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Johannes Kleinlein,1, 2 Hartmut Buhmann,1, 2 Björn Trauzettel,3 and Laurens W. Molenkamp1, 2

1Experimentelle Physik III, Physikalisches Institut,
Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany

2Institute for Topological Insulators, Am Hubland, D-97074 Würzburg, Germany
3Institute of Theoretical Physics and Astrophysics,

University of Würzburg, 97074 Würzburg, Germany
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Electrical currents in a quantum spin Hall insu-
lator are confined to the boundary of the system.
The charge carriers can be described as massless
relativistic particles, whose spin and momentum
are coupled to each other. While the helical char-
acter of those states is by now well established
experimentally, it is a fundamental open question
how those edge states interact with each other
when brought in spatial proximity. We employ a
topological quantum point contact to guide edge
channels from opposite sides into a quasi-one-
dimensional constriction, based on inverted HgTe
quantum wells. Apart from the expected quanti-
zation in integer steps of 2e2/h, we find a surpris-
ing additional plateau at e2/h. We explain our
observation by combining band structure calcula-
tions and repulsive electron-electron interaction
effects captured within the Tomonaga-Luttinger
liquid model. The present results may have di-
rect implications for the study of one-dimensional
helical electron quantum optics, Majorana- and
potentially para-fermions.
The quantum spin Hall effect has been predicted in sev-
eral systems [1–4] and was first realized in HgCdTe/HgTe
quantum wells [5]. Later, this phase was observed in
other material systems such as InAs/GaSb double quan-
tum wells [6] and in monolayers of WTe2 and bismuthene
[7, 8]. The defining properties of this state, related to its
helical nature, are well established by numerous experi-
ments such as the observation of conductance quantiza-
tion of two spin polarized edge channels G0 = 2e2/h with
e the electron charge and h the Planck’s constant [5]. Ad-
ditionally, non-local edge transport and spin-polarization
of the edge channels were demonstrated by suitable trans-
port experiments [9, 10]. In the present paper, we target
a still open question, i.e. how helical edge states interact
with each other.

A quantum point contact (QPC) can be used to guide
edge channels from opposite boundaries of the sample
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into a constriction. Such a device allows for studies of
charge and spin transfer mechanisms by, e.g., adjusting
the overlap of the edge states [11–21]. Besides the gen-
eral interest in the study of transport processes in such
a device, the appropriate model to describe the essential
physics and to capture interaction effects of helical edge
states is still unclear. The one-dimensionality of the he-
lical edge modes suggests a description in terms of the
Tomonaga-Luttinger liquid when electron-electron inter-
actions are taken into account. In this respect, the QPC
setup provides an illuminating platform as it may give
rise to particular backscattering processes.

We present the realization of a QPC based on HgTe
quantum wells as evidenced by the observation of the ex-
pected conductance steps in integer values of G0. The
newly developed lithographic process allows the fabrica-
tion of sophisticated nanostructures based on topological
materials without lowering the material quality. It thus
opens the path to conduct experiments of topological ma-
terials on mesoscopic scales important for the coherent
control of helical edge channels and topological quan-
tum computing. Depending on the QPC width WQPC

and quantum well thickness dQW, we observe a fractional
plateau at 0.5G0 in absence of an applied magnetic field.
We label this phenomenon the 0.5 anomaly in resem-
blance to the 0.7 anomaly frequently observed in point
contacts fabricated in more conventional semiconductors
[22]. Self-consistent k · p calculations allow us to identify
the most plausible transport mechanism. Using the the-
ory of helical Tomonaga-Luttinger liquids, we associate
the experimental results with the presence of a spin-gap.
Bias and temperature dependencies of the 0.5 anomaly
are in agreement with such a gap. Furthermore, we iden-
tify an indicator of the conventional 0.7 anomaly in our
devices when increasing the applied bias voltage. This
observation is in qualitative agreement with the present
theory and the explanation given for the 0.7 anomaly in
Ref. [23].
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I. REALIZATION OF A QUANTUM SPIN HALL
QUANTUM POINT CONTACT

Figure 1a shows a scanning electron micrograph pic-
ture of a HgTe QPC. A constriction is formed by wet
chemical etching of the HgTe heterostructure [24] and a
top gate electrode is used to tune the chemical potential
[25]. The commonly employed approach of defining the
QPC purely by electrostatic gating [26] is not suitable in
our case due to the presence of gapless edge modes with
linear dispersion (Klein tunnelling) [27].

Our devices are fabricated from HgTe quantum wells
epitaxially grown on Cd0.96Zn0.04Te substrates and sand-
wiched between Hg0.3Cd0.7Te barriers (see inset Fig. 1b).
The thickness of the HgTe layer, if not explicitly stated
otherwise, is dQW = 10.5 nm. The width of the channel
WQPC ranges between 25 to 250 nm, while the length
LQPC is kept constant around 500 nm. The length of
the gate electrode LGate is approximately 200-300 nm.
As depicted in Fig. 1b, ohmic contacts are placed far
away (dohmics ≈ 80 µm) from the constriction to allow
full energy relaxation in the HgTe leads and to avoid
geometrical resonances. Details about the fabrication
process, material parameters and measurement setup are
presented in the supplementary information, Sec. I.

The conductance G of a representative QPC as a func-
tion of applied gate voltage VG is depicted in Fig. 1c.
Three regimes can be identified. For gate voltages VG ≥
−0.75 V, we observe conventional QPC behaviour. Con-
ductance plateaus at integer multiples of G0 are devel-
oped and the quality of quantization can be improved by
applying a small magnetic field (shown in red). For gate
voltages between −0.75 V> VG > −1.2 V the point con-
tact is in the quantum spin Hall regime. A long plateau
around G0 is assigned to two helical edge channels. For
still more negative gate voltages VG ≤ −1.2 V, a step-like
transition from G0 to a long plateau at 0.5G0 is observed.
The inset shows the remarkable precision of the quan-
tization even at zero magnetic field. This observation
constitutes the main finding of this work.

II. THE 0.5 ANOMALY

The 0.5 anomaly is a robust signature. It is stable
over multiple thermal cycles and we have reproduced it
in several devices. An overview of various devices is pre-
sented in Fig. 2. The 0.5 anomaly can be identified in de-
vices number II to V, which have a constriction width of
WQPC = 100-200 nm (Fig. 2b-c). The conductance drops
belowG0 but does not reach 0.5G0 for wider constrictions
like in QPC-I, where WQPC ≈ 250 nm (Fig. 2a). This
behaviour suggests that an interaction between the edge
channels is crucial for the appearance of the 0.5 anomaly.
The conductance of e2/h implies the transmission of one
channel while the other one is reflected. Preliminary data
of the detection of this backscattered state is presented in
the supplementary information, Fig. S3. In that exper-

iment, adjacent voltage probes in a Hall geometry next
to a QPC have been used to detect an emerging volt-
age drop with the QPC entering the 0.5 anomaly regime
at B = 0 T. Our measurement of Rxy is consistent with
predictions by Landauer-Büttiker theory for one reflected
helical edge channel.

The conductance in the bulk band gap vanishes for
very narrow QPCs as depicted in Fig. 2d (WQPC ≈
25-50 nm). In this regime, the transport shows a
Coulomb blockade behaviour typical for quantum dots
(supplementary information, Fig. S2). We believe that
inter-edge coupling and/or local disorder is responsible
for the localization. The suppression of conductance for
narrow QPCs sets an experimental upper limit for the
wave function width of the edge states. Since we are
still able to observe a G0 plateau for WQPC = 150 nm
and no suppression of conductance inside the band gap
for WQPC = 100 nm, we conclude that the localization
of each edge channel has to be smaller than 50 nm, in
agreement with theory [21]. In the QPCs with WQPC =
100 nm, shown in Fig. 2c, a plateau at G0 is not visible
anymore whereas the one at 0.5 G0 can still be observed
(to some extent). We attribute this behavior to stronger
inter-edge interactions in narrower QPCs in our model
described below in Sec. IV. The 0.5 anomaly is observed
at large negative gate voltages over a wide voltage range.
The gate efficiency in our devices is known from reference
Hall bars to be ∆ne/∆V ≈ 8-10 × 1011cm−2/V. There-
fore, we conclude that the bulk density in the regime of
the 0.5 anomaly is strongly p-doped (nh > 1×1012cm−2).
Bulk transport through the point contact in this regime is
suppressed, as will be further discussed below. As shown
in Fig. 1c, a magnetic field B / 300 mT does not in-
fluence the 0.5 anomaly. The QPC conductance of a
thinner, but still inverted HgTe quantum well (dQW ≈
7.0 nm> dc) with WQPC ≈ 100 nm is shown in Fig. 2e.
By lowering the gate voltage, first conventional conduc-
tance steps are observed. The lowest conductance in this
device is around G0 indicating the quantum spin Hall
regime. We carefully checked that indeed no 0.5 anomaly
is observed in thin quantum wells by studying several
QPCs with varying WQPC, measured in a large temper-
ature (25 mK up to 10 K) and gate voltage range (see
Fig. 2f). These findings guide us to the importance of
the underlying band structure to identify the mechanism
for the 0.5 anomaly.

III. BAND STRUCTURE CALCULATIONS

Using k ·p theory based on the eight-band Kane model,
we first calculate the bulk band structure of an infinitely
wide slab of quantum well material (black curves in
Fig. 3a-c) [28]. A more elaborated calculation using a
finite width WQPC = 150 nm of the system allows us to
gain information about the situation inside the QPC con-
striction (coloured dots in the plots).

The band structure of a quantum well with dQW =
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FIG. 1: Realization of a topological quantum point contact: a, Scanning electron micrograph of an exemplary device.
A narrow channel is defined in the HgTe mesa with width WQPC and length LQPC. A metallic gate electrode is separated
from the mesa by a HfO2 dielectric. b, Schematic of the QPC design and measurement setup. The gate electrode is depicted
in yellow and the ohmic contacts in orange. The inset shows the epitaxially grown layer stack on a commercially available
Cd0.96Zn0.04Te substrate. c, Gate voltage dependence of the conductance of QPC-III measured at 1.4 K. The conductance is
divided into three regimes indicated by the vertical dashed lines. In the QPC regime, integer steps up to 14e2/h are observed.
The pure quantum spin Hall regime is defined by a conductance of 2e2/h (abbreviated as QSH regime in c). In the 0.5 anomaly
regime an interaction driven gap opens leading to a quantized conductance of e2/h. The inset shows a zoom of the 0.5 anomaly
regime.

7 nm (Fig. 3a) shows the inverted band gap between the
|H1±〉 and |E1±〉 sub-bands as conduction and valence
band, respectively. Importantly, the crossing point of the
edge channels (Dirac point) lies in the bulk band gap. In
contrast, the order of bands in the 10.5 nm wide quan-
tum well is rather different (Fig. 3b). In this case, the
band gap is between the first |H1±〉 and second |H2±〉
heavy hole sub-band. The |E1±〉 sub-band – still respon-
sible for the band inversion – lies energetically below the
|H2±〉 state. Then, the Dirac point is buried deeply in
the valence band and the edge states hybridize with the
bulk states if they spatially overlap [29]. However, at the
indicated position of the chemical potential in Fig. 3c
(by the dashed line), the edge states are well localized
at the sample edge while the bulk density is already hole
dominated. The corresponding edge wave function has a
width of approximately 10 nm. This value is in qualita-
tive agreement with our observation of unperturbed edge
channel transport for QPC widths WQPC ≥ 100 nm.

The position of the Dirac point in the valence band
and the flat heavy hole bands have several implications
for carrier transport. First, lowering the gate voltage in

wider quantum wells pushes the chemical potential into
the heavy hole |H2±〉 bulk sub-bands, where the valence
band structure exhibits a camel back-like shape. As a
consequence, the Fermi level is pinned at the flat va-
lence band edge. Second, the large Fermi momentum
mismatch between valence and conduction band sup-
presses inter-band transitions and thus also suppresses
bulk transport in the p-regime. In addition, the sepa-
ration in momentum space between the edge and bulk
states allows their coexistence without hybridization.
These arguments explain the range in gate voltage of the
quantum spin Hall plateau at G0, which is longer than
the ’conventional’ steps, as well as the suppression of bulk
conductance when entering the valence band. Further-
more, the application of a large negative gate voltage
induces a strong Rashba effect. Self-consistent k · p cal-
culations allow us to include the applied electric field and
the resulting band structure is shown in Fig. 3c [28]. The
dispersion of the bulk bands shows the typical Rashba
splitting, while the dispersion of the edge states is not
affected. The Rashba coupling does induce an energy
dependence of the spin-momentum locking in the edge
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FIG. 2: Width dependencies of the 0.5 anomaly: a-d, Conductance as a function of gate voltage VG measured at zero
magnetic field and a temperature of T ≈ 1.4 K for QPCs with varying width WQPC as indicated. The blue trace represents
a second sweep of QPC-III. The shift in VG compared to the data of Fig. 1c is due to hysteresis effects. e-f, Conductance of
a QPC based on a quantum well width dQW = 7.0 nm. The raw data is depicted in black, a serial resistance of 260 Ω was
subtracted for the red graph. A wider gate voltage range is shown in the lower panel.

states as indicated by the tilted arrows [30, 31]. Obvi-
ously, a band splitting due to the Rashba coupling alone
can not explain a 0.5 anomaly, since it does not break
time reversal symmetry [32]. Hence, we have to take in-
teractions into account.

IV. OPENING OF A SPIN GAP DUE TO
COULOMB INTERACTIONS

In this section, we explain how the emergence of a spin
gap generated by correlated two-particle scattering pro-
cesses can explain the 0.5 anomaly. It is well known
that the combination of Rashba spin-orbit coupling and
electron-electron interactions at the helical edge can in
principle give rise to backscattering (supplementary in-
formation, Sec. III) [33, 34]. When both edge channels
interact with each other, a variety of two-particle scatter-
ing terms are allowed [13, 14, 19, 35]. In general, however,
most of these terms are either not relevant in a renormal-
isation group sense, or do not apply to the constraints set
by the band structure in our setup.

As indicated by the k·p calculations, the inverted quan-
tum wells with d = 10.5 nm have a Fermi wave vector of
kF ∼ 0.1 nm−1. Backscattering processes, which do not
preserve the number of right- and left-moving edge chan-
nels, hence, oscillate as a function of space over a scale
of k−1

F . Since the length of the QPC is of the order of
L ∼ 100 nm, net effects of these terms should average

out.
Following those arguments and assuming (weak) repul-

sive electron-electron interactions, we show in the sup-
plementary information, Sec. III, that the most relevant
two-particle scattering term can be written has

HS = gs

∫ L

0

dx[χ̂†R,+(x)χ̂L,+(x)χ̂†L,−(x)χ̂R,−(x) + h.c.],

(1)

where χ̂ν,±(x) with ν ∈ R,L are right- (R) and left-
moving (L) Fermi field operators of upper (+) or lower
edge (−), respectively. Since the spin degree of freedom
and the direction of motion are pinned in each helical
liquid, we only indicate the direction of motion in Eq. (1)
and drop the spin degree of freedom for ease of notation.
Evidently, HS describes a backscattering process between
the (+) and (−) edges preserving the number of right-
and left movers (see Fig. 3d for a schematic).

In our minimal model, introduced in the supplemen-
tary information, Sec. III, Eq. (1) appears due to the
combination of Rashba spin-orbit coupling and electron-
electron interactions with broken SU(2) symmetry of the
spin degree of freedom. The coupling constant gs

gs = sin2(γ)
g2⊥ − g4⊥

2
(2)

is found to be directly related to the magnitude of the
Rashba coupling strength α via γ = arctan[α/(~vF )],
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as well as to the electron-electron interaction processes
across the edges parametrized by g2⊥ and g4⊥. In the
presence of strong spin-orbit coupling, SU(2) invariance
is broken at the single-particle level. Hence, it makes
sense that it remains to be broken in the presence of
interactions which implies that g2⊥ 6= g4⊥.

The Fermi level pinning in the samples with quantum
well thickness of 10.5 nm, thus, allows the coupling con-
stant gs to grow, as the electric field and likewise the
Rashba coupling is increased. This indicates the impor-
tance of the camel back in the bandstructure shown in
Fig. 3 c for the development of a sufficiently large gs.

Using bosonization techniques, we can demonstrate
that Eq. (1) acts as a gap to the spin sector[36]. The
effective Hamiltonian reads

Heff =
1

2π

∫ L

0

dx
∑
ν=σ,ρ

[
uν
Kν

(∂xφν)
2

+ uνKν (∂xθν)
2

]
+ g̃s cos(2

√
2θσ), (3)

where φν(x), θν(x) (ν ∈ ρ, σ) describe bosonic fields act-
ing on spin (σ) and charge sector (ρ), g̃s is a rescaled

version of gs, uν represent the normalised velocities and
Kν are the Tomonaga-Luttinger interaction parameters
ranging between 0 ≤ Kρ ≤ 1 and 1 ≤ Kσ ≤ 1/Kρ for
a repulsively interacting system. We have dropped the
explicit spatial dependence of the bosonic fields for ease
of notation. The last term in Eq. (3) – proportional to
g̃s – corresponds to a gap in the spin sector. In the
supplementary information, Sec. III, we explain that (in
a mean-field sense) the emergence of the spin gap can
be understood as spontaneous time-reversal symmetry
breaking.

V. EXPERIMENTAL CONSEQUENCES OF A
SPIN GAP

Usually, spin gaps are not detectable in charge trans-
port experiments of purely one-dimensional systems.
However, the strong localization of the single-particle
wave functions at the edges of the QPC implies that in
the present case the system is by no means a single one-
dimensional system, but has to be treated as two spatially
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separated one-dimensional systems, coupled by Coulomb
interactions.

Thus, the current operators j±(x) = 1/(2π)∂t(φρ(x)∓
θσ(x)), where the index ± also relates to different y-
coordinates, are distinct at the two edges. An electric
bias couples to each helical edge state separately. This
assumption leads to a reduced conductance of G = 0.5G0

in the presence of a spin gap (see also Fig. 3e). In the
absence of the spin gap, we instead find G = G0 (supple-
mentary information, Sec. III).

As observable in Fig. 2, the fluctuations on top of the
0.5 anomaly plateau are considerably smaller than in the
quantum spin Hall regime, where both helical channels
are transmitted. In the presence of Eq. (1), our renor-
malisation group analysis (supplementary information,
Sec. III) indeed predicts a reduced sensitivity to impurity
backscattering consistent with this observation. More-
over, we note that the proposed mechanism is not affected
by magnetic fields, also consistent with the experiment.

The absence of the 0.5 anomaly in thinner quantum

wells can be understood through the lack of Fermi level
pinning. In thicker quantum wells (10.5 nm), the applica-
tion of a strong electric field allows us to generate a suffi-
ciently large Rashba field without substantially affecting
the electron density of the edge states. The reason is that
the camel back of the valence band has a large density of
states at the Fermi energy which gives rise to Fermi level
pinning, see the horizontal dashed line in Fig. 3c. In con-
trast, in thinner quantum wells (7 nm), the camel back
is far away (in energy) from the Fermi level, see the hori-
zontal dashed line in Fig. 3a. Hence, in that case, we are
not able to apply strong electric fields without substan-
tially affecting the electron density of the edge states. We
argue that the resulting Rashba field, acting on the edge
states in the transport regime with conductance 2e2/h,
is too small to observe the 0.5 anomaly.

The bias and temperature dependence of the conduc-
tance, depicted in Fig. 4, helps us to quantify the ob-
served energy scales. As shown in Fig. 4a, the 0.5
anomaly is observable up to temperatures of 1.4 K. For
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higher temperatures (T ≥ 4 K) the quantization is lost
and the conductance increases with increasing temper-
atures. The range 1-2 K as the upper limit to which
the quantized plateau is observed sets an energy scale
of the spin gap ∆E ≈ 150-300 µeV. This energy scale
is in good agreement with the bias dependence shown
in Fig. 4b. There, the low ac bias has been super-
imposed by a dc bias voltage VDC. The gate voltage
regime in which the 0.5 anomaly can be observed opens
around VG = −1.6 V. We are able to observe the 0.5
anomaly up to VDC ≈ 200-400 µeV (Fig. 4c) depend-
ing on the gate voltage. A similar estimate can be
made for the energy scale set by the length of the QPC
~vF /LGate ≈ 200-300 µeV. The agreement of the magni-
tudes of all energy and temperature scales is remarkable.
We conjecture that they set the typical energy scale re-
quired for the development of the 0.5 anomaly. For larger
energies, the renormalisation group flow of gs is stopped
too early such that the spin gap can not develop.

Increasing the applied bias voltage further, the con-
ductance increases beyond the 0.5 anomaly and a second
step like plateau is visible around ≈ 0.8G0 (Fig. 4c).
We conjecture that this feature is related to the 0.7
anomaly commonly observed in conventional QPCs. The
emergence of this conventional 0.7-like signature is in
qualitative agreement with the explanation given in
Refs. [23, 37, 38] for GaAs based structures. In these
articles, electron-electron interactions at the bottom of
the last sub-band suppress the conductance below G0.
In our case, the 0.7 feature occurs where the applied bias
becomes large enough to touch the bottom of the inter-
action induced gap. Depending on the device, we are
also sometimes able to identify a 0.7 feature as a func-
tion of gate voltage (see Fig. 2b). Increasing the bias
even further closes the interaction induced gap and the
conduction saturates at G0, i.e. two unperturbed edge
channels are now perfectly transmitted through the QPC
over a large range of gate voltage (see Fig. 4c-d).

Several other mechanisms might explain the 0.5
anomaly in QPCs or nanowires. These mechanisms in-
clude helical edge reconstruction [39], the formation of a

Wigner crystal [40], or hyperfine interactions [41]. How-
ever, given the importance of the camel back in the va-
lence band for our observation of the 0.5 anomaly, we be-
lieve that the mechanism presented here is the most plau-
sible one. At the same time, we note (and discuss this
more extensively in the supplementary information) that
one can imagine another relevant mechanism, in particu-
lar, the helical edge reconstruction proposed in Ref. [39],
that shares many common ingredients to our mechanism
– like strong spin-orbit coupling, electron-electron inter-
actions, and confinement. Hence, it is likely that the two
mechanisms are related to each other (from a more fun-
damental point of view). Importantly, the explanation
of the 0.5 anomaly relies in any case on the spontaneous
breaking of time-reversal symmetry by interactions.

VI. SUMMARY & OUTLOOK

To conclude, we have presented the realization and op-
eration of a QPC in a two-dimensional topological insula-
tor. The conductance as a function of applied gate volt-
age saturates on a robust and reproducible 0.5G0 plateau.
Investigations of this 0.5 anomaly for various QPC chan-
nel widths, combined with the fact that the 0.5 feature
is linked to a certain quantum well thickness, gives a
hint to the importance of the underlying band structure.
Especially, the difference between a Dirac point in the
band gap and one buried in the valence band guides
us to a scattering term, which implies the opening of
a spin gap. The 0.5 anomaly yields an effectively spin-
polarized current, which may find applications in spin-
tronics. Furthermore, the results could be important for
the detection of Majorana bound states since the iden-
tified mechanism might be related to the observation of
the 4π-periodic Josephson current in our HgTe Joseph-
son junctions in the absence of an explicit time reversal
symmetry breaking mechanism [42]. Combining a topo-
logical QPC with superconductors is envisaged to enable
the creation and manipulation of Majorana bound states
and parafermions [43, 44].
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