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SUMMARY

The aim of this thesis Experimental studies on dispersion processes in periodic flows is to study the
hydrodynamics and asses the mixing properties of periodic flows, through extensive experimental
campaigns. With mixing, we refer to the field of environmental fluid mechanic that seeks to
provide tools to assess the flow of nutrients needed for the survival of an ecosystem, limit toxic
pollutants and minimize the anthropic impact. Over the last twenty years, a lot of literature had
been devoted to asses mixing processes occurring in uniform flows but less on periodic ones. A
periodic flow is an oscillatory flow whose characteristics assume the same sequence of values
exactly after a fixed length of time, known as the period. These repetitive velocity patterns pro-
duce in the hydrodynamics a periodical occurrence and, eventually, destruction of flow structures
responsible for the dispersion or the entrainment of pollutants/ nutrients within the domain
considered. Coastal areas provide a typical example of regions dominated by period flows, such as
those induced by tidal currents and sea waves. These areas are also characterised by a massive
human development, and biodiverse ecosystems, making the study of the mixing of paramount
importance for their sustainment and preservation. The thesis is composed by two main Parts,
each one dealing with a different experimental campaign.

In particular, the purpose of Part I is to study the processes that govern the dynamics of
periodic non-uniform flows by conducting experiments on a physical model that represents a tidal
environment with a barrier island inlet and a tidal channel surrounded by flats. Starting from the
study of a single component tide, we refine our results studying more complicated tidal shapes,
consisting of multi harmonics laws. In both cases, the results show that small pair separations
grow exponentially in time whereas larger separations are controlled by large scale structures.
Lagrangian Coherent Structures (LCS) have been detected, suggesting that material curves
exist and map transport boundaries within the domain. Moreover, in order to understand how
energy is exchanged among the wide range of flows, we analyze nonlinear energy/enstrophy trans-
fer rates and map out the energy pathways through the flow scales of the measured velocity fields.

Part II approaches both experimentally and numerically the study of plastic particle transport
owed to the action of sea waves. The experiments are performed in a wave flume, forced by regular
waves. The main objective is to quantify the inertial effect of the heavy particles on the Stokes
drift and, ultimately, to suggest a new analytical formulation for the net settling velocity, through
the comparison between experimental results and those provided by a simplified numerical model.
Experiments suggest that the inertial effects lead to an increased particle settling velocity with
respect to the one predicted by standard formulas validated in still fluids. Numerical simulations
lead to the conclusion that sea waves are able to generate a net Lagrangian transport by the
Stokes drift, which is considered an important source of mass transport in coastal areas.
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“All models are wrong, but some are useful.”

– George E.P. Box

Part I

Dispersion processes in weakly
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INTRODUCTION

E
stuaries are considered transitional regions between landward waters and open sea,

and thus important sites for human development. Estuarine regions can be classified

depending on morphology, geometry configurations, vertical salinity stratification and

finally hydrodynamics (MacCready and Geyer, 2010; Valle-Levinson, 2010). In particular, coastal

bays and estuaries are characterized by flows driven by hydraulic imbalance such as baroclinic

pressure gradients, river inflows, wind stresses, and tidal waves. In a recent contribution (Valle-

Levinson, 2021), a classification based on the dynamical balance between different mechanical

drivers (tides and density gradients) has been suggested in particular for semienclosed basins.

If on one hand, tidal propagation has been deeply studied in order to better understand the

suitable parameters to describe it (Seminara et al., 2010; Toffolon et al., 2006; Cai et al., 2012),

on the other hand, the role of tides on mass transport still requires a thorough investigation. The

role of tidal circulation in estuarine mixing was considered of less importance for several decades

(Geyer and MacCready, 2014). However, the so-called residual currents derived by averaging

flow field over a tidal period are recognized to be fundamental agents for mass transport and

dispersion processes (Jay, 1991; Zimmerman, 1986) owing to the strong and persistent straining

and shearing (Ridderinkhof and Zimmerman, 1992).

Some geometrical features such as tidal embankments or coastal lagoons, combined with the
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CHAPTER 1. INTRODUCTION

periodic nature of the tidal forcing, may trigger the generation of flow structures that enhance the

dispersion mechanisms. These flow structures arose are characterize by different length scales.

The presence of a tidal inlet, for example, can generate macro-vortices that during a tidal cycles

may influence the momentum and mass transport on relatively large distances, about four time

the tidal inlet width (Awaji et al., 1980; Awaji, 1982; Branyon et al., 2021).

Several studies focused on the definition of the time scales and the estimation of the dis-

persion coefficients in monochromatic tidal force conditions (see Cucco et al. (2009); Umgiesser

et al. (2014); Viero and Defina (2016) among others). At the same time, several works were

dedicated to the prediction of multi-harmonic tides (Amin, 1986; Lee and Chang, 2019) and

their propagation (Jay, 1991; Seminara et al., 2010; Fortunato and Oliveira, 2005; Toffolon et al.,

2006; Cai et al., 2012). However, literature on the effects of multiple harmonics on the flow field

and dispersion processes is lacking. In fact, field studies devoted to estimation of longitudinal

dispersion coefficients (Monismith et al., 2002; Lewis and Uncles, 2003; Banas et al., 2004) did

not provide any relationship among the coefficients and the tidal wave shapes, such as tidal

asymmetries or seasonal modulations. Several field measurements of longitudinal dispersion

coefficient reported a wide range of values, spanning almost two order of magnitudes from 10 to

103 m2/s−1 (Fischer et al., 1979; Monismith et al., 2002; Lewis and Uncles, 2003; Banas et al.,

2004). Moreover, tides tend to produce non-monotonic particle velocity correlation leading to

possible particle looping trajectories that also reflect on a looping character of the Lagrangian

integral time scales, differently from the classical statistically steady or homogeneous turbulence

(Orre et al., 2006; Enrile et al., 2019). Looping-like particle trajectories have been also studied in

oceanic context and they were found to be related to anomalous dispersion regimes (Berloff et al.,

2002; Veneziani et al., 2004; Enrile et al., 2019).

Seeking a reliable definition of the time scale for transport processes led to use different

measures such as residence time, flushing time, age (see Cucco et al. (2009); Umgiesser et al.

(2014); Viero and Defina (2016); Yang et al. (2018) among many others). The attempt was

to classify estuaries based on these time scales and an example can be found in Umgiesser

et al. (2014) where several estuaries and coastal bays of the Mediterranean Sea were compared.

However, most of these time scales were based on Eulerian concepts and quite a few on Lagrangian
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approaches.

Classical analyses in terms of single and multiple particle statistics are very seldom applied

to estuaries compared to oceanographic and atmospheric applications (LaCasce, 2008). Moreover,

attempts to study the dispersion processes under controlled laboratory conditions in simplified

estuaries are very limited in literature (Kusumoto, 2008; Nicolau del Roure et al., 2009; Dronkers,

2019), although worth pursuing. Indeed, controlled experiments with simple boundary conditions

provide a measure of some of the main mechanisms that drive the dispersion process. The

definition of these mechanism is a goal quite difficult to achieve on the basis of field observations

whose interpretation is generally complicated by the large scale of the processes, more irregular

natural geometries and the simultaneous presence of a variety of features whose role cannot be

readily isolated. Moreover, they provide an useful data-set to test reliability of analytical and

numerical models.

In the present study, we aim to investigate the relevant dispersion processes using a large

scale physical model of a weakly-dissipative tide dominated estuary (Toffolon et al., 2006; Cai

et al., 2012) characterized by the presence of an inlet mouth that connects the outer sea to a

compound tidal channel. Flow is forced by tidal waves imposed at the outer basin.

In an attempt to understand the role of the tidal constituents, we designed this study with the

aim to firstly investigate the role of a single harmonic and secondly the role of two harmonics,

representing the semi-diurnal and diurnal components, with different tidal form factor. We

provide a detailed description of the transient macro-vortices generated at the inlet and the

resulting residual current for the different tidal forcings. The generation of flood-vortices is

compared with previous works (Nicolau del Roure et al., 2009) and extended considering the

effect of the vorticity generation owing to the depth jump between the channel and the tidal flats

(Brocchini and Colombini, 2004; Stocchino et al., 2011).

Large scale Particle Image Velocimetry is employed to measure two dimensional (x-y) surface

velocity fields providing a high spatial and temporal description of the flow. A detailed Lagrangian

analysis of the typical integral scales and of single and multiple particle statistics is performed

and provides a clearer picture of the processes occurring in weakly dissipative estuaries that

depend on the controlling parameter such as the amplitude or the period of the forcing tide.
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The flow structures at different scales generated by the interaction of the tidal waves with

the inlet mouth are expected to be further complicated by increasing the complexity of the

tidal waves, with possible effects on the main dispersion processes. To assess the interplay of

the flow structures at different scales and the resulting dispersion regimes, multiple particle

statistics have proven to be an effective analysis when applied to geophysical flows (Orre et al.,

2006; LaCasce, 2008). Moreover, the theoretical results in terms of relative dispersion and

Finite Size Lyapunov Exponents suggest the possible existence of local and non-local dynamical

behaviours (Kraichnan, 1966; Lin, 1972; Bennett, 1984; Babiano et al., 1990). In particular, the

non-local regimes are associated to particle separations that are influenced by different flow

scales. Applications to geophysical flows showed the existence of local and non-local regimes

when the flow is mainly generated by the tides (Enrile et al., 2019). In the present study, we will

perform multiple particles statistics based on the measured flow fields generated by both a single

harmonic and multiple harmonics tides.

Moreover, geophysical flows act as vectors of pollutants and nutrients, posing a challenge

when attempting to describe the dispersion processes. What at first sight may appear chaotic and

indescribable, in-depth analysis reveals special surfaces of fluid trajectories that act as dynamical

attractors.

The Lagrangian Coherent Structure theory, first introduced by G.Haller, seeks to reveal the

skeleton of the turbulence (Mathur et al., 2007; Haller, 2011; Haller and Beron-Vera, 2012;

Haller, 2015). As underlined by Haller (2015), classical dynamical systems theory gives insights

on Lagrangian Coherence in time independent, time periodic and quasi-periodic velocity fields.

Already with the simplified geometry and forcing used for the present experiments, the

resulting flow fields show complex dynamical processes at different scales. Single and multiple

particle statistics implicitly assume homogeneity of the flow.

To fully understand the role of the non homogeneous character of the flow, we apply Haller’s

theory for the computation of the Finite Time Lyapunov Exponents fields seeking for the identifi-

cation of possible LCSs. The final part of Part 1 is dedicated to the study of the non-linear energy

and enstrophy transfers. It is well known the relation between the multiple statistics regimes

and the energy cascade. However, we aim to go beyond a simple spectral analysis, studying in
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details the energy/enstrophy transfers among the different scales.

Part 1 of the present thesis is organized as follows. Chapter 2 presents the experimental

set-up, the experiments run and the measuring technique. Chapter 3 is devoted to a general

background theory. Chapter 4 deals with the analysis of a dataset of surface velocity fields and

the results of the Lagrangian analysis performed. Chapter 5 focuses on the energy flux transport

among the scales involved in the process, introducing also the theory underneath. Chapter 6

concludes this first part of the thesis.
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2
EXPERIMENTAL SET-UP AND MEASURING TECHNIQUE

2.1 PHYSICAL MODEL AND TIDAL FORCING

P
hysical experiments have been carried out in the hydraulic Laboratory of the Depart-

ment of Civil, Chemical and Environmental Engineering (DICCA) of the University

of Genova, Italy. A sketch of the overall experimental set-up is shown in Figure 2.1.

The experimental apparatus can be divided in two main parts: a tidal channel and a rectangular

basin, connected each other through a tidal inlet. In particular, the 23 m long tidal channel is

characterized by a symmetrical compound cross-section, i.e. composed by a deep main channel

and two lateral flats. Overall the tidal channel system is 2.42 m wide (wch), but the main channel

has a landward decreasing width, starting from about 70 cm at the tidal inlet (wi) reaching

about 11 cm at the channel end. Consequently, the two tidal flats have a varying width between

0.86 m and 1.16 m on each side. This convergence feature is common in real tidal channels

that are typically characterized by a landward convergence (Friedrichs and Aubrey, 1994) and a

meandering behavior (this latter aspect not represented in our experimental apparatus for the

sake of simplicity). The main channel has a longitudinal slope equal to 2.5‰ and tidal flats are

located at a constant elevation of 0.24 m from the bottom of the channel. The basin, representing

the sea, is 6 m long and 2.20 m wide (wb), allowing for a maximum depth equal to hb = 0.5
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Figure 2.1: Sketch of the experimental set up and measuring systems.

m. Contrary to the tidal channel, the bottom of the basin is flat. The mean water elevation,

referred to the bottom of the channel, at the channel inlet has been maintained constant and

equal to hw = 0.36 m during the experimental campaign. As already mentioned, the connection

between the two main parts is made through a tidal inlet. It consists of two thin vertical plates

l i= 0.84 m placed at the seaward tidal flats edges, hence water exchange between the basin

and the channel is allowed only at the inlet cross section of the main tidal channel. This is a

common configuration in estuaries characterized by the so called barrier island, accumulations of

sediments partially emerged between two inlets, constituted as a result of subsequent marine

depositions and erosional processes occurring in the shoreline region. The inlet opening has not

been altered during the whole experimental campaign.

The entire experimental apparatus is made by concrete providing an estimated conductance

coefficient C of about 12 m1/2/s, which corresponds to a Manning’s resistance coefficient of about
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Figure 2.2: Left panel) The oscillating cylinder and feeding tank. Right panel) The sloping mound
at the opposite end.

0.0167 sm−1/3.

In order to provide an oscillating water level, a tidal generator system has been installed at the

end of the rectangular basin, in an adjacent feeding tank. It consists of a cylinder, with length of

2.8 m and diameter of 1,1 m (Figure 2.2), that imposes volume waves with variable period and

amplitude. It is important to note that, in order to reduce wave reflections, a dissipative sloping

mound has been installed at the end of the tidal channel (at the opposite side of the oscillating

cylinder, see Figure 2.2). Moreover, in order to avoid the generation of surface waves, two free

floating polystyrene sheets have been placed just in front of the oscillating cylinder: these damped

water surface oscillations of high frequency generated by localized disturbances.

The cylinder is remotely controlled using a digital signal acquisition/ generation system and

it provides a time law signal that, in its most general formulation, reads:

(2.1) η(t)=∑
i

ai sin(ωi t+φi)

where t is the time, η the free surface elevation, ai the tidal amplitude, φi is the phase shift and

ωi = 2π/Ti the tidal angular frequency, being Ti the tidal period. Note that the subscript i stands

for the ith tidal component. In the following, we take advantage of this general formulation in

distinguish between single component tides and multiple components tides. A list of the single

and multiple component experiments can be found in Table 2.1, reporting the main parameter for

each run.
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Table 2.1: Experimental forcing tide parameters

exp. a [m] D0 [m] T [s]
si

ng
le

co
m

po
ne

nt
se

ri
es

08-SC 0.0010 0.12 160
09-SC 0.0037 0.12 160
10-SC 0.0055 0.12 160
11-SC 0.0081 0.12 160
12-SC 0.0093 0.12 160
13-SC 0.0013 0.12 100
14-SC 0.0026 0.12 100
15-SC 0.0044 0.12 100
16-SC 0.0076 0.12 100
17-SC 0.0118 0.12 100
18-SC 0.0013 0.12 130
19-SC 0.0027 0.12 130
20-SC 0.0044 0.12 130
21-SC 0.0062 0.12 130
22-SC 0.0079 0.12 130
23-SC 0.002 0.12 180
24-SC 0.0039 0.12 180
25-SC 0.0055 0.12 180
26-SC 0.0076 0.12 180
27-SC 0.0091 0.12 180

exp. asd [m] ad [m] Tsd[s] φ F

m
ul

ti
co

m
po

ne
nt

s
se

ri
es

01-MC 0.017 0.0015 100 0 0.08

se
ri

es
1

02-MC 0.013 0.003 100 0 0.2
03-MC 0.013 0.0035 100 0 0.3
04-MC 0.012 0.0046 100 0 0.4
05-MC 0.0075 0.006 100 0 0.8
06-MC 0.006 0.007 100 0 1.2
07-MC 0.005 0.008 100 0 1.6

se
ri

es
2

08-MC 0.013 0.003 100 −φ/4 0.2
09-MC 0.013 0.0035 100 −φ/4 0.3
10-MC 0.012 0.0046 100 −φ/4 0.4
11-MC 0.0075 0.006 100 −φ/4 0.8
12-MC 0.006 0.007 100 −φ/4 1.2
13-MC 0.005 0.008 100 −φ/4 1.6

se
ri

es
3

14-MC 0.013 0.003 100 φ/4 0.2
15-MC 0.013 0.0035 100 φ/4 0.3
16-MC 0.012 0.0046 100 φ/4 0.4
17-MC 0.0075 0.006 100 φ/4 0.8
18-MC 0.006 0.007 100 φ/4 1.2
19-MC 0.005 0.008 100 φ/4 1.6



2.1. PHYSICAL MODEL AND TIDAL FORCING

With the aim to simplify our first approach to the tidal mixing problem, we decided to focus

on the simplified single harmonic tide. It is characterized by a unique period and amplitude,

reducing the general formulation of equation (2.1) to

(2.2) η(t)= asin(ωt).

In particular, in our first set of experiment we considered 5 different amplitudes a for 4 tidal

periods T = 2π/ω, for a total amount of 20 experiments.

However, astronomical tide is indeed provided by a wide variety of harmonic constituents each

one associated to a different gravitational force interaction among Earth, Moon and Sun. In terms

of amplitude, the first four main tidal contributions are: the principal lunar semi-diurnal (M2,

12.42 h period), the principal lunar diurnal (O1, 25.82 h), the principal solar semi-diurnal (S2, 12

h), and the principal solar diurnal (K1, 23.93 h) . Grouping together the diurnal and semi-diurnal

components, a simplified form for the astronomical tidal free surface oscillation reads:

(2.3) η(t)= asd sin(ωsd t)+ad sin(
ωsd

2
t+φ)

where we consider the period of the semi-diurnal component (ωsd = 2π/Tsd) as the reference one,

i.e. the diurnal component period is simply twice the semi-diurnal component one. The relative

importance of the semi-diurnal and diurnal components can be expressed through the form factor

F defined as Lee and Chang (2019):

(2.4) F = ad

asd

The form parameter can be used to discriminate the different types of astronomical tide, in

particular:

• if F < 0.25, the tide is semi-diurnal;

• if 0.25< F < 1.25, the tide is mixed, but mainly semi-diurnal;

• if 1.25< F < 3.0, the tide is mixed, but mainly diurnal;

• if F > 3.0, the tide is diurnal.
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According to Tsimplis et al. (1995), the form parameter associated with the astronomical

tide observed in different places in the Mediterranean Sea spans over a wide range of values. In

our experiments we have thus considered different tidal forcing with form parameter varying

between 0.038 and 1.7. We acknowledge that observed semi-diurnal (M2, S2) and diurnal (K1,

O1) are characterized by different periods and this difference in periods leads to modulations

with variations on longer periods (spring tide - neap tide cycles). However, reproducing these

modulations at laboratory scales would require the acquisition of an unmanageable number of

images, since our statistics are based on the average of several periods based on the slowest

modulation, i.e. over the largest period. However, we introduced the phase shift in equation

(2.1) to understand the role of the tidal wave shape depending of the phase lag between the

semi-diurnal and diurnal constituents. Three series of experiments have been performed for a

total of 19 experiments varying the form factor F and the phase φ, see Table 2.1 for the relevant

experimental parameters. In particular, a first series of experiments (experiments from 1 to 7) has

been designed for different values of the form factor and vanishing phase. A second series (from

experiment 8 to 13) has been performed for the same form factor of the first series, but choosing

φ=−π/4. The phase shift has been changed to φ=π/4 in the final series (from experiment 14 to

19).

2.2 MEASURING TECHNIQUE

2.2.1 LEVEL MEASUREMENT

During each experiment, water level and surface velocities have been measured.

In particular, free surface elevation was monitored using four ultrasound gauges (Honeywell

model 946-A4V-2D-2C0-380E, with 30 cm range and an accuracy of 0.2% of the full scale), fixed

on four aluminum profiles that allowed to place the gauges on the axis of the channel respectively

at a distance of 3, 7.75, 17.3 and 28 m from the wave maker, see Figure 2.1 for position and

Figure 2.3 for gauge detail. The gauge outputs are voltage measurements as function of time.

The voltage readings are then transformed in metric measurements through a calibration curve.

All ultrasound gauges have been calibrated and a linear law have been found with an R2 close to
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Figure 2.3: Ultrasound Gauge detail.

one as reported below (refers to Figure 2.1 for gauges names):

• gauge 1: η= 2.3407volt+18.902, R2= 0.9714

• gauge 2: η= 2.3407volt+18.902, R2= 0.9714

• gauge 3: η= 2.1746volt+14.119, R2= 0.9939

• gauge 4: η= 2.2434volt+13.795, R2= 0.9959

2.2.2 PIV MEASUREMENT

Large Scale Particle Image Velocimetry (LS-PIV) was employed to measure the two-dimensional

time dependent surface velocity fields u(x, y, t) = (u(x, y, t),v(x, y, t)), where, according to the

notations of Figure 2.1, we denote by x the landward oriented longitudinal axis of the channel

with origin located in the basin at a distance of about 3 m from the channel inlet and by y the

lateral coordinate; u and v are the x and y components of the velocity u, respectively. PIV is a non
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Figure 2.4: a) One of the eight halogen lamp; b) High-resolution GigaEthernet digital camera
and c) High-data transfer switch and cabels.

intrusive optical method of flow visualization and it is used in a wide range of applications in order

to obtain instantaneous velocity measurements, in particular when dealing with fluid velocity

measurements (Raffel et al., 1998). By means of statistical methods, the local displacement

for the images is determined assuming an homogeneous motion of the seeded tracers in the

domain, between two consecutive time recordings. PIV technique allows for the calculation of

the Eulerian velocity fields on the plane of measurement in case of 2D-PIV. It is worth noting

that, in our application, the large dimension of the investigated area imposes specific equipment

modifications with regards to the standard PIV technique. Indeed, the employment of a laser

light is unfeasible owing to the large scale at hand. Lighting was thus produced using eight 500W

white light halogen lamps (Figure 2.4a). The water surface was densely and uniformly seeded by

polyethylene particles (940 kg m−3, mean dimension 3 mm) used as PIV tracers.

LS-PIV acquisitions were recorded employing five high-resolution GigaEthernet digital camera

(Teledyne Dalsa Genie Nano C1280 and C2450). Depending on the camera model, the resolutions

varied between 2448×2048 pixels and 1280×1024 pixels. 6-mm lens have been mounted on the

cameras. Cameras were fixed on rigid supports placed at an elevation of 4 m from the bottom

of the channel, pointing downwards, as shown in Figure 2.1 and in detail in Figure 2.4b. In

Figure 2.4c we report the high-data transfer switch that allows for a fast connection between
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Figure 2.5: Five images acquired and panoramic image after merging process of a single time
frame.

the cameras and the computer storage, in order to prevent data drops. Based on the camera

arrangement, the Field of View (FoV) for the velocity measurements was such to cover a large

area, including the inlet region, of about 13 × 2.2 m, extending from about the last 3 m of the

basin to about the first 10 m of the channel for the entire width, with an image overlapping in

the longitudinal direction of about 20%. The LS-PIV acquisition frame rate was set equal to 10

fps. The selected frame rate allowed for a detailed description of the time variation of the velocity

fields: we obtained a number of velocity fields between 1000 and 1800 in a single tidal period

depending on the imposed tidal wave. Note that a high-resolution set of experiments has been

performed, in which we increased spatial and temporal resolution. This will be deeply exploited

in Section 5.2. Depending on the set of experiments considered each camera recorded more than

5000 images (a single acquisition lasted about 5 tidal cycles). The images from the five digital

cameras have been firstly binarized and then merged in order to obtain single panoramic images

of the entire FoV for each temporal instant before PIV analysis. An example of the five recorded

images and their merged panoramic view is shown in Figure 2.5. In particular, as described in

Raffel et al. (1998), we followed the multi-frame/single exposure approach in which the temporal

order of the particle position is preserved.
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CHAPTER 2. EXPERIMENTAL SET-UP, MEASURING TECHNIQUE AND DATA ANALYSIS

Finally, for the analysis of the images we employed the commercial software IDTproVisionTM

PIV software. In particular, we took advantage of the adaptive cell size approach (Lourenco, 2000)

that allows for the maximization of the cross-correlation between two consecutive images starting

from an initial interrogation window. In our case, depending on the experimental parameter,

the interrogation window varied from 24 × 24 pixels to 45 × 45 with a maximum overlap of

50%, ending up with about 15 thousand velocity vectors. Based on our PIV analysis settings

and, in particular, the size of the interrogation window and cross-correlation template, the final

spatial resolution was about one vector every 5.8 cm along the x-coordinate and 3.5 cm on the

y-coordinate. This experimental approach, based on the free surface velocity measurement, is

often used in many experimental works with primary focus on quasi-2D vortical structures (see

Jirka (2001); Nikora et al. (2007); Nicolau del Roure et al. (2009) among others).
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3
THEORETICAL BACKGROUND

I
n this chapter we briefly introduce the background theory on which we based our flow

field analysis. In particular, we started from an Eulerian approach to pass through a

Lagrangian one. Just to recall, approaching the flow analysis in an Eulerian manner

consists in considering a control volume of fluid and observe how the flow characteristics change

within the volume, whereas the Lagrangian method focus on changes of a particular fluid particle

that must be followed during the entire time span of study. Moreover, in the latter context, it

is also possible to distinguish between homogeneous and non-homogeneous quantities through

which a distinction between an average behaviour and a local analysis of the process can be

provided.

3.1 EULERIAN APPROACH

In fluid mechanics, a fluid element may experience four type of motion or deformation such

as translation, rotation, linear strain and shear strain. They may also occur simultaneously,

further complicating the analysis at hand, forcing us to study the dynamics in terms of rates.

The deformation rates are then expressed in terms of velocities and derivatives of velocity.

The rate of translation vector, in particular, is described by the velocity vector itself. In a two

dimensional flow field, the vertical component is neglected thus the velocity can be written as
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CHAPTER 3. THEORETICAL BACKGROUND OF LAGRANGIAN DISPERSION

u(x, y, t)= (u(x, y, t),v(x, y, t)). The rate of rotation, i.e. the vorticity, is defined as the curl of the

velocity that in 2D is

(3.1) ωz = ∂v
∂x

− ∂u
∂y

and it represents the measure of rotation of a fluid particle. Nonzero vorticity determines a

rotation of the fluid particles within the domain: the flow in that region is called rotational;

otherwise the fluid particles are not rotating and the flow is described as irrotational. Note that a

zero vorticity flow does not imply straight streamlines: circular streamlines may occur also in

irrotational flows. In order to highlight regions characterized by high concentrations of vorticity,

we performed an eigenvalue analysis on the Jacobian of the velocity

(3.2) Ji j = ∂ui

∂x j
.

The aim is to describe the flow topology, finding the critical points from which infer vortex

estimators such as the swirling strength λci (Zhou et al., 1999; Adrian et al., 2000) and Okubo-

Weiss parameter λ0 (Okubo, 1970; Weiss, 1991).

In non linear dynamical analysis, the study of the eigenvalues of the characteristic equation

(Chong et al., 1990)

(3.3) det(J−λI)= 0

allows for recognition of flow features. The characteristic equation could be also written in terms

of the trace and determinant of J, i.e.

(3.4) λ2 −τλ+∆= 0 with τ= tr(J) and ∆= det(J)

that has two solutions

(3.5) λ1 = τ+
p
τ2 −4∆
2

and λ2 = τ−
p
τ2 −4∆
2

in which τ and ∆ allow for the representation of the phase portrait as seen in Figari and Altosole

(2007) from which Figure 3.1 belongs. Real and distinct eigenvalues correspond to linear indepen-

dent eigenvectors, along which all the trajectories asymptotically approach, with the direction of

time chosen appropriately. In particular, both positive (negative) eigenvalues determine stable
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Figure 3.1: Phase Portrait

(unstable) points, whereas eigenvalues with opposite signs highlight saddles. Complex eigenval-

ues indicate stable (unstable) elliptical flow regions. Indeed, we denote the swirling strength

as the complex part of the complex eigenvalues and it represents zones characterized by high

rotational velocities.

Another vortex estimator could be the Okubo-Weiss parameter (Okubo, 1970; Weiss, 1991). For

steady or slowly time dependent flows, the Okubo-Weiss criterion makes use of the eigenvalues

of the local velocity gradient tensor D

(3.6) ∇v=

∣∣∣∣∣∣∣
∂u
∂x

∂u
∂y

∂v
∂x

∂v
∂y

∣∣∣∣∣∣∣
which can be written as ∇v2 = λ0I, where the Okubo-Weiss parameter λ0 = −det(∇v) is the

product of the eigenvalues of ∇v. However, it is better to write it in the form suggested by Weiss

(1991) as λ0 = 1
4 (S2 −ω2) where S2 = S2

n +S2
s is the total square strain, sum of the normal (Sn)

and shear (Ss) components,

(3.7) Sn = ∂u
∂x

− ∂v
∂y

Ss = ∂v
∂x

+ ∂u
∂y

and ω2 the square vorticity, as defined in equation 3.1. The sign of λ0 discriminates between

locally hyperbolic flow regions (λ0 > 0 strain dominated) and locally elliptical flow regions
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(λ0 < 0 rotation dominated). The latter are signature of coherent vortices. Note that both the

aforementioned estimates are not objective, that means not invariant in respect with rotations

and this suggests further developments towards a vortex identification using a pure Lagrangian

approach. Examples of use of this kind of criteria employed for the identification of vortex

structures can be found in Zhou et al. (1999); Adrian et al. (2000); Stocchino et al. (2011), among

others. In particular, Zhou et al. (1999) and Adrian et al. (2000) took advantage of the definition

of the local swirling strength for the identification of the vortices in a mean turbulent field

characterized by a low-Reynolds-number flow, whereas Stocchino et al. (2011) evaluated the

Okubo-Weiss parameter in a straight compound channel under quasi-uniform flow conditions.

3.2 HOMOGENEOUS LAGRANGIAN APPROACH

3.2.1 SINGLE PARTICLE STATISTIC

The most natural framework for analyzing mixing processes is the Lagrangian (or material) one,

which studies the evolution of material particles during the flow motion. Lagrangian statistics

thus average on particle positions, in terms of single or pairs or groups of particles (absolute

and relative statistics respectively). A description of these statistics is briefly provided. Given an

Eulerian velocity field it is possible to compute trajectories of material particles by integrating

the equation:

(3.8)
dx(t)

dt
=u(x, t)

where x(t) is the position at time t of the given particle and u(x, t) is the Eulerian velocity at point

x and time t. Once the particle trajectories are known, the absolute dispersion tensor, A2(t, t0),

can be found as (Provenzale, 1999):

(3.9) A2
i j(t, t0)= 1

M

M∑
m=1

{[
xm

i (t)− xm
i (t0)

][
xm

j (t)− xm
j (t0)

]}
where M is the number of particles and xm(t) is the position of the m-th particle at time t and

xm(t0) its initial position. The mean square displacement is given by the trace of A2(t), and it is

defined as the total absolute dispersion, which reads:

(3.10) a2(t)= Tr(A2)
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3.2. HOMOGENEOUS LAGRANGIAN APPROACH

The time derivative of a2(t) provides the estimate of the total absolute diffusivity coefficient K(t)

(Taylor, 1921; Provenzale, 1999; LaCasce, 2008).

Classical dispersion regimes are identified based on the time dependence of the total absolute

dispersion following the theory of Taylor (1921), found to be valid in several geophysical context

(LaCasce, 2008). The time dependence of the diffusivity coefficients enables the identification

of different dispersion regimes (Provenzale, 1999; Boffetta et al., 2001): in a wide variety of

applications, the absolute dispersion obeys power laws of the type A2(t, t0)≃ tα and, therefore,

the absolute diffusivity can be described as K(t) ≃ tα−1. The fundamental results obtained by

Taylor (1921) in the case of homogeneous turbulence show that, for short times after particles’

deployment, an exponent α = 2 can be expected, describing the so-called ballistic regime. For

times longer than an integral time scale TL, defined as the decorrelation time, the exponent

should be α = 1, the so-called diffusive or Brownian regime.

The decorrelation time, the so-called Lagrangian integral scale TL i , is defined as the time needed

by a particle to loose memory of its initial position. In particular, it separates the quadratic and

the linear time dependence of the absolute dispersion. It is defined as the time integral of the

Lagrangian autocorrelation function of the i-th Lagrangian velocity component uL i as:

(3.11) TL i =
∫ +∞

0
Riidτ

where

(3.12) Rii(τ)= 1
M

∑
M

ρL ii (τ)√
ρL ii (0)ρL ii (0)

and ρL ii (τ)= 〈uL i (t)uL i (t+τ)〉

in which the brackets indicate an average over the entire duration of each trajectory and uL i is

the i-th component of the Lagrangian velocity. The Lagrangian integral scale is then computed as

(3.13) TL = 1
2

(
TLx +TL y

)
A detail review can be found on LaCasce (2008). Elhmaïdi et al. (1993) discussed the single

particle dispersion of neutrally buoyant particles in two-dimensional turbulent flows finding that

coherent structures and circulation cells may affects the single-particle dispersion properties.
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3.2.2 MULTIPLE PARTICLE STATISTICS

Being interested in discussing the interplay among the particle trajectories and the different

scales of the flow, we apply tools commonly reported as multiple particle statistics (see LaCasce

(2008) for a review and application to geophysical contexts). Differently from the single particle

statistics, here we follow the separation of couple of particles in time, computing the relative

dispersion. The relative dispersion matrix R2(r0, t) is defined as the mean-square distance at

time t between a pair of particles that at time t0 had a distance equal to r0:

(3.14) R2
i j(r0, t)= 1

M−1

M−1∑
m=1

{[
xm

i (t)− xm+1
i (t)

][
xm

j (t)− xm+1
j (t)

]}
here M −1 is the number of particle pairs. As for the total absolute dispersion a2, the total

relative dispersion r2(t) is simply the trace of the relative dispersion matrix R2(r0, t) and the

total relative diffusivity D(t) is its time derivative.

Studies of the multiple statics can be found in Boffetta et al. (2001); Biferale et al. (2005); Bec

et al. (2010).

Together with the relative dispersion, we employ another Lagrangian measure commonly used

in dispersion studies, namely the Finite Scale Lyapunov Exponents Λ (FSLE). FSLE consists

in averaging the times required to a pair to separate from an initial distance to a final one

(Artale et al. (1997); LaCasce (2008); Cencini and Vulpiani (2013)). FSLEs provide a measure

of the dispersion as a function of the spatial resolution (Boffetta et al., 2001). This Lagrangian

measure allows for the identification of the most dynamic regions, i.e. the places of maximum

and minimum expansion of the fluid domain. The aim is to evaluate the time needed for a pair of

particles to reach a defined final separation. Thus, in order to calculate the FSLE it is necessary

to first choose a set of distances that are recursively increased as:

(3.15) rn = δrn−1 = δnr0,

where n is the chosen number of separation and δ is an arbitrary constant larger than unity, and

then calculate the times required (known as “exit time” Tn) for each pair displacement to grow to

the successive rn. At each distance the maximum FSLE is computed as:

(3.16) Λ(rn)= 1
〈Tn〉

log(δ),
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where the brackets indicate an ensemble average over the particle pairs that effectively reach

the rn distance. Care must be taken in the choice of the multiplier δ in order to correctly capture

the regimes of the flow at hand (Haza et al., 2008). In our experiments, we set δ = 1.2 as seen in

Enrile et al. (2019).

Both relative dispersion and FSLE have been extensively used in oceanographic and costal

studies leading to a better comprehension of the physical processes at the different separation

scales (Artale et al., 1997; Orre et al., 2006; LaCasce, 2008; Haza et al., 2008; Enrile et al., 2018b,

2019).

The success of the use of the two measures in geophysical applications relies on classical studies

on 2D and atmospheric turbulence (Kraichnan, 1966; Lin, 1972; Er-El and Peskin, 1981; Bennett,

1984; Babiano et al., 1990). The main results were the existence of two distinct dynamical

mechanisms leading to two dispersion regimes, namely local dispersion and non-local dispersion

and the link between the scaling law of these regimes with the energy cascade (inverse energy

cascade and direct enstrophy cascade). Scaling arguments to describe the different dispersion

and energy regimes can be summarized searching for laws of the kind:

(3.17) D ∝ r(α+1)/2.

The link with the energy cascades is the value of the exponent α, having assumed the turbulent

energy spectrum as a function of the wave numbers in the form of E(k)∝ k−α.

Relative dispersion in local dynamics is characterized by the effect of local straining, which is not

efficient in producing large separation, and the dispersion of pairs is dominated by eddies of the

same scale of their separation. This regime is described by values 1 <α< 3 and, in particular,

for α= 5/3 the famous Richardson-Obukhov law is recovered with D ∝ r4/3, that corresponds to

the energy cascade E(k) ∝ k−5/3. On the contrary, non-local dynamics is characterized by the

effect of vortices with typical scale much larger than the separation. This regime is described

by the Kraichnan-Lin law D ∝ r2, or more generally for α> 3. In this case, the expected energy

spectrum corresponds to an enstrophy cascade E(k)∝ k−3.

Note that where the relative dispersion shows a power law dependence, the FSLEs exhibit a

power law dependence on the separation as Λ∝ r−2/β. The exponent β is linked to the time
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growth of r2 with time (LaCasce, 2008).

3.3 INHOMOGENEOUS LAGRANGIAN APPROACH

In environmental mixing processes, spatial inhomogeneities may occur owed to obstacles in the

flow field and changes in the geometry. The spreading of material particles from their initial

position may be enhanced or weaken according to the local velocity at which they are subjected.

The great variability in space and time of the flow led the homogeneous quantities previously

introduced (single and multiple statistics) useful tools in the definition of the overall process but

is still lacking of information, since they result from a spatial average of regions characterized by

different dynamical behaviours.

It worth noting that despite turbulent character of the flow, it is still possible to recognize

large-scale coherent structures (Shadden et al., 2005) that help for a deeper understanding of the

flow dynamics, even in the spatial resolution. FTLE-LCS approach, indeed, claims that coherent

structures in a flow represent surfaces of large separations, i.e. they act as transport barriers,

and allow for distinguish flow regions with different dynamical behaviours. Moreover, the time

dependence of the LCS is able to describe the transport mechanism among different regions of

the domain in time.

Here we introduce the method of extracting Lagrangian Coherent Structures (LCS) by means

of the Finite Time Lyapunov Exponents (FTLE). LCS was first developed by Haller and Yuan

(2000), and then further studied by Shadden et al. (2005); Lekien et al. (2005); Haller and Beron-

Vera (2012), among many others. The Lagrangian approach, which employs particle trajectories

that necessarily retain the time-dependence in the velocity field, is more effective in identifying

persistent coherent structures than the Eulerian methods. Moreover, LCS has the advantage

that can be directly used on non-periodic flows, and to flows that are defined by discrete data sets

over a finite time interval.

3.3.1 FINITE TIME LYAPUNOV EXPONENTS

Applying the well-known principles of the continuum mechanics, we will define the Finite

Lyapunov Exponents. In order to describe the position of particles ξ of a fluid body B, we define
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a one-to-one correspondence between the particles and the coordinates of a reference system.

The Lagrangian coordinates then read ξ= (
ξ1,ξ2,ξ3)

and defines a label for fluid particles as a

material coordinate system. At this point, it is possible to define a continuous and differentiable

transformation Φ, called flow map, that allows a link between the Lagrangian and the Eulerian

coordinate system:

(3.18) x =Φ (t, t0,ξ) .

This transformation can be inverted in a point neighborhood, provided that Jacobian exists and

does not vanish (Aris, 1962). Note that the study of fluid flow cannot be fulfilled disregarding

the velocity fields. Indeed, the particles trajectories are solutions of equation (3.8) with initial

conditions x(t0,ξ)= ξ. With the aim to evaluate the distance that two initial close particles ξ0 and

ξ0+ϵ may experience on a finite time interval T = (t0, t1), we can apply a linearization (Allshouse

and Peacock, 2015) such as:

(3.19) δx=Φ(t1, t0,ξ0)−Φ(t1, t0,ξ0)+ϵ≈∇Φ(t1, t0,ξ0)ϵ

where ϵ represents an infinitesimal perturbation and ∇Φ(t1, t0,ξ0) is the tensor flow map gradient

(Figure 3.2a)) defined as

(3.20) ∇Φi
j = ∂xi/∂ξ j.

Note that we impose that an infinitesimal material element dx must not split along its evolution

and coalescence of two material elements does not occur: this is the physical interpretation

of the condition on the Jacobian of equation (3.18). Moreover, the deformation must preserve

orientation, that is three right-handed material elements dx, dy and dz satisfying dx∧d y ·dz > 0

are transformed into three material elements satisfying

(3.21) dx(t)∧d y(t) ·dz(t)= (∇Φdx)∧ (∇Φd y) · (∇Φdz)= det(∇Φ)dx∧d y ·dz > 0.

This second restriction implies that the Jacobian of equation 3.18 must satisfy:

(3.22) J = det(∇Φ)> 0
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Figure 3.2: a) The deformation of a tracer blob under the flow map Φt
t0

. b) Outward fingering-type
instability of a tracer pattern in a steady flow, caused by as saddle point p located inside the
initial tracer distribution.

The magnitude of the final distance can be evaluated as (Shadden et al., 2005):

(3.23)
|δx (t1)| =

√
δx (t1) ·δx (t1) =

√
[∇Φδx (t0)] · [∇Φδx (t0)] =

=
√

δx (t0) · [Cδx (t0)] =
√

ϵ · (Cϵ)

where C is the Cauchy-Green tensor evaluated as

(3.24) C = (∇Φ)T∇Φ

where (•)T denotes the transpose. It is possible to prove that matrix C is positive definite and

symmetric. Since we analyse 2D velocity fields, C has two eigenvectors e1 and e2 associated

with two eigenvalues 0 < λ1 ≤ λ2, respectively. This means that two main directions can be

recognized, tangent to the eigenvectors associated with the maximum and minimum eigenvalues

and called unstable and stable directions respectively, and in particular the magnitude of a

concentration gradient will decay in time along the unstable direction (Thiffeault and Boozer,

2001). In particular, let’s consider for example a saddle point p within an initial tracer distribution

B(t0), with its unstable manifold Wu intersecting the boundary of B(t0) at a nonzero angle. The

material will be transported exponentially fast by the flow map along this unstable manifold,

leading to a fingering-type instability (Olascoaga and Haller, 2012). The unstable manifold is

thus a stretching line, see Figure 3.2b). When δx(t0) is aligned with the eigenvector associated to

the maximum eigenvalue of C, the maximum stretching occurs:

(3.25) max |δx (t1)| = eσ
t1
t0
|T||ϵ̄|
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where

(3.26) σ
t1
t0
= 1

|T| log
√

λ2 = 1
2|T| logλ2

represents the (maximum) Finite-Time Lyapunov Exponent (FTLE) calculated on a finite inte-

gration time T. Note that a coordinate transformation does not produce any changes in FTLE

calculation: for this reason FTLE are considered objective quantities. Computing σ in forward

time (t≫ t0), repelling manifold at t0 are recognized to be the local maxima (i.e. ridges) of the σ
t1
t0

and, similarly, the attracting ones correspond to ridges in the σ
t1
t0

, calculated in backward time

(t≪ t0).

3.3.2 LAGRANGIAN COHERENT STRUCTURES

LCSs are usually associated with ridges and trenches of FTLE (Shadden et al., 2005; Haller and

Beron-Vera, 2012). They depict the most repelling, attracting, and shearing material surfaces

with the aim to describe and quantify the material transport, and forecast large-scale flow

features and mixing processes (Haller, 2015). Following the definition of Mathur et al. (2007), a

ridge in FTLE field, that behaves as an attractor, is the solution of

(3.27)
dx0

ds
=∇σt1

t0
(x0)

with s the arclength along the gradient lines. As pointed out by Shadden et al. (2005), LCS ridges

are FTLE’s gradient lines transversal to the minimum curvature direction, across which the flux

is usually negligible (even if non zero) and hence they act as transport barriers. Haller (2011)

improved the above definition stating that, in order to be recognized as a LCS, two key properties

must be respected: FTLE should be a material surface (as already said by Shadden et al. (2005))

and should exhibit locally the strongest attraction, repulsion, and shearing in the flow. This latter

aspect is linked with the hyperbolicity criterion: it enables to observe LCS as cores of Lagrangian

patterns. In particular, finding the local maxima in FTLE does not identify LCS, indeed it has

been found out by Lekien et al. (2005) and Tang et al. (2010) that FTLE in real-data sets could

also nor attract or repel nearby trajectories. Thus, four condition must hold in order for an FTLE

to be a LCS ridges:
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• λ2 of σt1
t0

must be larger that one with one-multiplicity, λ1 ̸=λ2 > 1;

• FTLE ridge has to be normal to the eigenvector of λ2, e2(x0), field;

• the gradient of λ2 in directions parallel to e2(x0) must be small 〈∇λ2(x0, t0,T),e2(x0)〉 = 0;

• FTLE must be steep, i.e. the Hessian of the Cauchy-Green tensor evaluated on the strongest

strain eigenvector field is positive, ∇2C−1(x0)> 0.
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