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Abstract 

Progressive interface failure in two-layer beams with partial shear connection is simulated. The 

mathematical model, based on classical beam theories and linear non-proportional interface laws, 

proposed previously by the authors, is considered. The related fundamental analytical solution is 

rewritten in vector form to facilitate the determination of the high number of arbitrary constants on 

which the general solution for a generic configuration of the composite beam, characterized by 

different regimes coexisting along the interface, depends. This is employed in the simulation of a 

process of progressive interface debonding as a sequence of equilibrated consecutive configurations 

assumed by the composite beam. Numerical analyses are finally performed to validate the solution 

procedure proposed. 
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1. Introduction 

Composite systems consisting of two structural elements connected together at the common 

interface are widely used in many practical applications. Steel – concrete beams and wood, concrete 

or steel elements (beams, arches, vaults, etc) repaired with steel plates or fiber composite strips are 

common in civil engineering applications. In such systems, the chemical or mechanical bond 

established by means of adhesive interlayers or shear connectors forces the two parts to act together 

as a composite so improving the global stiffness, strength and toughness. 

The nature of the bond strongly affects the interaction between the two elements and the 

mechanical behavior of the composite, as a consequence. A perfect composite action, resulting in a 

complete transmission of both normal and shear stresses between the two elements, can be obtained 

by preventing that relative displacements occur at the common interface. However, because of the 

deformability of the bond system, this can hardly be obtained in practice so that the two elements 
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usually interact only partially and slips and/or uplifts at the common interface may develop. 

Furthermore, the mechanical properties of the connection can vary during the loading history as a 

consequence of the initiation and propagation of decohesion zones at the interface. Such a process 

leads to a further reduction of the degree of composite action and of the global stiffness and strength 

of the system, as a consequence, leading to its failure even if each element behaves elastically. 

The optimal design of composite systems then requires the development of a better 

understanding of their mechanical response depending on the evolution of the degree of composite 

action between the elements during the loading history. In order to do this, simplified analytical 

models, which provide explicit solutions, are preferable to numerical analyses, related to prescribed 

geometry, material properties and interface constitutive behavior. This permits one to perform 

parametric analyses and then investigate the effects of model parameters on the global response of 

such systems. 

Within this context, a large number of works exists on the problem of two-layer composite 

beams with an imperfect interface, so guaranteeing only a partial composite action, assumed to 

exhibit a linear elastic mechanical behavior. Most of these works build on the theory developed by 

Newmark et al. (1951) for steel – concrete beams with shear connections in the form of short pieces 

of reinforcing bars welded to the top flange of the steel element and embedded in the concrete. The 

model considers two linear elastic Euler-Bernoulli beams that undergo equal deflections but can slip 

one on the other in the longitudinal direction and assumes interlayer slips related to shear stresses 

transferred from one element to the other along their common interface according to a linear 

constitutive law. The subsequent analogous theories differ in some additional assumptions but result 

in similar governing equations. In particular, several exact solutions for simply supported beams 

subjected to different loading conditions were obtained (see e.g. Girhammar and Gopu, 1993; 

Cosenza and Mazzolani, 1993; Girhammar and Pan, 2007). Schnabl et al. (2007) took into account 

the effects of shear deformation on the equilibrium of the two elements modelled as linear elastic 

Timoshenko beams and proposed an algorithm to derive analytical solutions for prescribed 

boundary conditions. Xu and Wu (2007) presented an analogous theory and obtained analytical 

solutions for simple beams subjected to uniformly distributed loads and under different boundary 

conditions. Other analytical solutions for two-layer composite beams consisting of two elements 

which can undergo relative displacements in both the longitudinal and transversal directions exist 

on the basis of both linear elastic Euler-Bernoulli (Wang, 2006) or Timoshenko (Qiao and Wang, 

2005; Bennati et al., 2009) beam theory. 

However, only a little attention has been focused on the nonlinear interfacial behavior due, for 

example, to progressive damage and failure of the connection or to yielding of connectors during 

the loading history (Wheat, 1994; Wang, 2006; Hozjan et al., 2013). Among the others, Cas et al. 
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(2004) proposed a new finite element model to study composite beams with interlayer slip and 

validated the model with comparison with experimental results of full-scale laboratory tests. In 

particular they analyzed the behavior of a composite beam made of a reinforced concrete slab and 

steel girder connected to each other with steel shear studs. The proposed method is capable of 

modelling both continuous and discrete connectors. Battini et al. (2009) first proposed a numerical 

formulation for the analysis of two-layer composite plane beams with interlayer slips, based on the 

derivation of the exact stiffness matrix. More recently, Campi and Monetto (2013) proposed a new 

formulation for the problem of partial interaction in two-layer beams undergoing interlayer slips 

based on a linear non-proportional description of the interfacial behavior. This formulation led to 

explicit expressions having general validity independently of the interface regime for all static and 

kinematic variables of the problem within both linear elastic Timoshenko and, as a special case, 

Euler-Bernoulli beam theories. This fundamental solution was employed in the analysis of two-

layer beams with interlayer slip and bi-linear interface law for different boundary and loading 

conditions. Baraldi et al. (2016) proposed a discrete element model to investigate the post-breakage 

behavior of laminated glass structures where the interface is modelled as elasto-plastic. 

This paper deals with the employment of the fundamental solution derived by Campi and 

Monetto (2013) to a wider class of nonlinear interfacial behaviors conveniently approximated 

through step-wise linear laws. This choice, supported by the comparison of experimental and 

numerical studies and previously made by many authors working on similar problems (Schreyer 

and Peffer, 2000; Lu et al., 2005; Wang, 2006), permits one to assume valid a priori the 

fundamental solution for each linear branch. The aim of this work is to simulate the response of 

composite beams for prescribed boundary conditions and loading history inducing a progressive 

debonding of the interface with a view towards an optimal design of the joint. In order to do this, 

the debonding process is analyzed as a sequence of different configurations of the composite beam 

in which adjacent portions of the interface experience different interfacial regimes according to the 

interfacial law under consideration. The general solution of the problem of equilibrium consists of 

as many sets of fundamental solutions as the number of interface portions. It is straightforward that, 

even considering a low number of regimes coexisting along the interface, this general solution 

depends on a high number of arbitrary constants. Furthermore, since the length of each interface 

portion depends on the level of load and then is unknown a priori, the problem is nonlinear. For bi-

linear approximations of nonlinear interfacial behaviors Campi and Monetto (2013) adopted 

incremental calculation procedures. Here, more complicated approximations are considered, then 

incremental-iterative calculation procedures are followed to determine all such arbitrary constants. 

The paper is organized as follows. Section 2 gives a brief statement of the main points of the 

model formulation and fundamental solution detailed in Campi and Monetto (2013). In Section 3 



4/20 
 

this solution is first rewritten in vector form and then employed to solve the equilibrium problem 

for a generic configuration of the composite beam. Such a vector form is also employed to derive 

the exact stiffness matrix and nodal force vector for a partially connected two-layer beam finite 

element, as detailed in Appendix B. Finally, Section 4 shows two sets of numerical results: i) a 

comparison with results found in literature to validate the employment of the fundamental closed 

form solution to practical applications; ii) the simulation of progressive debonding of the interface 

in two-layer beams with partial composite action. Section 5 concludes the paper with a summary 

and a final discussion of the advances, possible extensions and related limits of the formulation 

proposed. 

 

2. Analytical model and fundamental solution 

2.1 Model assumptions 

The composite beam under consideration consists of two layers connected by a continuous bond. 

The layers have constant cross sections and are made of linearly elastic and homogeneous materials. 

The bond is perfect in the transverse direction, while ensures a partial composite action in the 

longitudinal direction. As a consequence, only interlayer slips are allowed at the interface, whereas 

no separation or interpenetration between the layers is possible. Figure 1 shows the undeformed and 

typical deformed configurations of the two-layer beam under consideration. 

Under the assumption of small strains, displacements and rotations, each layer is modelled as a 

linearly elastic Timoshenko beam. The connection is modelled by continuously distributed normal 

and tangential reactions, the latter related to interlayer slips according to a suitable relationship, as 

discussed next. The two-layer beam is then subjected to the action of distributed loads and related 

internal forces and interfacial tractions. The reference structure is shown in Figure 2. 

 

Figure 1. Geometry and deformed configuration of the two-layer beam. 
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2.2 Governing equations 

The problem of the equilibrium of the composite beam under consideration is governed by the 

compatibility, equilibrium and constitutive equations for the two layers together with the bond 

conditions at the interface. In particular: (i) the assumption of perfect connection in the transverse 

direction y imposes that the two layers undergo equal deflections; (ii) according to Campi and 

Monetto (2013), the partial composite action in the longitudinal direction z is assumed to be 

described through the following linear non-proportional relationship between interlayer shear 

traction, say pt, and slip, say st, at the interface (Figure 3): 

𝑝௧ = 𝐴 ∆𝑠௧ + 𝐵 = 𝐴 (𝑢ଶ − 𝑢ଵ − ℎଵ𝜑ଵ − ℎଶ𝜑ଶ) + 𝐵 , (1) 

where: ui and i are, respectively, the axial displacement of points along the axis and the rotation of 

the cross section of the i-th layer (i=1,2); hi measures the distance between the interface and the axis 

of the i-th layer; A and B are two coefficients. Different values of the coefficients A and B describe 

different types of interfacial regime (elastic, hardening, perfectly plastic, softening or detached) 

within a step-wise linear approximated description of the nonlinear interface behavior. 

 

Figure 2. Diagram of the reference structure: distributed loads, internal 

forces and interfacial tractions for the two-layer beam. 

 

Figure 3. Linear non-proportional interface law. 
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Rearranging the basic equations described above leads to the following two coupled linear 

differential equations with constant coefficients for the two unknowns pt shear and pn normal 

tractions at the interface between the layers: 

൫𝐾ఊଵ
ିଵ + 𝐾ఊଶ

ିଵ൯𝑝௡
ᇱᇱ − ൫𝐾ఞଵ

ିଵ + 𝐾ఞଶ
ିଵ൯𝑝௡ + ൫𝐾ఞଶ

ିଵℎଶ − 𝐾ఞଵ
ିଵℎଵ൯𝑝௧

ᇱ = 𝑞௡ , (2a) 

𝑝௧
ᇱᇱᇱ − 𝐴൫𝐾ఌଵ

ିଵ + 𝐾ఌଶ
ିଵ + 𝐾ఞଵ

ିଵℎଵ
ଶ + 𝐾ఞଶ

ିଵℎଶ
ଶ൯𝑝௧

ᇱ + 𝐴൫𝐾ఞଶ
ିଵℎଶ − 𝐾ఞଵ

ିଵℎଵ൯𝑝௡ = 𝑞௧ , (2b) 

having defined 

𝑞௡ = 𝐾ఞଵ
ିଵ൫𝑞௬ଵ + 𝑚ଵ

ᇱ ൯ − 𝐾ఞଶ
ିଵ൫𝑞௬ଶ + 𝑚ଶ

ᇱ ൯ − 𝐾ఊଵ
ିଵ𝑞௬ଵ

ᇱᇱ − 𝐾ఊଶ
ିଵ𝑞௬ଶ

ᇱᇱ  , (3a) 

𝑞௧ = 𝐴ൣ𝐾ఞଵ
ିଵℎଵ൫𝑞௬ଵ + 𝑚ଵ

ᇱ ൯ + 𝐾ఞଶ
ିଵℎଶ൫𝑞௬ଶ + 𝑚ଶ

ᇱ ൯൧ + 𝐾ఌଵ
ିଵ𝑞௭ଵ

ᇱ − 𝐾ఌଶ
ିଵ𝑞௭ଶ

ᇱ  , (3b) 

where: primes denote differentiations with respect to z; Ki, Ki and Ki are, respectively, the axial, 

shear and bending stiffnesses of the i-th layer (i=1,2); qzi, qyi and mi are continuously varying loads 

applied to the i-th layer. 

The problem admits closed form solution, having general validity independently of the interface 

regime, for shear and normal interfacial tractions. From the compatibility, equilibrium and 

constitutive equations for each layer, exact expressions for all other static (namely, Ni, Qi and Mi 

respectively axial and shear forces and bending moment in the two layers) and kinematic (namely, 

ui, w and i respectively axial displacement, deflection and rotation of the cross section of the two 

layers) variables of the problem are then derived. The details of the formulation and related solution 

procedure for uniformly distributed loads are described fully in Campi and Monetto (2013). Such 

expressions can be extended to the case of continuously varying loads on condition that all terms 

involving the particular solution of the inhomogeneous differential equations (2) are replaced with 

analogous ones evaluated for the particular loading distribution prescribed.  

It is worth mentioning here that such a fundamental solution of the problem of equilibrium of 

two-layer beams with interlayer slip contains 17 arbitrary constants to be determined by imposing 

17 conditions. The prescription of boundary conditions at the ends gives 5+5=10 conditions to be 

imposed on w, 1, 2, u1, u2 or, alternatively, on Q=Q1+Q2, M1, M2, N1, N2. Imposing that the 

displacement discontinuities at the interface between the layers satisfy the bond conditions of 

perfect connection in the transverse direction and of partial connection in the longitudinal direction 

for all points of the interface gives 7 additional relations among the arbitrary constants. Such 

relations depend on both the interface regime and the geometry and material properties of the 

layers, as detailed in Campi and Monetto (2013) for the special case of composite beams having 

geometry and material properties satisfying condition (A.1), as in the case of layers having the same 

geometry and made of the same material. 
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3. Solution for multi-linear interface laws 

Under loading conditions that generate interlayer stresses, interfaces usually exhibit nonlinear 

behavior corresponding to an irreversible process of progressive debonding. In order to analyze the 

response of composite beams during such a process, the nonlinear interfacial law can be 

conveniently approximated through a step-wise linear constitutive equation, as supported by the 

comparison of experimental and numerical studies (see e.g. Wang, 2007a-b; Planinc et al., 2008). 

This permits one to employ the fundamental closed form solution presented in Section 2 which is 

valid for each linear branch. 

(a)  (b)  
Figure 4. Two-layer composite beam: (a) generic composite beam configuration 

for multi-linear interface law; (b) generic composite beam element. 
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procedure is followed. 

In order to do this, it is more convenient to rewrite the proposed solution in vector form (Battini 

et al., 2009). The basic idea is to express all kinematic and static field variables in vector form as 

follows: 

𝜂(𝑧) = 𝐅ఎ(𝑧)𝐜 + 𝑓ఎ(𝑧) , (4) 

where:  represents any field variable (w, 1, 2, u1, u2 or Q, Q1, Q2, M1, M2, N1, N2, pt, pn); c is the 

vector 171 of the arbitrary constants; F is a matrix 117 of known functions; f is a known scalar 

function. For prescribed geometry and material properties of the layers, the matrix F and the 

function f are derived on the basis of the analytical solution depending on the regime experienced 
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1 

z 

l 

(r) 
 regime 

zr1 

y 

(1) (n) 2 

zr zn z0 z 

(r) regime 

lr 

z = zr1 z = zr 

y 

1 
2 



8/20 
 

in vector form as follows: 

𝐃𝐜 + 𝐝 = 𝟎 , (5) 

where D is a matrix 717 and d is a vector 71. As an example, some expressions in vector form 

are derived in Appendix A for particular geometry and material properties. 

The portion of two-layer composite beam, having length lr, shown in Figure 4b is now 

considered. All its points along the interface (zr1 ≤ z ≤ zr) behave accordingly to the same particular 

regime, denoted in what follows by superscript “(r)”. According to Eq. (4), the vectors 𝐚௝
(௥) of 

displacements and 𝐪௝
(௥) of forces at each end z=zj ( j=r1, r) of the beam element can be written as 

follows, respectively: 

𝐚௝
(௥)

=

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑤(௥)(𝑧௝)

𝜑ଵ
(௥)

(𝑧௝)

𝜑ଶ
(௥)

(𝑧௝)

𝑢ଵ
(௥)

(𝑧௝)

𝑢ଶ
(௥)

(𝑧௝)⎭
⎪⎪
⎬

⎪⎪
⎫

=

⎣
⎢
⎢
⎢
⎢
⎢
⎢
⎡𝐅௪

(௥)
൫𝑧௝൯

𝐅ఝଵ
(௥)

൫𝑧௝൯

𝐅ఝଶ
(௥)

൫𝑧௝൯

𝐅௨ଵ
(௥)

൫𝑧௝൯

𝐅௨ଶ
(௥)

൫𝑧௝൯⎦
⎥
⎥
⎥
⎥
⎥
⎥
⎤

𝐜(௥) +

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑓௪

(௥)
൫𝑧௝൯

𝑓ఝଵ
(௥)

൫𝑧௝൯

𝑓ఝଶ
(௥)

൫𝑧௝൯

𝑓௨ଵ
(௥)

൫𝑧௝൯

𝑓௨ଶ
(௥)

൫𝑧௝൯⎭
⎪
⎪
⎬

⎪
⎪
⎫

= 𝐗௝
(௥)

𝐜(௥) + 𝐱௝
(௥) , (6a) 

𝐪௝
(௥)

= 𝜅

⎩
⎪⎪
⎨

⎪⎪
⎧

𝑄(௥)(𝑧௝)

𝑀ଵ
(௥)

(𝑧௝)

𝑀ଶ
(௥)

(𝑧௝)

𝑁ଵ
(௥)

(𝑧௝)

𝑁ଶ
(௥)

(𝑧௝)⎭
⎪⎪
⎬

⎪⎪
⎫

= 𝜅

⎣
⎢
⎢
⎢
⎢
⎢
⎡𝐅ொ

(௥)
൫𝑧௝൯

𝐅ெଵ
(௥)

൫𝑧௝൯

𝐅ெଶ
(௥)

൫𝑧௝൯

𝐅ேଵ
(௥)

൫𝑧௝൯

𝐅ேଶ
(௥)

൫𝑧௝൯⎦
⎥
⎥
⎥
⎥
⎥
⎤

𝐜(௥) + 𝜅

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝑓ொ

(௥)
൫𝑧௝൯

𝑓ெଵ
(௥)

൫𝑧௝൯

𝑓ெଶ
(௥)

൫𝑧௝൯

𝑓ேଵ
(௥)

൫𝑧௝൯

𝑓ேଶ
(௥)

൫𝑧௝൯⎭
⎪
⎪
⎬

⎪
⎪
⎫

= 𝐘௝
(௥)

𝐜(௥) + 𝐲௝
(௥) , (6b) 

where: 𝐜(𝑟) is the vector of 17 unknown constants; 𝐗௝
(௥), 𝐘௝

(௥) are known matrices 517; 𝐱௝
(௥), 𝐲௝

(௥) are 

known vectors 51;  = 2( jr)1 is introduced to adjust the sign of internal forces to the global 

coordinate system y, z shown in Figure 4. 

As shown in Appendix B, from Eq.s (6) exact stiffness matrix and nodal force vector for a two-

layer beam element with interlayer slip to employ in finite element analyses can be derived. In what 

follows, the attention is focused on the procedure to determine the n sets of unknown constants to 

employ in semi-analytical solutions. 

At each end of the composite beam 5 boundary conditions involving kinematic and/or static 

quantities depending on the type of constraint can be imposed and expressed in vector form as: 

𝐁௝
(ఘ)

𝐜(ద) + 𝐛௝
(ద)

= 𝐛̅௝   with j =0, n, (7) 

where: subscript j and superscript 𝜚 =
(௝ାଵ)(௡ି௝)ା௝௡

௡
 refer to the ends z=z0=0 ( j=0, =1) or z= zn=l 

( j=n, =n) of the beam and related beam elements; 𝐁௝
(ఘ) is a known matrix 517; 𝐛௝

(ద), 𝐛̅௝ are known 

vectors 51. As an example, Table 1 summarizes some types of end constraint. Furthermore, at 

each cross-section separating two subdomains 10 continuity conditions on all kinematic and static 

variables must be imposed and can be expressed in vector form as: 
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𝐚௥
(௥)

= 𝐚௥
(௥ାଵ)   and   𝐪௥

(௥)
= 𝐪௥

(௥ାଵ)   with r =1,..., n1. (8) 

In addition, for each subdomain 7 additional relations among unknown constants must be satisfied: 

𝐃(௥)𝐜(௥) + 𝐝(௥) = 𝟎   with r =1,..., n. (9) 

In conclusion, Eq.s (7)-(9) are 17n algebraic equations for the n sets of 17 unknown constants 

contained in the general solution of the problem of equilibrium of the two-layer composite beam 

with interlayer slip in a generic configuration. 

 

 
Fixed end Loaded end Supported end 

w=u1=u2=0 
1=2=0 

Q=P N1=N2=0 
M1=M2=0 

w=u2=0   N1=0   M1=M2=0 

𝐁௝
(ఘ) 𝐗௝

(ఘ) 𝐘௝
(ఘ) [𝐅௪

(ద)
൫𝑧௝൯ 𝜅𝐅ெଵ

(ద)
൫𝑧௝൯ 𝜅𝐅ெଶ

(ద)
൫𝑧௝൯ 𝜅𝐅ேଵ

(ద)
൫𝑧௝൯ 𝐅௨ଶ

(ద)
൫𝑧௝൯]T 

𝐛௝
(ద) 𝐱௝

(ద) 𝐲௝
(ద) {𝑓௪

(ద)
൫𝑧௝൯ 𝜅𝑓ெଵ

(ద)
൫𝑧௝൯ 𝜅𝑓ெଶ

(ద)
൫𝑧௝൯ 𝜅𝑓ேଵ

(ద)
൫𝑧௝൯ 𝑓௨ଶ

(ద)
൫𝑧௝൯}T 

𝐛̅௝  0 {P 0 0 0 0}T 0 

Table 1. Boundary conditions for some types of end constraint, being  = [(j+1)(jn)j]/n ( j=0, n). 

Firstly, the combination of Eq.s (8) with Eq.s (6) and Eq.s (9) leads to n1 systems of 17 

algebraic equations: 

൞

𝐚௥
(௥)

𝐪௥
(௥)

𝟎଻

ൢ = ൦

𝐗௥
(௥)

𝐘௥
(௥)

𝐃(௥)

൪ 𝐜(௥) + ൞

𝐱௥
(௥)

𝐲௥
(௥)

𝐝(௥)

ൢ = ൞

𝐚௥
(௥ାଵ)

𝐪௥
(௥ାଵ)

𝟎଻

ൢ = ൦

𝐗௥
(௥ାଵ)

𝐘௥
(௥ାଵ)

𝐃(௥ାଵ)

൪ 𝐜(௥ାଵ) + ൞

𝐱௥
(௥ାଵ)

𝐲௥
(௥ାଵ)

𝐝(௥ାଵ)

ൢ    with r =1,..., n1, (10) 

from which the vector of unknown constants related to each beam element can be expressed in 

terms of that related to the next beam element: 

𝐜(௥) = ൦

𝐗௥
(௥)

𝐘௥
(௥)

𝐃(௥)

൪

ିଵ

൦

𝐗௥
(௥ାଵ)

𝐘௥
(௥ାଵ)

𝐃(௥ାଵ)

൪ 𝐜(௥ାଵ) + ൦

𝐗௥
(௥)

𝐘௥
(௥)

𝐃(௥)

൪

ିଵ

൞

𝐱௥
(௥ାଵ)

− 𝐱௥
(௥)

𝐲௥
(௥ାଵ)

− 𝐲௥
(௥)

𝐝(௥ାଵ) − 𝐝(௥)

ൢ = 𝐙(௥ାଵ)𝐜(௥ାଵ) + 𝐳(௥ାଵ)  with r =1,...,n1 (11) 

and 𝐙(௥ାଵ), 𝐳(௥ାଵ) being a square matrix 1717 and a vector 171, respectively. Proceeding in the 

same manner over the n layers, the unknown constants related to the first beam element can then be 

expressed in terms of those related to the last beam element: 

𝐜(ଵ) = ൫∏ 𝐙(௞)௡
௞ୀଶ ൯𝐜(௡) + ൣ∑ ൫∏ 𝐙(௞)௠ିଵ

௞ୀଶ ൯𝐳(௠)௡
௠ୀଷ ൧ + 𝐳(ଶ) = 𝐙෠𝐜(௡) + 𝐳ො , (12) 

where 𝐙෠ is a square matrix 1717 and 𝐳ො is a vector 171. 

Secondly, substituting Eq. (12) in Eq. (7) for j=0 and combining the result with Eq. (7) for j=n 

and with Eq. (9) having set r=n gives a system of 17 algebraic equations for the unknown constants 

related to the last beam portion: 

൦

𝐁଴
(ଵ)

𝐜(ଵ) + 𝐛଴
(ଵ)

− 𝐛̅଴

𝐁௡
(௡)

𝐜(௡) + 𝐛௡
(௡)

− 𝐛̅௡

𝐃(௡)𝐜(௡) + 𝐝(௡)

൪ = ൦

𝐁଴
(ଵ)

𝐙෠

𝐁௡
(௡)

𝐃(௡)

൪ 𝐜(௡) + ൞

𝐁଴
(ଵ)

𝐳ො + 𝐛଴
(ଵ)

− 𝐛̅଴

𝐛௡
(௡)

− 𝐛̅௡

𝐝(௡)

ൢ = 𝐖𝐜(௡) + 𝐰 = 𝟎 , (13) 



10/20 
 

where W is a square matrix 1717 and w is a vector 171. From Eq. (13) we finally obtain the n-th 

set of arbitrary constants: 

𝐜(௡) = −𝐖ିଵ𝐰 . (14) 

Finally, the other n1 sets of arbitrary constants are determined by combining Eq.s (14) and (11) 

over the remaining beam subdomains. This completes the general solution of the problem of 

equilibrium of two-layer beams with interlayer slip and multi-linear interface law in a generic 

configuration. 

The formulation detailed above with reference to simple straight beams constrained at the 

opposite ends can be extended to more complicated beam structures. As an example, at each cross 

section where two beams are joined by hinges, such as in the case of Gerber beams, the continuity 

conditions (8) related to layer rotations must be replaced by conditions of nil moments in the two 

layers. Furthermore, at each cross section at which continuous beams rest on interior supports an 

additional condition of nil deflection must be added to boundary conditions (7). Analogously, at 

each cross section where point forces are applied the continuity conditions (8) related to axial or 

shear forces in the layers must be suitably modified to take into account the presence of external 

forces. Finally, in the more complicated case of frames, continuity conditions (8) and additional 

relations (9) for each simple beam composing the frame must be firstly written with reference to 

local coordinates and then transformed in global coordinates through suitable rotation matrices. 

It is worth noting that the length of each beam subdomain is unknown a priori, since interface 

regimes depend on the load level. The simulation of a process of progressive interface debonding in 

composite beams under loading conditions that generate interlayer stresses is then a nonlinear 

problem which can be solved by analyzing a sequence of consecutive physically compatible 

configurations and evaluating the load levels for which such configurations are also equilibrated. 

Depending on the complexity of such configurations incremental or incremental-iterative 

procedures must be followed. Such a complexity correlates with the number of subdomains, that is 

of simultaneous regimes experienced along the interface, and depends not only on the type of step-

wise interface law but also on the type of beam structure, that is on geometry as well as on loading 

and constraining conditions. It follows that a unified numerical procedure cannot be defined. 

 

4. Numerical examples 

In this section, two sets of numerical results are shown. Firstly, in order to validate the 

employment of the fundamental closed form solution to practical applications, a comparison with 

results found in literature is presented. Secondly, the response of two-layer beams with partial 

composite action during a loading process inducing a progressive debonding of the interface is 
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simulated and the influence of interface parameters on the stiffness and collapse load of the 

composite structural elements is discussed. 

(a)  
(b)  

Figure 5. Two-layer simply supported RC-steel composite beam (Foraboschi, 2009): 

(a) geometry; (b) interface law. 

The first numerical example refers to a simply supported beam composed of reinforced concrete 

(RC) and steel and subjected to uniformly distributed transverse load, as shown in Figure 5a. The 

elastic-damaging three-linear interface law shown in Figure 5b is assumed to describe the imperfect 

connection between concrete and steel in the longitudinal direction: the interface exhibits firstly an 

elastic behavior (A=pe/se >0, B=0) until the elastic limit is reached (|pt|=pe), then a softening 

regime (A=pe/(sesu)<0, B=pesu/(suse)), until debonding initiates (|st|=su), and finally a 

detached regime (A=B=0), which characterizes the incapacity of interface of transmitting any shear 

traction as if the beam consists of two separate layers. For this example the input data are the 

geometry and material properties of the layers and the parameters characterizing the interface law 

(the initial elastic stiffness, the elastic limit shear traction and the ultimate slip, from which 

coefficients A and B for each linear branch of the interface law can be calculated), summarized in 

the first two columns of Table 2. The output is the beam configuration equilibrated with a specific 

load level considered previously by Foraboschi (2009). As shown in Figure 5a, because of the high 

load level, the interface is assumed to be divided in five portions: one central portion, having length 

le, which undergoes the elastic regime; two lateral portions, having each length ld, positioned 

adjacent to the ends and symmetrically with respect to midspan, which undergo the detached 

regime; two intermediate portions, which undergo the softening regime. The problem is nonlinear 

since the lengths le and ld depend on the load level and are unknown a priori. In order to find a 

solution, they are assumed as non conventional parameters to control the debonding process. In 

particular, the length of the elastic portion of the interface is decreased monotonically and for each 

value the length of the detached portion is iteratively increased until an equilibrated configuration is 

found and the related load level is calculated. The incremental-iterative procedure is arrested at the 

specific load level under consideration. In the third column of Table 2 some significant numerical 

results obtained with the approach presented are compared with those found previously by 

1 z 

2  

q 

y 
le 
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 2h1 

 2h2 
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ld ld 

(lle)/2ld (lle)/2ld  
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Foraboschi (2009): namely, the length of the elastic and detached portions of the interface, 

maximum slip and shear traction at one supported end and axial forces in each layer at midspan for 

the particular load level under consideration. A good agreement between the two sets of results in 

terms of percentage relative error (less than 7% in absolute value) is observed. The same example 

was considered by Focacci et al. (2015) to compare their results and show the accuracy of their 

solution. 

 
Geometry and material 

properties 
Interface stiffness and 

model parameters 
Numerical results 

l = 820 cm pe = 2.25 kN/cm  Foraboschi present relative 
b = 30 cm se = 0.65 mm  (2009) model error [%] 
2h1 = 5 cm su = 1.12 mm q [kN/m] 57.25 57.31 0.11 
2h2 = 29 cm elastic regime: le [cm] 594 618 4.04 
K1 = 375 MN A = 346 MPa ld [cm] 0 0 - 
K1 = 781.25 MN cm2 softening regime: st [mm] at z = 0 0.826 0.833  
K2 = 2373 MN A = 479 MPa pt [kN/cm] at z = 0 1.47 1.37  
K2 = 383460 MN cm2 B = 5.36 kN/cm N1= N2 [kN] at z = l/2 530 500 5.84 

Table 2. Model parameters and significant results for RC-steel composite beam. 

 (a) 

 

(b)  

Figure 6. Two-layer wood composite beam: (a) geometry; (b) interface law. 

Secondly, a simply supported two-layer wood composite beam under point load at midspan is 

considered. With reference to Figure 6a, the two layers have constant rectangular cross sections of 

identical width but different heights (l=300cm, b=12cm, 2h1=5cm, 2h2=14cm) and are made of the 

same linearly elastic and homogeneous material (Young modulus E=11500MN). The nonlinear 

behavior of the imperfect connection in the longitudinal direction is described by the three-linear 

interface law shown in Figure 6b. Such interfacial model differs from that shown in Figure 5b in the 

post-elastic regime (A=Ae, B=pe(1)) experienced by the interface after the elastic limit is reached 

until debonding initiates. Depending on the value prescribed for , different post-elastic regimes can 

be considered and different types of joints can be modelled: 0<<1 or =0 corresponds to a 

hardening or plastic regime, which suitably describes joints realized through mechanical shear 

devices, such as nails and steel studs; <0 corresponds to a softening regime, which suitably 

describes sufficiently thin adhesive joints. Four parameters characterize this model: the initial 

1 z 

2  

P 
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l 

y 

x 
 2h1 
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 pe 
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elastic stiffness Ae, the elastic limit shear traction pe, the ratio  of post-elastic to elastic stiffness 

and the ratio  of ultimate to elastic limit slip. 

For this example the input data are the geometry and material properties of the layers and the 

parameters characterizing the interface law, which are varied in order to analyze the influence of the 

post-elastic interface behavior on the debonding process. The output is the sequence of consecutive 

equilibrated beam configurations and related load levels and static and kinematic field variables. 

(a)  
(b)  

Figure 7. Two-layer wood composite beam: generic post-elastic configurations. 

As well known, shear traction and slip have maximum absolute values at the ends of the beam 

(z=0 and z=l) where first the elastic limit is reached and then debonding initiates. Such an 

irreversible process involves adjacent points and proceeds along the interface towards midspan 

(z = l/2). Analogously to the previous example, the generic configuration of the beam then changes 

from the one characterized by the whole interface undergoing the elastic behavior first to the one 

shown in Figure 7a and then to the one shown in Figure 7b. The configuration shown in Figure 7a 

differs from the one shown in Figure 7b in the absence of the interface portion debonded (ld=0). 

Because of the irreversibility of such a progressive damage and debonding process, le decreases 

monotonically whereas ld increases monotonically; they can so be assumed as non conventional 

parameters to control the process in order to catch any branch of the load  midspan deflection 

curve (including possible snap-through or snap-back branches). 

In particular, firstly, with reference to the post-elastic configuration shown in Figure 7a, starting 

from the initial value le=l, le is decreased incrementally and monotonically. For each prescribed 

value for le, the load level for which the related configuration is not only equilibrated (i.e. satisfying 

the general solution described in Section 3) but also physically compatible (i.e. |pt|=pe at the 

boundaries between the elastic and post-elastic portions and |st|<su at the ends) is calculated. The 

incremental procedure is arrested as soon as |st|≥su at the ends of the beam, since this denotes that 

interface debonding initiates  and a change of configuration occurs. Secondly, with reference to the 

most generic configuration shown in Figure 7b, once again le is decreased incrementally and 

monotonically. For each prescribed value for le, ld is iteratively increased until a configuration both 

equilibrated and physically compatible (i.e. |pt|=pe at the boundaries between the elastic and post-

1 z 

2  

P 

y 
le (lle)/2 (lle)/2 
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2  
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le ld ld 

(lle)/2ld (lle)/2ld 
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elastic portions and |st|=su at the boundaries between the post-elastic and debonded portions) is 

found and the related load level is calculated. 

The mechanical responses of composite beams so simulated are summarized through 

load  midspan deflection curves, as shown by dimensionless diagrams in Figures 8 to 11. It is 

straightforward that such responses are affected by geometry and material properties of both layers 

and interface. As an example, the first linear branch describes the initial elastic response of the 

system; the related global stiffness, defined as the ratio of applied load to midspan deflection (say 

wmax), and elastic strength, defined as the maximum load carried until interface undergoes only 

elastic deformation, depend on Ae and pe, respectively: the higher Ae, the higher the initial global 

stiffness of the composite beam; the higher pe, the higher the elastic strength. In this paper the 

attention is focused on the influence of the post-elastic interfacial behavior on the response of the 

composite beam. In order to investigate this, a parametric analysis is performed by varying the 

value of interface parameters related to post-elastic and detached regimes. Figures 8 to 11 show the 

results obtained for Ae = 100 MPa, pe = 50 kN/m and different values of  = 0.5, 0, 0.5, 2 and 

 = 1.5, 3. These results permit several interesting conclusions. 

 

Figure 8. Two-layer wood composite beam: load  midspan deflection curves for varying 
ratio of the post-elastic to the elastic interfacial stiffness. 

Figure 8 shows the response of the simply supported two-layer beam for different post-elastic 

interfacial regimes. All responses have the same initial linear elastic branch but then differ in the 

nonlinear branch depending on the value of paramaeter . Beams with either hardening (>0) or 

plastic (=0) interface undergo a reduction in the global stiffness but their strength results to be 

increased significantly with respect to the elastic limit. Namely, the strength of the composite beam 

is here defined as the maximum load carried until interface debonding initiates. For all beams, 

finally, debonding initiation is followed by a prominent snap-back branch, catched because of the 

non conventional choice of control parameters discussed above; then, the response tends to that of 

the beam with the interface completely debonded (dashed line). 
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Figures 9 to 11 show the effects of the variation of the utimate slip of the interface, as a measure 

of interface ductility, on the strength of the simply supported two-layer beam. 

 

Figure 9. Two-layer wood composite beam: load  midspan deflection curves for hardening 
interface with varying ratio of the utimate to the elastic limit interfacial slip. 

 

Figure 10. Two-layer wood composite beam: load  midspan deflection curves for plastic interface 
with varying ratio of the utimate to the elastic limit interfacial slip. 

 

Figure 11. Two-layer wood composite beam: load  midspan deflection curves for softening 
interface with varying ratio of the utimate to the elastic limit interfacial slip. 
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With reference to Figures 9 and 10, on increasing , an increase in the strength is produced. This 

increase is more important for beams with hardening (>0) than plastic (=0) interface. For =1.5, 

the maximum load ranges from 115% for =0 to 129% for =0.5 of the elastic strength. For =3, 

the maximum load ranges from less than 1.5 times for =0 to more than 2 times for =0.5 the elastic 

strength. On the contrary, no significant effects are detected for beams with softening interface 

(<0), as shown in Figure 11. 

 

5. Conclusions 

The nonlinear problem of two-layer beams with interlayer slip and nonlinear interface law under 

loading conditions that induce an irreversible process of progressive debonding at the interface is 

analyzed  by solving the equilibrium problem of a sequence of consecutive beam configurations 

obtained by progressively decreasing the length of the interface portion experiencing an elastic 

behavior and increasing the length of portions experiencing post-elastic regimes. In particular, the 

attention is focused on nonlinear interfacial behaviors which can be suitably approximated through 

step-wise linear laws. This permits one to employ the fundamental analytical solution derived by 

the authors in a previous paper with reference to a linear non-proportional interface law able to 

describe different types of interfacial regimes (elastic, hardening, perfectly-plastic, softening or 

detached) depending on the value of some model parameters. Such a fundamental solution is 

employed to solve the equilibrium problem for each configuration and to evaluate the related load 

level by imposing the conditions of physical compatibility at the boundaries between two beam 

portions experiencing different interfacial regimes. 

Compared to a previous work by the authors (Campi and Monetto, 2013), this paper deals with a 

vector form of the solution of the equilibrium problem for a generic beam configuration. From one 

hand, as main goal of the present paper, this facilitates the determination of the arbitrary constants 

to employ in a semi-analytical procedure for simulating the interface debonding. On the other, the 

derivation of exact stiffness matrix and end force vector for a composite beam element to employ in 

finite element analyses, avoiding curvature locking problems, is allowed. 

The numerical results obtained show the validity and applicability of the semi-analytical 

procedure proposed as an alternative method of solution or as a method of validation for finite 

element analyses. 

To conclude, it is worth noting that the formulation could be extended to an even wider class of 

nonlinear problems (e.g. step-wise linear interface laws characterized by an unlimited number of 

linear branches, continuous beams or frames, layers behaving anelastically according to step-wise 

linear constitutive law) than those considered here but at the expense of a much more complicated 

incremental-iterative solution procedure which is not of interest to this paper. 
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Appendix A. Exemple of expressions in vector form 

This Appendix details the procedure for rewriting in vector form the exact expressions for all 

kinematic and static field variables found by Campi and Monetto (2013). As an example, interfacial 

normal tractions and additional relations among the arbitrary constants are considered. In particular, 

the attention is focused on the special case of composite beams consisting of two layers having 

geometry and material properties satisfying the condition: 

𝐾ఞଶ
ିଵℎଶ − 𝐾ఞଵ

ିଵℎଵ = 0 . (A1) 

For the case under consideration, Campi and Monetto (2013) showed that the general solution of 

Eq.s (2) for interfacial normal tractions pn results: 

𝑝௡(𝑧) = 𝑐ଵ cosh(𝛼 𝑧) + 𝑐ଶ sinh(𝛼 𝑧) + 𝑝̅௡ , (A2) 

where: 

𝛼 = ට൫𝐾ఊଵ
ିଵ + 𝐾ఊଶ

ିଵ൯
ିଵ

൫𝐾ఞଵ
ିଵ + 𝐾ఞଶ

ିଵ൯ , (A3) 

whereas c1 and c2 are the first two arbitrary constants and  𝑝̅௡ is the particular solution depending on 

the distribution of the external loads which, as an example, for uniformly distributed loads yields: 

𝑝̅௡ = ൫𝐾ఞଵ
ିଵ + 𝐾ఞଶ

ିଵ൯൫𝐾ఞଶ
ିଵ𝑞௬ଶ − 𝐾ఞଵ

ିଵ𝑞௬ଵ൯ . (A4) 

It is straightforward that Eq. (A2) can be written alternatively as: 

𝑝௡(𝑧) = [cosh(𝛼 𝑧) sinh(𝛼 𝑧) 𝟎ଵହ
୘ ] 𝐜 + 𝑝̅௡  , (A5) 

from which, accordingly to Eq. (4), it follows: 

𝐅௣௡(𝑧) = [cosh(𝛼 𝑧) sinh(𝛼 𝑧) 𝟎ଵହ
୘ ]   and    𝑓ఎ(𝑧) = 𝑝̅௡ , (A6) 

where 015 is the zero vector having 15 components. 

Analogously, Campi and Monetto (2013) found the following additional relations among the 

arbitrary constants for an interface law with A=0: 

⎩
⎪
⎪
⎨

⎪
⎪
⎧

𝐾ఞଶ
ିଵ(𝑚ଶ − 𝑐ଽ) − 𝐾ఞଵ

ିଵ(𝑚ଵ − 𝑐଼) = 0

𝐾ఊଶ
ିଵ𝑐ଽ − 𝐾ఊଵ

ିଵ𝑐଼ + 𝑐ଵସ − 𝑐ଵହ = 0

𝑐ଵ଺ − 𝑐ଵ଻ = 0

൫𝐾ఞଵ
ିଵ + 𝐾ఞଶ

ିଵ൯
ିଵ

(𝐾ఊଵ
ିଵ𝐾ఞଶ

ିଵ − 𝐾ఊଶ
ିଵ𝐾ఞଵ

ିଵ)(𝑞௬ଵ + 𝑞௬ଶ) + 𝐾ఞଵ
ିଵ𝑐ଵ଴ − 𝐾ఞଶ

ିଵ𝑐ଵଵ = 0

𝑐ଷ = 0
𝑐ସ = 0
𝑐ହ = 𝐵

 . (A7) 
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Taking into account Eq. (5), it is straightforward that the non-zero components of the matrix D and 

vector d are: 

𝐷ଵ,଼ = 𝐷ସ,ଵ଴ = 𝐾ఞଵ
ିଵ, 𝐷ଶ,଼ = −𝐾ఊଵ

ିଵ , 𝐷ଶ,ଵସ = 𝐷ଷ,ଵ଺ = 𝐷ହ,ଷ = 𝐷଺,ସ = 𝐷଻,ହ = 1 ,

𝐷ଵ,ଽ = 𝐷ସ,ଵଵ = −𝐾ఞଶ
ିଵ , 𝐷ଶ,ଽ = 𝐾ఊଶ

ିଵ , 𝐷ଶ,ଵହ = 𝐷ଷ,ଵ଻ = −1 ,
  (A8a) 

and: 

𝑑ଵ = 𝐾ఞଶ
ିଵ𝑚ଶ − 𝐾ఞଵ

ିଵ𝑚ଵ , 𝑑ସ = ൫𝐾ఞଵ
ିଵ + 𝐾ఞଶ

ିଵ൯
ିଵ

൫𝐾ఊଵ
ିଵ𝐾ఞଶ

ିଵ − 𝐾ఊଶ
ିଵ𝐾ఞଵ

ିଵ൯൫𝑞௬ଵ + 𝑞௬ଶ൯, 𝑑଻ = −𝐵 .  (A8b) 

 

Appendix B. Exact stiffness matrix and end force vector for a composite beam element 

As shown in this Appendix, the vector form of the fundamental closed form solution considered 

in Section 3 can be employed also to derive the exact stiffness matrix and nodal force vector for a 

two-layer beam element with interlayer slip to employ in finite element analyses. 

In order to do this, the generic element of two-layer composite beam, having length lr, shown in 

Figure 4b is considered. From Eq.s (6) the vectors of end displacements, say  𝐚ො(௥), and forces, say  

𝐪ෝ(௥), for the beam element result: 

𝐚ො(௥) = ൝
𝐚௥ିଵ

(௥)

𝐚௥
(௥)

ൡ = ൥
𝐗௥ିଵ

(௥)

𝐗௥
(௥)

൩ 𝐜(௥) + ൝
𝐱௥ିଵ

(௥)

𝐱௥
(௥)

ൡ = 𝐗෡(௥)𝐜(௥) + 𝐱ො(௥) , (B1a) 

𝐪ෝ(௥) = ൝
𝐪௥ିଵ

(௥)

𝐪௥
(௥)

ൡ = ൥
𝐘௥ିଵ

(௥)

𝐘௥
(௥)

൩ 𝐜(௥) + ൝
𝐲௥ିଵ

(௥)

𝐲௥
(௥)

ൡ = 𝐘෡(௥)𝐜(௥) + 𝐲ො(௥) , (B1b) 

where 𝐗෡(௥), 𝐘෡(௥) are matrices 1017 and 𝐱ො(௥), 𝐲ො(௥) are vectors 101. Combining Eq. (B1a) with the 

additional relations among the arbitrary constants, given by Eq. (5) in general terms, leads to the 

following system of 17 algebraic equations: 

𝐚෤(௥) = ൜
𝐚ො(௥)

𝟎଻
ൠ = ൤𝐗෡(௥)

𝐃(௥)
൨ 𝐜(௥) + ൜𝐱ො(௥)

𝐝(௥)
ൠ = 𝐗෩(௥)𝐜(௥) + 𝐱෤(௥) , (B2) 

where 𝐚෤(௥), 𝐱෤(௥) are vectors 171 and 𝐗෩(௥) is a square matrix 1717, whereas 07 is the zero vector 

having 7 components.  Following the direct stiffness approach (Battini et al., 2009), from Eq. (B2) 

the vector of unknown constants can be expressed in terms of end displacements: 

𝐜(௥) = 𝐗෩(௥)ିଵ
൫𝐚෤(௥) − 𝐱෤(௥)൯ . (B3) 

Substituting Eq. (B3) into Eq. (B1b) finally gives also end forces in terms of end displacements: 

𝐪ෝ(௥) = ቀ𝐘෡(௥)𝐗෩(௥)ିଵ
ቁ 𝐚෤(௥) + (𝐲ො(௥) − 𝐘෡(௥)𝐗෩(௥)ିଵ

𝐱෤(௥)) = 𝐊෩ (௥)𝐚෤(௥) + 𝐪ෝ଴
(௥)

= 𝐊෡ (௥)𝐚ො(௥) + 𝐪ෝ଴
(௥) , (B4) 

where: 𝐊෩ (௥) is a matrix 1017, whereas 𝐊෡ (௥) is a matrix 1010 obtained by deleting the last 7 

columns of 𝐊෩ (௥); 𝐪ෝ଴
(௥) is a vector 101. In particular, 𝐊෡ (௥) and 𝐪ෝ଴

(௥) defined by Eq. (B4) represent, 

respectively, the exact stiffness matrix and nodal force vector for the beam finite element under 

consideration. 
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It is worthwhile noting that, since the stiffness matrix and nodal force vector given by Eq. (B4) 

derive from the exact solution of the equilibrium problem of two-layer beams with interlayer slip, 

their employment in finite element analyses allows to avoid curvature locking generally 

encountered with low order polynomial finite elements (see e.g. Ranzi, 2008). 
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