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Abstract

Generalized Word Length Pattern (GWLP) is an important and widely-used
tool for comparing fractional factorial designs. We consider qualitative fac-
tors, and we code their levels using the roots of the unity. We write the
GWLP of a fraction F using the polynomial indicator function, whose coef-
ficients encode many properties of the fraction. We show that the coefficient
of a simple or interaction term can be written using the counts of its lev-
els. This apparently simple remark leads to major consequence, including a
convolution formula for the counts. We also show that the mean aberration
of a term over the permutation of its levels provides a connection with the
variance of the level counts. Moreover, using mean aberrations for symmetric
sm designs with s prime, we derive a new formula for computing the GWLP
of F . It is computationally easy, does not use complex numbers and also
provides a clear way to interpret the GWLP. As case studies, we consider
non-isomorphic orthogonal arrays that have the same GWLP. The different
distributions of the mean aberrations suggest that they could be used as a
further tool to discriminate between fractions.
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1. Introduction

In design of experiments, Generalized Word-Length Pattern (GWLP) is
an important tool for comparing fractional factorial designs. GWLP comes
out from the Minimum Aberration criterion and from the notion of Word-
Length Pattern (WLP). WLP was introduced in Fries and Hunter (1980) for
regular designs with binary factors, and generalized to the non-regular case
in Tang and Deng (1999). In Suen et al. (1997) the definition of WLP is
extended to symmetrical multilevel regular fractions. For a regular fraction
F of a full-factorial design D with m factors, the WLP of F is the sequence
A(F) = (A1(F), A2(F), . . . , Am(F)), where Aj is the number of defining
words with length j. Such a measure of the degree of aliasing can be easily
interpreted in the regular case. The WLP has been generalized for non-
regular asymmetrical designs by Xu and Wu (2001) and named as GWLP,
but it has a less evident meaning than in the regular case.

The aberration and the GWLP through the polynomial indicator function
of the fraction F have been introduced in Li et al. (2003) and Cheng and
Ye (2004) for two- and three-level cases respectively. In those papers the
aberration of a simple or interaction term is defined as the square of the
module of the corresponding coefficient of the indicator function, and the
j-th element Aj(F) of the GWLP is the sum of the aberrations of the terms
of order j, j = 1, . . . .m.

As demonstrated in Xu and Wu (2001), the GWLP does not depend on
the choice of a particular orthonormal basis of the functions defined over D,
while the aberration does. Pistone and Rogantin (2008) use the complex cod-
ing of the factor levels to express the basis of the functions, and in particular
of the indicator function. With this coding the coefficients of the indicator
function are related in a simple manner to many interesting properties of
the fraction and allows us to define aberration and GWLP in a clear way.
The complex coding is particularly useful in the case of qualitative factors,
as assumed in this work. To simplify the computation, avoiding the use of
complex numbers, Fontana and Pistone (2013) represent the coefficients us-
ing the counts of the levels appearing in each simple or interaction term.
As general references for GWLP and its properties, the reader can refer to
Mukerjee and Wu (2006) and Chen and Cheng (2012).

The practical use of the GWLP to discriminate among different de-
signs is well known. Given two designs F1 and F2, the Generalized Min-
imum Aberration (GMA) criterion consists in the sequential minimization
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of the GWLP. F1 is better than F2 if there exists j such that A1(F1) =
A1(F2), . . . , Aj(F1) = Aj(F2) and Aj+1(F1) < Aj+1(F2). Despite the fact
that the GMA criterion is widely applied, the statistical meaning of the ele-
ments of the GWLP is somewhat unclear. In the original work of Xu and Wu
(2001), the GWLP of a symmetrical design is written as the MacWilliams
transform of the distance distribution. This result has been generalized in
Qin and Ai (2007) to the case of multilevel designs. Under a different point
of view, Grömping and Xu (2014) write the first non-zero element of the
GWLP as the sum of the R2 coefficients of suitably defined linear models.
The connection between GWLP and Discrete Discrepancy has been investi-
gated in Qin and Fang (2004). Katsaounis and Dean (2008) describe methods
for screening the non-equivalence of designs, faster than those based on the
indicator function. However, such methods mainly apply to two-level designs.

In this work we use the expression of the GWLP via the aberrations of
the interaction terms of a given order. In turn, the aberrations are computed
using only the level counts of the corresponding terms. We fully exploit such
new expressions in two directions. First, we establish a convolution formula
for the counts of the terms, in symmetrical sm designs with s a prime number.
Second, we introduce the mean aberration of a simple or interaction term,
over the permutations of its levels. The mean aberration has a very simple
expression, and it is easy to compute and to explain. Indeed, we show that
the mean aberration is proportional to the variance of the level counts.

Moreover, we prove that for symmetrical sm designs, s prime, the j-th
element Aj(F) of GWLP is the sum of the mean aberrations of the terms of
order j, j = 1, . . . ,m and therefore the mean aberrations produce an alter-
native decomposition of the GWLP. In our knowledge, the proposed formula
is the simplest over all alternative expressions in literature. Nevertheless, in
general, this property does not hold.

The paper is organized as follows. In Section 2 a short review of the
algebraic theory of factorial designs is given. In Section 3 the convolution
formula that expresses the relationships among the level counts is obtained.
In Section 4 the mean aberration is defined, and its connection with the
GWLP are studied. The main result of this paper states that the GWLP
can be computed as the sum of mean aberrations (see Proposition 8). Section
5 is devoted to the comparison of fractions that have the same GWLP but
different distributions of the mean aberrations. Finally in Section 6 we briefly
describe some directions for future work.
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2. Algebraic characterization of fractional designs

In this section, for ease in reference, we present some relevant results
of the algebraic theory of fractional designs. The interested reader can find
further information, including the proofs of the propositions, in Fontana et al.
(2000) and Pistone and Rogantin (2008).

Let us consider an experiment which includes m factors.
Let us code the sj levels of the j-th factor by the sj-th roots of the unity

ω
(sj)
k = exp

(√
−1 2π

sj
k
)

, k = 0, . . . , sj − 1, j = 1, . . . ,m. We denote such a

factor by Ωsj , Ωsj =
{
ω0, . . . , ωsj−1

}
.

As α = β mod s implies ωαk = ωβk , it is useful to introduce the residue
class ring Zs and the notation [k]s for the residue of k mod s. For integer α,
we obtain (ωk)

α = ω[αk]s . We also have ωhωk = ω[h+k]s . We drop the sub-s
notation when there is no ambiguity.

We denote by D the full factorial design with complex coding:

D = D1 × · · · Dj · · · × Dm with Dj = Ωsj ;

the cardinality of the full factorial design is #D =
∏m

j=1 sj.
We denote by L the exponent set of the complex coded design {0, . . . , sj−

1}, j = 1, . . . ,m:
L = Zs1 × · · · × Zsm .

Notice that L is both the exponent set of the complex coded design and the
integer coded design. The elements of L are denoted by α, β, . . .:

L = {α = (α1, . . . , αm) : αj = 0, . . . , sj − 1, j = 1, . . . ,m} ;

[α − β] is the m-tuple
(

[α1 − β1]s1 , . . . , [αj − βj]sj , . . . , [αm − βm]sm

)
. The

computation of the j-th element is in the ring Zsj .
In order to use polynomials to represent all the functions defined over D,

including counting functions, we define

• Xj, the j-th component function, which maps a point ζ = (ζ1, . . . , ζm)
of D to its j-th component,

Xj : D 3 (ζ1, . . . , ζm) 7−→ ζj ∈ Dj .

The function Xj is a simple term or, by abuse of terminology, a factor.
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• Xα = Xα1
1 · . . . · Xαm

m , α ∈ L = Zs1 × · · · × Zsm i.e., the monomial
function

Xα : D 3 (ζ1, . . . , ζm) 7→ ζα1
1 · . . . · ζαmm .

The function Xα is an interaction term.

The following proposition provides the level set of a term Xα, α ∈ L \
{(0, . . . , 0)}, for any choice s1, . . . , sm of the levels of the factors.

Proposition 1. On the full factorial design D, the simple term X
αj
j takes

values in Ωtj , where tj = sj/ gcd(αj, sj). The interaction term Xα, α ∈
L \ {(0, . . . , 0)}, takes values in Ωtα where tα = lcm(t1, . . . , tm) and ti (i =
1, . . . ,m) are determined as before.

Proof. It follows from the properties of the arithmetic in Zs.

We observe that for a symmetric sm design with s prime number, t = s
for all α ∈ L \ {(0, . . . , 0)}.

The set of monomials {Xα : α ∈ L} is an orthonormal basis of all the
complex functions defined over D.

Definition 1. A fraction F is a multiset (F∗, R) whose underlying set of
elements F∗ is contained in D and R is the multiplicity function R : F∗ → N
that for each element in F∗ gives the number of times it belongs to the
multiset F . We call R counting function.

The underlying set of elements F∗, referred to as the support of F∗, is the
subset of D that contains all the elements of D that appear in F at least once.
We denote the number of elements of a fraction F by n, with n =

∑
ζ∈F∗

R(ζ).
We use the basis {Xα : α ∈ L} to represent the counting function of a

fraction.

Definition 2. The counting function R of a fraction F is a complex poly-
nomial defined over D so that for each ζ ∈ D, R(ζ) equals the number
of appearances of ζ in the fraction. A 0 − 1 valued counting function is
called indicator function of a single replicate fraction F . We denote by cα
the coefficients of the representation of R on D using the monomial basis
{Xα, α ∈ L}:

R(ζ) =
∑
α∈L

cαX
α(ζ), ζ ∈ D, cα ∈ C .
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Proposition 2. Let F be a fraction with counting function R.

1. The coefficients cα of R are given by:

cα =
1

#D
∑
ζ∈F

X [−α](ζ) =
1

#D

tα−1∑
h=0

nα,tα−h ωh (1)

where tα is determined by Xα according to Proposition 1 and nα,h is
the number of the occurrences of ωh in {Xα(ζ) : ζ ∈ F}.
In particular c0 = n/#D.

2. If F is a single replicate fraction, the coefficients cα satisfy the following
relationships:

cα =
∑
β∈L

cβ c[α−β] (2)

for each α ∈ L.

Proof. 1. We have

cα =
1

#D
∑
ζ∈F

X [−α](ζ) =
1

#D

tα−1∑
h=0

n[−α],h ωh =
1

#D

tα−1∑
h=0

nα,tα−h ωh

where the first equality is proved in Pistone and Rogantin (2008), the
second equality is proved in Fontana and Pistone (2013), and the last
one derives from properties of the roots of the unity.

2. See Pistone and Rogantin (2008).

The coefficients cα encode many interesting properties of the fraction F
as orthogonality among factors and interactions, regularity, and aberration,
see Pistone and Rogantin (2008).

3. Convolution formula with counts

It is well known that the simple and interaction terms are dependent on
each other. The proposition below gives such relationships in terms of the
level counts of all terms on a fraction F .
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Proposition 3. Let F be a single replicate fraction of a symmetric sm de-
signs D, with s prime number. The counts nα, nα = (nα,0, . . . , nα,s−1), are
related according to

s−1∑
k=0

(
#D nα,k −

∑
β∈L

s−1∑
i=0

nβ,i n[α−β],[k−i]

)
ωk = 0 (3)

for each α ∈ L. For convenience we define n0,k = 0 for k = 1, . . . , s− 1

Proof. From Equation (2) we have

c[s−α] =
∑
β∈L

c[s−β] c[β−α] .

Substituting the coefficients c[s−α] expressed in terms of the level counts
(nα,0, . . . , nα,s−1), as in Equation (1), we have:

s−1∑
k=0

nα,k ωk =
1

#D
∑
β∈L

s−1∑
i=0

nβ,i ωi

s−1∑
j=0

n[α−β],j ωj .

Taking k = i+ j, the thesis follows.

Corollary 4. We denote by rα,k the coefficients of ωk in Equation (3):

rα,k = #D nα,k −
∑
β∈L

s−1∑
i=0

nβ,i n[α−β],[k−i] .

If s is prime, for each α, Proposition 3 gives s−1 relationships among counts:

rα,0 = rα,1 = · · · = rα,s−1 .

Proof. If s is prime, a polynomial
∑s−1

k=0 rkωk is zero if and only if r0 = r1 =
· · · = rs−1.

We observe that previous relationships are not independent both because
of fraction properties and complex numbers properties; for instance:

C1
∑t−1

k=0 nα,k = n, for each α;

C2 n(0,...,0),0 = n and n(0,...,0),k = 0, for k = 1, . . . , t− 1;
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C3 n(a1,a2,...,am),k = n([s1−a1],[s2−a2],...,[sm−am]),[st−k] for (a1, a2, . . . , am) ∈ {0, . . . , s1−
1} × {0, . . . , s2 − 1} × · · · × {0, . . . , sm − 1} and k ∈ {0, . . . , t− 1}.

C4 possible relationships coming from desired properties of the fraction (for
instance, the fact that a term is centered and/or some terms are mu-
tually orthogonal, see Proposition 3 of Pistone and Rogantin (2008)).

In this way the number of variables involved in the problem is reduced
and the actual computation of all admissible patterns of a fraction can be
simplified, as shown in the following examples.

We consider orthogonal arrays of strength 2, i.e., with balanced simple
and second order interactions.

• Fractions of a 33 design with 9 runs.

The fractions have 9 runs. For k = 0, 1, 2, and a, b, c = 1, 2, we have:

♦
∑2

k=0 n(a,b,c),k = 9 ,

♦ n(0,0,0),0 = 9 , n(0,0,0),1 = n(0,0,0),2 = 0 ,

♦ n(2,[3−a],[3−b]),[3−k] = n(1,a,b),k,

♦ n(a,0,0),k = n(0,a,0),k = n(0,0,a),k = 3 , n(a,b,0),k = n(a,0,b),k =
n(0,a,b),k = 3

The relationships of Corollary 4, computed with CoCoA (see Abbott
et al. (2015)), are:

n2
(1,1,1),0 − n2

(1,1,1),1 − 2n(1,1,1),0n(1,1,1),2 + 2n(1,1,1),1n(1,1,1),2 − 9n(1,1,1),0 + 9n(1,1,1),1,

− 2n(1,1,1),0n(1,1,1),1 + n2
(1,1,1),1 + 2n(1,1,1),0n(1,1,1),2 − n2

(1,1,1),2 − 9n(1,1,1),1 + 9n(1,1,1),2

In order to easily handle these polynomials we compute the Gröbner
basis of corresponding ideal:

n(1,2,2),0 + n(1,2,2),1 + n(1,2,2),2 − 9, n(1,2,1),0 + n(1,2,1),1 + n(1,2,1),2 − 9,
n(1,1,2),0 + n(1,1,2),1 + n(1,1,2),2 − 9, n(1,1,1),0 + n(1,1,1),1 + n(1,1,1),2 − 9,
n2
(1,1,1),1 − n2

(1,1,1),2 − 9n(1,1,1),1 + 9n(1,1,1),2, n3
(1,1,1),2 − 12n2

(1,1,1),2 + 27n(1,1,1),2,

n(1,1,1),1n(1,1,1),2 + 1/2n2
(1,1,1),2 − 9/2n(1,1,1),2 .

The admissible configurations for n(1,1,1) are:

(3, 3, 3) , (9, 0, 0) , (0, 9, 0) , (0, 0, 9) .

The counts for the other α follow from the constraints C1-C4 listed
above.

8



• Fractions of a 53 design with 25 runs. In this case the computation is
heavier than in the previous example. The constraints C1-C4 give 32
polynomials of degree 2 in 80 variables (the counts). In this example the
explicit computation of all the admissible configurations is unfeasible,
nevertheless one can check whether a given set of counts is admissible
or not.

4. Generalized Word Length Pattern

As mentioned in the Introduction, the j-th element of the GWLP of a
fraction can be computed as the sum of the aberrations of the interaction
terms Xα of order j. In this section, we make use of the formula in Equation
(1) to express the aberrations as functions of the level counts, and we study
the mean aberration of a term over the level permutations. The analysis of
the mean aberration is valid for generic asymmetric multilevel designs, while
its use for the computation of the GWLP is limited to symmetric sm designs,
with s prime number.

Definition 3. Given an interaction Xα defined on a fraction F of the full
factorial design D, its aberration, or degree of aliasing, aα is given by the real
number

aα =
‖cα‖22
c20

where ‖x‖22 is square of the norm of the complex number x.
The GWLP A(F) = (A1(F), . . . , Am(F)) of a fraction F is defined as

Aj(F) =
∑
‖α‖0=j

aα j = 1, . . . ,m ,

where ‖α‖0 is the number of non-null elements of α, i.e., the order of inter-
action of Xα.

The following proposition allows us to compute the aberration aα without
using complex computation.

Proposition 5. Let Xα be a simple or interaction term with values in Ωt.
Its aberration aα is

aα =
1

n2

(
t−1∑
k=0

cos

(
2π

t
k

) t−1∑
i=0

nα,inα,[i−k]

)
. (4)
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Proof. This formula follows from Definition 3 using Equation (1).

We observe that, if t is odd, we get

aα =
1

n2

 t−1∑
i=0

n2
α,i + 2

(t−1)/2∑
k=1

cos

(
2π

t
k

) t−1∑
i=0

nα,inα,[i−k]

 .

Moreover, for t = 2, 3, 4 we obtain

n2aα =


n2
0 + n2

1 − 2n0n1 if t = 2

n2
0 + n2

1 + n2
2 − n0n2 − n1n0 − n2n1 if t = 3

n2
0 + n2

1 + n2
2 + n2

3 − 2n0n2 − 2n1n3 if t = 4

where the suffix α is omitted to simplify the notation.
It is well known that if a termXα is balanced on a fraction (i.e., nα,k = n/t

for all k = 1, . . . , t− 1), then aα = 0. Equation (4) gives an alternative proof
of this fact. However, two disadvantages in the definition of aα come out when
facing with qualitative factors: (a) the aberration aα is not independent on
the permutation of the levels; (b) the fact that aα = 0 does not guarantee
that term Xα, with t levels, is balanced if t is not prime.

To illustrate such problems, let us consider a term Xα with 6 levels and
counts nα = (u0+h, u1, u0, u1+h, u0, u1) for given u0, u1, h ∈ N. It is straight-
forward to check that aα = 0, even though Xα is not balanced. Moreover,
permuting the first two counts (u1, u0 + h, u0, u1 + h, u0, u1), Equation (1)
yields n2aα = ((u0−u1)+h)2, while permuting the first and the third counts,
(u0, u1, u0 +h, u1 +h, u0, u1), one obtains n2aα = 3h2. To show the relevance
of the position of the counts, such three configurations of counts are depicted
on the unit circle in Figure 1.

4.1. Mean aberration

As a consequence of the previous discussion, we define here a permutation-
invariant aberration of a term Xα as the mean of the aberration obtained
through all the possible permutations of the counts {n0, . . . , nt−1} of Xα.

Definition 4. Given a fraction F of D let Xα be a simple or interaction
term with t levels and let (nα,0, . . . , nα,t−1) be the number of occurrences of
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●
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u1 + h

u0 u1

●

●●

●

● ●

u0

u1u0 + h

u1 + h

u0 u1

Figure 1: Three permutations of counts for a 6-level term. Left: aα = 0; center: aα =
((u0 − u1) + h)2/n2; right: aα = 3h2/n2

its levels (0, 1, ..., t− 1) respectively. The mean aberration of Xα is the mean
of all the aα’s obtained by permuting (nα,0, . . . , nα,t−1):

aα =
1

t!

∑
π(nα,0,...,nα,t−1)

aα . (5)

where π(nα,0, . . . , nα,t−1) denotes all the permutations of the counts of Xα.

The subscript α in nα,i will be omitted in the following when unnecessary.

Proposition 6. The mean aberration is:

aα =
1

n2

(
t−1∑
i=0

n2
i −

2

t− 1

t−1∑
i=0

t−1∑
j=i+1

ninj

)
=

1

n2

1

t− 1

t−1∑
i=0

t−1∑
j=i

(ni − nj)2 . (6)

Proof. Take Equation (4) and first separate the cases k = 0 and k > 0
obtaining:

aα =
1

n2

t−1∑
i=0

n2
i +

1

n2

t−1∑
k=1

cos

(
2π

t
k

) t−1∑
i=0

nin[i−k] .

The first addendum is permutation-invariant and therefore it is enough to
rewrite the second addendum. For fixed k 6= 0, we get

1

t!

∑
π(n0,...,nt−1)

t−1∑
i=0

nin[i−k]
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where in the summations there are t(t!) addenda. For fixed i and j each
monomial ninj with i 6= j appears exactly t(t− 2)! times, so that

1

t!

∑
π(n0,...,nt−1)

t−1∑
i=0

nin[i−k] =
1

t− 1

t−1∑
i=0

t−1∑
j 6=i,j=1

ninj .

The first equality in Equation (6) is then proved, recalling that
∑t−1

k=1 cos
(
2π
k
t
)

=
−1.

The second equality is straightforward.

Remark 1. Notice that if the number of levels of Xα inD is a prime number,
the mean aberration of Xα on a fraction is zero if and only the corresponding
aberration is zero:

aα = 0⇔ aα = 0⇔ n0 = n1 = · · · = nt−1 .

It is an easy consequence of the properties of the roots of the unity. On the
other hand, if the number of levels is not a prime number, then aberration
and mean aberration have different behaviors. The mean aberration is zero
if and only if all the levels appear equally often:

aα = 0 ⇔ n0 = n1 = · · · = nt−1

see the right expression of Equation 6. Whereas this fact is not true for
aberration, as explained in examples of Figure 1, where t = 6 and the level
counts are not equal. In all the three cases

aα =
1

5n2
(9(u0 − u1)2 + 8h2)

while the three aberration are

aα = 0 , aα = ((u0 − u1) + h)2/n2 , aα = 3h2/n2 .

Another nice property of mean aberration is that it represents the vari-
ances of the counts {n0, . . . , nt−1} as shown in the following proposition.

Proposition 7. Given a fraction F of D let Xα be a simple or interaction
term with t levels and with level counts {n0, . . . , nt−1}. The mean aberration
aα of Xα is the variance σ2 of {n0, . . . , nt−1}.
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Proof. From Proposition 6 we get

aα =
1

n2

1

t− 1

t−1∑
i=0

t−1∑
j=i

(ni − nj)2 =
1

n2

1

t− 1

1

2

t−1∑
i=0

t−1∑
j=0

(ni − nj)2 =

=
1

n2

1

t− 1

1

2

(
2t

t−1∑
i=0

n2
i − 2n2

)
=

t2

n2(t− 1)

(∑t−1
i=0 n

2
i

t
− n2

t2

)
=

t2

n2(t− 1)
σ2

where σ2 =

∑t−1
i=0 n

2
i

t
− n2

t2
is the variance of {n0, . . . , nt−1}.

The variance is an index to describe the distribution of counts (n0, n1, . . . , nt−1).
Other indices can be used and, for instance, the authors in Fontana et al.
(2014c) show the connections between the aberration and Gini concentration
index in the two-factor multi-level case.

Remark 2 (Class of equivalence of aberrations). The value of aα does
not change for permutations of all the counts in conjugate positions, e.g., for
t = 5, permuting n1 with n4 and n2 with n3 simultaneously. It follows
from Equation (4). Moreover the same holds for each of the t − 1 circu-
lar permutations of levels, e.g., for t = 5, permuting (n0, n1, n2, n3, n4) in
(n1, n2, n3, n4, n0) or (n2, n3, n4, n0, n1) or (n3, n4, n0, n1, n2) or (n4, n0, n1, n2, n3).
Then, there are (t− 1)!/2 classes of permutations with different aα.

We explicitly show that the permutation of only two counts in con-
jugate position is not enough to preserve the same aberration. Consider
two terms Xα

1 and Xα
2 with t = 5 levels and counts (n0, n1, n2, n3, n4) and

(n0, n4, n2, n3, n1) respectively, where only n1 and n4 are permuted. Let a1α
and a2α be the two corresponding aberrations. The difference between a1α and
a2α is:

2

(
cos

2π

5
− cos

4π

5

)
(n1 − n4)(n2 − n3) .

4.2. GWLP

From now on we consider symmetric fractional factorial designs sm with
s prime, where each Xα takes values in Ωs.

Restricting to symmetric designs with a prime number of levels, GWLP
of a fraction F , AF = (A1(F), . . . , Am(F)), can be computed using only the
mean aberrations.
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Proposition 8. Let F be a fraction of a sm design, s prime number. Then
j-th element of the GWLP is:

Aj(F) =
∑
‖α‖0=j

aα j = 1, . . . ,m .

Proof. Let Xα be a term of order j with counts (n0, . . . , ns−1). Consider the
powers of Xα with α multi-exponents in L, namely Xα, X [2α], . . . , X [(s−1)α].
Observe that, as s is prime, the counts of such powers are all permutations
of (n0, . . . , ns−1). In more details, these counts have the following properties.

• n0 is always in the count associated to ω0 in all the powers X [hα],
h ∈ {1, . . . , s− 1}.

• Let ni, i 6= 0, be the count associated to ωi of Xα. ni is the count
associated to ω[hi] of X [hα] and to ω[ki] of X [kα], for h 6= k ∈ {1, . . . , s−
1}. Since s is prime, this means that, for each i, ni becomes the count
associated to a different root of the unity exactly once for all the powers.

Therefore, the sum of the aberrations of the s− 1 terms above rewrites as:

aα+a[2α]+· · ·+a[(s−1)α] =
∑

π(n0,...,ns−1)

1

n2

(
s−1∑
i=0

n2
s +

s−1∑
k=1

cos

(
2π

s
k

) s−1∑
i=0

nin[i−k]

)
,

where the permutations π range over the s− 1 permutations defined above.
As in the proof of Proposition 6, the first addendum is permutation-invariant
and therefore it suffices to rewrite the second addendum. Now notice that in
the sum ∑

π(n0,...,ns−1)

s−1∑
i=0

nin[i−k]

for all k 6= 1 each monomial ninj with i 6= j appears exactly once, so that

aα + a[2α] + · · ·+ a[(s−1)α] = (s− 1)aα .

This completes the proof.

Remark 3. We emphasize again that the advantage of using mean aberra-
tions in place of the classical aberration formula is the computational ease.
In fact, it is enough to compute the sm vectors of counts, one of each term
xα, α ∈ L, and then use the formula in Equation (6). Moreover, according
to the previous discussion, the sm mean aberrations are equal s by s and this
reduces further the computational cost.
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Remark 4. In the non prime case the GWLP is not the sum of the mean
aberrations, as shown in the following counter-example. Consider a trivial
example, namely a design with only one factor X with four levels and, on a
fraction with 6 runs n1 = (1, 2, 1, 2). Then X2 has 2 levels with n2 = (2, 4),
and X3 has 4 levels with n3 = (1, 2, 1, 2). We have:

a1 = a3 = 0, a2 = 1/9, a1 = a3 = 1/27, a2 = 1/9 .

Then A1 =
∑3

i=0 ai = 1/9, while the sum of the mean aberrations is 5/27.

5. Case studies

In this section we present some results concerning the use of mean aberra-
tions to distinguish among different fractions. We mainly focus on the most
interesting situation where fractions have the same GWLP. We use some
non-isomorphic orthogonal arrays extracted from the complete series of non-
isomorphic orthogonal arrays, Schoen et al. (2010). We consider examples of
orthogonal arrays of strength 2, so that A1(F) = A2(F) = 0 in all cases, and
the first interesting aberrations correspond to the terms of order 3.

5.1. 2-level orthogonal arrays, OA(16; 2; 210)

There are six non-isomorphic orthogonal arrays of strength 2 with ten
2-level factors and 16 runs. We denote these arrays by Fi, i = 1, . . . , 6. They
have the same GWLP:

(0, 0, 8, 18, 16, 8, 8, 5, 0, 0) .

For each orthogonal array we compute the 120 mean aberrations of order
3 and the 210 mean aberrations of order 4. The mean aberrations corre-
sponding to the interaction terms of order 3 can be classified as in Table
1.

Table 1 shows that the six orthogonal arrays can be clustered into three
groups: F1, {F2,F3}, and {F4,F5,F6}. The mean aberrations corresponding
to the interaction terms of order 4 can be classified as in Table 2. Here the
six fractions are now six different distributions. Moreover, one can see that
F1 contains a regular fraction with 8 defining words of order 3 and 18 words
of order 4. Finally, we remark that the two values of the GWLP A3(Fi) = 8
and A4(Fi) = 18 may be recovered from the mean aberrations via a simple
weighted sum.
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Table 1: Aberrations of the terms of order 3 for the OA(16; 2; 210) example.

aα F1 F2 F3 F4 F5 F6

0 112 100 100 88 88 88
0.25 0 16 16 32 32 32

1 8 4 4 0 0 0

Table 2: Aberrations of the terms of order 4 for the OA(16; 2; 210) example.

aα F1 F2 F3 F4 F5 F6

0 192 168 180 192 168 180
0.25 0 32 16 0 32 16

1 18 10 14 18 10 14

5.2. 3-level orthogonal arrays, OA(18; 2; 37)

There are three non-isomorphic orthogonal arrays of strength 2 with seven
3-level factors and 18 runs. We denote these arrays by F1, F2 and F3. They
have the same GWLP:

(0, 0, 22, 34.5, 27, 31, 6) .

For each orthogonal array we compute all the 280 values of the mean aberra-
tions corresponding to the interaction terms of order 3. They can be classified
as in Table 3. In this case the distribution of the mean aberrations corre-
sponding to the interaction terms of order 3 is sufficient to distinguish the
arrays.

5.3. 5-level orthogonal arrays, OA(25; 2; 53)

There are two non-isomorphic orthogonal arrays of strength 2 with three
5-level factors and 25 runs. We denote these arrays by F1 and F2. They
have the same GWLP:

(0, 0, 4) .

For each orthogonal array we compute the 64 values of the mean aberrations
corresponding to the interaction terms of order 3. They can be classified
as in Table 4. Also in this case the distribution of the mean aberrations
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Table 3: Aberrations of the terms of order 3 for the OA(18; 2; 37) example.

aα F1 F2 F3

0 134 198 102
0.083 96 0 144
0.25 48 80 32

1 2 2 2

corresponding to the interaction terms of order 3 is sufficient to distinguish
the arrays.

Table 4: Aberrations of the terms of order 3 for the OA(25; 2; 53) example.

aα F1 F2

0 12 60
0.04 16 0
0.06 32 0
0.36 4 0

1 0 4

6. Future directions

The theory presented in this paper and the examples discussed in the
previous section show the relevance of the notion of mean aberration to dis-
criminate between designs with the same GWLP, but several problems are
still open. We mention here only a couple of directions for future work. First,
it should be interesting to generalize the notion of mean aberration in order
to apply it in the general case, namely for factors with number of levels not
prime, and for asymmetric designs. Second, we deem important to explore
the connections between the geometric structure of the design points of the
fraction and its mean aberration. In fact, some results in this direction have
already been achieved, and they are presented in Fontana et al. (2014a),
Fontana et al. (2014b), and Fontana et al. (2015). In those papers, satu-
rated fractions and D-optimal saturated fractions are described in terms of
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the circuit basis, a combinatorial object computed from the model matrix.
Although aberration and GWLP are defined in a model-free framework, nev-
ertheless we think that the study of the geometry of the fractions will yield
new interesting results on aberration, and new insights in design selection.
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