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Abstract 

 

For the last decade the interest of microRNA as a possible early biomarker for lung-cancer has 

increased. Less attention has been focused in using microRNA as a biomarker to study the 

contribution of environmental exposure to air pollutants in non-smokers lung cancer patients.  

The aim of this thesis is the identification of environmental related microRNA pattern in collected 

tissues from a total of 64 formal- and non- smoker patients recruited in a three-year observational 

study. The identified patterns may be used as early predictors of lung cancer, as well as 

environmental-related footprints. Through microRNA-chip array analysis of lung tissue, it was studied 

the expression of 2549 microRNAs. A differential analysis between healthy and tumoral tissue 

showed the presence of 273 microRNA differentially regulated, 222 were down-regulated and 51 up-

regulated. Differential analysis was also applied to identify environmental pollution related 

microRNAs and finding microRNA deregulation in Passive Smoking at home (n=8), Passive smoking at 

work (n=1), Vehicle traffic at home (n=53), home distance from Etna Volcano (n=21), and home Type 

radon risk (n=19) exposures. 

A second biomarker, Benzo(a)Pyrene-DNA adducts levels in blood, was also studied to understand its 

correlation to the above-mentioned environmental factors. The specificity of this biomarker was 

minor than microRNA pattern biomarker, but it was strongly correlated to vehicle traffic pollution. 

The analysis of the microRNA environmental signatures indicates the contribution of environmental 

factors to the analysed lung cancers in the following decreasing rank: (a) vehicle traffic, (b) passive 

smoke, (c) radon, and (d) volcano ashes. These results provide evidence that microRNA analysis can 

be used to investigate the contribution of environmental factors in human lung cancer occurring in 

non-smokers 
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Introduction 

 

Lung cancer, also known as lung carcinoma, is a malignant lung tumour that represent worldwide 

an important public health issue. In Europe lung cancer have the third highest incidence after breast 

and colorectal cancer, and the leading cause of cancer dead in both sexes, according to the 

International Agency for Research on Cancer (IARC). In 2018 there were 388,000 deaths caused by 

lung cancer in Europe, with a higher incidence in Central and Eastern Europe where there is a 

relatively poor prognosis of the disease after diagnosis [1]. About 85% of cases are related to cigarette 

smoking. Symptoms can include cough, chest discomfort or pain, weight loss, and, less commonly, 

haemoptysis. Patients present metastatic disease with or without any clinical symptoms.  

 

Lung cancer screening programs in USA and in different European countries have formulated 

strategies that include primary prevention (health promotion and environmental protection), 

secondary prevention (screening and early detection), and an integrated healthcare services as main 

action elements against lung cancer. Early diagnosis and prevention are fundamental to reduce lung 

cancer mortality in general population. Due to the asymptomatic nature in the early stage of the 

illness most of the cases are diagnosed at advanced stages, when a poor prognosis occurs with a 5-

year relative survival estimated in 21.7% (2011 -2017 data) [2]. Some risk prediction models include 

biomarker information, such as germline mutations or protein-based biomarkers as independent risk 

predictors. One of the most used tools for lung cancer detection is Low-Dose Computed Tomography 

(LDCT). Most of National European lung cancer screening protocols use LDCT in high-risk population 

(smokers aged between 55 to 80 years old) for an early detection and the reduction of overall 

mortality. However, health technology assessment of LDCT for lung cancer screening in high-risk 

populations made by the National Institute for Health Research (NHR) have conclude that LDCT, with 

≤ 9.80 years of follow-up, was associated with a non-statistically significant decrease in lung cancer 

mortality. Even though LDCT remains the best screening strategy because cost-effectiveness-

screening programmes are predicted to be more effective than no screening, due to its result in more 

lung cancer diagnoses [3]. 
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It has been suggested that screening eligibility should be based on personal risk factors 

including sociodemographic situation, environmental exposures (second-hand smoke, asbestos and 

radon), smoking habits, clinical risk factors, age, sex, ethnicity, personal and family history of cancer, 

history of emphysema and chronic obstructive pulmonary disease (COPD), to minimize harms 

associated with screening as false-positive findings and unnecessary invasive diagnostic procedures 

[4]. Personalized lung cancer screening strategies can improve sensitivity and specificity of diagnosis. 

However, different risk prediction models need further validation to assess the accuracy of the 

models.  

 

Smoking habits increase lung cancer Relative Risk (RR). For example, in Japanese population 

smoking increased RRs (95%CIs) for lung cancer 3.59 (3.25-3.96), chronic obstructive pulmonary 

disease 3.57 (2.72-4.70), ischemic heart disease 2.21 (1.96-2.50) and stroke 1.40 (1.25-1.57) [5]. It is 

well known that tobacco smoking epidemic is a public health threat that kills 8 million of people 

around the word each year. WHO estimates that in 2020 more than 7 million deaths were caused by 

direct tobacco smoke exposure, and around 1.2 million caused by second-hand smoke. However, 

worldwide still exist a considerable percentage of non-smokers that develop lung cancer. Existing 

lung cancer risk models separate risk and mortality prediction for never, former, and current smokers.  

 

Risk factors for lung cancer in non-smokers include age, second-hand smoke, environmental 

exposures, genetic factors, underlying lung diseases, oncogenic viruses, and estrogen. Increasing in 

age is a common predisposition factor (average age at diagnosis 66 years old), although some 

tumours can be found in young patients with genetic predisposition [6]. Female sex predominance in 

lung cancer non-smoker patients is explained with the exposure to estrogens and other female 

hormones, as the expression of estrogen receptors are more common in non-smoker tumours 

compared to smokers’ [7]. When mentioning environmental exposures, is necessary to concentrate 

attention in indoor (as carbon-based cooking fumes), and outdoor (car traffic and industrial) air 

pollution, asbestos exposure (that leads a six-fold increase in RR), and Radon exposure (as in Uranium 

miners) [8].  
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Due to the necessity of a better early tumoral predictors, microRNA (miRNA) analysis has been 

proposed as a new biomarker for a variety of tumours for the last ten years. miRNAs are non-coding 

RNA molecules that have different regulatory roles in cell differentiation, proliferation, and survival. 

They are able to inhibit complementary mRNA targets, regulating translation through RNA 

degradation. miRNAs are found to be dysregulated in numerous diseases, and frequently altered 

owing to mutations or transcriptional changes of enzymes that regulate miRNA biogenesis [9]. Serum, 

blood and tissue-specific miRNAs have been previously proposed for lung cancer screening, but only 

few clinical studies have been published with low quality evidence to support its implementation in 

clinical practice. As far as we know until the writing of this thesis, any previous study focused on 

profiling miRNA expression in non- and former- smokers exposed to different environmental 

pollution.  

 

The hereby presented thesis aims to analyse the collected data from a total of 64 recruited 

patients of a three-year observational study. Specialized medical personal collected questionnaires 

from all patients, using google sheets with close answers. Forty-six patients were chosen to study 

miRNA expression in lung tissue (38 tumoral and 12 healthy) and in blood (41 patients) trough miRNA 

microarray analysis. Fifty-four blood samples were used to analysis the presence of Benzo [a]Pyrene-

DNA adducts. 52 tumoral lung tissues were analysed by Ion-Torrent to detect oncogene mutations. 

Questionaries from all 64 recruited individuals were utilized to segregate data for different criteria as 

explained in Figure 1. Questionnaires collected environmental exposure, and lifestyles variants. 

Thanks to this information it was possible to build a list of differential regulated tumour related 

miRNAs according to an environmental exposure stratification. 
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Figure 1 Patients enrolled, characteristics and sample sizes of analytical determinations carried out. 

 

It was hypothesised that using the presented list of differential regulated tumour-related 

miRNAs may increase the tumour early diagnosis in non- and former-smoker patients exposed to four 

different environmental pollutants: car traffic air pollution, second-hand smoke, volcanic ashes, and 

Radon. However, even if results seem promising, it is necessary to continue the proposed research 

in a widely number of patients and in animal models before use them in clinical application to have 

more accurate prediction results. Moreover, it seems to be necessary to standardise a range of 

expression for each proposed miRNA in future studies. 
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1. miRNAs in Lung Cancer  

 

1.1. miRNA pattern analysis as tumour predictor. Past, present, and 

future challenges. 

 

MiRNAs are evolutionary conserved non transcriptional single-stranded RNA molecules of 

about 19 to 25 nucleotides in length, that regulate posttranscriptional silencing of target genes. In 

1993 Victor Ambros and his group, from Harvard University, discovered the first miRNA (lin-4) in 

Caenorhabditis elegans which contains sequences complementary to a repeated sequence element 

in the 3′ untranslated regions (3’-UTR) of the lin-14 mRNA. They are present in all eukaryotes and are 

integrated in almost all known biological processes. In animals, mature miRNAs down-regulate 

protein synthesis in cytosol by pairing to complementary sequences in the 3’-UTRs of target 

messenger RNAs (mRNAs). In mammals, nucleotides 2 to 8 of the miRNA 5′-end constitute a “seed 

region” that binds imperfectly to a mRNA complementary recognition sequence at the 3′-UTR. This 

complementary pairing is mediated by a protein complex called miRNA-induced Silencing Complex 

(miRISC). The core protein of RISC is the Argonaute protein (Ago). Humans have approximately 2000 

sequenced miRNAs, which accounts around 1-5% of the total genome. A single miRNA can target 

hundreds of mRNAs and influence the expression of many genes often involved in a functional 

interacting pathway [10]. As multiple miRNAs can target the same mRNA, there is no linear 

correlation between miRNA and mRNA expression, so an entire miRNA profile is necessary to 

understand the dysregulations that play an important role in disease progression, and in 

consequence in miRNA potential use as diagnostic and prognostic tools. 

 

MiRNAs can be isolated from cells, tissues, and body fluids such as serum, plasma, tears, and 

urine. MiRNA expression can be detected in both tissue samples and cell-free biological fluids. 

Current methodologies used for detecting miRNAs include quantitative PCR (qPCR), in situ 

hybridization, microarrays and RNA sequencing. The hybridization-based arrays, which are mostly 

used for miRNA analysis in recruited patients mentioned in this thesis, have the advantage of allowing 

a large number of parallel measurements per sample at a relatively low cost. Due to limited 

specificity, findings from hybridization-based arrays are typically validated with a second method 
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such as qPCR or in situ hybridization [11], but this validation necessity increases the cost of the 

research.  

 

Preanalytical and analytical variables interfere with miRNA analysis. From tissue selection and 

sampling, going through sample proceeding and miRNA measurement to data analysis, we can find 

variables that affect results. For example, miRNA expression between tissues is different, so lung 

tissue and circulating miRNA expression in blood may differ. Moreover, when clinical studies are 

proposed the individual variability (i.e. sex, age, drug assumption, genetics, ethnicity, diet and 

lifestyle) play an important role in expression patterns. The finding of non-tumoral and tumoral 

miRNA predictive patterns that take in to account these variables are still necessary. 

 

The proposal of using miRNA profiling as a non-invasive biomarker begun in 2008, when 

circulating miRNAs were discovered. Circulating miRNAs have been observed in blood, encapsulated 

within exosomes, microvesicles, as part of lipoprotein–miRNA complexes and as free unbound 

miRNAs. Compared with lung biopsy, blood and bronchoalveolar lavage fluids are relatively easy and 

safe to obtain, and the proposal to use these tissues for miRNA expression pattern analysis have been 

previously suggested for lung cancer diagnosis [12]. miRNAs are stable in circulation and storage, 

resistant to RNAses, show disease-specific expression, and reflect microenvironmental and cellular 

changes prior to and throughout diseases [13]. However, lack of standardized protocols and a 

consensus on the most appropriate endogenous control to use to normalize relative miRNA 

expressions, led to difficulties in producing strong data in circulating miRNA as biomarkers. Moreover, 

it has being highlighted different inconsistencies across circulating miRNA studies [14], advising 

caution in front of enthusiastic proposals of using specific blood and other fluids circulating miRNAs 

analysis in diagnostics.  

Despite of the indicated limits of miRNA for diagnostics, prognosis, and treatments, the first 

miRNA-based patent was published in Europe in 2008 (about miRNA sequencing). In 2010, prognosis 

and treatment use of miRNAs were patented in 2010; patent N° US 7709616 B2 of May 4, 2010, 

describes a list of 760,616 like polynucleotides that were associated with prostate and lung cancer. 

The polynucleotides are human miRNAs and miRNA-precursors. Moreover, the patent includes 

methods and compositions that can be used for diagnosis, prognosis, and treatment of those medical 
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conditions. Today there are about 4,000 miRNA registered patents in USA database and about 2,000 

in the European database, of which about 1,500 are related to cancer applications. The 

biopharmaceutical development of miRNA-based drugs is strongly financed, industrial research is 

focused on the understanding of pharmacokinetics and pharmacodynamics (absorption, distribution, 

metabolism, and excretion) mechanisms of the proposed miRNA-based drugs, as well as efficient 

delivery systems [15].  

 

A kind of miRNAs related directly with oncogenes, called OncomiRs, are of particular interest. 

OncomiRs were described for the first time in 2006 by Esquela-Kerscher A. and Slack F. as “microRNA 

genes that function as both tumour suppressors and oncogenes” because “about 50% of annotated 

human miRNAs are located in areas of the genome, known as fragile sites, that are associated with 

cancer” [16]. For example, it is widely known that let-7 family members (which are downregulated in 

lung cancer tissues) negatively regulate RAS oncogene which have a key function in cell proliferation, 

survival, and differentiation. It has been demonstrated that components of the miRNA-machinery are 

implicated in tumorigenesis. The expression of the endoribonuclease Dicer, the RNAse that cleaves 

pre-microRNA in miRNA maturation process, is downregulated in lung cancer [17]. This 

downregulation is correlated with shorter post-operative survival for the mature single strand miRNA. 

Today some examples of proposed OncomiRs are: miR-15, miR-16, miR-17, miR-19, miR-21, miR-155 

and miR569 as they are largely overexpressed in different types of tumours. On the other hand, let-

7 family is considered as an anti-OncomiR, as it is largely down-regulated in tumours. Some of the 

biological processes regulated by let-7 are metabolism (blocking glucose uptake) and the endothelial 

cell migration [18]. 

 

A recent metanalysis suggest that mature miRNAs miR-21 and the let-7 family members may 

be an important prognostic biomarker in non-small cell lung cancer (NSCLC) [19]. The oncogenic role 

of miR-21 differential regulation in patients with NSCLC have been reported in different studies. MiR-

21 is upregulated in NSCLC, alters the apoptotic mechanism, cellular growth, and proliferation 

pathways. On the other hand, it has been observed downregulation in let-7 family members in NSCLS. 

Let-7 family transfection reduces considerably cell proliferation rates as it hence as tumour 

suppressor [20]. Target genes of let-7 include c-Myc, signal transducer and activator of transcription 

3 (STAT3), and Janus-activated kinase 2 (JAK2), all genes involved in cell proliferation and cell cycle. 



 

11 
 

In NSCLC, let-7 down-regulation was reported as significantly correlated with patient outcome, but 

other studies have not established a direct link between low expression of let-7 and prognostic of 

NSCLC patients [21, 22].  

 

1.2. Lung Cancer, miRNA regulation, smoking habits and 

environmental exposures. 
 

 

Lung Cancers are carcinomas (malignancies that arise from epithelial cells) that can be classified 

according to histological type (microscopic examination of the tissue) by size and the appearance of 

the malignant cells. For therapeutic purposes two broad classes are distinguished: Small-Cell Lung 

Cancer (SCLC) and Non-Small-Cell Lung Cancer (NSCLC). Research of miRNA regulation in Lung Cancer 

is focused on how regulation variates between SCLC which represent about 15% of cases, and NSCLC 

with about 85% of cases.  

As it is widely known, SCLC is the most aggressive and almost fatal between the two lung cancer 

types, despite a good initial response to chemo-radiation therapy. SCLC present metastasis at the 

moment of the diagnosis in 80% of the patients. SCLC cells have a high density of neurosecretory 

granules, which give the tumour a paraneoplastic syndrome association. SCLC is present in smokers 

most of the times. SCLC is the most aggressive lung cancer  

By the other side, the clinical behaviour of NSCLC is more variable and depends on histologic type. 

In NSCLC, about 40% of patients will present a metastatic disease outside of the chest at the time of 

diagnosis [23]. NSCLC is present in smokers as well as in former- and non-smokers. The tree main 

subtypes of NSCLC are:  

• adenocarcinoma, present in about 40% of NSCLC cases, associated with smokers, former-

smokers and second-hand smoking, it is usually originated from peripheral lung tissue,  

• squamous-cell carcinoma, present in about 30% of NSCLC cases, typically occur close to large 

airways, 

• large-cell carcinoma, present in about 10 to 15% of NSCLC cases, their cells present big 

cytoplasm, large nuclei, and conspicuous nucleoli. 

• pulmonary enteric adenocarcinoma, a rare subtype of adenocarcinoma [24]. 
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It has been hypothesized that lung tumour presents genetic, transcriptional and 

microenvironmental differences between smoker and non-smoker patients, but until today any study 

has analysed miRNA transcriptional alterations in lung tumour based only in non-smoker population 

considering different environmental exposures. For example, a bioinformatic analysis, that used 210 

non-smokers and 292 smokers data from Cancer Genome Atlas and Gene Expression Omnibus 

databases integrated with Department of Thoracic Surgery of Zhongshan Hospital-Fudan University’s 

biobank, suggests that exist a differential regulation in mRNA and miRNA expression as well as 

significant difference in somatic mutation frequencies in lung adenocarcinoma between smokers and 

non-smokers groups [25]. After qRT-PCR validation of bioinformatic findings using lung tissues from 

Fudan University’s biobank, researches found that NTS and NNAT mRNA, as well as miR-377-5p and 

miR-34a-3p were the most up-regulated factors in non-smoking patients with adenocarcinoma. By 

the other hand, TFF2 and REG4 mRNA were the most downregulated in smokers. However, even if 

the alteration of expression (up- or down- regulation) in the results of qRT-PCR was generally 

consistent with bioinformatics, fold change values in qRT-PCR were not as large as those calculated 

in the bioinformatics results. Strong limitations for this research were declared, as there was a lack 

of information regarding whether the patients were frequently exposed to second-hand smoke or 

kitchen fumes, as well as a lack of high-quality data about smoking habits (i.e., if they were smokers 

or former-smokers, smoking years, etc.). 

 

A strong evidence between smoking habits, miRNA regulation and lung cancer is available in 

literature, indicating data from in-vitro, in-vivo and clinical observations. Differences between miRNA 

profiles based on gender have being suggested in animal models of adenoma-free and adenoma 

bearing mice exposed to mainstream cigarette smoking [26]. A review by Momi N. et al. (2014) [27] 

has proposed a complex model to explain the miRNAs alteration related to tobacco smoking and lung 

cancer, where already cited miRNAs like let-7 family, miR-21, miR-30, miR-34 family, and miR-143, 

are some of the responsible of important gene expression and protein regulation processes in lung 

cancer. As explained in Figure 2, by Momi N. et al. (2014), the presence of smoke and nicotine/ 

Nicotine-derived nitrosamine ketone (NNK) in cellular environment plays a primary role in the 

disruption of miRNA-directed regulation of pathways related to cell cycle regulation, survival, 

angiogenesis, inflammation, and metastasis. 
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Figure 2 Disruption of miRNA-directed regulation in smokers according to Momi N. et al. (2014). 

 

By the other side, limited data is available to analyse the role of miRNA regulation in 

environmental risk factors for non-smokers lung cancer patients. Some literature is available for air 

pollution-induced miRNA alterations. Different response to air pollutants as particulate matter, 

ultrafine particles, nitrogen oxides, black carbon and carbon oxides (CO and CO2) may be related to 

different expression of miR-92a-3p, miR-484 and miR-186-5p, linking traffic-related exposure to 

disease risk [28]. Lung malignancies linked to asbestos exposure has been related to miR-126, miR-

205, and miR-222 [29]. Further to inducing alterations in the microRNA machinery, air pollution also 

induces genotoxic alterations including formation of DNA adducts, DNA damage and mutations. 
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Differential regulation of microRNA machinery in lung tissue after Radon (Rn) exposure has been 

demonstrated in-vitro studies using human bronchial epithelial cells (HBE), and in-vivo using rat 

tissues [30]. It has been observed a downregulation for let-7 family (let-7b-3p and let-7a-2-3p) that 

alters K-RAS oncogene pathway, therefore altering cell signalling, intracellular metabolism, reactive 

oxygen species (ROS) production, and reduced mitochondrial activity. Let-7 family and K-RAS 

correlation to lung cancer has been previously proposed as the inhibition of tumour growth may 

occur via suppression of K-RAS expression by let-7a transfection [31, 32]. 

 

The research proposed in this thesis aims to clarify only in part some questions about the 

correlation between miRNA regulation, environmental pollution, and individual variables. As 

explained before, this kind of correlation variates among studies when analysing only tumour and 

healthy tissues, and tumoral tissues from smokers and no-smokers. The collected data from patients 

(as previously explained in Figure 1) allowed us to cluster miRNA profiles according to: 

1. Lifestyle: non-smokers and former smokers 

2. Environmental factors: exposure to vehicle traffic, Etna Volcano, second-hand smoke, 

Radon. 

3. Individual variables: lung tissue mutations in oncogenes, 3-years-survival. 

Neither epigenetic nor genetic alteration, when used alone, are accurately predict the lung 

cancer risk in exposed subjects. Indeed, the adverse effects of mutations can be silenced by a 

functional microRNA machinery and the alteration of the miRNA machinery is devoid of remarkable 

consequences in absence of genotoxic damage. This research integrates genomic and postgenomic 

analyses to shed light on the differential contribution of environmental factors to lung carcinogenesis. 

 

As mentioned before, this issue has been explored in a peculiar environmental situation 

characterized by the presence of an active volcano (Etna) near to the analysed population (Catania, 

Italy). In fact, volcanic dust from Etna has being related to a higher risk for pleural mesothelioma and 

other non-malignant respiratory diseases [33], to a possible pathogenic role in the epidemiology of 

amyotrophic lateral sclerosis [34], and to neurodegenerative diseases [35], but not to lung cancer. 

Etna’s volcanic dust is also a vector of atmospheric pollutants as polycyclic aromatic hydrocarbons 

(PAHs) and particulate mercury [36]. 
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1.3. BaP-DNA adducts as biomarker 
 

BaP-DNA adducts are covalent modifications of the DNA. This is the result from exposure to specific 

carcinogens, so the level of adducts in cells can serve as a biomarker for a significant [37]. It has been 

observed that DNA adducts tend to be higher among subjects heavily exposed to air pollution [38] as 

vehicle traffic. BaP is a well-studied pro-carcinogen, and its adducts directly alter regulation of 

transcription of tumor suppressors or oncogenes. It is well known that Cytochrome P4501A1 plays a 

central role in the activation step of BaP, therefore the formation of BaP-DNA adducts [39]. The 

structure of adducts is well known [40] (Figure 3). Because DNA adduct levels in tumor tissue and in 

blood lymphocytes have been associated with lung cancer, it has been proposed as potential 

biomarker of risk for lung cancer [37]. 

 

Figure 3 BENZO[A]PYRENE DIOL EPOXIDE ADDUCT OF DA IN DUPLEX DNA 3D structure, ENSEMBL entry 1DXA, available at 
https://www.rcsb.org/structure/1dxa.  
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2. Methods 

 

Most of hereby explained methods can be found in both articles already published [41, 42] of this 

study. The author of this thesis was primarily involved in Bioinformatic analysis of the experimental 

results. A more detailed explication of bioinformatic analysis excluded from published articles is 

exposed below.  

2.1. Patient’s recruitment, questionnaires, and environmental 

exposure evaluation  
 

The patient's recruitment was carried out in four hospitals of Catania (University Hospital "G. 

Rodolico - San Marco”, “Garibaldi-Nesima” Hospital, “Cannizzaro” Hospital, “Morgagni” Clinic) and 

“San Vincenzo” Hospital of Taormina (Messina province). The study protocol was per-formed 

according to the Declaration of Helsinki and approved by the Ethic Committee Catania 1 (n. 11778 

released on March 17th, 2015), and Ethic Committee Catania 2 (346/C.E. released on May 28th, 2015), 

respectively.  

The criteria used for patient enrolment were to be over 18 years of age, have lung cancer for 

which surgery treatment has been indicated, have been non-smokers or former smokers for at least 

5 years, have signed the written informed consent. No restriction was made regarding the sex of 

patients or morphology of the reported neoplastic lesions. Both the neoplastic and healthy tissue 

samples were taken from the same patient and, the tissue samples were obtained directly from the 

pathological anatomies of the hospitals involved in the project. Instead, the blood samples were 

collected by the thoracic surgery units of the hospitals. The interviews were carried out directly in 

the thoracic surgery wards by the cancer registry doctors involved in the study. A total of sixty-four 

patients were enrolled.  

Data was collected by trained personnel using a semi-structured questionnaire to obtain 

information on sociodemographic, lifestyles data including smoke history, nutrition, home 

characteristic and its location (for Radon and urban traffic pollution exposure evaluation) (Figure 1). 

Data from the 64 questionnaires are presented codified by number in Table S1. Patients average age 

is 69.02 years old (min = 43, max = 84), females are 34.4%, and 20.3% of patients died within three 

years after the biopsy. A total of 15 subjects had never smoked, 20 were former smokers for more 
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than 20 years, 13 from 11 to 19 years, and 9 from 10 to 5 years, smoking habits data was missed for 

14 patients. The presence of mutation in oncogenes AKT1, ALK, BRAF, DDR2, EGFR, ERBB2, ERBB4, 

FBXW7, FGFR3, KRAS, MAP2K1, MET, NOTCH1, PIK3CA, PTEN, SMAD4, STK11, TP53 for 52 out of 64 

lung biopsies are also reported. As shown in Figure 4, all patients lived near Etna Volcano (average = 

56 Km, min = 13 Km, max =152 Km). 

 

 

Figure 4 Sicilian Municipalities of residence of patients in this study. Detailed data for each individual can be found in questionary data. 

Measurement of environmental exposure to vehicle traffic, radon, and volcano ashes were 

not available. However, environmental exposure was estimated and classified according to 

information given by patients in the questionnaires. For vehicle traffic, patients choose if their home 

were surrounded by intense, moderated, low and none traffic. For Radon exposure, patients declared 

what type of house they live in; ground and first floor departments as well as rural houses and villas 

were categorized as high-risk condition. For volcano exposure, it was calculated median distance of 

patient’s houses from Etna, therefore patients were categorized by high and low exposure as under 

and over the median (≤60 Km and >60 Km). 
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2.2. Lung biopsy  
 

Lung biopsy specimens (n=64) were collected at the onset of disease from patients who were 

diagnosed with lung cancer between 2015 and 2018, and referred to the Catania, Messina, Enna 

Cancer Registry, Italy. The study was approved by ethics committee, informed consent was obtained 

by “G. Rodolico -San Marco” University Hospital. All patients were classified as cases according to the 

2021 ICD-10-CM Diagnosis Code C34.90. MicroRNA were comparatively evaluated in cancer and 

surrounding normal tissue as identified by histopathological analysis. 

 

2.3. DNA Extraction 
 

Genomic DNA (gDNA) was extracted from 25 mg of fresh frozen lung biopsy DNA using the 

DNeasy ® Blood & Tissue kit (Qiagen, Milan, Italy), as described by the manufacturer’s protocol. The 

purification of gDNA was automated on the QIAcube ® instrument (Qiagen, Milan, Italy). The gDNA 

quality and quantity were assessed with a NanoDrop® 1000 spectrometer and with a Qubit® 3.0 

Fluorometer using a dsDNA HS Assay Kit (Thermo Fisher Scientific, Carlsbad, CA, USA). 

 

2.4. Somatic Mutation Identification 
 

The mutational status of the oncogenes associated with lung cancer was analysed by sequencing 

using the Colon and Lung Cancer Research Panel v.2 (Thermo Fisher Scientific, Carlsbad, CA, USA), 

which screens 92 amplicons in hotspots and target regions of these genes. For each sample, 15 ng of 

gDNA was amplified using the Ion AmpliSeq™ Library Kit 2.0 (Thermo Fisher Scientific, Carlsbad, CA, 

USA) according to the protocol for gDNA isolated from fresh frozen samples. 

The quality control of the libraries was assessed by TapeStation® 2200 using the High Sensitivity 

D1000 assay® (Agilent Technologies, Santa Clara, CA, USA) and with a Qubit® 2.0 Fluorometer using 

the dsDNA HS Assay Kit (Thermo Fisher Scientific, Carlsbad, CA, USA). Then, seven multiplexed 

libraries (100 pM) were amplified and enriched by OneTouch™ and the OneTouch™ ES, respectively 

using Ion PGM™ Hi-Q™ View OT2 Kit (Thermo Fisher Scientific, Carlsbad, CA, USA). Finally, the 

template was loaded onto a 316 v.2 chip and sequenced using the Ion PGM™ Hi-Q™ View Sequencing 
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Kit on the Ion PGM™ platform (Thermo Fisher Scientific, Carlsbad, CA, USA). The sequencing data 

were analysed using the Ion Torrent Software Suite with the plugin Torrent Variant Caller v.5.10.0.18 

(Thermo Fisher Scientific, Carlsbad, CA, USA) applying somatic, high stringency parameters. We 

considered gene variants with a variant allele frequency up to 1%, if covered at least 1000×. All gene 

variants were annotated by Ion Reporter™ Software v. 5.10. 

 

2.5. Total RNA Extraction 
 

The total RNA was extracted from lung biopsies and blood plasma using standardized protocols 

that combined phenol/guanidine-based lysis of samples and silica-membrane-based purification. 

Briefly, 3 mL of whole blood were collected in Ethylenediaminetetraacetic acid (EDTA) tubes and 

layered onto 3 mL Histopaque-1077® (Sigma-Aldrich Chemie Gmbh, Munich, Germany) through 

centrifugation at 400× g for 30 min. Plasma and lymphocytes were separately collected and stored 

at −20 °C at the Laboratory of Molecular Epidemiology (University of Catania) until analysis. Next, the 

total RNA from the plasma was extracted using the miRNeasy® Serum/Plasma Kit (Qiagen, Milan, 

Italy), as described by the manufacturer’s protocol. 

For lung biopsies, 30 mg of fresh starting material was first stabilized in 2.5 mL of RNAlater 

solution and stored at −20 °C at the Laboratory of Molecular Epidemiology (University of Catania) 

until analysis. Next, lung biopsies were disrupted using the TissueRuptor® II for 20–40 s and 

homogenized in 700 µL QIAzol® Lysis Reagent (Qiagen, Milan, Italy). The total RNA was purified from 

the homogenate using the miRNeasy® Mini Kit (Qiagen, Milan, Italy), as described by the 

manufacturer’s protocol. The purification of RNA was automated on the QIAcube® instrument 

(Qiagen, Milan, Italy). The quantification of RNA was assessed with a Qubit® 3.0 Fluorometer using 

the HS RNA Assay kit (Thermo Fisher Scientific, Carlsbad, CA, USA). 

 

2.6. miRNA extraction  
 

Total RNA was extracted from lung biopsies using a standardized protocol which combines 

phenol/guanidine-based lysis of samples and silica-membrane–based purification. In brief, 30 mg of 

starting material were first disrupted and homogenized in 700 µl QIAzol® Lysis Reagent, using the 
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TissueRuptor® II (Qiagen, Milan, Italy) for 20-40 s. Next, total RNA was purified from the homogenate 

using the miRNeasy® Mini Kit (Qiagen, Milan, Italy), as described by the manufacturer's protocol. 

Purification of RNA was automated on the QIAcube® instrument (Qiagen, Milan, Italy). 

 

2.7. miRNA-microarray analysis 
 

miRNA expression profiling was carried out by Agilent platform following the miRNA Microarray 

protocol v.3.1.1 (Agilent Technologies, Santa Clara, CA, USA). Briefly, 50 ng of total RNA, containing 

miRNAs and Spike-in controls underwent dephosphorylation and labelling step with Cyanine 3-pCp. 

The Cy3-labeled RNA was then purified using Micro Bio-Spin® P-6 Gel Column (Bio-Rad Laboratories, 

Inc., Hercules, CA, USA) and hybridized on Human miRNA microarray slide 8x60K (Agilent 

Technologies; including 2,549 miRNAs, miRBase 21.0) at 55°C for 20 hours. After washing, the slides 

were scanned by G2565CA scanner (Agilent Technologies) and the images were extracted by Feature 

Extraction software v.10 (Agilent Technologies). Microarray raw data was deposited in Gene 

Expression Omnibus (http://www.ncbi.nlm.nih. gov/geo/; GEO accession number GSE169587, ID: 

200169587).  

 

2.8. Benzo[a]Pyrene-DNA Adduct Levels in Human White Blood Cells 
 

Hydrolyzed BPDE adducts or Tetrol I-1 and Tetrol II-2 were analyzed in lymphocyte DNA through 

the modified high-performance liquid chromatography–fluorescence (HPLC−FL) method described 

by Alexandrov et al. [43], and Oliveri Conti et al. [44]. 

Briefly, lymphocytes were separated from whole blood samples using HISTOPAQUE® -1077 

(Sigma-Aldrich Chemie Gmbh, Munich, Germany). The lymphocyte DNA was extracted using the 

DNeasy® Blood and Tissue kit according to customer’s procedure (Qiagen, Milan, Italy). 

Hence, DNA was subjected to a procedure of hydrolysis and purification, and Tetrols were 

quantified according to the methodology of Oliveri Conti et al. [44]. HCl, also if hypergrade certified, 

can contain traces of fluorescent active contaminants that could interfere with the peak detection of 

the studied analytes and reduce analytical sensitivity of the method. 
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To avoid this important bias in the sample preparative phase, all the HCl impurities visibly reactive 

to the FL detector were deleted by chemical purification. To improve the sensibility of detection, 

Thermo Scientific™ PEEK Capillary Tubing (0.005 in.) was used. The extracted and purified DNA was 

dissolved in 1 mL of water and analysed in a Varian Pro Star System HPLC using a TOSOH (C18 RP 25 

× 0.46 cm, 5 µm) column with the following elution program: 15 min with 20% water/acetonitrile of 

equilibrium phase, 5 min with 20% water/acetonitrile and 60 min to acetonitrile (100%) (slop of 1) 

and, finally 10 min to 100% acetonitrile. 

An isocratic program (0.85 mL/min) was used and the FL detector (FLD) was programmed to 344 

nm (ext.) and 388 nm (em.) for the excitation and emission wavelengths, respectively. The sensitivity 

of the FLD was fixed to a high modality. The wavelength of UV−VIS detector (UV) was set at 238 nm, 

permitting the dual detection of both Tetrols (I-1 and II-2). 

The chromatographic system was calibrated using external certified pure standards of Tetrol I-1 

and Tetrol II-2 (purity 99.0%) (Chemical Carcinogen Reference Standard Repository, Kansas City, MO, 

USA). 

Recoveries were 94% and 82% for Tetrol I-1 and Tetrol II-2, respectively. The processing of 

reagent blank disclosed no trace of Tetrol I-1 and Tetrol II-2. The linearities (R2) obtained of FLD were 

0.9980 and 0.9990 for Tetrol I-1 and Tetrol II-2, respectively. For UV, the Rs2 were 0.9850 e 0.9803 

for Tetrol I-1 and Tetrol II-2, respectively. MDL were 2.0 pg/mL and 3.1 pg/mL for Tetrol I-1 and Tetrol 

II-2, respectively. The validated method permitted detecting Tetrol I-1 and Tetrol II-2 in a minimum 

of 3µg of extracted DNA. 

 

2.9. Statistics and Bioinformatic analysis 
 

All Lung-tissue-miRNA raw data files from Agilent Technologies Microarray Scanner System 

G2505C were imported to GeneSpring® using miRNA analysis type, Technology 70156_v21_0, 

without baseline transformation. Protocol used was: Analysis type = Expression, Experiment type = 

Generic Single Color, Normalization algorithm = none, percentile target = 75, baseline transformation 

= none. Intensities of replicated spots on each array were averaged. 
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Microarrays’ raw data were deposited in Gene Expression Omnibus (http://www.ncbi.nlm.nih. 

gov/geo/; GEO accession number GSE169587, ID: 200169587). 

 

Given the explorative nature of this study and the wide variability between patients, 

normalization was not performed in data import step. Volcano Plot analysis for all miRNA entities 

between averaged tumoral and healthy tissue was run, without multiple test correction, FC ≥ 2 and 

p ≤ 0.05. A total of 273 miRNAs (including Agilent positive control hur detected because of the lack 

of normalization) were identified as possible cancer related markers (Lung Cancer Related miRNAs or 

LCRMs) and exported as a new entry list for further experiments. 

 

Quality Control of LCRMS as tumoral markers, was performed by 3D principal component analysis 

(PCA) scores. Hierarchical Clustering and Principal Component Analysis using miRNA-arrays data were 

also run in GeneSpring®. Protocol used for Clustering Algorithm: Hierarchical, Clustered By: 

Normalized intensity values, Clustered On: Entities, Similarity Measure: Euclidean, Linkage Rule: 

Wards. Protocol used for PCA Conditions (per sample), Mean Cantered: true, Scaled: true. 

 

Target detection based on different databases is one of GeneSpring®’s functions. After detecting 

the most representative LCRMs targeted genes, they were imported to run subsequently the Gene 

Ontology - Biological Proces (GO-BP) analysis. The simplest input to such analysis is a list of genes that 

is most differentially expressed or frequently mutated in a dataset. A typical analysis workflow 

consists of two steps: (1) a gene list is defined by filtering experimental data for genes with significant 

gene-level statistics, and (2) enrichment analysis is performed to determine processes and pathways 

over-represented in the gene list [45]. 

 

Most significative Gene Ontology (i.e. the top 10 genes with a highest KS prediction) was found 

using Bioconductor (https://www.bioconductor.org/) miRNAtap R Package [46, 47]. The entire code 

can be found at https://github.com/CoronelVargasG/RTSO-

GCVThesis/blob/main/Rtso_Predictions.R (last accession 16/07/2021). An example of the code used 

for hsa-let7a-5p gene targets and GO-BP prediction is shown in Figure 5. Before using the code library 

https://github.com/CoronelVargasG/RTSO-GCVThesis/blob/main/Rtso_Predictions.R
https://github.com/CoronelVargasG/RTSO-GCVThesis/blob/main/Rtso_Predictions.R
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installation and activation of packages miRBaseConverter, miRNAtap, miRNAtap.db, topGO, 

org.Hs.eg.db, and GOplot in RStudio console, must be execute.  

 

 

Figure 5 An example of the code used for prediction of the most affine gene targets and GO-BP prediction 

 

The Gene Ontology is a system of classification in which genes are assigned to a set of predefined 

bins depending on their functional characteristics. The ontology covers three domains: (a) “molecular 

function”, that are all molecular-level activities performed by gene products (b) “cellular component” 

that classify locations relative to cellular structures in which a gene product performs a function, and 

(c) “Biological Process”, the larger processes with broad and nailed functional terms accomplished by 

multiple molecular activities. GO-BP enrichment analysis is a bioinformatic tool largely used to 

understand the relationship between a set of genes and their biological function, creating a 

computational hypothetical model of larger processes, or “biological programs”, accomplished by 

multiple molecular activities that may be deregulated.  describes our knowledge of the biological 

domain with respect to three aspects 

 

Result of the top 10 GO data (2660 GO terms) for each LCRM can be found at 

https://github.com/CoronelVargasG/RTSO-

GCVThesis/blob/main/Top_10_miRNAs_ranked_GOdata.csv). 

After identifying and classifying the most significant GO terms for each LCRMs, Revigo tool 

(http://revigo.irb.hr/) [48] was used to create a large-similarity-semantic-based TreeMap. 
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MiRNAs related to five different environmental exposures, or Environmental Exposure miRNA 

Signal (EESs) were determined analysing only LCRMs list. Environmental exposures variables were 

inserted in GeneSpring for each patient using the questionnaires information according to (a) Passive 

smoking at home, (b) Passive smoking at work, (c) vehicle traffic at home, (d) distance in kilometres 

from etna volcano, and (e) Radon risk according to home type. Volcano Plot analysis (FC ≥ 2, p-value 

≤ 0.05, without multiple testing correction) on averaged interpretations were run for each exposure, 

obtaining the down and up regulated significative miRNAs used as EESs. 

 

The Total gene signal in Agilent Arrays can be normalized between arrays, and the Agilent 

recommendation is either not to normalize or to normalize to the 75th percentile signal intensity 

[49]. There is also evidence that it might be preferable to use non-corrected signals for the processing 

of microRNA data, rather than background-corrected signals. However, it was chosen to use an 

Agilent Technologies miRNA profiling assay that is based on a highly efficient labelling method that 

has little sequence bias. Furthermore, the probe design strategy used with Agilent arrays provides 

both sequence and size discrimination for mature miRNAs, increasing confidence in LCRMs and EESs 

results. In fact, in quality control step using Principal Component Analysis and Hierarchical Clustering 

it is clear the clustering of healthy tissues despite of a large heterogeneity of tissues. 

 

To understand the relationship between environmental exposure signatures and their biological 

significance in lung cancer tissues, a target detection for each environmental exposure signature was 

done using TargetScan prediction database. This database was chosen as it is the most updated 

database, and the number of target genes are reported for different cut-offs. The most interesting 

genes targeted by EESs that are potentially related with each environmental exposure are below 

discussed. 

 

After target detection, a prediction model was build using Neural Network class prediction 

algorithm (GeneSpring 14.9) [50] for each Environmental Exposure signature to test the overall 

accuracy prediction (range from 0 to 1) for chosen miRNAs. EESs prediction overall accuracy were 

compared with the whole chip array miRNAs’(n=2,570) accuracy. 
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Bivariate Correlations and regression variable plots between Benzo[a]Pyrene-DNA adducts and 

the different environmental exposures were calculated with IBM SPSS statistics (Version 22). 

Correlations were used according to the nature of the data: Pearson for parametric, or Spearman’s 

Rho for non-parametric. 
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3. Results 
 

3.1. Lung tissues analysed with miRNA-array. Patients’ information 
 

Available tumoral tissues were higher (from 38 patients) than healthy (from 12 patients). Detailed 

data from patients which biopsies were miRNA-array analysed is presented in Table 1. Biopsies of 

both tumoral and healthy tissues were available from only 4 patients (05, 06, 07, and 08). For the 

other 42 biopsies there were used only tumoral or only healthy tissues for each patient. A total of 46 

patients were analysed, of which 34.8% are females, with an average of 64.31 years old, and 65.2 

were males with an average of 70.17 years old. Average age of patients for all analysed miRNA-arrays 

is 68.13. When analysing exposure, we can see that 76.1 % were exposed to passive smoking at home 

or at work, 67.4% had a high-risk exposure to Radon, and 34.8% have a high exposure to vehicle 

traffic at home, the median distance from Etna volcano is 54.26 Km. The follow up reported that 

23.9% of patients died within 3 years after biopsy. 

Table 1 Detailed data of the patients from which tissues were extracted 

Patient 

code 

Tissue 

type 
Sex Age 

Passive 

smoking 

at home 

or at 

work 

Radon 

Risk  

Vehicle 

traffic 

exposure 

3 years 

survival 

Distance 

from 

Etna 

(Km) 

05 
healthy, 

tumoral 
Male 69 YES other low  yes 65 

06 
healthy, 

tumoral 
Male 67 NO high  low  no 114 

07 
healthy, 

tumoral 
Female 71 YES high  low  yes 93 

08 
healthy, 

tumoral 
Female 66 YES high  low  yes 73 

09 healthy Male 78 YES high  low  no 20 

11 healthy Male 70 NO high  high  NA NA 

12 healthy Female 78 YES high  low  yes 60 

13 healthy Male 65 YES high  low  no 93 

14 healthy Male 71 YES high  low  yes 100 

15 healthy Female 72 YES high  high  yes 99 

16 healthy Male 75 YES high  high  yes 18 

18 healthy Male 61 YES other low  yes 60 
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26 tumoral Male 69 YES other high  yes 93 

27 tumoral Male 58 YES high  high  yes 20 

30 tumoral Male 82 YES high  low  yes 13 

32 tumoral Female 67 YES other high  yes 98 

33 tumoral Male 50 NO high  low  yes 16 

34 tumoral Female 68 YES high  low  no 26 

35 tumoral Male 61 YES high  high  yes 20 

36 tumoral Male 54 YES NA high  NA 108 

37 tumoral Male 78 YES other high  yes 93 

38 tumoral Female 78 YES high  high  no 93 

39 tumoral Female 47 NO other high  yes 66 

40 tumoral Male 75 YES high  low  yes 22 

41 tumoral Male 69 YES high  low  yes NA 

42 tumoral Male 77 YES high  high  no 19 

43 tumoral Male 70 YES high  low  yes 79 

44 tumoral Male 76 YES high  low  yes 51 

45 tumoral Male 64 YES high  low  yes 16 

46 tumoral Female 80 NO NA low  no 21 

47 tumoral Female 43 NO high  low  no 26 

48 tumoral Female 60 YES other low  yes 77 

49 tumoral Male 67 YES high  low  no 15 

50 tumoral Male 78 NO high  low  yes 24 

52 tumoral Female 54 NO high  low  yes NA 

53 tumoral Female 54 YES other high  yes 26 

54 tumoral Female 65 YES other low  NA NA 

55 tumoral Male 78 NO other low  no 26 

56 tumoral Male 67 YES high  low  yes 98 

57 tumoral Male 77 YES high  low  no 92 

58 tumoral Male 78 YES other low  yes 26 

59 tumoral Male 62 YES high  low  yes 13 

60 tumoral Female 53 NO other high  yes 100 

61 tumoral Female 73 NO high  high  yes 26 

63 tumoral Male 80 YES other low  yes 60 

64 tumoral Male 79 YES high  high  yes 21 

 

3.2. Lung Cancer Related miRNAs (LCRMs) identification 
 

The scatter plot analysis of miRNAs between average healthy and lung cancer tissues presents 

general trend toward down regulation in cancer tissue we can see a trend to downregulation (m = 
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0.86, R2= 0.9) as shown in Figure 6a. Volcano plot analysis between healthy and tumoral tissue 

highlighted a list of 273 miRNAs that were altered more than 2-fold and above the statistical 

significantly threshold (p-value < 0.05) as clearly demonstrated in Figure 6b. In this study the 273 

miRNAs mentioned are considered as a cancer footprint called Lung Cancer Related miRNAs (LCRMs). 

 

 

Figure 6 (a) Scatter plot analysis comparing miRNA expression (dots) according to their level of expression in healthy (vertical axis) vs 
cancer (horizontal axis) tissues of the examined patients. miRNA colour reflects the signal intensity (red high, yellow intermediate, blue 
low). The diagonal green lines indicate the 2-fold variation interval. The best-fit regression line is reported in black. Its slope towards the 
horizontal axis reflects the overall downregulation of miRNA expression in cancer as compared to healthy lung tissue. (b) Volcano plot 
analysis identifying miRNAs whose expression was altered more than 2-fold (horizontal axis) and above the statistical significance 
threshold (P<0.05) (vertical axis) in cancer vs healthy lung tissue. either downregulated (blue) or upregulated (red). 

 

All LCRMs can be found in Table 2. Of these miRNAs, 222 were down-regulated and 51 up-

regulated. This list includes well established oncogenic miRNAs such as an extensive downregulation 

of the highly conservate let-7 miRNA family (let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, let-7e-5p, let-

7f-5p, let-7g-5p, and let-7i-5p), established tumour-suppressors in lung and other cancers [51]. 
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Table 2 Lung Cancer Related miRNAs (LCRMs) The list of 270 miRNAs (3 positive control “hur-“ values were excluded) that resulted as 

statistically significative after Volcano T-Test between averaged signal of tumoral and healthy tissues.  

Systematic name p-value Regulation Fold Change mirbase accession 

hsa-let-7a-5p 0.003457483 down -9.93267 MIMAT0000062 

hsa-let-7b-5p 0.0071048727 down -4.1737056 MIMAT0000063 

hsa-let-7c-5p 0.0027343032 down -5.8710303 MIMAT0000064 

hsa-let-7d-5p 0.0026750325 down -16.202303 MIMAT0000065 

hsa-let-7e-5p 0.009982946 down -14.271941 MIMAT0000066 

hsa-let-7f-5p 0.004075876 down -14.1158905 MIMAT0000067 

hsa-let-7g-5p 0.0064250096 down -15.127661 MIMAT0000414 

hsa-let-7i-5p 0.021721233 down -5.3294306 MIMAT0000415 

hsa-miR-1-3p 1.7767643E-4 down -46.82256 MIMAT0000416 

hsa-miR-100-5p 0.0065184673 down -9.21915 MIMAT0000098 

hsa-miR-101-3p 0.0018394814 down -6.491789 MIMAT0000099 

hsa-miR-101-5p 0.03154675 down -3.348052 MIMAT0004513 

hsa-miR-103a-3p 0.038089182 down -4.3529544 MIMAT0000101 

hsa-miR-106b-3p 0.011158621 up 4.7460146 MIMAT0004672 

hsa-miR-107 0.022401135 down -5.6110463 MIMAT0000104 

hsa-miR-10a-5p 0.009016526 down -15.704841 MIMAT0000253 

hsa-miR-10b-5p 0.008520666 down -16.504122 MIMAT0000254 

hsa-miR-1227-5p 0.03029482 down -2.2108335 MIMAT0022941 

hsa-miR-1238-5p 0.023602227 up 4.8538966 MIMAT0022947 

hsa-miR-1247-5p 0.0067282193 down -3.2875102 MIMAT0005899 

hsa-miR-125a-5p 9.974076E-4 down -7.804573 MIMAT0000443 

hsa-miR-125b-5p 0.0015694721 down -7.678459 MIMAT0000423 

hsa-miR-126-3p 4.944838E-4 down -26.00859 MIMAT0000445 

hsa-miR-126-5p 2.4788603E-4 down -54.862705 MIMAT0000444 

hsa-miR-128-3p 0.04017438 down -6.1065207 MIMAT0000424 

hsa-miR-129-2-3p 0.038250394 down -5.874468 MIMAT0004605 

hsa-miR-1296-5p 0.032698315 up 3.9346223 MIMAT0005794 

hsa-miR-1306-3p 1.1124488E-4 up 15.246751 MIMAT0005950 

hsa-miR-130a-3p 0.0039922795 down -8.522441 MIMAT0000425 

hsa-miR-133a-3p 1.1501503E-5 down -28.701208 MIMAT0000427 

hsa-miR-133a-5p 0.0030193352 down -5.6037283 MIMAT0026478 

hsa-miR-133b 1.3488866E-4 down -36.514313 MIMAT0000770 

hsa-miR-135a-5p 9.1589776E-5 down -27.485888 MIMAT0000428 

hsa-miR-138-5p 0.004896176 down -9.4946995 MIMAT0000430 

hsa-miR-139-3p 0.0018985552 down -3.78872 MIMAT0004552 

hsa-miR-139-5p 2.1379872E-4 down -17.9196 MIMAT0000250 

hsa-miR-140-3p 0.0012392761 down -4.2493033 MIMAT0004597 
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hsa-miR-140-5p 0.010334321 down -15.18544 MIMAT0000431 

hsa-miR-142-3p 0.021352166 down -6.275377 MIMAT0000434 

hsa-miR-142-5p 0.018636087 down -3.2859912 MIMAT0000433 

hsa-miR-143-3p 0.0029421495 down -13.065256 MIMAT0000435 

hsa-miR-143-5p 0.04291127 down -3.356232 MIMAT0004599 

hsa-miR-144-3p 5.3506505E-5 down -14.967624 MIMAT0000436 

hsa-miR-144-5p 1.0900437E-4 down -44.189434 MIMAT0004600 

hsa-miR-145-3p 0.0032639632 down -12.659062 MIMAT0004601 

hsa-miR-145-5p 2.9446861E-5 down -8.330996 MIMAT0000437 

hsa-miR-146a-5p 0.04517611 down -4.9618096 MIMAT0000449 

hsa-miR-146b-5p 0.0060929195 down -10.381786 MIMAT0002809 

hsa-miR-147b 0.03965416 up 2.4136007 MIMAT0004928 

hsa-miR-150-5p 0.0018827947 down -14.296803 MIMAT0000451 

hsa-miR-151a-5p 0.026424088 down -5.6179104 MIMAT0004697 

hsa-miR-151b 0.01971659 down -5.525759 MIMAT0010214 

hsa-miR-152-3p 0.010101993 down -6.5972843 MIMAT0000438 

hsa-miR-1537-3p 0.010019664 down -5.1548657 MIMAT0007399 

hsa-miR-15a-5p 0.019115578 down -8.025987 MIMAT0000068 

hsa-miR-15b-3p 0.037224907 down -4.462699 MIMAT0004586 

hsa-miR-15b-5p 0.008560004 down -7.314562 MIMAT0000417 

hsa-miR-16-2-3p 0.034894716 down -4.267132 MIMAT0004518 

hsa-miR-16-5p 0.010695414 down -12.1582985 MIMAT0000069 

hsa-miR-181a-2-3p 0.017184366 down -5.96992 MIMAT0004558 

hsa-miR-181a-3p 0.04945864 down -4.950125 MIMAT0000270 

hsa-miR-182-3p 0.010721036 up 4.75117 MIMAT0000260 

hsa-miR-183-3p 0.007660201 up 6.2313943 MIMAT0004560 

hsa-miR-184 7.194409E-4 down -13.022917 MIMAT0000454 

hsa-miR-185-5p 0.023636332 down -4.4132204 MIMAT0000455 

hsa-miR-186-5p 0.043665413 down -3.685546 MIMAT0000456 

hsa-miR-187-5p 6.02259E-4 down -12.302708 MIMAT0004561 

hsa-miR-18a-5p 0.044035003 down -6.4913006 MIMAT0000072 

hsa-miR-18b-5p 0.04321834 down -4.911199 MIMAT0001412 

hsa-miR-190a-5p 0.0012564617 down -12.553396 MIMAT0000458 

hsa-miR-191-5p 0.012516888 down -4.595004 MIMAT0000440 

hsa-miR-1913 0.014741061 up 4.4493365 MIMAT0007888 

hsa-miR-193a-5p 0.039410394 down -2.3893714 MIMAT0004614 

hsa-miR-195-5p 0.0022041805 down -22.629496 MIMAT0000461 

hsa-miR-199a-3p 0.008664297 down -9.2620735 MIMAT0000232 

hsa-miR-199a-5p 0.013618913 down -4.5943766 MIMAT0000231 

hsa-miR-199b-5p 0.007679599 down -17.657621 MIMAT0000263 
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hsa-miR-203a-3p 0.010997548 down -13.447799 MIMAT0000264 

hsa-miR-204-5p 0.0083169 down -12.60669 MIMAT0000265 

hsa-miR-205-3p 0.020174691 up 8.715979 MIMAT0009197 

hsa-miR-20a-5p 0.04280471 down -6.1101165 MIMAT0000075 

hsa-miR-20b-5p 0.027864084 down -7.881743 MIMAT0001413 

hsa-miR-21-3p 0.008667924 up 2.9119663 MIMAT0004494 

hsa-miR-214-3p 0.023492103 down -3.504781 MIMAT0000271 

hsa-miR-214-5p 0.021508496 down -6.83216 MIMAT0004564 

hsa-miR-218-5p 4.6615294E-4 down -45.84953 MIMAT0000275 

hsa-miR-22-5p 0.004706939 down -12.123566 MIMAT0004495 

hsa-miR-221-3p 0.030677848 down -4.129919 MIMAT0000278 

hsa-miR-221-5p 0.005295244 down -12.992223 MIMAT0004568 

hsa-miR-222-3p 0.049154088 down -2.1237488 MIMAT0000279 

hsa-miR-223-3p 0.00603705 down -12.803483 MIMAT0000280 

hsa-miR-223-5p 0.013339674 down -6.1945033 MIMAT0004570 

hsa-miR-224-3p 0.04533735 down -5.148501 MIMAT0009198 

hsa-miR-2277-3p 0.010260569 up 6.1839 MIMAT0011777 

hsa-miR-23a-3p 0.0102553135 down -5.1024346 MIMAT0000078 

hsa-miR-23a-5p 0.033158194 down -4.635053 MIMAT0004496 

hsa-miR-23b-3p 0.015326893 down -5.947073 MIMAT0000418 

hsa-miR-24-3p 0.037936654 down -2.909435 MIMAT0000080 

hsa-miR-26a-1-3p 0.01689716 down -3.010686 MIMAT0004499 

hsa-miR-26a-5p 0.011874804 down -4.865339 MIMAT0000082 

hsa-miR-26b-3p 0.0139598325 down -5.665662 MIMAT0004500 

hsa-miR-26b-5p 0.00420298 down -24.594625 MIMAT0000083 

hsa-miR-27a-3p 0.04915082 down -3.2384896 MIMAT0000084 

hsa-miR-27a-5p 0.019851089 down -3.8878102 MIMAT0004501 

hsa-miR-27b-3p 0.030439751 down -4.8090467 MIMAT0000419 

hsa-miR-28-5p 0.025002686 down -6.595582 MIMAT0000085 

hsa-miR-2861 0.022837397 down -2.1317737 MIMAT0013802 

hsa-miR-29a-3p 0.03019676 down -3.2799473 MIMAT0000086 

hsa-miR-29a-5p 0.030590033 down -5.209106 MIMAT0004503 

hsa-miR-29b-1-5p 0.011967432 down -8.264298 MIMAT0004514 

hsa-miR-29b-2-5p 0.0150986435 down -5.095968 MIMAT0004515 

hsa-miR-29b-3p 0.027163703 down -4.8850327 MIMAT0000100 

hsa-miR-29c-3p 0.010836463 down -4.0718822 MIMAT0000681 

hsa-miR-29c-5p 0.021635728 down -5.5772324 MIMAT0004673 

hsa-miR-3065-3p 0.007735019 down -6.404753 MIMAT0015378 

hsa-miR-3065-5p 0.034041088 down -5.067239 MIMAT0015066 

hsa-miR-30a-3p 0.0025913727 down -13.062014 MIMAT0000088 
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hsa-miR-30a-5p 0.00171489 down -4.7035885 MIMAT0000087 

hsa-miR-30b-5p 0.0026990736 down -12.653434 MIMAT0000420 

hsa-miR-30c-2-3p 0.0075573986 down -5.009342 MIMAT0004550 

hsa-miR-30c-5p 0.008662366 down -9.249711 MIMAT0000244 

hsa-miR-30d-5p 0.003681377 down -3.0694556 MIMAT0000245 

hsa-miR-30e-3p 0.014569481 down -7.417907 MIMAT0000693 

hsa-miR-3149 0.01669215 up 6.3766117 MIMAT0015022 

hsa-miR-3188 0.03555318 down -2.7369933 MIMAT0015070 

hsa-miR-32-5p 0.00875309 down -9.987482 MIMAT0000090 

hsa-miR-324-3p 0.011736013 down -2.2862568 MIMAT0000762 

hsa-miR-326 0.003936705 down -7.7617455 MIMAT0000756 

hsa-miR-328-3p 0.047037996 down -3.3454077 MIMAT0000752 

hsa-miR-331-3p 0.018208742 down -3.8520381 MIMAT0000760 

hsa-miR-335-5p 0.003513045 down -16.721733 MIMAT0000765 

hsa-miR-338-3p 0.004935093 down -11.228805 MIMAT0000763 

hsa-miR-339-5p 0.029144458 down -3.6802807 MIMAT0000764 

hsa-miR-340-5p 0.01973299 down -6.4123063 MIMAT0004692 

hsa-miR-342-3p 0.0152998995 down -4.362609 MIMAT0000753 

hsa-miR-342-5p 0.0022582049 down -14.524604 MIMAT0004694 

hsa-miR-34a-3p 0.0061846743 down -10.137312 MIMAT0004557 

hsa-miR-34a-5p 0.033176474 down -3.9531028 MIMAT0000255 

hsa-miR-34b-5p 0.012189897 down -8.055832 MIMAT0000685 

hsa-miR-34c-5p 0.027579289 down -12.216356 MIMAT0000686 

hsa-miR-3607-3p 0.0064467057 down -6.376298 MIMAT0017985 

hsa-miR-361-3p 0.009842584 down -5.972705 MIMAT0004682 

hsa-miR-362-3p 0.0055012233 down -13.304245 MIMAT0004683 

hsa-miR-362-5p 0.046346925 down -3.9805145 MIMAT0000705 

hsa-miR-3620-5p 0.049587507 up 2.7487247 MIMAT0022967 

hsa-miR-363-3p 0.002120064 down -17.233507 MIMAT0000707 

hsa-miR-3659 8.8144276E-5 up 14.118807 MIMAT0018080 

hsa-miR-365a-3p 0.012557839 down -7.036109 MIMAT0000710 

hsa-miR-3660 0.021218026 up 5.925379 MIMAT0018081 

hsa-miR-3663-5p 0.0037759703 up 7.122243 MIMAT0018084 

hsa-miR-371b-5p 0.0028327415 down -3.1190054 MIMAT0019892 

hsa-miR-374a-5p 0.005773257 down -18.297781 MIMAT0000727 

hsa-miR-374b-5p 0.008157671 down -12.894991 MIMAT0004955 

hsa-miR-374c-5p 0.0031787313 down -11.641886 MIMAT0018443 

hsa-miR-424-5p 0.041307494 down -7.369182 MIMAT0001341 

hsa-miR-4252 0.006666235 up 6.59057 MIMAT0016886 

hsa-miR-4254 0.04602684 up 4.1047406 MIMAT0016884 
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hsa-miR-4284 0.019753091 down -3.9356518 MIMAT0016915 

hsa-miR-4290 0.0057441983 up 6.205229 MIMAT0016921 

hsa-miR-4306 0.019319808 down -2.4259553 MIMAT0016858 

hsa-miR-4317 0.0077170506 down -7.3803926 MIMAT0016872 

hsa-miR-4318 0.042405307 down -3.7857358 MIMAT0016869 

hsa-miR-4324 1.2660767E-4 down -13.353904 MIMAT0016876 

hsa-miR-4328 1.7068113E-6 down -30.341303 MIMAT0016926 

hsa-miR-4440 0.028792787 up 3.7428448 MIMAT0018958 

hsa-miR-4443 0.008061844 up 2.591256 MIMAT0018961 

hsa-miR-4481 0.009133603 up 5.6318855 MIMAT0019015 

hsa-miR-449a 0.03263379 down -8.910406 MIMAT0001541 

hsa-miR-450a-5p 0.049076617 down -7.218559 MIMAT0001545 

hsa-miR-4516 0.013548022 down -2.567815 MIMAT0019053 

hsa-miR-451a 4.6308115E-4 down -31.666576 MIMAT0001631 

hsa-miR-452-5p 0.033777237 down -4.1409574 MIMAT0001635 

hsa-miR-4521 3.1114705E-6 down -7.476263 MIMAT0019058 

hsa-miR-4532 8.101723E-4 down -3.3207798 MIMAT0019071 

hsa-miR-454-3p 0.0060575623 down -15.596857 MIMAT0003885 

hsa-miR-455-3p 0.01230269 down -9.817139 MIMAT0004784 

hsa-miR-455-5p 0.01936017 down -6.943761 MIMAT0003150 

hsa-miR-4634 0.017753901 down -2.1694999 MIMAT0019691 

hsa-miR-4655-3p 0.016215164 down -4.4984784 MIMAT0019722 

hsa-miR-4695-3p 0.029992351 up 3.6855245 MIMAT0019789 

hsa-miR-4716-5p 0.013365842 up 4.945816 MIMAT0019826 

hsa-miR-4730 0.0064160675 up 10.25193 MIMAT0019852 

hsa-miR-4731-3p 0.038894046 up 3.0328867 MIMAT0019854 

hsa-miR-4763-5p 0.034002375 up 3.8233552 MIMAT0019912 

hsa-miR-4770 0.00342172 down -8.7577715 MIMAT0019924 

hsa-miR-4793-3p 9.542979E-5 up 20.642054 MIMAT0019966 

hsa-miR-483-3p 0.049434304 up 4.230489 MIMAT0002173 

hsa-miR-486-3p 0.0014036096 down -4.7451825 MIMAT0004762 

hsa-miR-486-5p 9.567448E-5 down -9.390969 MIMAT0002177 

hsa-miR-489-3p 0.0090776775 down -8.160073 MIMAT0002805 

hsa-miR-490-3p 0.0039292807 down -4.759613 MIMAT0002806 

hsa-miR-491-3p 0.014214844 up 5.6008396 MIMAT0004765 

hsa-miR-497-3p 0.0015522552 down -3.215224 MIMAT0004768 

hsa-miR-497-5p 0.002430224 down -5.8345428 MIMAT0002820 

hsa-miR-5001-5p 0.0139284525 down -2.0481567 MIMAT0021021 

hsa-miR-500a-3p 0.04790341 down -3.5717416 MIMAT0002871 

hsa-miR-500b-5p 0.011883656 down -4.8304405 MIMAT0016925 
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hsa-miR-501-5p 0.03635382 down -4.249691 MIMAT0002872 

hsa-miR-502-3p 0.02129167 down -5.070547 MIMAT0004775 

hsa-miR-504-3p 0.045502603 up 3.8429651 MIMAT0026612 

hsa-miR-505-5p 0.0050095418 down -7.1938596 MIMAT0004776 

hsa-miR-511-3p 0.0011597008 down -17.620407 MIMAT0026606 

hsa-miR-516b-5p 0.03268391 down -4.76173 MIMAT0002859 

hsa-miR-517-5p 0.0349356 down -2.7619033 MIMAT0002851 

hsa-miR-517a-3p 0.0016572509 down -11.549932 MIMAT0002852 

hsa-miR-517c-3p 0.0018382822 down -11.30683 MIMAT0002866 

hsa-miR-521 0.0012756404 down -7.0095363 MIMAT0002854 

hsa-miR-522-3p 0.0012633094 down -7.532452 MIMAT0002868 

hsa-miR-532-3p 0.002999619 down -8.658704 MIMAT0004780 

hsa-miR-532-5p 0.030358983 down -5.574835 MIMAT0002888 

hsa-miR-548aa 0.039962247 up 3.0047872 MIMAT0018447 

hsa-miR-548aw 0.004633741 down -4.355515 MIMAT0022471 

hsa-miR-548b-3p 0.0032465165 down -5.1606574 MIMAT0003254 

hsa-miR-548c-3p 0.009904102 down -3.576939 MIMAT0003285 

hsa-miR-548f-3p 9.7490294E-5 down -4.2154775 MIMAT0005895 

hsa-miR-548q 0.0029641336 down -9.744756 MIMAT0011163 

hsa-miR-548x-3p 0.030913204 down -3.1084898 MIMAT0015081 

hsa-miR-551b-3p 0.0022457927 down -23.905922 MIMAT0003233 

hsa-miR-5701 0.001176325 down -11.373918 MIMAT0022494 

hsa-miR-582-5p 0.0016798502 down -22.03724 MIMAT0003247 

hsa-miR-585-3p 0.031742055 down -3.1072986 MIMAT0003250 

hsa-miR-590-5p 0.021334562 down -10.855298 MIMAT0003258 

hsa-miR-595 0.021010172 up 5.3233123 MIMAT0003263 

hsa-miR-598-3p 0.011142222 down -9.39129 MIMAT0003266 

hsa-miR-6068 0.027576268 down -2.2664123 MIMAT0023693 

hsa-miR-6073 4.2795646E-4 down -12.323209 MIMAT0023698 

hsa-miR-6075 0.03862527 down -3.5490692 MIMAT0023700 

hsa-miR-610 0.008825424 up 5.1574306 MIMAT0003278 

hsa-miR-624-5p 0.02706973 down -4.596437 MIMAT0003293 

hsa-miR-628-5p 0.047291912 down -4.5065737 MIMAT0004809 

hsa-miR-642b-5p 0.0017398077 down -4.8533616 MIMAT0022736 

hsa-miR-6500-5p 0.016187562 up 4.347074 MIMAT0025454 

hsa-miR-6516-3p 0.0014973093 down -11.282737 MIMAT0030418 

hsa-miR-652-3p 0.011874442 down -5.034457 MIMAT0003322 

hsa-miR-653-3p 0.032237496 down -2.1033967 MIMAT0026625 

hsa-miR-660-5p 0.017879974 down -8.998719 MIMAT0003338 

hsa-miR-664a-3p 0.04644798 down -2.4924498 MIMAT0005949 
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hsa-miR-664b-3p 0.040972516 down -2.5689476 MIMAT0022272 

hsa-miR-6716-3p 0.0012428381 up 13.550869 MIMAT0025845 

hsa-miR-6722-5p 0.01525621 up 4.7678285 MIMAT0025853 

hsa-miR-6730-3p 0.02344632 up 4.014452 MIMAT0027362 

hsa-miR-6743-3p 0.029110048 up 5.8719335 MIMAT0027388 

hsa-miR-6771-5p 0.003915364 down -6.763831 MIMAT0027442 

hsa-miR-6779-3p 0.012219111 up 6.0111957 MIMAT0027459 

hsa-miR-6794-3p 0.037364304 up 3.268569 MIMAT0027489 

hsa-miR-6804-5p 0.013194768 up 5.809477 MIMAT0027508 

hsa-miR-6806-5p 0.0077665085 down -6.1864467 MIMAT0027512 

hsa-miR-6817-5p 0.023182526 up 6.154842 MIMAT0027534 

hsa-miR-6826-5p 0.03771252 up 2.0217252 MIMAT0027552 

hsa-miR-6865-3p 0.008403192 down -5.610171 MIMAT0027631 

hsa-miR-6872-3p 0.02524211 up 2.3172631 MIMAT0027645 

hsa-miR-6886-3p 0.015608697 up 7.481634 MIMAT0027673 

hsa-miR-6891-3p 0.0070896316 up 5.3324924 MIMAT0027683 

hsa-miR-6895-5p 0.012817935 down -5.096586 MIMAT0027690 

hsa-miR-7108-3p 0.031871215 up 3.4731681 MIMAT0028114 

hsa-miR-7111-3p 0.029639475 down -2.9728024 MIMAT0028120 

hsa-miR-7159-5p 0.016500017 up 5.289905 MIMAT0028228 

hsa-miR-744-5p 0.0026703363 down -10.007609 MIMAT0004945 

hsa-miR-770-5p 0.0018573835 up 8.820649 MIMAT0003948 

hsa-miR-7704 0.025055826 down -2.0992706 MIMAT0030019 

hsa-miR-8063 0.015703373 down -2.599198 MIMAT0030990 

hsa-miR-8077 0.028724372 up 4.096299 MIMAT0031004 

hsa-miR-874-5p 0.023569982 down -4.3161435 MIMAT0026718 

hsa-miR-887-3p 0.028764278 down -3.3909423 MIMAT0004951 

hsa-miR-940 0.0016014805 down -2.3139522 MIMAT0004983 

hsa-miR-95-3p 0.0482305 down -7.970016 MIMAT0000094 

hsa-miR-98-5p 0.0017507627 down -25.522917 MIMAT0000096 

hsa-miR-99a-3p 0.0025130045 down -6.4765115 MIMAT0004511 

hsa-miR-99a-5p 0.002272892 down -14.822669 MIMAT0000097 

hsa-miR-99b-5p 0.006868263 down -4.111178 MIMAT0000689 
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3.3. Quality Control Analysis of LCRMs as indicators in healthy and 

tumoral tissues 
 

LCRMs down regulation trend was well distinguishable between cancer and healthy tissue as 

indicated by Hierarchical Cluster Analysis, where healthy tissue profiles (yellow bar) were clustered 

in the upper part of the hierarchical tree separately from cancer tissue profiles (blue bar), colour 

range indicates LCRMs intensity signal (Figure 7a). In Principal Component Analysis of Variance, 

healthy tissue samples (yellow dots) clustered in the lower left part of the 3D space. Instead, cancer 

tissue samples (blue dots) are located along the 3D space, demonstrating how different each 

patient’s tumoral tissue was (Figure 7b). 

 

 

Figure 7 (a) Clustering Hierarchical Analysis reporting the Expression of the 273 LCRMs (x axes) in Healthy tissue (vertical axis, yellow 
bar) and lung cancer tissue (vertical axis, blue bar) in the 50 samples tested (y axis). (b) Principal Component Analysis of Variance 
reporting identifying samples from healthy tissues (yellow dots) and samples from cancer tissues (blue dots) according to the variance 
of the expression of the 273 LCRMs, dots size = Principal Component Analysis score. 
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3.4. Gene Ontology and Biological Processes (GO-BP) enrichment 

analysis 
 

After identifying the top 10 most significative predicted target genes for each one of the 

LCRMs, the GO-BP enrichment analysis was run using TOP-Go Bioconductor R package and REVIGO 

online tool as explained in Chapter 2.9. In Figure 8 is presented the treemap of the most 

representative Biological Processes for LCRMs (around 2000 GO terms), where the most 

representative BPs are: regulation of RNA splicing, tissue migration, monosaccharide transmembrane 

transport, protein modification by small protein conjugation or removal and cellular protein-

containing complex assembly. Other less representative BPs are: small molecule metabolic process, 

lipid metabolic process, carbohydrate derivative biosynthetic process, myeloid leukocyte activation, 

cellular ketone metabolic process, cell cycle process, regulation of transcription DNA-templated, 

cellular catabolic process, sulfuric compound metabolic process, gene expression, biological process 

involved in interspecies interaction between organisms, cellular process, biological process involved 

in symbiotic interaction, cellular component organization or biogenesis, protein localization to cell 

periphery, biological regulation, glycosylation, chromatin organization, macromolecule modification, 

ion transport, chromosome organization, multicellular organismal process, and cellular protein 

metabolic process. 

 

The most representative GO term is regulation of RNA splicing (GO:0008380) that include 

other processes as regulation of cell cycle, cellular response to organic cyclic compound, positive 

regulation of cell population proliferation, and other 55 target functions. GO:0008380 definition is 

“The process of removing sections of the primary RNA transcript to remove sequences not present in 

the mature form of the RNA and joining the remaining sections to form the mature form of the RNA”, 

and it includes 404 genes in GO library, including negative regulation of RNA splicing (Figure 9a). 

Negative regulation of mRNA is the final biological function of miRNAs, they act as imperfect 

sequence guides to recruit a ribonucleoprotein (RNP) complex to the complementary RNA. The 

microRNA-RNP complex is called the RNA-induced silencing complex (or RISC), that uses a small RNA 

(microRNA) to direct sequence-specific recruitment of the RISC to its target RNA modulating its 

expression. This is conceptually similar to mRNA splicing, where small nuclear RNAs (U1, U2 and U4-
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6) act through complementarity to sequences at the splice and branch sites within the intron that 

determine mRNA splicing [52].

 

Figure 8 treemap of the most representative Biological Processes for LCRMs 
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It is plausible that a large set of genes targeted by LCRMs, are also responsible of RNA splicing 

regulation as a feedback mechanism of gene regulation in tumoral mechanisms. The second most 

significative GO is 0090130, tissue migration, a well-known biological process in embryogenesis as 

well as in tumoral processes [53].Tissue migration GO includes 208 genes and 444 GO annotations 

(Figure 9b). Almost all predicted BPs connected to tissue migration belong to developmental growth 

as shown in Figure 7, but in the GO treemap there are also present GO terms connected more 

specifically to tumoral processes as aging, cell fate, tissue development, and stem cell differentiation. 

However, the hypothesis of LCRMs altering RNA splicing as well as tissue migration should be study 

in deep in future.  

 

 

Figure 9 GO tree view of a) GO: 0008380 and b) GO: 0090130. Information available at: 
http://www.informatics.jax.org/vocab/gene_ontology/ 

 

  

http://www.informatics.jax.org/vocab/gene_ontology/
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3.5. LCRMs related to cancer isotype 
 

From 64 patients, only 22 had an histotype record: 10 with NSCLC and 33 with SCLC. Using only 

the list of LCRMs described in Table 2, it was analysed how miRNA patterns changed between NSCLC 

and the most aggressive SCLC. In the scatter plot (Figure 10a) we can see a slightly (m = 1.02) but 

significative (R2= 0.9) trend to upregulation in NSCLC compared to SCLC. The volcano plot t-test (FC≥2 

and p-value ≤ 0.05) identified that 25 LCRMs were upregulated and only 1 (miR-326) was 

downregulated in NSCLC (Figure 10b), which means that the same miRNAs are down-regulated in 

SCLC.  

 

Figure 10 a) scatter plot and b) volcano plot t-test between non-small-cells lung cancer (NSCLC) and small-cells lung cancer (SCLC) using 
only Lung Cancer Related miRNAs. 

The miRNAs resulting from the volcano plot t-test can be found in Table 3. Volcano plot 

analysis indicated that 26 out of the 273 cancer related miRNAs were differentially expressed 

between NSCLC and SCLC, which were used to run a GO-BP analysis to clarify what biological 

processes may be involved in the difference between histotypes. 
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Table 3 miRNAs result from the volcano plot analysis of only Lung Cancer Related miRNAs (n = 273) between non-small-cells lung 
cancer (NSCLC) and small-cells lung cancer (SCLC). An up-regulation of 25 miRNAs can be found for NSCLC. 

miRNA p-value Regulation FC 

hsa-miR-1238-5p 0.011302715 up 9.62 

hsa-miR-1296-5p 0.007524842 up 8.62 

hsa-miR-1306-3p 0.021063296 up 8.58 

hsa-miR-205-3p 4.19297E-06 up 220.64 

hsa-miR-2277-3p 0.00932873 up 10.59 

hsa-miR-3149 0.000521124 up 25.38 

hsa-miR-326 0.019960763 down -8.85 

hsa-miR-4290 0.000451764 up 16.39 

hsa-miR-4440 0.002965666 up 10.05 

hsa-miR-4443 0.03872927 up 2.41 

hsa-miR-4481 0.015899722 up 7.33 

hsa-miR-4716-5p 0.000232035 up 20.00 

hsa-miR-4763-5p 0.008582705 up 8.26 

hsa-miR-4793-3p 0.002927522 up 16.70 

hsa-miR-483-3p 0.002941658 up 13.22 

hsa-miR-504-3p 0.002079689 up 14.95 

hsa-miR-595 0.000426941 up 21.36 

hsa-miR-6730-3p 0.016724579 up 6.91 

hsa-miR-6743-3p 0.043577574 up 7.71 

hsa-miR-6779-3p 0.016434822 up 8.81 

hsa-miR-6794-3p 0.005262722 up 7.19 

hsa-miR-6817-5p 0.044506542 up 7.97 

hsa-miR-6826-5p 0.02230857 up 2.63 

hsa-miR-6886-3p 0.014682693 up 12.86 

hsa-miR-6891-3p 0.01124693 up 7.93 

hsa-miR-7108-3p 0.012961295 up 6.21 

 

The treemap of the most important biological processes altered by miRNAs in Table 3 identified 

that the most deregulated process is GO: 0050878, or regulation of body fluid levels, that refers to 
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“Any process that modulates the levels of body fluids”. GO: 0050878 counts with 368 genes and 624 

annotations that includes body fluid secretion, homeostasis, multicellular organismal water 

homeostasis, regulation of mucus secretion, and secretion in different organs (Figure 11a). It is not 

clear how this predicted process is different between NSCLC and SCLC, but we can hypothesise that 

it may be linked to one of the principal difference between this isotypes, as SCLC cells exhibit 

neuroendocrine features evidenced by the expression of a variety of markers like thyroid 

transcription factor 1 (TTF1) [54], synaptophysin (SYP), chromogranin A (CHGA), and gastrin releasing 

peptide (GRP) [55]. 

 

Figure 11 Most of representative predicted biological processes impacted by significative t-test dysregulated miRNAS between non-
small cell cancer vs. small cell lung cancer tissues. a)GO: 0050878, b)GO:1903050, and c)GO:0048870. Information available at: 
http://www.informatics.jax.org/vocab/gene_ontology/ 

 

After GO: 0050878, the second most significative biological process is GO:1903050, or regulation 

of proteolysis involved in cellular protein catabolic process (Figure 11b). The third, and most 
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interesting predicted biological process is GO:0048870, or cell motility, that is other of the 

characteristic difference between small and non-small histotype. Cell motility GO includes 1749 

genes and 3479 annotations (Figure 11c), that makes a vast biological process across the organism. 

We also should notice that in the case of the Table 4 miRNAs, 25 out of 26 are upregulated in NSCLC, 

what means that mRNA from genes connected with cell motility process are inhibited as expected 

for NSCLC. 

The mentioned predicted biological processes, that match with the well-known biological 

behaviour and phenotype of the respective types of lung cancer, would be attributable to the 

differential expression of miRNAs in Table 3, making them a plausible histotype specific marker. The 

treemap of the most important biological processes altered between NSCLC vs. SCLC is in Figure 12. 
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Figure 12 Treemap of the predicted biological processes impacted by significative t-test dysregulated miRNAS between non-small cell 
cancer vs. small cell lung cancer. 
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3.6. Oncogenes mutations and miRNA profile variation 
 

Lung cancer in non-smokers have a genetic predisposition. Many studies have shown that 

patients with a family history of lung cancer are at increased risk [56]. Certain acquired mutations in 

oncogenes and tumour-suppressors are found more frequently in never-smokers compared with 

smokers.  

 

Mutations in the Epidermal Growth Factor Receptor gene (EGFR) are found in approximately 40 

percent of never smokers’ biopsies. EGFR, a tyrosine kinase receptor, plays a critical role in cell 

differentiation, development, proliferation and homeostasis. Another common mutation in non-

smokers are those in oncogenic Kirsten Rat Sarcoma Virus gene (KRAS). This kind of mutations involve 

point mutations in codons 12 or 13 in exon. KRAS encodes GTPase activity in proteins that regulate 

cell growth, differentiation, and apoptosis and serves as a downstream mediator of EGFR-induced 

cell signalling. KRAS mutation may affect chromosomal translocations and rearrangements in a 

hotspot gene called Anaplastic Lymphoma Receptor Tyrosine kinase (ALK), which in consequence is 

also more frequently mutated in non-smokers [57]. 

 

Tumoral Protein 53 (TP53) is a tumour-suppressor gene integrates numerous signals that control 

cell life and death. It is the most frequently mutated gene in different types of cancer. Mutation in 

TP53 most of the times results in the expression of a protein that has lost its function, and therefore 

is unable to coordinate transcription process that ultimately contribute to tumour suppression. In 

other cases, mutant TP53 proteins also acquire oncogenic properties that enable invasion promoting, 

metastasis, proliferation and cell survival. However, there’s no evidence that TP53 mutation have a 

higher frequency in non-smokers rather than in smokers [58]. 

 

For this study it was verify the existence of mutations in a group of oncogenes and tumour-

suppressors from patients’ tumoral tissue biopsies. Other than the already explained EGFR, KRAS, 

ALK and TP53, there were analysed Phosphatidylinositol-4,5-Bisphosphate 3-Kinase Catalytic Subunit 

Alpha oncogene (PIK3CA), Erb-B2 Receptor Tyrosine Kinase2 oncogene (ERBB2), Serine/threonine 

kinase 11 tumour-suppressor (STK11), B-Raf kinase proto-oncogene (BRAF), Phosphatase and Tensin 
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Homolog Oncogene (PTEN), Mitogen-Activated Protein 2 Kinase 1 proto-oncogene (MAP2K1), 

Fibroblast Growth Factor Receptor oncogene (FGFR), and other 4 genes which mutations were not 

found. 

 

Despite the presence of lung cancer, no mutation was observed in 10 out of the 52 examined 

patients (19,2%). Mutations were observed in 42 patients with the following frequency: TP53 

(36.54%), KRAS (30.77%), EGFR (25%), PIK3CA (13.46%), PTEN (9.62%), STK11 (5.77%), BRAF (3.85%), 

MAP2K1 (1.92%), FGFR (1.92%), and ERBB2 (1.92%) (Figure 13).  

 

 

Figure 13. Radar chart showing the frequency of mutations in lung byopsies of analyzed patients. TP53 (36.54%), KRAS (30.77%), EGFR 
(25%), PIK3CA (13.46%), NOTCH1(11.54%) are the most frequent mutations on analyzed patients 

 

Only 14 Patients (26%) carried mutations targetable by available precision medicine therapies 

(EGFR 25 mutations, BRAF 2 mutations, AKT 2 mutations), but it was impossible to understand if 

patients had access to these therapies. Moreover, 25 out of 52 patients presented more than one 

mutation as explained in Table 4.  
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Table 4 Frequency of single, double, triple, quadruple and quintuple mutations in lung biopsies from analysed patients. 

 Frequency Percentage 

Number 
of 

mutations 

0 10 19.2 

1 17 32.7 

2 19 36.5 

3 2 3.8 

4 3 5.8 

5 1 1.9 

Total 52 100.0 
 

From the 38 patients in which both miRNA and mutations have been analysed, 33 were patients 

carrying at least 1 mutation. Mutational status affects miRNA expression but as tumoral tissue 

samples were biased with the presence of more than one mutation, not enough data was available 

to analyse a specific miRNA footprint for each mutation. However, a Volcano Plot T-test was run 

where possible, using the list of the 273 LCRMs. There were found altered miRNAs only for BRAF, 

EGFR, KRAS, NOTCH, PIK3CA, PTEN, STK11, and TP53. The number of miRNAs altered in tumoral tissue 

as associated with mutation is reported in Table 5. Moreover, it was verified if any altered miRNA in 

the list directly targeted the tested gene using Targetscan database (http://www.targetscan.org/). 

The most interesting result were the alterations of miR-15b-3p and hsa-miR-21-3p, both of which 

targeted directly KRAS gene. KRAS and TP53 were the most frequently mutated genes across tumoral 

tissues, but the miRNA signature in KRAS is stronger as it present 13 entities. Other results are limited, 

probably because of the lack of single-mutated tissue. For example, the signature of STK1 is the 

strongest as it present 31 entities, but not reliable as it was obtained using only 2 tumoral tissues. 

 

Table 5 Volcano plot moderated T-Test of miRNA-chip-arrays from tumoral lung biopsies using only Cancer Associated miRNAs (from 
Table3). P-value <= 0.05, FC>=2.0, no correction, [mutated] vs. [no mutated]. miRNAs entities are listed in Annex3, Table S2. Only 4 
miRNAs targeted directly considered genes. 

Gene 
Mutated/Total 

patients 
Number of entities 
(altered miRNAs) 

up down 
N° miRNAs targeting 

oncogene 

BRAF 2/33 7 1 6 0 

EGFR 9/33 1 0 1 0 

ERBB2 1/33 - - - - 

ERBB4 1/33 - - - - 

FGFR3 1/33 - - - - 

KRAS 10/33 13 13 0 
2 

(hsa-miR-15b-3p, hsa-
miR-21-3p) 

NOTCH1 3/33 1 1 0 0 
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PIK3CA 3/33 0 0 0 0 

PTEN 2/33 0 0 0 0 

STK11 2/33 31 30 1 
1 

(hsa-miR-548aa) 

TP53 10/33 4 4 0 
1 

(hsa-miR-205-3p) 
 

Notwithstanding the low reliability of results, a list of all deregulated miRNAs fount after Volcano 

Plot test are reported in Table 6. As we can see, mutation determines an up regulation in most of 

miRNAs in KRAS, STK11, NOTCH and TP53. The only mutation that determines miRNAs down-

regulation are BRAF and EGFR. These results are not clear and should be studied in-depth. 

 

Table 6 Significant altered miRNAs (Volcano plot moderated t-test, [mutated tissues] vs. [no mutated tissues], FC>=2, p<=0,05, no 
correction) between tumoral tissues of a total of 33 patients by Gene mutation, using only Cancer Associated miRNAs from Table 3. 
TargetScan predicted if each miRNA targeted directly considered genes. 

Mutat

ion 
systematic_name p-value 

Regulatio

n 
FC 

mirbase 

accession No 

Direct 

Targe

t 

BRAF hsa-miR-1306-3p 0.024846 down -32.20 MIMAT0005950 NO 

BRAF hsa-miR-139-3p 0.01998 down -11.09 MIMAT0004552 NO 

BRAF hsa-miR-193a-5p 0.049849 down -7.84 MIMAT0004614 NO 

BRAF hsa-miR-3620-5p 0.009772 down -16.80 MIMAT0022967 NO 

BRAF hsa-miR-3659 0.015827 down -35.46 MIMAT0018080 NO 

BRAF hsa-miR-521 0.00369 up 13.25 MIMAT0002854 NO 

BRAF hsa-miR-610 0.042202 down -15.90 MIMAT0003278 NO 

EGFR hsa-miR-744-5p 0.048781 down -6.35 MIMAT0004945 NO 

KRAS hsa-miR-106b-3p 0.009659 up 5.78 MIMAT0004672 NO 

KRAS hsa-miR-1247-5p 0.026188 up 2.56 MIMAT0005899 NO 

KRAS hsa-miR-1306-3p 0.045089 up 5.07 MIMAT0005950 NO 

KRAS hsa-miR-1537-3p 0.035001 up 4.21 MIMAT0007399 NO 

KRAS hsa-miR-15b-3p 0.048594 up 4.27 MIMAT0004586 YES 

KRAS hsa-miR-191-5p 0.041432 up 3.98 MIMAT0000440 NO 

KRAS hsa-miR-1913 0.005619 up 7.55 MIMAT0007888 NO 

KRAS hsa-miR-21-3p 0.016535 up 3.35 MIMAT0004494 YES 

KRAS hsa-miR-4440 0.027506 up 5.09 MIMAT0018958 NO 

KRAS hsa-miR-4793-3p 0.04182 up 6.36 MIMAT0019966 NO 

KRAS hsa-miR-6516-3p 0.046655 up 6.33 MIMAT0030418 NO 

KRAS hsa-miR-6804-5p 0.001817 up 12.40 MIMAT0027508 NO 

KRAS hur_5 0.033032 up 2.67 ----- ------ 
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NOTC

H1 
hsa-miR-3065-5p 0.02177 down -28.11 MIMAT0015066 NO 

STK11 hsa-miR-100-5p 0.044152 up 50.39 MIMAT0000098 NO 

STK11 hsa-miR-106b-3p 0.027296 up 18.62 MIMAT0004672 NO 

STK11 hsa-miR-144-5p 0.049938 up 73.34 MIMAT0004600 NO 

STK11 hsa-miR-15b-3p 0.00585 up 44.38 MIMAT0004586 NO 

STK11 hsa-miR-182-3p 0.018396 up 29.20 MIMAT0000260 NO 

STK11 hsa-miR-190a-5p 0.017345 up 40.56 MIMAT0000458 NO 

STK11 hsa-miR-191-5p 0.005873 up 33.11 MIMAT0000440 NO 

STK11 hsa-miR-1913 0.010622 up 37.54 MIMAT0007888 NO 

STK11 hsa-miR-26b-3p 0.010553 up 43.63 MIMAT0004500 NO 

STK11 hsa-miR-29a-5p 0.049188 up 38.69 MIMAT0004503 NO 

STK11 hsa-miR-29b-1-5p 0.011177 up 118.38 MIMAT0004514 NO 

STK11 hsa-miR-339-5p 0.037138 up 16.63 MIMAT0000764 NO 

STK11 hsa-miR-34a-3p 0.047655 up 50.77 MIMAT0004557 NO 

STK11 hsa-miR-4252 0.014764 up 55.13 MIMAT0016886 NO 

STK11 hsa-miR-4318 0.001537 up 54.74 MIMAT0016869 NO 

STK11 hsa-miR-4328 0.035986 up 22.42 MIMAT0016926 NO 

STK11 hsa-miR-4730 0.03915 down -45.98 MIMAT0019852 NO 

STK11 hsa-miR-4770 0.010971 up 39.62 MIMAT0019924 NO 

STK11 hsa-miR-489-3p 0.004512 up 43.13 MIMAT0002805 NO 

STK11 hsa-miR-517a-3p 0.019567 up 22.36 MIMAT0002852 NO 

STK11 hsa-miR-517c-3p 0.021522 up 21.18 MIMAT0002866 NO 

STK11 hsa-miR-522-3p 0.026955 up 6.25 MIMAT0002868 NO 

STK11 hsa-miR-548aa 0.048199 up 13.60 MIMAT0018447 YES 

STK11 hsa-miR-5701 0.035075 up 35.87 MIMAT0022494 NO 

STK11 hsa-miR-585-3p 0.024521 up 4.84 MIMAT0003250 NO 

STK11 hsa-miR-6073 0.026801 up 36.71 MIMAT0023698 NO 

STK11 hsa-miR-624-5p 0.009898 up 32.12 MIMAT0003293 NO 

STK11 hsa-miR-628-5p 0.032169 up 27.20 MIMAT0004809 NO 

STK11 hsa-miR-6516-3p 0.047177 up 34.70 MIMAT0030418 NO 

STK11 hsa-miR-6872-3p 0.016967 up 8.28 MIMAT0027645 NO 

STK11 hsa-miR-8077 8.18E-04 up 115.11 MIMAT0031004 NO 

TP53 hsa-miR-147b 0.023046 up 3.07 MIMAT0004928 NO 

TP53 hsa-miR-205-3p 0.018824 up 11.09 MIMAT0009197 YES 

TP53 hsa-miR-4290 0.017774 up 6.99 MIMAT0016921 NO 

TP53 hsa-miR-6891-3p 0.043351 up 4.85 MIMAT0027683 NO 
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3.7. Survival prediction using miRNA footprint. 
 

In this study 9 out of 35 monitored patients died within 3 years since biopsy. We explored what 

miRNAs expression profile may be predictive of clinical outcome in the following years after surgery. 

It was found that miRNA expression profile in cancer tissue was different between survivors and non-

survivors, as shown by scatter plot (Figure 14a) and volcano plot analyses (Figure 14b).  

 

 

Figure 14 (a) Scatter Plot analysis = Entity list: Cancer Related miRNAs (273), interpretation: averaged [Alive] vs. [dead], FC>=2.0. (b) 
Moderated T-Test Volcano Plot analysis = Entity list: Cancer Related miRNAs (273), interpretation: averaged [Alive] vs. [dead], without 
Multiple Testing Correction, p-value cut-off = 0.05, Fold change cut-off = 2.0. 

 

 

The list of the 11 miRNAs which may be predictive for patient survival (10 upregulated (red dots) 

in survivors as compared to non survivors and 1 downregulated (blue dot) are reported in Table 7. A 

prediction model using the list of these 11 miRNAs related to survival and GeneSpring Neural Network 

prediction algorithm was run, obtaining an overall accuracy of 0.92 (+0.11), a higher result than those 

obtained for all miRNA entities (accuracy 0.81). This high accuracy shows the potential of these 11 

cancer related miRNAs from lung biopsies to be used as survival predictors. 
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Table 7 Cancer Related miRNAs altered (FC>= 2, p<=0.05) in Volcano Plot Analysis between average signal in samples of patients alive 
vs. dead within 3 years since biopsy. 

systematic_name p-value Regulation FC 

hsa-miR-1227-5p 0.03180667 up 2.42 

hsa-miR-147b 0.011820709 down -3.96 

hsa-miR-187-5p 0.03807269 up 6.18 

hsa-miR-23a-5p 0.01835003 up 6.71 

hsa-miR-2861 0.036854673 up 2.08 

hsa-miR-3663-5p 0.03956902 up 5.03 

hsa-miR-371b-5p 0.001374278 up 3.66 

hsa-miR-6068 0.016317874 up 2.72 

hsa-miR-6075 0.02674605 up 4.83 

hsa-miR-6771-5p 0.023678219 up 5.23 

hsa-miR-7704 0.03648895 up 2.15 

 

Conversely, the mutation status poorly predicted the survival. Indeed, the rate of survivors 

(47 out of 60) and non-survivors (13 out of 60) was not different between mutation free (10 out of 

52) and mutation carrier (42 out of 52) patients. The number of mutations carried by the same 

patients was not different between survivors and non-survivors as demonstrated by the Chi-squared 

test (p = 0.803) as shown in Figure 15. 
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Figure 15 The number of mutations did not predict patient survival. (a) Bar plot of the number of patients with zero to five mutations 
detected separated by survival. (b) Same data of (a) summarized in a contingency table. (c) The Chi-squared test maintained the null 
hypothesis: the survival and mutation number were independent variables. 

 

3.8. Contribution of environmental exposures to lung 

carcinogenesis as inferred from miRNA profiling. 
 

Environmental exposures considered were (a) passive smoke at home, (b) passive smoke at work; 

(c) airborne car traffic pollution; (d) volcano ashes; and (e) radon exposure risk. These exposures were 

evaluated for each patient only by semi-structured questionnaires as shown in Table 2 data, but not 

by pollution quantification by measuring each pollution source. To understand how cancer related 

miRNAs were altered by each exposure, there were created 5 miRNA signatures, that hereby are 

called Environmental Exposure Signals (EESs). 
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EESs were obtained comparing LCRMs intensity signal (Volcano Plot analysis FC>=2, p<=0,05) in 

tumoral lung tissue between patients undergoing low or high exposure according to questionnaires 

data. The number of miRNAs composing each EESs is the following: (a) n = 8; (b) n = 1; (c) n = 53; (d) 

n = 21; (e) n = 19. Volcano Plot after comparing miRNA expression in lung between unexposed vs. 

exposed subjects for each environmental signature are reported in Figure 16. 

 

 

Figure 16 Moderated T-Test Volcano Plot analyses identifying miRNA environmental signatures (EESs) among the 273 LCRMs. 
Interpretation: [no-exposure and low exposure] vs. [medium and high-exposure], p-value cut-off = 0.05, Fold change cut-off = 2.0.; Y-
axis: -log10(p-value); X-axis: log2(Fold change). 

 

miRNA pattern changed for each exposure: for passive smoking and Radon Risk all of miRNAs 

are downregulated, but for Vehicle traffic and volcano exposure, they are upregulated. This result 

makes us hypothesis that organism response to different exposures brings also different miRNA 

regulation, but as we don’t have patients exposed exclusively to one of each environmental pollution, 

this result may also be explained as a bias based on patients’ heterogeneity. To understand the value 

of each EESs it was search in bibliography if miRNA entities were present in other studies. Because 

passive smoke at work differed form passive smoke at home for only one miRNA., these two 

signatures were aggregated in a single signature referred to passive smoke for bibliographic search. 

The entire list of deregulated miRNAs, and their presence in bibliography, is present in Table 8. It was 

found that any miRNAs in our list is mentioned in other studies for passive smoking, Radon exposure, 

and volcano ashes exposure. For air quality, but not specifically for vehicle traffic, it was found citation 

for let-7a-5p, miR-125a-5p, miR-142-3p, miR-150-5p, miR-223-3p, miR-23a-3p, let-7c-5p, miR-185-
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5p, miR-99b-5p, miR-146a-5p, miR-199a-5p, miR-214-3p, miR-4516, [59 - 65] . It was unexpected that 

none of our radon EESs were present in bibliography, as there exist at least 11 different papers that 

study miRNA expression after Radon exposure.  

 

Table 8 Cancer Related miRNAs run on a Moderated T-Test Volcano Plot analysis (FC>= 2, p<=0.05) for each environmental exposure: 
(a) passive smoke at home (No vs. Yes), (b) passive smoke at work (No vs. Yes); (c) airborne car traffic pollution (low vs. high); (d) volcano 
ashes (>60Km vs. <=60Km); (e) radon risk (according to house type low vs. high) 

systematic name p-value 

Regulatio

n ([low] 

Vs [high]) 

FC ([low] Vs 

[high]) 
environmental exposure 

hsa-miR-2277-3p 0.01829 down -7.38783 passive smoking at home 

hsa-miR-328-3p 0.013113 down -5.98362 passive smoking at home 

hsa-miR-4254 0.002496 down -14.3598 passive smoking at home 

hsa-miR-483-3p 0.015154 down -7.43976 passive smoking at home 

hsa-miR-491-3p 0.003077 down -11.924 passive smoking at home 

hsa-miR-6743-3p 0.022234 down -9.42842 passive smoking at home 

hsa-miR-6779-3p 0.009505 down -9.89658 passive smoking at home 

hsa-miR-6886-3p 0.008845 down -13.8967 passive smoking at home 

hsa-miR-4695-3p 0.04655064 down -5.80325 Passive smoking at work 

hsa-let-7a-5p 0.041112 up 7.4232 Vehicle traffic at home 

hsa-let-7b-5p 0.011125 up 4.773517 Vehicle traffic at home 

hsa-let-7c-5p 0.015205 up 5.49175 Vehicle traffic at home 

hsa-miR-100-5p 0.040598 up 7.583029 Vehicle traffic at home 

hsa-miR-103a-3p 0.039793 up 7.255231 Vehicle traffic at home 

hsa-miR-125a-5p 0.034176 up 5.446658 Vehicle traffic at home 

hsa-miR-125b-5p 0.021168 up 6.086423 Vehicle traffic at home 

hsa-miR-130a-3p 0.048873 up 6.662414 Vehicle traffic at home 

hsa-miR-133b 0.047599 up 9.969255 Vehicle traffic at home 

hsa-miR-142-3p 0.046327 up 8.855112 Vehicle traffic at home 

hsa-miR-146a-5p 0.023557 up 8.37029 Vehicle traffic at home 

hsa-miR-150-5p 0.039885 up 10.98931 Vehicle traffic at home 

hsa-miR-151b 0.015652 up 8.787968 Vehicle traffic at home 

hsa-miR-15b-5p 0.03082 up 8.508455 Vehicle traffic at home 

hsa-miR-16-2-3p 0.044513 up 5.532554 Vehicle traffic at home 

hsa-miR-185-5p 0.039332 up 5.07439 Vehicle traffic at home 

hsa-miR-199a-5p 0.04242 up 4.570111 Vehicle traffic at home 

hsa-miR-203a-3p 0.02749 up 18.03255 Vehicle traffic at home 

hsa-miR-204-5p 0.041068 up 9.511877 Vehicle traffic at home 

hsa-miR-20a-5p 0.045853 up 8.663452 Vehicle traffic at home 
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hsa-miR-214-3p 0.026044 up 5.304047 Vehicle traffic at home 

hsa-miR-221-3p 0.017622 up 8.297637 Vehicle traffic at home 

hsa-miR-221-5p 0.013803 up 17.72528 Vehicle traffic at home 

hsa-miR-222-3p 0.013626 up 3.554951 Vehicle traffic at home 

hsa-miR-223-3p 0.012787 up 15.80766 Vehicle traffic at home 

hsa-miR-224-3p 0.017806 up 9.024755 Vehicle traffic at home 

hsa-miR-23a-3p 0.035768 up 4.962604 Vehicle traffic at home 

hsa-miR-23a-5p 0.011235 up 8.435381 Vehicle traffic at home 

hsa-miR-30c-2-3p 0.004407 up 5.743132 Vehicle traffic at home 

hsa-miR-3188 0.044807 up 3.079721 Vehicle traffic at home 

hsa-miR-324-3p 0.035711 up 2.143047 Vehicle traffic at home 

hsa-miR-339-5p 0.008492 up 7.478019 Vehicle traffic at home 

hsa-miR-342-3p 0.018368 up 6.661599 Vehicle traffic at home 

hsa-miR-365a-3p 0.036355 up 6.536557 Vehicle traffic at home 

hsa-miR-4306 0.002998 up 3.347996 Vehicle traffic at home 

hsa-miR-4324 0.033328 up 5.706607 Vehicle traffic at home 

hsa-miR-4516 0.006668 up 2.859822 Vehicle traffic at home 

hsa-miR-452-5p 0.014409 up 7.888119 Vehicle traffic at home 

hsa-miR-4532 0.014752 up 2.258895 Vehicle traffic at home 

hsa-miR-455-3p 0.009444 up 15.94311 Vehicle traffic at home 

hsa-miR-4634 0.030527 up 2.128231 Vehicle traffic at home 

hsa-miR-4655-3p 0.021817 up 6.810059 Vehicle traffic at home 

hsa-miR-4731-3p 0.01469 up 6.153936 Vehicle traffic at home 

hsa-miR-501-5p 0.012 up 9.779916 Vehicle traffic at home 

hsa-miR-505-5p 0.013655 up 7.634665 Vehicle traffic at home 

hsa-miR-517a-3p 0.027523 up 5.597306 Vehicle traffic at home 

hsa-miR-517c-3p 0.025637 up 5.422509 Vehicle traffic at home 

hsa-miR-582-5p 0.044966 up 13.7203 Vehicle traffic at home 

hsa-miR-6895-5p 0.006121 up 7.657433 Vehicle traffic at home 

hsa-miR-744-5p 0.019918 up 10.30978 Vehicle traffic at home 

hsa-miR-98-5p 0.035529 up 13.94902 Vehicle traffic at home 

hsa-miR-99b-5p 0.040104 up 4.172732 Vehicle traffic at home 

hur_6 - - - Vehicle traffic at home 

hsa-miR-133a-3p 0.017678 up 5.314951 km from etna 50 median 

hsa-miR-135a-5p 0.034151 up 5.869018 km from etna 50 median 

hsa-miR-193a-5p 0.044354 up 2.526421 km from etna 50 median 

hsa-miR-27a-5p 0.023292 down -3.61896 km from etna 50 median 

hsa-miR-29b-2-5p 0.014229 up 4.74146 km from etna 50 median 

hsa-miR-340-5p 0.033516 up 6.845372 km from etna 50 median 

hsa-miR-3607-3p 0.012756 up 5.837188 km from etna 50 median 
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hsa-miR-361-3p 0.025633 up 4.868399 km from etna 50 median 

hsa-miR-449a 0.026818 up 10.2289 km from etna 50 median 

hsa-miR-4770 0.03923 up 4.277719 km from etna 50 median 

hsa-miR-500a-3p 0.037476 up 4.086222 km from etna 50 median 

hsa-miR-500b-5p 0.008137 up 3.92188 km from etna 50 median 

hsa-miR-505-5p 0.030313 up 4.50934 km from etna 50 median 

hsa-miR-5701 0.019156 up 6.29237 km from etna 50 median 

hsa-miR-628-5p 0.022147 up 5.505154 km from etna 50 median 

hsa-miR-642b-5p 0.016176 up 2.964167 km from etna 50 median 

hsa-miR-6516-3p 0.041004 up 5.372472 km from etna 50 median 

hsa-miR-652-3p 0.027532 up 4.759585 km from etna 50 median 

hsa-miR-664a-3p 0.042052 up 2.812089 km from etna 50 median 

hsa-miR-664b-3p 0.023029 up 3.220316 km from etna 50 median 

hsa-miR-874-5p 0.003118 up 5.434077 km from etna 50 median 

hsa-miR-16-2-3p 0.024773 down -9.45544 Radon risk Home type 

hsa-miR-182-3p 0.033553 down -7.05349 Radon risk Home type 

hsa-miR-22-5p 0.030786 down -15.112 Radon risk Home type 

hsa-miR-221-5p 0.016387 down -23.7398 Radon risk Home type 

hsa-miR-30c-2-3p 0.012436 down -6.19418 Radon risk Home type 

hsa-miR-3660 0.001222 down -29.6997 Radon risk Home type 

hsa-miR-4306 0.005655 down -3.77123 Radon risk Home type 

hsa-miR-4440 0.033708 down -7.56958 Radon risk Home type 

hsa-miR-4443 0.0132 down -3.02148 Radon risk Home type 

hsa-miR-452-5p 0.030769 down -8.7803 Radon risk Home type 

hsa-miR-454-3p 0.01435 down -33.4518 Radon risk Home type 

hsa-miR-455-3p 0.038657 down -14.6433 Radon risk Home type 

hsa-miR-4793-3p 0.002683 down -13.7501 Radon risk Home type 

hsa-miR-598-3p 0.025903 down -15.7451 Radon risk Home type 

hsa-miR-6500-5p 0.035551 down -6.86215 Radon risk Home type 

hsa-miR-6826-5p 0.037038 down -2.57302 Radon risk Home type 

hsa-miR-6872-3p 0.020769 down -3.46987 Radon risk Home type 

hsa-miR-7159-5p 0.031503 down -5.91743 Radon risk Home type 

hsa-miR-98-5p 0.020851 down -28.8801 Radon risk Home type 

 

EESs were compared by Venn diagram analysis with the miRNAs composing the individual 

cancer-related signature LCRMs of each patient (Figure 17). This approach was used to identify the 

relative contribution of environmental risk factors to cancer development in each patient. In a first 

moment it was hypotheses that a major number of deregulated EESs per patient may predict their 

survival, as a minor deregulation may be a signal of adaptative mechanisms against tumoral 
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development, but after a statistical test we understood that this correlation was not significative. As 

shown in Table 1, among patients analysed with miRNA chip-array only 11 died within 3 years after 

surgery, and we have EESs available data from 9 of them: patient 6 presents 43 deregulated EESs, 

patient 34 has 78, patient 38 has 59, patient 42 has 50, patient 46 has 92, patient 47 has 61, patient 

49 has 95, patient 55 has 92, and patient 57 has 45.  

 

Figure 17 Number of altered miRNAs in EESs (x-axes) per patient (y-axes, T codes). Median is shown as a black vertical line 

 

As explained before, not significative data between number of deregulated miRNA and 

patient’s tumoral types, or survival, was found. In fact, U Mann-Witney non-parametric test was run 

to understand if the distribution of the sum of EESs per patient was equal between survival (p = 0.886) 

as shown in Figure 18a, and histotype (p = 0.167) as shown in Figure 18b. The null hypothesis was 

maintained.  

 

As conclusion we can only say that not surprisingly the strongest EES signal is vehicle traffic. 

This is supported by bibliography for let-7a-5p, let-7c-5p, miR-125a-5p, miR-142-3p, miR-146a-5p, 

miR-150-5p, miR-185-5p, miR-199a-5p, miR-214-3p, miR-223-3p, miR-23a-3p, miR-4516, miR-99b-
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5p, which have been previously identified as altered after exposure to air pollution. It remains 

uncertain if Radon and volcano ashes EESs may be reliable markers.  

 

Figure 18 U Mann-Witney non-parametric test between the sum of EESs per patient and survival status 

 

The biological effects of these miRNA alterations was evaluated by analysing the genes 

targeted by each environmental exposure signature. A gene target detection for each environmental 

exposure signature was run on GeneSpring using TargetScan as database. The number of estimated 

target genes for each signature and different p-values cut-off are summarized in Table 9.  

 

Table 9 Number of predicted target genes according to Targetscan database by each environmental exposure with different p-value cut 
off. 

Environmental Exposure miRNA 

Signature 

Number of predicted target genes by p-value 

cut off 

0.05 0.01 0.005 0.001 0.0001 

Passive Smoking at home (n=8) 8,726 8,726 8,726 6 1 

Passive smoking at work (n=1) 1,796 3 0 0 0 

Vehicle traffic at home (n=53) 16,132 16,132 16,132 16,132 7 

Home distance from Etna Volcano 

(n=21) 
14,662 14,662 14,662 20 4 

Home Type radon risk (n=19) 13,762 13,762 15 0 0 
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The most significant targeted genes for each signature are summarized in Table 10, and we 

found that these genes are also expressed in lung tissue. The RPKM (Reads Per Kilobase of transcript, 

per Million mapped reads) value in lung tissue for each targeted gene was found using NCBI Gene 

database (https://www.ncbi.nlm.nih.gov/gene). Is very complex to correlate EESs to an individual 

health outcome as each tissue sample have a unique miRNA profile due to patient’s heterogeneity. 

However, gene target prediction supports the hypothesis that the deregulation of miRNAs in EESs 

may have a strong influence in lung tissue, even if it was not understood how they are correlated to 

environmental exposures. 

 

Table 10 Most significative gene target detection per signature by p-value cut-off. Each targeted gene had different RPKM(Reads Per 
Kilobase of transcript, per Million mapped reads) values in lung. 

Environmental 

Exposure 

signature 

p-

value 

cut-off 

Genes Gene name 
RPKM in 

lung 

Passive Smoking 

at home (n=8) 
0.001 

PTX4 pentraxin 4 0.006 

NAXD NAD(P)HX dehydratase 11.04 

MAPK3 mitogen-activated protein kinase 3 30.87 

VPS16 
core subunit of CORVET and HOPS 

complexes 
8.88 

CACNA1S 
calcium voltage-gated channel subunit 

alpha1 S 
0.11 

SHARPIN SHANK associated RH domain interactor 10.01 

Passive smoking 

at work (n=1) 
0.01 

HBG2 hemoglobin subunit gamma 2 ND 

RNASE12 ribonuclease A family member 12 ND 

IFT88 intraflagellar transport 88 2.84 

Vehicle traffic at 

home (n=53) 
0.0001 

LEFTY1 left-right determination factor 1 0.00 

RTTN rotatin 0.76 

THYN1 thymocyte nuclear protein 1 9.95 

CASKIN1 CASK interacting protein 1 0.87 

SERPING1 serpin family G member 1 219.55 

OGFOD2 
2-oxoglutarate and iron dependent 

oxygenase domain containing 2 
2.74 

PKDCC 
protein kinase domain containing, 

cytoplasmic 
11.39 

Home distance 

from Etna 

Volcano (n=21) 

0.001 
ARHGEF33 

Rho guanine nucleotide exchange factor 

33 
0.12 

COX17 COX17 13.49 

https://www.ncbi.nlm.nih.gov/gene
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RAI2 retinoic acid induced 2 10.76 

KIF12 kinesin family member 12 0.87 

COL26A1 collagen type XXVI alpha 1 chain 0.20 

RMDN2 regulator of microtubule dynamics 2 1.47 

GADD45A 
growth arrest and DNA damage 

inducible alpha 
9.03 

DTNA dystrobrevin alpha 1.44 

HTRA4 HtrA serine peptidase 4 0.32 

TAS2R30 taste 2 receptor member 30 ND 

STRN3 striatin 3 4.72 

BRINP3 
BMP/retinoic acid inducible neural 

specific 3 
0.13 

EYS eyes shut homolog 0.01 

JAG2 jagged canonical Notch ligand 2 3.18 

HSD17B12 
hydroxysteroid 17-beta dehydrogenase 

12 
25.64 

NIN ninein 4.25 

NAA35 
N-alpha-acetyltransferase 35, NatC 

auxiliary subunit 
2.93 

ZNF37A zinc finger protein 37A 1.72 

GLT8D2 
glycosyltransferase 8 domain containing 

2 
3.69 

DDX59 DEAD-box helicase 59 1.99 

Home Type 

radon risk 

(n=19) 

0.005 

CNPY3 canopy FGF signaling regulator 3 9.45 

SUB1 SUB1 regulator of transcription 15.25 

CLTC clathrin heavy chain 28.19 

ZNF280A zinc finger protein 280A ND 

ALS2CR12 
(or FLACC1) flagellum associated 

containing coiled-coil domains 1 
1.09 

TMEM139 transmembrane protein 139 5.56 

BTBD3 BTB domain containing 3 7.59 

WDR7 WD repeat domain 7 2.54 

RAB15 member RAS oncogene family 4.32 

KRT84 keratin 84 ND 

MAZ MYC associated zinc finger protein 15.90 

ATAD2B ATPase family AAA domain containing 2B 0.93 

PSPH phosphoserine phosphatase 1.00 

PGBD1 piggyBac transposable element derived 1 1.16 

BEX2 brain expressed X-linked 2 4.10 
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GeneSpring 14.9 was used to build a prediction model using Environmental Exposure 

signatures. Neural Network class prediction algorithm was used to test the overall accuracy 

prediction for each environmental exposure of all miRNAs in the array as compared to the overall 

accuracy prediction for each environmental miRNA signature entities. The network was tested in 

tumoral tissue. For passive smoking at home, and Home Type radon risk the accuracy of the 

environmental signature remarkably increase as compared to the overall miRNAs. Conversely, for 

vehicle traffic at home and home distance from Etna volcano the overall accuracy was only slightly 

higher (Table 11). For Passive smoking at work signature the accuracy remains equal, demonstrating 

that one miRNA-signature is not enough to predict this exposure. 

 

Table 11 Results of the Neural Network class prediction for each environmental exposure using both All miRNAS (2570 entities) and only 
environmental exposure signal (EES). Prediction overall accuracy variation is higher in 4 out of 5 signatures if using only EESs. Prediction 
Overall Accuracy have a range between 0 and 1. 

Environmental Exposure (EES’s 

number of miRNA entities) 

n. of endpoints [endpoint 

value] 

ALL miRNAs 

(n=2570) 
EESs (variation) 

Passive Smoking at home (n=8) YES vs. NO 0.73 0.96 (+0.23) 

Passive smoking at work (n=1) YES vs. NO 0.68 0.68 (+0) 

Vehicle traffic at home (n=53) High risk vs. other 0.77 0.81 (+0.04) 

Home distance from Etna 

Volcano (n=21) 
<60km vs. ≥60km 0.60 0.82 (+0.22) 

Home Type radon risk (n=19) other vs. High risk 0.83 0.96 (+0.13) 

 

Vehicle traffic at home signature have the highest number of EESs entities (n=53) and the use of 

this signature in the Neural Network prediction have the accuracy of 0.81. Distance from Etna volcano 

had the second highest number of EESs entities (n=21), with an overall accuracy of 0.82. Radon risk 

had the third weight in miRNA signature (n=19) with an overall accuracy of 0.96. Passive smoke had 

the fourth weight in miRNA signature (9) with an overall accuracy of 0.82. 

 

3.9. B(a)P-DNA adducts and environmental exposures 
 

Pearson’s Bivariate Correlation analysis shows that there’s not a statistically significant 

association between B(a)P-DNA adducts and environmental exposures. As with miRNA analysis, the 

lack of statistical significance may occur due to the limited number of patients analysed and their 
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heterogeneity. Detailed data of BaP-DNA adducts in lymphocytes and different environmental 

exposures from all recruited patients as reported by questionnaires are detailed in Table 12. This 

table differs from Table 1 as BaP-DNA adducts were measured in 58 out of 64 patients, but complete 

exposure data was available for 54 patients. 

 

Table 12 BaP-DNA adducts and exposure data from all 64 recruited patients. Difference with Table 2 is that BaP-DNA adducts were 
measured in 58 patients. However, some exposure data are missed. 

Patient 

code 

Total BaP-

DNA 

adducts 

Passive 

smoking 

at home 

Passive 

smoking 

at work 

Home 

type radon 

risk 

Vehicle traffic at 

home 

Distance 

from Etna 

in Km 

01 0.000490 YES NO high_risk Intense_traffic 18 

02 0.000470 YES YES others low_traffic 22 

03 0.000360 YES NO others moderated_traffic 94 

04 0.000650 NO  high_risk low_traffic 91 

05 0.007280 NO YES others without_traffic 65 

06 0.000810 NO NO high_risk without_traffic 114 

07 0.000470 YES NO high_risk without_traffic 93 

08 0.002730 YES YES high_risk without_traffic 73 

09 0.000640 NO YES high_risk low_traffic 20 

10 0.000290 NO YES high_risk low_traffic 51 

11 0.001080 NO NO high_risk moderated_traffic  

12 0.001570 YES NO high_risk low_traffic 60 

13 0.002280 YES YES high_risk low_traffic 93 

14 0.000170 NO YES high_risk low_traffic 100 

15 0.000810 YES NO high_risk moderated_traffic 99 

16 0.001070 NO YES high_risk moderated_traffic 18 

17 0.000970 NO NO high_risk low_traffic 85 

18 0.000620 YES YES others low_traffic 60 

19 0.000290 NO NO high_risk low_traffic 99 

20 0.002430 YES YES others low_traffic 27 

21 0.000470 YES YES high_risk moderated_traffic 82 
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22 0.000160 NO NO high_risk moderated_traffic 31 

23 0.000160 YES NO high_risk low_traffic 18 

24 0.000300 NO NO others Intense_traffic 24 

25 0.000320 YES NO others low_traffic 152 

26 0.006200 YES YES others moderated_traffic 93 

27 0.002250 YES NO high_risk moderated_traffic 20 

28  YES YES others Intense_traffic 50 

29  NO YES others Intense_traffic 107 

30 0.005900 YES YES high_risk low_traffic 13 

31 0.002960 YES NO others moderated_traffic 27 

32 0.002350 YES YES others Intense_traffic 98 

33 0.000160 NO NO high_risk low_traffic 16 

34 0.002130 YES NO high_risk low_traffic 26 

35 0.003350 NO YES high_risk moderated_traffic 20 

36 0.002750 YES YES  moderated_traffic 108 

37 0.003440 NO YES others moderated_traffic 93 

38 0.002340 YES YES high_risk moderated_traffic 93 

39 0.001630 NO  others Intense_traffic 66 

40 0.005370 YES YES high_risk low_traffic 22 

41 0.026900 NO YES high_risk without_traffic  

42 0.002530 YES YES high_risk moderated_traffic 19 

43 0.003560 NO YES high_risk without_traffic 79 

44 0.009350 NO YES high_risk low_traffic 51 

45 0.005790 YES NO high_risk without_traffic 16 

46 0.002760 NO NO  without_traffic 21 

47 0.008520 NO NO high_risk low_traffic 26 

48 0.003260 NO YES others without_traffic 77 

49 0.001640 NO YES high_risk without_traffic 15 

50 0.006580 NO NO high_risk without_traffic 24 

51 0.005540 YES YES high_risk without_traffic 36 

52 0.003830 NO NO high_risk without_traffic  
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53 0.004530 YES  others Intense_traffic 26 

54 0.005120 NO YES others without_traffic  

55 0.000830 NO NO others without_traffic 26 

56 0.002560 NO YES high_risk low_traffic 98 

57 0.000250 YES YES high_risk without_traffic 92 

58 0.000630 NO YES others without_traffic 26 

59  NO YES high_risk low_traffic 13 

60  NO NO others moderated_traffic 100 

61  NO NO high_risk Intense_traffic 26 

62  YES YES others moderated_traffic 67 

63 0.000490 NO YES others low_traffic 60 

64 0.000470 YES NO high_risk Intense_traffic 21 

 

Pearson correlation test results were: (a) passive smoking at home from 56 patients, correlation 

coefficient = - 0.126, p= 0.354 as shown in Figure 19a; (b) passive smoking at work from 53 patients, 

correlation coefficient = 0.223, p= 0.109 as shown in Figure 19b; (c) radon risk related to home type 

from 54 patients, correlation coefficient= - 0.064, p=0.644, as shown in Figure 19c; (d) vehicle traffic 

at home from 56 patients, correlation coefficient = - 0.273, p= 0.079, as shown in Figure 19d; (e) 

distance from Etna available from 52 patients, correlation coefficient = - 0.204, p-value= 0.147, R2 = 

0.042, as shown in Figure 19e; and (f) years since smoking cessation available from 54 patients, 

correlation coefficient = - 0.099, p-value= 0.477, R2 = 0.01, as shown in Figure 19f. Linear regression 

shows that the level of B(a)P-DNA adducts in lymphocytes was inversely related with the distance 

from Etna volcano, as well as years since smoking cessation, even if both correlations were not 

significative. 
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Figure 19 Box plot analysis for Total BaP-DNA adducts in: (a) passive smoking at home, (b) passive smoking at work, (c) radon risk home 
type, (d) vehicle traffic at home, and linear regression for (e) distance from Etna, and (f) years since smoking cessation. Bivariate 
(Pearson) Correlation shows that in our study B(a)P-DNA adducts are not significantly correlate to environmental exposures mentioned. 

When using linear correlation test instead of Pearson correlation test, we can see that the 

correlation between pollution and BaP remains not significant (Table 13). 

 

Table 13 Linear correlation results using BaP-DNA adducts as dependent variant and pollution as independent variant. 

Independent variant R R2 
ANOVA Regression 

sum of squares 
ANOVA p-value 

Passive Smoking at home 0.126 0.016   

Passive Smoking at work 0.223 0.05   

Home Type Radon Risk 0.064 0.004   

Vehicle Traffic at home 0.238 0.56   

Km from Etna 0.204 0.042 0.000 0.147 

Years since stop smoking 0.78 0.01 0.000 0.672 
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4. Discussion and conclusions 
 

Our results provide evidence that miRNAs are massively dysregulated in lung cancer as compared 

to surrounding normal tissue, as previously demonstrated by several studies [66]. A major problem 

in using miRNA analysis for lung cancer prediction and early diagnosis is the reproducibility of the 

results and the invasiveness of the biopsy approach. Our Lung Cancer Related miRNAs, or LCRMs, 

signature at least in part overlap with the most common lung cancer miRNA-related signatures found 

in literature. Indeed 6 miRNAs of our signature were also present in other papers that analysed 

miRNA expression in lung cancer [67, 68]. These are let-7a, let-7b, miR-10a, miR-15a, miR-21, miR-

23a, miR-29a, miR-29b, miR-29c, miR-30a, miR-30b, miR-30c, miR-34a, miR-126, miR-128, miR-145, 

miR-191, miR-205, miR-221, miR-222, and miR-326.  

An important limit in this study is the lack of normalization of chip-array imported data. The goal 

of microarray bioinformatic data analysis is to remove systematic differences between samples that 

do not represent true biological variation. This is usually done at the initial data normalization stage 

of the analysis process. Different normalization methods have been used on miRNA microarray 

expression profiling data sets, but there is currently no clear consensus about their relative 

performances. Some have even chosen to omit normalization [69]. Due to the wide variability 

between samples, and the explorative nature of this research, normalization was avoided. Therefore, 

LCRMs and EESs may be biased, and miRNAs proposed as signal should be confirmed by PCR analysis 

in a new subset of patients. 

According to the most recent metanalysis about miRNAs in Lung Cancer patients when this 

thesis was written [70], about 92 studies with high quality standards have been published about 

miRNA regulation in lung cancer tissue compared to noncancerous surrounded tissues in humans. 

Metanalysis’ authors declared that high quality studies have shed light on how miRNAs are expressed 

in different lung cancers stages, and how expression changes as response to chemotherapy in 

patients with advanced stages of lung cancer. In the metanalysis authors found a total of 176 up-

regulated and 114 down-regulated miRNAs related to lung cancer in serum, sputum, plasma, 

peripheral blood mononuclear cell, and lung tissue. A total of 132 miRNAs were confirmed from 

different studies to be differentially regulated in cancer tissues compared to surrounded healthy lung 

tissue.  
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In Table 13 are reported lung tissue-related miRNAs using the data of [70], with 2 or more 

citations. In Figure 20 a Venn diagram shows all mentioned miRNAs up- and down-regulated in 

tumoral lung tissue, and miRNAs that overlapped in both regulations according to the metanalysis. 

The number of cited downregulated miRNAs (72) is major than the upregulated (70). miR-21, miR-

182, miR-205, miR-210 and miR-9 are the most citated as up-regulated, while miR-30a, miR-486, miR-

126, and miR-451 are the most citated as downregulated. Inconsistent results (i.e. down- and up- 

regulation were different between studies) were found for 10 miRNAs: miR-205, miR-9, miR-31, miR-

150, miR-224, miR-34a, miR-133a, miR-203, miR-218, miR-375. 

 

Table 14 Data from Zhong S, et al. (2021) about deregulated miRNAs in different studies about lung cancer tissues.Most citated 

miRNA is miR-21 with 7 citations, followed by miR-182 with 6 citations.  

Regulation microRNA Citation Frequency 

up- miR-21 7 

up- miR-182 6 

up- miR-205 5 

up- miR-210 5 

up- miR-9 5 

up- miR-183 4 

up- miR-31 3 

up- miR-93 3 

up- miR-96 3 

up- miR-106b 2 

up- miR-1290 2 

up- miR-135b 2 

up- miR-150 2 

up- miR-155 2 

up- miR-196a 2 

up- miR-196b 2 

up- miR-20a 2 

up- miR-210-3p 2 

up- miR-221 2 

up- miR-222 2 

up- miR-224 2 

up- miR-34a 2 

 

Regulation microRNA Citation Frequency 

down- miR-30a 7 

down- miR-486 7 

down- miR-126 4 

down- miR-451 4 

down- miR-139 3 

down- miR-144 3 

down- miR-144-3p 3 

down- miR-218 3 

down- miR-30d 3 

down- miR-34a 3 

down- miR-34b 3 

down- let-7e 2 

down- miR-100 2 

down- miR-125a 2 

down- miR-126-3p 2 

down- miR-133a 2 

down- miR-140-3p 2 

down- miR-145 2 

down- miR-205 2 

down- miR-27a 2 

down- miR-30a-3p 2 
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Figure 20 Downregulated and upregulated miRNAs in tumoral lung tissue as cited by different studies according to data from 

Zhong S, et al. (2021). Some miRNAs have inconsistent results, and the massevelly downregulation tipically found in chip array 

analysis is not evident. 

 

As interesting as this result can be, lung cancer-related miRNA metanalysis continue to 

report studies with different miRNA-profiling platforms (microchip array of different 

generations, PCR amplification and different technologies used for sequencing) and different 

data-analysis methods. This still cause high inconsistency as discussed by Zhong S, et al. 

Moreover, other metanalysis about let-7 family members have discuss how it is largely 

downregulated in lung cancer tissue [71, 72], but this is not reflected according to Zhong S, et 

al. results.  

 

If compared with the data of miRNAs altered in cancer tissue versus healthy tissue 

obtained in Izzotti et al. (2021) (that is the data used for this thesis available in Results chapter), 

it is evident that only a small part of results overlaps with Zhong S, et al. (2021) As we can see 

in Figure 21, 4 out of 117 miRNAs (miR-21, miR-182, miR-183, miR-106b) overlap as up-

regulated, and 38 out of 224 (miR-30a, miR-486, miR-126, miR-139, miR-144, miR-30d, miR-

34b, let-7e, miR-100, miR-125a, miR-145, miR-27a, miR-1, miR-101, miR-107, miR-133b, miR-

138, miR-143, miR-15a, miR-16, miR-181a, miR-187, miR-195, miR-199a, miR-23b, miR-29b, 

miR-30a, miR-486, miR-126, miR-451, 
miR-139, miR-144, miR-144-3p, miR-
30d, miR-34b, let-7e, miR-100, miR-
125a, miR-126-3p, miR-140-3p, miR-

145, miR-27a, miR-30a-3p, miR-1, 
miR-101, miR-107, miR-124a, miR-
133b, miR-137, miR-138, miR-143, 
miR-143-3p, miR-148a, miR-148b, 

miR-15a, miR-16, miR-181a, miR-181b, 
miR-187, miR-195, miR-199, miR-

199a, miR-216a, miR-22-3p, miR-23b, 
miR-26, miR-29b, miR-29c, miR-32, 

miR-33a, miR-342, miR-345, miR-361, 
miR-365, miR-375inSQ, miR-378d-3p, 
miR-3940, miR-425, miR-451a, miR-
452, miR-485-3p, miR-498, miR-520, 

miR-574-3p, miR-615-3p, miR-9*, miR-
99a, miR30c-2-3p

miR-21, miR-182, miR-210, miR-183, 
miR-93, miR-96, miR-106b, miR-1290, 
miR-135b, miR-155, miR-196a, miR-

196b, miR-20a, miR-210-3p, miR-221, 
miR-222, let-7a, let-7b, let-7i, miR-
125a-3p, miR-125b, miR-130a, miR-

134, miR-135a, miR-135b-3p, miR-148, 
miR-149, miR-17, miR-183-3p, miR-
187*, miR-188, miR-18b, miR-199b, 

miR-19b-1, miR-200a, miR-200c, miR-
204, miR-20b, miR-23a, miR-24-3p, 

miR-27b, miR-296, miR-29a, miR-301a, 
miR-30e, miR-328, miR-337, miR-339, 
miR-34c, miR-3917, miR-423-3p, miR-

4328, miR-450a, miR-485, miR-494, 
miR-5100, miR-577, miR-590, miR-

708, miR-939-3p

miR-205, miR-9, 

miR-31, miR-

150, miR-224, 

miR-34a, miR-

133a, miR-203, 

miR-218, miR-

375 

Down-regulated 
Up-regulated 
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miR-29c, miR-32, miR-342, miR-361, miR-451a, miR-452, miR-99a, miR-150, miR-224, miR-34a, 

miR-133a, miR-218) overlap as downregulated, while 34 miRNAs present inconsistent results. 

 

Figure 21 Comparisonbetween miRNAs mentioned in Zhong S, et al. (2021) and in our results from Izzotti et al. (2021) using 

Venn Diagram 

 

All the mentioned limitations, especially when analysing miRNA regulation data, need to be 

overcome. The first question remains what are the biological processes and the individual 

variability factors that define the inconsistence of miRNA expression in lung tissues across 

different studies.  

 

The identification of novel biomarkers based on miRNA profiles from accessible biological 

samples, like blood, would help in a near future a better understand of patient’s health state. 

Outcomes like a better malignant tumour tissue early detection, over time therapy 
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effectiveness prediction, and patient’s survival prediction rates, may become a reality. The 

identification of useful circulating miRNAs for predictive outcomes may require models based 

on standardized tissue-specific and blood-based profiles in oncologic patients. 

 

As seeing in our results, the presence of different mutations variates the Scatter Plot in each 

case. From Cancer Related miRNAs significantly altered in each mutation, only 4 were predicted 

by TargetScan to target the considered genes:  hsa-miR-15b-3p and hsa-miR-21-3p for KRAS, 

hsa-miR-548aa for STK11, and hsa-miR-205-3p for TP53. This suggest that the dysregulation in 

these miRNAs may worse mutation condition. 

 

The possibility of using miRNAs as survival predictors is one of the most interesting 

proposals. Accordingly, 11 miRNAs were found as statistically significant dysregulate in dead 

patients within 3 years since the biopsy: hsa-miR-1227-5p, hsa-miR-147b, hsa-miR-187-5p, hsa-

miR-23a-5p, hsa-miR-2861, hsa-miR-3663-5p, hsa-miR-371b-5p, hsa-miR-6068, hsa-miR-6075, 

hsa-miR-6771-5p and hsa-miR-7704. From this list, four miRNAs seem to be the most promising 

survival markers. It has been observed that miR-187-5p suppresses cancer cell progression in 

non-small cell lung cancer (NSCLC) through down-regulation of CYP1B1 [73], miR-147b 

promotes lung adenocarcinoma cell aggressiveness through glycoprotein 4 (MFAP4) regulation 

[74], miR-2861 has being proposed as a biomarker of Lung Cancer Stem Cells [75], miR-6075 

has being used as a biomarker for lung cancer high-accuracy diagnosis prediction models [76].  

The proposal of using miRNAs as survival predictors instead of, our analysis confirms that 

survival is not correlated to the number of oncogene mutations. 
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