represents the root zone. An effort was made in order to define a simple and 25 

robust pre-processing of satellite soil moisture data. Further experiments were the assimilation of 26 

remotely sensed Land Surface Temperature (LST), as well as both LST and soil moisture 27 

observations. Differently from other studies, which assimilated the hydrological variables using 28 

mainly the Ensemble Kalman Filter, here a nudging technique was chosen in order to test if a 29 

simple method is able to give improvements to the model performance. Moreover, the proposed 30 

approach is computationally inexpensive making the procedure to be applied in an operational 31 

framework to simulate flood predictions. The organization of this paper is as follows. Section 2 32 

presents a description of the hydrological model used for the assimilation experiments in the test 33 

basin. Section 3 describes the case study and the satellite-derived observations used for updating the 34 
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model; section 4 illustrates data pre-processing and the assimilation scheme; subsequent results are 1 

presented in Section 5, whereas Section 6 provides the conclusions of the study. 2 

2 Continuum model overview 3 
Continuum is a continuous distributed physically based hydrological model able to reproduce the 4 

spatial-temporal evolution of soil moisture, energy fluxes, surface soil temperature and 5 

evapotranspiration. It was designed to find a balance between a detailed description of the physical 6 

processes and a robust and parsimonious parameterization. The model solves the energy and mass 7 

balance equations on a regular square mesh. Digital Elevation Model (DEM) and Land Cover Maps 8 

are the only static data used to identify drainage network and soil parameters. Infiltration and 9 

subsurface flow are described using a semi-empirical, but quite detailed, methodology based on a 10 

modification of the Horton algorithm (Gabellani et al., 2008) and focused especially on exploiting 11 

land use and climatology information to set the infiltration parameters. The surface flow 12 

schematization distinguishes between channel and hill slope flow. The overland and channel flow 13 

are described by a linear and a nonlinear reservoir schematization, respectively. The energy balance 14 

is solved explicitly at cell scale by using the so called Force-Restore equation (Dickinson, 1988), 15 

that allows the LST being considered as a distributed state variable of the model. The mass-balance 16 

equations are integrated using a semi-implicit method (predictor-corrector scheme); vegetation 17 

interception and water table flow are also simulated. A complete description of the model is 18 

reported in Silvestro et al. (2013). Relevant for this study are the root zone saturation degree 19 

(SDMOD) and the Land Surface Temperature (LSTMOD) that are estimated by the model at the DEM1 20 

resolution (100 m) with an hourly time step. SDMOD is the ratio between the actual water volume 21 

and the maximum soil storage capacity. This latter is related to the soil type and land use through 22 

the runoff curve number of the Soil Conservation Service (USDA Natural Resources Conservation 23 

Service (NRCS), National Engineering Handbook, 2004) following Gabellani et al., 2008. 24 

3 The study area and the available satellite dataset 25 

3.1 Study area: Orba watershed 26 
This study was conducted on the Orba basin that is located in the northern part of Italy (Figure 1) 27 

and has an area of about 800 km2. Orba River originates in Liguria region, and it flows through 28 

Piemonte region reaching, near the city of Alessandria, the Bormida watercourse, which is one of 29 

the tributaries of the Po river basin. The minimum and maximum elevations of the catchment are 30 

106 m a.s.l. and 1280 m a.s.l., respectively, while the slope ranges from 0 in the flattest part to 90% 31 

in the upper part of the basin. Almost the 50% of the basin is covered by forests (broadleaves and 32 
 

1 (http://www.igmi.org/prodotti/dati_numerici/dati_matrix.php) 
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coniferous), which are mainly present in the mountainous and hill areas of the catchment (at 1 

elevations ranging from 500 m a.s.l. to 1280 m a.s.l.). Conversely, the flattest part of the Orba 2 

catchment is mainly devoted to agriculture and cultivated forests (26% and 9%). Urban areas cover 3 

only the 4% of the basin. The Orba River has mainly a rapid flow regime with recurrent flash floods 4 

during autumn and spring and very low flows in summer. The Italian Civil Protection 5 

meteorological network covers the catchment with 19 rain gauges, 19 thermometers, 10 6 

hygrometers, 7 radiometers (shortwave), 8 anemometers and one level gauge (Casalcermelli) 7 

located in the downstream part of the basin.  8 

 9 

 10 
Figure 1 Location of Orba catchment. The blue lines represents the main river network of the considered area, 11 
while the red one represents the watershed 12 
 13 

3.2 Satellite dataset 14 
The analysed period started on July 1st 2012 and ended on June 30th 2013. Four different soil 15 

moisture products as well as a remotely sensed LST product were considered.  16 

3.2.1 Soil moisture products from H-SAF project 17 
Three soil moisture products used in this study were provided by the H-SAF project 18 

(http://hsaf.meteoam.it/), which generates, archives and validates high-quality satellite products for 19 

operational hydrology. These products were derived from the observations of the ASCAT sensor on 20 
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board of the EUMETSAT (European organization for the Exploitation of Meteorological Satellites) 1 

polar orbiting Metop satellites. ASCAT is an active microwave sensor that provides global 2 

backscatter measurements, at a resolution of 25 km, which are processed to surface soil moisture 3 

(SSM) by using a change-detection method (Wagner et al. 2013). SSM represents the degree of 4 

saturation of the topmost soil layer (0.5 - 2 cm) and it is given as an index ranging from 0 (dry) to 5 

100 (wet). For the area of Western Europe, SSM measurements are available twice a day: one in the 6 

morning (descending orbit) and one in the evening (ascending orbit). The ASCAT overpasses over 7 

the Orba catchment are generally at 9.00 AM and at 8.00 PM. The H-SAF products considered in 8 

this study are: 1) SM OBS 1 - H07 (large scale SSM) consists of maps of SSM over Europe and 9 

North Africa with a spatial resolution of 25 km;  2) SM OBS 2 - H08 (small scale SSM) results 10 

from disaggregating and re-sampling at 1 km the SM OBS 1 product;  3) SM DAS 2 - H14 (profile 11 

index in the roots region) is a soil moisture analysis resulting from the assimilation of SM OBS 1 12 

product into the ECMWF Land Data Assimilation System (de Rosnay et al., 2012). In this study 13 

only the descending satellite passes was considered for H07 and H08 products. This because 14 

previous studies on ASCAT-derived products (Wagner et al., 1999; Wagner et al., 2007; Albergel et 15 

al., 2010) obtained better results using only those morning passes. H07 data are provided together 16 

with four advisory flag indicating the probability to have: snow cover, frozen soil, complex 17 

topography and wetland fraction. Moreover a quality flag, calculated as the maximum value of each 18 

of the four advisory flags is supplied with the product.  H14 product is provided as a soil moisture 19 

index (from 0 to 1) at 00:00 UTC with a horizontal resolution of 25 km and at 4 depths: 0-7 cm, 7-20 

28 cm, 28-100 cm and 100-289 cm. In this study its weighted mean in the first two levels (0-7 cm 21 

and 7-28 cm) was considered since this thickness is representative of the hydrological processes 22 

modelled by Continuum in the root zone. From now on the term H14 will be referred as the mean of 23 

the first two levels (0-28 cm). 24 

3.2.2 Satellite soil moisture product from SMOS mission 25 
SMOS mission, launched in November 2009, is the ESA (European Space Agency) satellite 26 

mission providing global observations of soil moisture over land and sea-surface salinity over the 27 

oceans (Kerr et al., 2010). The measurements are derived from MIRAS (Microwave Imaging 28 

Radiometer with Aperture Synthesis) passive microwave radiometer. The equator is crossed twice a 29 

day: at 6 am (ascending or northward) and 6 pm (descending or southward) local time. This study 30 

considered the Level 2 (L2) product that provides global maps of volumetric moisture content 31 

(SMC) in the surface layer with a spatial resolution ranging from 35 km (centre of field of view) to 32 

50 km (43 km average ground resolution). L2 data are sampled over the ISEA4h9 regular grid, with 33 

15 km spacing. Only the ascending (dask) passes have been assimilated into the hydrological model 34 
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(Parrens et al., 2012) because evening measurements of passive microwaves sensors are strongly 1 

affected by soil temperature effects, under these conditions the estimation of soil moisture could be 2 

not accurate (Jackson, 1980; Gruhier et al., 2010). The L2 product is complemented by a Data 3 

Quality indeX (DQX), an index related to the soil moisture retrieval uncertainty. It takes into 4 

account the errors in the observations and it is provided in the volumetric soil moisture units. 5 

3.2.3 Land Surface Temperature from LSA SAF 6 
The LST satellite observations used in this study were provided by LSA SAF (Satellite Application 7 

Facility on Land Surface Analysis) of EUMETSAT (http://landsaf.meteo.pt/). The retrieval of LST 8 

is based on clear-sky radiance measurements, in the thermal infrared window (channels IR10.8 and 9 

IR12.0), from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) on EUMETSAT 10 

geostationary Meteosat Second Generation (MSG) satellites. SEVIRI radiometer is orbiting above 11 

the equator providing detailed imagery of Europe, the North Atlantic and Africa with a spatial 12 

resolution of about 4.5 km. Theoretically, LST values can be determined 96 times per day (15 13 

minutes temporal resolution); however, fewer observations are generally available due to cloud 14 

cover contamination.  15 

4 Experiments setup 16 

4.1 Soil moisture data pre-processing 17 
Using a nearest neighbour approach, the satellite observations were interpolated from their native 18 

resolutions to the 100 m Continuum grid (like in Draper et al., 2012). Then a quality control was 19 

applied to each dataset according to the ancillary data provided with every product. No quality flags 20 

are provided for H08 and H14 because the processor that generates them already masks data with 21 

poor quality. Conversely, H07 data with quality, snow cover and frozen soil flags greater than 20 22 

were discarded; no threshold was fixed for topographic complexity flag because its maximum value 23 

over the Orba basin was found to be about 15%. Also SMOS data with quality index (DQX) greater 24 

than 0.045 and Radio Frequency Interference probability (RFI) greater than 1% were not considered 25 

(same thresholds used in Albergel et al., 2012 and Pierdicca et al., 2013b). Saturation degree 26 

(SDMOD) from Continuum is expressed as an index (between 0 and 1), while SMOS data have 27 

volumetric soil moisture units. Hence, to make SMOS product comparable with SDMOD, it was 28 

normalized using its minimum and maximum values, as in Albergel et al., 2012, to obtain an index 29 

ranging between 0 and 1. However, these satellite saturation degrees (SDOBS), from H07, H08 and 30 

SMOS, are referred to the first centimetres of soil while modelled data represent the water content 31 

in the root zone, a deeper soil layer. To overcome this problem, the exponential filter developed by 32 

Wagner et al. 1999 and modified by Albergel et al., 2008 (1) was adopted both for its simplicity and 33 
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for the request of a single parameter (T). This method allows to derive the Soil Water Index (SWI), 1 

i.e., a measure of saturation degree in the root zone which is comparable with SDMOD.  2 

    (1) 3 

Where Kn is the gain at time tn (n is the time instant), which ranges between 0 and 1 and it is given 4 

by (2): 5 

     (2) 6 

For the initialization of the filter, K1=1 and SWI1=SDOBS (t1). The parameter T, named characteristic 7 

time length, characterizes the temporal variation of soil moisture within the root-zone profile. Since 8 

in situ soil moisture measurements are not available and the soil properties are not known 9 

quantitatively with high detail, the parameter T has been set to a priori value that has been estimated, 10 

as order of magnitude, using the definition of T of Wagner et al. 1999 and used also in Parajka et al. 11 

(2006) based on the mean soil characteristics of the considered catchment as described in the model 12 

(the average potential soil moisture capacity of the basin is 190 mm, assuming a porosity of 0.3, a 13 

pseudo diffusivity of 10 days would then translate into a wetting front celerity of 60 mm per day 14 

that is a typical value for these soil). Morover, a value of T equal to 10 days is recommended by 15 

The Global Land Service (http://land.copernicus.eu/global/?q=products/swi). Then, to eliminate 16 

systematic biases between model and observations, the satellite data have been rescaled to model 17 

saturation degree climatology which was previously calculated over a period of two years. For SWI 18 

data (H07, H08 and SMOS) a rescaling between minimum and maximum value (3) was applied 19 

(Brocca et al., 2013) to obtain the rescaled SWI (SWI*). This because the exponential filter smooths 20 

the time series and consequently reduces the variability range of SWI in a narrower range.  21 

   (3) 22 

H14 product was processed in a different way as it is not directly derived from satellite surface 23 

observations but it is a model product which provides information about the soil moisture in the 24 

unsaturated zone. For this reason, only the rescaling to the model climatology was needed. The 25 

rescaled saturation degree from H14 (H14*) was obtained using a linear rescaling technique (4) 26 

(Draper et al., 2009): 27 

   (4) 28 

Where µ and s indicate the mean and standard deviation, respectively. The use of min-max 29 

correction for SWI and linear rescaling for H14 maximize the assimilation performances. The pre-30 
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processing followed to elaborate each satellite-derived soil moisture product is shown in Figure 2. 1 

The rescaled products will be named hereinafter H07_SWI*, H08_SWI*, H14* and SMOS_SWI*. 2 

	3 
Figure 2 The scheme indicates the methodology followed to pre-process the four soil moisture satellite data in 4 
order to assimilate them into Continuum model 5 

4.2 LST data pre-processing 6 
Due to the complex topography of the Orba basin, the LST satellite estimates cannot be directly 7 

assimilated into the model outputs because of the following problems: (1) the geometric registration 8 

of model and satellite pixels, (2) the shadowing due to the presence of mountains, and (3) the 9 

variation of the satellite viewing angle among different pixels due to sensor scanning geometry. 10 

These issues were solved applying a land model that projects the observed LST onto the geometry 11 

of the model (for detail see Silvestro et al. 2013). The land model produces a correlation matrix (M) 12 

that weights the model radiance to estimate the portion of energy of each model pixel that 13 

contributes to the energy of the satellite pixel. The application of the land surface model can be 14 

formalized as: 15 

   (5) 16 
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Where LSTOBS is the satellite data, LST*OBS denotes the variable projected onto the model 1 

geometry, εmod and εobs are the model and satellite thermal emissivity. The model thermal emissivity 2 

is assumed constant, while εobs is estimated as the mean thermal emissivity of the two sensor 3 

channels used for LST-SAF retrieval.  4 

4.3 Assimilation scheme 5 
In this work, a simple nudging technique (Stauffer and Seaman, 1990; Brocca et al., 2010; 6 

Lakshmivarahan and Lewis, 2013) is employed for the assimilation of the remotely sensed variables 7 

into Continuum model. Although the nudging scheme is not optimal in a statistical sense, it is a 8 

computationally inexpensive approach to be applied in an operational framework to simulate flood 9 

predictions. The update was carried out only when the satellite data were available (once a day for 10 

soil moisture and hourly for LST as the higher update frequency) following this equation: 11 

    (6) 12 

Where represents the updated modelled variable (X denotes LST or SD in case of LST or soil 13 

moisture assimilation), which was calculated by adding a “correction term” to the background-14 

modelled variable ( ). The correction term represents the difference between observed ( ) 15 

and modelled variable multiplied by a gain (G) that takes into account the uncertainties of both the 16 

model and the satellite observations. Pixels covered by urban areas and rivers were excluded from 17 

the assimilation experiments (G=0); while for the other points, G was estimated in different ways 18 

according to the type of assimilation.  For soil moisture assimilation, G was calculated using the 19 

root mean square difference of both modelled (RMSDMOD) and observed variable (RMSDOBS): 20 

   (7) 21 

RMSDMOD was assumed equal to 0.092 after performing a validation test in a different basin in 22 

which Continuum model outputs were compared with ground soil moisture measurements 2 . 23 

RMSDOBS was considered equal to 0.22 for H14, 0.12 for both H07 and H08 and 0.24 for SMOS 24 

respectively (values obtained in Brocca et al., 2011; Albergel et al., 2012). Considering constant 25 

errors values over the time may lead to over-correction or under-correction of the model state if the 26 

actual errors are higher or lower with respect to the time-independent one. This problem could be 27 

achieved by estimating the RMSD, of both model and observations, in specific time windows 28 

depending on the meteorological or soil conditions. However, in an operational context these 29 

 
2  Soil moisture measurements from four TDR sensors located in Valle d’Aosta region (North-West Italy) were 
considered and compared with saturation degree modelled by Continuum model from January 2011 to December 2012. 
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estimations become difficult since only past observations and model simulations are available. For 1 

this reason constant error values were considered for each dataset in order to make the procedure 2 

easily implemented. Moreover, for the same motivation, no spatial error correlation was considered 3 

on the soil moisture products; however the rescaling process allows to spatialize the information at 4 

each model grid taking into account the model climatology at model grid. The estimation of G for 5 

the assimilation of LST followed a different strategy because LST ground measurements were not 6 

available. The gain was varied between 0 and 1 and the value that maximized model performances 7 

in terms of discharge prediction was chosen (like the procedure proposed in Brocca et al., 2010). 8 

For LST assimilation G was then set equal to 0.4.  9 

One assimilation experiment for each individual satellite-derived product was conducted; 10 

furthermore, assimilations of LST jointly with each remotely sensed soil moisture product were also 11 

attempted. A model run without assimilation (Open Loop – OL) was considered in order to verify 12 

the impacts of each assimilation experiment (named with the suffix “Assim”). All the model runs 13 

were initialized on June, 30 2012 using the state variables generated by OL simulations carried out 14 

from June 2009. The parameters set was that obtained in Silvestro et al., 2013 after the calibration 15 

of the model on the same catchment.  16 

5 Results 17 

5.1 Variables comparisons at catchment scale 18 
Similarly to Brocca et al., 2012, before the assimilation experiments, the relationship between 19 

satellite-derived observations and modelled quantities were investigated. The saturation degrees 20 

derived from satellite data (H07_SWI*, H08_SWI*, H14* and SMOS_SWI*) and LST*OBS were, 21 

therefore, compared with OL simulations. The comparisons were done in terms of SD spatial 22 

average at catchment scale (Figure 3) and catchment daily-averaged LST (Figure 4). The 23 

correlations coefficients (R) were estimated and reported on each graph. 24 
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 1 
Figure 3 Comparison between model OL (black line) and satellite-derived soil moisture data (blue for H07_SWI*, 2 
green for H08_SWI*, magenta for H14* and red from SMOS_SWI*). The correlation coefficients are reported. 3 
 4 

 5 
Figure 4 Comparison between OL modelled LSTMOD (black line) and LST*OBS (red line) land surface 6 
temperature. In the top of the graph the correlation coefficient is reported. 7 
 8 
These results emphasized the good ability of all the soil moisture satellite products to reproduce the 9 

average saturation degree of the basin, indicating that they can be useful to assess soil moisture state 10 

on basins where in situ measurements are not available. The correlations between each series were 11 

high (R greater than 0.78), especially for H14*; LST*OBS also exhibited a high correlation with 12 
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model data. The graphs show that satellite products had some blanks; while H14 soil moisture 1 

analysis data were always present (this product is daily derived from a land surface model). The 2 

percentage of missing data was 69% for SMOS (mainly absent in autumn), 47% for H07 and 45% 3 

for H08. Moreover, the masking process based on advisory flag allowed to exclude from the 4 

experiment about the 6% of H07 maps in the winter period. ASCAT sensor has retrieval problems 5 

in retrieving data in presence of frozen surfaces or snow cover; this is the reason of the 6 

underestimation of soil moisture conditions with respect to the model in February 2013 for the 7 

products H07 and H08. For LST satellite observations the percentage of missing data is 47%: most 8 

of satellite images were unusable during autumn and spring due to cloud cover.  9 

5.2 Assimilation experiments results 10 
The simulated discharges were compared to those observed by Casalcermelli level gauge in the 11 

analysed period; evaluations were performed using the Nash–Sutcliffe model efficiency coefficient 12 

(NS) (Nash and Sutcliffe, 1970), the root mean squared error (RMSE) and the mean absolute error 13 

(MAE). H07_Assim and H08_Assim produced similar hydrographs (Figure 5) improving the 14 

discharge estimation especially in the autumn period and underestimating the streamflow on 15 

February 2013 (consequence of the dry soil moisture conditions showed on Figure 3). In general the 16 

assimilations of H-SAF soil moisture products, in particular of H07_SWI* and H14*, improved the 17 

efficiency of the model and reduced errors (Table 1). Conversely, SMOS_Assim and LST_Assim 18 

lead to a weak improvement of model’s performances. About SMOS this can be due to the few 19 

SMOS data available over the catchment. The assimilations of both LST and soil moisture data 20 

further reduced errors but did not altered the efficiency of the model (Table 1); consequently the 21 

analyses that follow were done considering the single product assimilations only. 22 
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 1 
Figure 5 Hydrographs, in logarithmic scale, from July 2012 to June 2013 at Casalcermelli outlet section. 2 
Observed discharges (grey) and those from OL run (black) are compared with discharges resulting from 3 
H07_Assim (blue), H08_Assim (green), H14_Assim (magenta), SMOS_Assim (red) and LST_Assim (cyan). On 4 
the top of each graph the Nash-Sutcliffe coefficient of both OL and Assim case is reported 5 
 6 

MAE. RMSE, NS – Annual analysis 

Experiment MAE RMSE NS 

OL 17.4 25.3 0.63 

LST_Assim 17.1 25.0 0.64 

H07_Assim 13.3 23.2 0.69 

LST&H07_Assim 13.1 23.0 0.69 

H08_Assim 15.5 25.4 0.63 

LST&H08_Assim 15.3 25.2 0.63 

H14_Assim 15.2 22.5 0.70 

LST&H14_Assim 15.0 22.3 0.70 

SMOS_Assim  17.5 25.0 0.64 

LST&SMOS _Assim 17.1 24.6 0.65 

 7 
Table 1 MAE, RMSE and NS values calculated using simulated discharges resulting from different assimilation 8 
runs with respect to the observed discharge  9 
Since in situ measurements of soil moisture, LST and evapotranspiration were not available on 10 

Orba catchment, the impacts of model updates on the dynamics of these variables were evaluated 11 

against the OL performance. In particular the changes of water volume (water content in the root 12 
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zone), normalized evapotranspiration and LST were analysed. Water volume (Figure 6) was the one 1 

mostly affected by soil moisture data assimilation. Significantly changes in the evapotranspiration 2 

(Figure 7) were recorded in summer; while LST (Figure 8) was not affected by soil moisture 3 

assimilations, but it was slightly modified by LST_Assim. 4 

 5 
Figure 6 Catchment spatial averages of modelled water volume: OL (black dashed line), H07_Assim (blue), 6 
H08_Assim (green), H14_Assim (magenta), SMOS_Assim (red) and LST_Assim (cyan). 7 

 8 

 9 
Figure 7 Catchment spatial averages of modelled normalized evapotranspiration: OL model (black dashed line),  10 
H07_Assim (blue), H08_Assim (green), H14_Assim (magenta), SMOS_Assim (red) and LST_Assim (cyan). 11 
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 1 
 2 

 3 
Figure 8 Catchment spatial averages of modelled LST: OL (black dashed line), H07_Assim (blue), H08_Assim 4 
(green), H14_Assim (magenta), SMOS_Assim (red) and LST_Assim (cyan). 5 
 6 

Looking at the whole year period the results, in terms of statistical scores, of the assimilation 7 

experiments are quite similar. For this reason, in order to better characterize the impact of the 8 

assimilation on the discharge prediction, a seasonal analysis and an evaluation on eight selected 9 

discharge events have been done. For these tests further statistical scores were used for the 10 

evaluation: the Normalized Error Reduction (NER) (Chen et al., 2011) and the Efficiency of 11 

assimilation (Eff) (Brocca et al., 2012). NER represents the percentage of reduction of RMSE with 12 

respect to OL run, while Eff indicates the percentage of model efficiency improvement. A positive 13 

value of these scores means that the assimilation gave an added value to the model. In summer 14 

(Figure 8) the model performances were improved by all the assimilations except for SMOS_Assim 15 

which didn’t change the predictions. In particular H07_Assim and H08_Assim reduced mostly the 16 

errors (Eff and NER greater than 35%); this probably was due to a better modelling of 17 

evapotranspiration, which in summer was increased by H07_Assim and H08_Assim and decreased 18 

by H14_Assim. In autumn all the assimilations, especially those relative to H-SAF products, 19 

improved the model. While in winter H07_Assim and H08_Assim reduced the model’s efficiency 20 

with respect to OL run: due to the ASCAT retrieval problems explained above, the soil moisture 21 

and consequently the discharge were underestimated. H14_Assim and H07_Assim were the only 22 

experiments, which gave significant improvements to Continuum in spring.  23 
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 1 
Figure 9 The histograms reports, for each season, the Eff (green) and NER (blue) values resulting from each 2 
assimilation experiment. The numbers above each column indicate the values of these scores.  3 
 4 

Eight events (three in autumn, one in winter and four in spring), with observed discharge greater 5 

than 50 m3/s, were selected in the analysed period (Figure 10). This analysis was done considering 6 

only the soil moisture assimilation experiments and calculating Eff and NER coefficients (Figure 7 

11). The assimilation of SMOS product was able to improve only one event (Ev.3) out of eight, 8 

H08_Assim increased the performance of four events, while the other two experiments improved 9 

most of the events (six for H07_Assim and seven for H14_Assim). Model predictions on autumn 10 

events (Ev.1, Ev.2 and Ev.3) were improved by all the H-SAF products. In particular, Ev.1 and Ev.2 11 

were significantly improved by H07_Assim and H08_Assim with Eff and NER greater than 60%. 12 

During winter events (Ev.4 and Ev. 5) the assimilations did not improve the performances because 13 

Eff and NER were below or near zero; moreover, the ASCAT problems in winter are evident by 14 

looking at the scores relative to H07_Assim and H08_Assim. Like in seasonal analysis, H14_Assim 15 

and H07_Assim lead to very good improvements for the last three events occurred in spring (Ev.6, 16 

Ev.7 and Ev.8). Looking at the seasonal and event analysis some differences among the results of 17 

each assimilation experiment can be seen. The assimilation of H14 soil moisture analysis always 18 

improved the model indicating that such a product, derived in turn by another model simulation, is 19 

able to correct the soil moisture status. Conversely, H07 and H08 Assim helped to increase the 20 

performances only in some period of the year. Moreover the benefits given by these two 21 

assimilations in autumn events are higher with respect to the H14_Assim ones. 22 
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 1 

 2 
Figure 10 Hydrographs for eight different events. The graphs show observed discharges (grey dashed lines), OL 3 
(black), H07_Assim (blue), H08_Assim (green),H14_Assim (magenta), SMOS_Assim (red) and LST_Assim 4 
(cyan)  5 
 6 

 7 
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Figure 11 The histograms reports, for each assimilation experiment, the Eff (green) and NER (blue) values 1 
resulting relative to the eight selected discharge events. The numbers above each column indicate the values of 2 
these scores.  3 

6 Conclusions 4 
This work was devoted to the investigation of the impact of the assimilation of different remote 5 

sensing products into a continuous distributed hydrological model. Four different satellite-derived 6 

soil moisture products, as well as LST observations, were considered. Three soil moisture products 7 

are distributed within the EUMETSAT H-SAF project, while SMOS mission provides the fourth. 8 

LST measurements were retrieved from MSG satellites. Particular attention have been paid to the 9 

pre-processing of these products, taking into account the characteristics of the considered basin 10 

(elevation, land cover, river network), the satellite retrieval problems (snow and frozen surfaces, 11 

topographic complexity) and the model peculiarities (space and time step and variables 12 

climatology). Then each single satellite-derived product was assimilated into the hydrological 13 

model using a nudging technique. Analysis on the impact of assimilations over the hydrological 14 

cycle revealed that the variable most affected by the assimilation of satellite-derived soil moisture 15 

data is the soil water volume; while land surface temperature was poorly modified by assimilations 16 

and changes in evapotranspiration occurred only in the warmest season. Results of assimilation 17 

experiments were assessed in terms of discharge comparing the model predictions to the data 18 

observed by a selected gauge using different statistical scores. The evaluations showed a general 19 

improvement of the model predictions for all the assimilation experiments; in particular an added 20 

value to the model was found in the estimation of discharge events happened in the heavy rainfall 21 

season (autumn). The discharge predictions were mainly enhanced by soil moisture updates; 22 

however evenly the assimilation of LST product was able to reduce the errors. This work has 23 

demonstrated that remotely sensed data could be used to update a physically-based, distributed 24 

hydrological model applied to a small catchment using a careful data elaboration and a simple DA 25 

technique which is easy to be applied for Civil Protection purposes in an operative flood forecasting 26 

framework. Moreover, the positive results of the assimilation experiments allow to conclude that, 27 

similarly to what found in Wanders et al., 2014, satellite data could be used to improve the model 28 

performance for ungauged basins. This DA procedure has been tested over a Mediterranean 29 

catchment located in the Italian Apennines and Po Valley; anyhow, it should be tested over different 30 

environments such as in regions where satellite data may have some troubles in the soil moisture 31 

retrieval related to complex topography or snow cover, like Italian Alps. In these regions an added 32 

value to the assimilation process could be given avoiding the soil moisture update when the 33 

modeled land surface temperature is below zero or where snow cover is observed by snow gauges. 34 

Therefore we recommend that efforts should be focused on ensuring adequate data pre-processing 35 
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considering the characteristics of the considered region and the peculiarities of both satellite 1 

products and hydrological model.  2 
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