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Abstract

According to the classical paradigm of plate temt®rhe cratonic area of the inner part of
South America is considered tectonically stablevéiheless, the role of neotectonics on the
shape of the Brazilian landforms has been demdesdtiay several authors. In this work we
perform a lineament domain analysis to exploreréggonal meaning of the sparse and local
evidences of neotectonics within Southeast Braad #ame them in a regional tectonic
evolutionary model. Results from lineament analydiswed finding out two main domains,
NW-SE and NE-SW trending. These structural diredidrame within an E-W strike-slip
corridor characterized by a poly-phased tectorstohny. A pre-Neogene left-lateral shear was
followed by a right lateral movement whose activigy presently ruling the landform

evolution of the region. The two identified struetutrends from lineament analysis may
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represent the Cenozoic reactivation of ancient wes& zone and relate to the upper Cenozoic

South Atlantic drifting and N to NW movement of tBeuth America.

Keywords: Lineament domains; intraplate strike-slip deformatbelt; Parana Basin border;

Neotectonics

1. Introduction

A classical paradigm in structural geology is thkite boundaries are the only tectonically
unstable areas, whereas the intraplate regionstalée, as evidenced by the concentration of
the seismic zones along the border of plates (Mekeand Parker, 1967; Le Pichon, 1968;
Morgan, 1968). In this context, intraplate regiomgluding the continent passive margins,
present relatively low seismic and tectonic adwgit and their influence on landform
development is expectedly low (e.g. Summerfield8Land reference therein), such as in the

intraplate Brazilian territory (central region bt South America Plate).

On the other hand, a strong influence of tectomiosthe Brazilian landforms has been
evidenced since the classical studies of Freit@51(}l Ruellan (1952) and Ab"Saber (1965),
which also highlighted the role of the Cenozoictdacs (Bezerra and Finzi, 2000) and
presence of low seismicity (Bianchi et al., 2018Jore recent studies proved that
neotectonics, the tectonic regime acting since BeegHasui, 1990; Saadi, 1993), plays an
important influence on the landform developmenvarious zones of Brazil, as in the-tertiary
Cenozoic sedimentary basins of the South regiona@ai et al., 2004), in the large
depressions and plateaus of the Southeastern r@gamales, 2005, Bricalli and Mello, 2014;
Pinheiro & Queiroz Neto, 2015 and 2016), in the Zoraa region (Val et al., 2014), and in

the Brazilian territory as a whole (Ross, 2016).
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Despite these information on tectonics in the piatge Brazilian territory, it has been difficult
to understand its influence in some regions, deerborder of the Northeastern Parana Basin,
the large Paleozoic sedimentary basin of the ceeastern region of the South America
Plate. In these regions, outcropping faults-geheaak sometimes characterized-by-have-very
small displacements and the kinematics indicatars. (slickensides) may be—are

inconspicuous due to the unconsolidated rheologyhefrocks surface (Bjornberg, 1969;

Pinheiro, 2014), thus locally complicating the mafiece of the (paleo) stress-fields. In these
cases, tectonic studies are efficiently supportgdséismographic, geodetic, and remote
sensing data, as well as on paleo-seismicity. Pleate that the systematic works done by
authors (e.g. Sousa 1998; 2002; Santos and Lad2d@6) contributed highlighting the

evolutionary framework of the border of the Nortétean Parana Basin.

One efficient technique for tectonic studies ofnefary surfaces is the lineament domain
analysis that revealed particularly suited to uatahe tectonic framework of intraplate

regions (Cianfarra and Salvini, 2014 and 2015)ehments are morphological and geological
alignments of ridges and valleys in continentaleand scars associated with the seafloor
spreading, drifting, and fracture zones in ocearigas (Wise et al., 1985; Cianfarra and
Salvini, 2015). They present length spanning frew fens to thousands of kilometers, and
can be identified through enhancement of remotsisgnmages and aerial photographs. Sub-
parallel lineament clusters form lineament dom#isse 1967 and 1969; Cardamone et al.,
1976; Bodechtel and Munzer 1978; Salvini, 1979;8\asal. 1979; Wise et al., 1985; Norini

et al. 2004; Morelli and Piana, 2006; Pal et aD&0 Domains consist of tens to hundreds
lineaments and persist on regions spanning overstrals of square kilometers giving rise to

lineament swarms (Cianfarra and Salvini, 2015; &netti et al., 2017).

Despite the unsuccessful attempts to frame linetsmiato the classical structural geology

features, based on the observation that they selmwnespond to know geologic elements
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(e.g., Campbell, 1987; Koch and Mather 1997; Hdebet al. 2004; Gomez and Kavzoglu
2005; Solomon and Ghebreab 2006; Morelli and Pia@a6; Pal et al. 2006; Pinheiro, 2014,
Souza and Perez Filho, 2016), researches demaustist lineament domains and swarms
reflect crustal geodynamic effects on planetaryas@s (e.g., Funiciello 1977; Salvini et al.
1979; Cianfarra and Salvini, 2014 and 2015, Marzai al., 1994; Pischiutta et al., 2013;
Lucianetti et al., 2017; Rossi et al.,, 2018). letfthe spatial arrangement and azimuthal
clustering of regionally sized lineaments mimic trestal stress trajectories—a-this—way,

igated

regien. In this way the comparison between the kmegional geodynamic setting of the
study area and the results from lineament domaaiysis that point out the orientation of the
crustal stress fieldFhek—analysis provides thsiddor the preparation—ef-erustal-stress
models,—considering-the-main-tineament-domain—tews tectonic evolutionary models of
regions that suffered even poly-phased tectoniord&itions. In fact, according to Wise et al.
(1985) and Cianfarra and Salvini (2015), the mamedment domain in a region is
perpendicular to the least horizontal compresshat ts, 2 in compressional, and3 in
extensional or strike-slip tectonics regimes, agdicwy to Anderson theory. Conversely the
main lineament domain is parallel to the maximunmizomtal compression that is1 in
compressional and strike-slip tectonics,c@rin extensional tectonics. Ambiguities in these
correspondences between stress orientation arahligr@ domain direction can be solved by
framing this analysis into the expected geodynamgimes. One exception is constituted by
the lineament domains in prevailing kinematic ctinds (i.e. regional strike-slip faults) were
we have the presence of a lineament domain pataltee shear vector (Rossi et al., 2017). In
this context, the aim of this research is the stofdthe lineament domains of a sector of the

Northeastern border of the Parana Basin in ordeletermine the main lineament trends, the
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related stress-fields and the relations betweesethast and the geological and tectonic

evolution of the region.

2 Geological and tectonic setting

2.1 Parana Basin: Geologic and Tectonic Framework

Parana Basin is a large geotectonic province irCietral-East region of South America and
span through four countries, namely Brazil, ArgeatiParaguay and Uruguay. Its origin is
related to Paleozoic times, when South America Afrita continents were part of the

Gondwana supercontinent (Fernandes and Amaral,; 280dgale et al., 2007; Pinto and
Vidotti, 2019). The Parana Basin is consideredpict} intracratonic basin (Milani & Ramos,

1998) discontinuously covered by sedimentary swons ranging from Upper Ordovician to

Upper Cretaceous times (Milani, 1997). Total seditmihickness exceeds 7000 m in the
central depocenter (Milani and Zalan, 1999) andodied in various environments. Basalt

flows and intrusions of alkaline and basic rocks @so included in the succession (Figure 1).

The geological history of the Parana Basin canumensarized into four main stages (Figures
1 and 2; Almeida, 1980; Milani, 1997). (1) Initisubsidence of the basin and marine
transgression until the mid-Devonian, followed bggnession in the Frasnian (Upper
Devonian). (2) Initially intense tectonic activifyom the Carboniferous to the Middle
Permian with the deposition of sediments (Tubaraepe® group — Gondwana |
Supersequence) under prevailing glacial conditi@wsccessively, a weak tectonic activity
lasted until the Upper Permian and led to the stolsidence of the central Parana Basin.
This, associated to the end of the glacial peried,to a renewed marine transgression with
the deposition of the Passa Dois Group (Gondwahiapkersequence) of sediments deposited
in deep-to-shallow marine and fluvial/lacustringdli environments. (3) Weak tectonic

activity associated to local slow subsidence witdpakition of the aeolian and fluvial
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sediments of the Botucatu and Piramboia Format{§&® Bento Group - Gondwana Il and
[l Supersequences) under desert conditions fronas$ic to Eo-Cretaceous times. (4)
Reactivation of old tectonic structures relatedtiie opening of the South Atlantic with
massive volcanic eruptions (Serra Geral Formati@ondwana Il Supersequence) in Eo-
Cretaceous time, deposition of the Bauru Group @®@@ma Il Supersequence ) of sediments
under continental conditions (aeolian, fluvial, aathvial environments), with reduction of

the intensity of the tectonic activity in Upper @eeous and Early Palaeogene times.

Soares et al. (1982) identified five main lineamianhds around N-S to ENE-WSW in the
Parana Basin from Landsat satellite images; Zalah. €1990) consider that the basement of
the basin is constituted by NW-SE, NE-SW and E-Wcsures. According to Milani et al.
(1990), the NW-SE and NE-SW trends would be oldantthe E-W direction, at least in the
eastern region of the basin. Fulfaro et al. (198%)sider that the NW-SE trend is the oldest
and developed in Upper Pre Cambrian times durimgkthild-up of the basement of the
Parana Basin . According to these Aauthors thisction and structural zones are related to

old aulacogens.

This tectonic is responsible for diversified movensealong the main structural lineaments,
including normal, reverse, and strike-slip disptaeats, horst, and fault-related folding. On
the other hand, the concentration of tectonic mamEm left weaker effects in the

intermediated regions, limited to gentle and ladgene structures (IPT, 1985). This structural
scenario created topographic contrasts, which Hseen erased in Upper Cretaceous or
Paleocene times by the peneplanation processes vdlfiected the eastern-central Brazil
(King, 1956). These planed landforms were disturbedng the Paleogene, when the old
tectonic structures were reactivated in extensiooalpressional tectonic environments
related to the South Atlantic drifting (Almeida, 8®. The rotation of the South America

plate has changed the tectonic framework sincéN#egene, causing strike-slip reactivation
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of old structures (Hasui, 1990; Saadi, 1993) thmtturn gave locally rise to normal
(transtension) and reverse (transpression) fauoltthé Parana Basin (Hasui et al. 1995;

Riccomini, 1995; Santos and Ladeira, 2006; Pinh&if@ueiroz Neto, 2015; 2016).

2.2 Geologic and geomorphologic setting of the studirea

The study area is the Sdo Pedro and Botucatu refgjen, a sector close to the Northeastern
border of the Parana Basin, in the State of SddoRasoutheastern Brazil (figure 2). The
region is at the transition between two large morptulptural units, the Western Plateau and
the Paulista Peripheral Depression (Ross and Mdr@27). The plateau is formed by Eo-
Cretaceous basalt flows of the Serra Geral Formadiod fine aeolian sandstones of the
Botucatu Formation. Locally, these units are toppgdandy to rudaceous deposits cemented
by silica and iron oxides (ltaqueri and Marilia F@tions). The depression developed on the
Triassic fine to conglomeratic aeolian/fluvial satwhes of the Pirambodia Formation
(Caetano-Chang and Wu, 2006), which are cappechbypper Pleistocene colluvial sandy
cover (Pinheiro and Queiroz Neto, 2015 and 2016§ drigin of the large depression and its
adjacent plateau is related to the—Fertiary Cermoeowcumdenudation process of the Parana
Basin margins, caused by large rivers entrenchetidarold structures (Ab’Saber, 1965 and

1969; Pinheiro, 2014; Pinheiro and Queiroz Netd, 20

According to Soares et al. (1982), Ferreira (1988]Jfaro et al. (1982), IPT (1989), Milani et
al. (1990), Quintas (1995), Saad (1997), large N¥E-&d NW-SE structural alignments
(mega-structural features) cross the Paulista Rergb Depression and the Western Plateau.
Hasui et al. (1993) considered that the NW-SE featare younger and their movement
displaced and rotated the NE-SW structures. Onother hand, Riccomini (1995), which
mapped the main alignments of the S&o Paulo Statsjdered that the main alignments have

NW-SE, NNW-SSE and WNW-ESE directions. AccordingRacomini (1995 and 1997)



173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

sinistral and dextral strike-slip movements haverbmferred along NNW-SSE and WNW-
ESE faults. These movements frame within a E-Wdirenright-lateral shear zone. The Séo
Pedro and Botucatu ridge regions are charactebgethe same main structural alignment,

namely NW-SE and NNW-SSE.

Despite the reported evidence of tectonics in thdysarea, previous studies considered that
Cenozoic tectonics would have been weak in theoregie., Bjornberg, 1969; Bjornberg et
al., 1971). However, more recent studies demomstrdiat tectonics played an important role
in the evolution of the region, especially its rembonics. Ladeira and Santos (1996),
Riccomini (1995; 1997) and Santos & Ladeira (20@@ntified normal, reverse and strike-
slip neotectonic faults in the backslope of the 8&dro Ridge. Riccomini (1995) identified
normal and reverse faults (NE-SW and NW-SE) ofiisgtQuaternary deposits at the Pitanga
Structural High region and Siqueira (2011) coreddathe origin of this structural high to the
neotectonics. Sousa (2002) and Morales (2005) ifehtstrike-slip reactivation of normal
faults in the Pau D’Alho Structural High. Pinhe{2014) and Pinheiro and Queiroz Neto
(2015) identified neotectonic traces of sinistralke-slip reactivation of the Santa Maria-
Cabrelva Lineament (NW-SE), extensional joints modnal faults (NW-SE and NE-SW) in
fluvial Quaternary deposits, and uplifting and ddifting of tectonic blocks in the pediment
surface of the Sao Pedro region. Eventually, Gug@844) and Guedes et al. (2015)
identified neotectonic deformations in the backslopthe Botucatu ridge and in the Western
Plateau. All these evidences suggest that neotectactivity in the region played an
important role in the landform development. Here previde further evidence that support
the active role of neotectonics in the region bynaltiscalar approach that includes the
comparison of results from lineament domain analyaed structural field data. The found
results allow framing the available sparse indarai supporting neotectonic activity in the

region within a geodynamic evolutionary model.
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3 Methodology

This research was performed at both regional acal kcales. The regional analysis involves
the Botucatu and Sao Pedro regions, whereas thé doe is focused in the Sdo Pedro area
(Fig.2). In the regional scale, the lineaments @ripan 9000 m and wider than 180 m were
analyzed, since they relate to the crustal stiets-(Wise et al., 1985). At the local scale,
lineaments with a length between 1260 and 5000 chvaider than 90 m were analyzed,

considering that they relate to local stress-figdapper crustal levels.

The lineaments were identified on the DEM (DigiEévation Model) of the SRTM (Shuttle
Radar Topography Mission, 2000) data, whose spedgdlution is approximately 30 m at
this latitude (1 arc-second). Shadow images frondeeng with sun elevation of 20° and 4
different lighting conditions (namely 0°, 45°, 98Ad 135°), following the proposal of Wise
(1969), were generated. This multiple image anslydiowed identifying lineaments not
visible in some illumination conditions. These imragwere processed with the Envi™4.7
software, by means of a low-pass filter to neglsetall morphological variations, and
successively a high-pass filter (Laplacian) to hgitt the tonal variations. Finally, the images

were exported to bmp format for automated linearaeatysis.

The lineaments were detected by the SID3 softw&A&LYVINI, 2016). Parameters for
lineament detection were inserted in the softwateh as minimal and maximum length,
width, the minimal length of each lineament segmethteir maximum length to belong to the
same lineament, and the pixel density along lineasnelhese parameters are necessary
because they define the main geometric charactsrist the lineaments to be detected. The
mapped lineaments were cumulated into a databasestatistically analyzed by the Daisy3
software (SALVINI et al. 1999). Azimuthal frequeneyalysis by polymodal Gaussian fit

(Wise & Mccrory, 1982; Cianfarra and Salvini, 2018)the data was performed to identify
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the main azimuthal trends which correspond to theament domains (Wise et al., 1985;

Cianfarra and Salvini 2014, 2015; Lucianetti et2017; Rossi et al., 2018).

Field campaigns were realized in the Sdo Pedrome(ocal scale area). A total e£671 321
structural data were collected and included maenyensional joints, large fractures and

normal faults. Attitudes of structural data wer®jpcted and analyzed on a Schmidt Net

(lower hemisphere) by Daisy3 software (Fig.-3)—@dta-were-compared-by-considering-their

recognized—in—images—and-fractures—measured—inrapde The attitude of the measured

structural dataset was compared to the results fhenineament domain analysis in order to

identify possible azimuthal correlation between thwe dataset, although characterized by
dimensions of different orders of magnituddl the collected brittle deformations were
analyzed without considering their origin or tygeen if this information was recognized in the
field and recordedThis grouping was intentionally followed due t@ thurpose of the present
work, aimed to relate surface expressions as tleament domains to crustal stresses. All
open brittle deformations contribute to weakenetk ndheology, and therefore enhance the

modeling capability of erosional processes.

4 Results and Discussions

4.1 Lineament Domain and Structural Data Analysis

The result of the lineament detection of the Botweand S&o Pedro Ridge region (regional
analysis, Fig 2A) shows that there are 387 regidnaiaments (minimal length: 8921 m;
maximum length: 21.273 m; average length: 12.352vit) several orientations, yet they are
concentrated in two main trends, NW-SE and NE-SMu(é 4), with sub-ordered group in

the E-W direction. These orientations corresponthtse identified by Zalan et al. (1990) in

10
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the lineaments of the whole Parana Basin, configntie consistency of our results in being

related to the regional stress-field.

These main lineament directions correspond toitteament domain following the proposal
of Wise (1967; 1969), Cianfarra and Salvini (201l £014), among other authors. These
trends are dominant in most part of the region, dadations can be ascribed to local factors,
such as lithological variations, anisotropy of recind fault intersections. The NW-SE
direction is the most important, considering thatarresponds to the main lineament domain
characterized by the highest frequency associatedrelatively low standard deviation. The

NE-SW direction is also important, and correspaiods more scattered lineament domain.

When analyzed by lithologies, lineaments preseatsidime azimuthal trends detected in the
entire study region, namely NW-SE and NE-SW (fij). Although NE-SW trend is a little
more defined than NW-SE in the Piramboia Fm (Tr@s®8otucatu and Serra Geral (Eo-
Cretaceous), Marilla (Upper Cretaceous) and ltageermations (Paleocene/Eocene), it is
not clear whether minor oscillations reflect a aggl of the main trend, since the lineaments

of the other formations clearly present the NW-SEn& principal.

The results of the regional lineament domain amslysd of the analysis by lithologies show
the presence of two nearly perpendicular trendg 4H). Their presence may be differently
interpreted, depending on their relative age. lndhse of their contemporary formation, we
may relate them to an equivalent of the developn@nsystematic and non-systematic
fracture systems (Price and Cosgrow, 1990). In¢hge the NW-SE system with its smaller
standard deviation (sd=6.47°) would represent th@nnmsystem normal to minimum

horizontal stress, and the NE-SW (sd=7.64°) coomedpto the system produced by the
residual stress after the formation of the formamedin. This scenario may relate either to a

crustal NW-SE maximum horizontal stress (pure siseding) or as being the effect of a
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regional E-W, right-lateral shear (simple sheatirsgt The alternative hypothesis, relating to
N-S left-lateral shear, seems less in agreement tivé expected global-scale tectonics of the
region. A different geodynamic model should be iasct if we assume a different age for the
two main lineament domains. In this case, the yeutigeament domain would be the NW-
SE (smaller sd, e.g. Cianfarra and Salvini, 201%) ¢e shifting from NE to NW was
produced by a horizontal stress inversion, i.e.NNé component relatively increasing and
becoming stronger than the NE. This exchange méaterdo changes in the regional
geodynamic setting of the region, that is contiaste E-W shear and the development of the
Atlantic passive margin. Due to the evidence ohlbdwmains it would be expected that this
tectonic setting developed in Neotectonic timese Hiter hypothesis is in accordance with
the proposal of Hasui et al. (1993) and Etchebe{2f@8), which considered that the NW-SE

structures are newer.

In the local analysis of the S&o Pedro region (Bg®), where shorter, upper crustal
lineaments were identified (minimum length: 1200 meximum length: 4371 m; average
length: 1744 m), the results are very similar ® tgional analysis. The NW-SE and NE-SW
trends are again the most important and corretatied regional lineament domain directions.
The spatial analysis shows that, as in the regisoale, some minor deviations in the main
directions are locally present and could be relételdcal factors. Local scale lineaments are
slightly more frequent in the NE-SW direction tharthe NW-SE. Despite this difference, the
scattering of NE-SW lineament system is relativelgher (sd=25.74°) than the NW-SE

(sd=19.32°) as in the regional analysis. In thisywia the case of a non- contemporary
formation, the more recent trend is again the NWk@Ehe S&o Pedro region. Such result is
quite similar to those obtained in the lineameratysis by lithology (fig. 7): NW-SE and NE-

SW directions are the most important in all scevgdnd present small deviations, including

in the younger lithologies (Neocenozoic deposit8)pse lineaments are more clearly related
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to the recent tectonics (Neotectonic). Thus, theottyeses of origin and chronology of these

lineaments are the same mentioned previously #rdgional analysis.

The structural data measured in outcrops of the B#ro region (fig. 3 and 8) show two
main, nearly orthogonal, azimuthal families trergpd46W N51°W and-N31E N25°E. The
first one in characterized by-a-higher smallertscaig (sd=16-95 14.2) than the second one
(sd=2%283 20.7). The third, minor peak is nearlWkrientated. The main azimuthal families
mainly consists of extensional fractures (see @ijj.&he second azimuthal set is mainly made
up of faults. The azimuthal analysis by polymodau&sian fit of the measured brittle
deformations (faults and fractures) in Quaternagpasits (Fig.8c) again shows the main

azimuthal trends, namely NW-SE, NE-SW, E-W and N-S.

Fhese—directions The measured brittle deformatiaments clustering into two nearly
orthogonal azimuthal family set are nearly paraitethe main lineament domains found at
the regional scale, despite the difference of aveee order of magnitude in dimension
between these features. It should be noted thaé srthe measured brittle deformation was
detected in Quaternary deposits outcropping inBibieicatu - Sao Pedro region. This finding
adds to the growing body of the recorded brittldodeations reported in literature (e.g.
Riccomini, 1995 and 1997; Siqueira, 2011; Pinhe014; Pinheiro and Queiroz, 2015).
Again please remember that only azimuthal corefatiwhere analysed between the two sets
of data. In fact we consider that all open britllieformations contribute to weakened rock

rheology, and therefore enhance the modeling chiyati erosional processes.

These results drag some considerations: (a) theSiBAand NE-SW are the most important
azimuthal trends considering the three differentlesc of analysis with the NE-SW
systematically more scattered than the NW-SE. Tikidrue also for the analysis by

lithologies; (b) the crustal stress has influentdsel development of the regional lineaments
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344

(related to lower crustal levels), the local schieaments (narrow and short structures,
associated to upper crustal levels), and the fraxgjlat the outcrop scale; (c) considering the
NW-SE direction as the main orientation of lineain@omains and of extensional structures
from field data (joints and normal faults), the maeotectonic stress tensor, or the youngest
tectonic event, in the studied region will have thain horizontal compressional principal
axis ©1 orc2) oriented NW-SE and the main horizontal exterai@xis 62 orc3) along the
NE-SW direction, in accordance with the previousdsts performed by Riccomini (1997),
Facincani (2000), Sousa (2002), Morales (2005)hétn (2014), Pinheiro and Queiroz Neto
(2015). This is also in agreement with Santos aadeira (2006) that showed many NE-SW
normal faults at the ltaqueri Range and associditexh to an older tectonic event (always in
Neotectonic times) that was followed by a switchafighe horizontal component of the stress

tensor and thus responsible for the younger NW-@kal faults.

4.2 Discussions and Proposition of Tectonic Models

The observed two peaks in the azimuthal frequericlpoth the regional and local
analyses can be related to five possible geodyn&amnteworks that are illustrated in Figures
9 and 10. The different scattering value betweentio lineament domains can be either
interpreted as belonging to a systematic/non-syatiersrustal deformation (Fig. 9) or to the
occurrence of two separate geodynamic settingsereith succession (Fig. 10A) or,
alternatively coeval (Fig. 10B). In the first cabee maximum horizontal stress would lie
parallel to the more concentrated lineament donramely the NW-SE domain, and the NE-
SW would represent the equivalent of a non-systienfraicture set (Price & Cosgrow, 1990)
in extensional environments, i.e. with negative med for both the minimum and maximum
horizontal stress components. In an active exteasitectonic environment we assume that

the stress decreases (extension) in the horizguitale with time until the minimum
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horizontal component@) overrides the traction strength of the uppestrihis leads to the
development of the first main lineament domain, tNE/-SE in this research. The
development of the resulting oriented anisotropieakness prevents the application of
significant extensional stress along the formerimirm horizontal component. In this way,
we observe an inversion of the horizontal compaeitthe stress tensor and the formerly
maximum horizontal stress component, which hasgathee module, becomes the minimum
horizontal component and the reduced component dveepresent the new maximum
horizontal one. As the extensional conditions pesgrand the new minimum component
reaches the traction strength of the upper crusiew set of lineaments develop nearly
perpendicular to the former one. Since it developan anisotropic environment, resulting
from the presence of the former lineament domadie, azimuth of the newly generated
lineaments will be influenced and result in a meoattered distribution. In this way the
relatively younger lineament domain shows a sligtattger scattering.

The systematic/non-systematic lineament domain medgte to three geodynamic
setting: (1) An overall extensional environmen). A2regional arching resulting from crustal
tectonic compression (“pure shear conditions”) WNRV-SE maximum horizontal stress
component. Specifically, the onset of this stressmddion produces both the NW-SE
lineament domain and the regional arching of tlggore In turn, this arching is responsible
for the development in the upper crust of an iregrhorizontal stress field due to the
extension above the neutral surface of the arch mihimum horizontal stress perpendicular
to its axis, that is along a NW-SE strike. Thisrésponsible for the development of the
younger and more scattered NE-SW lineament donf@jnA regional E-W trending strike-
slip corridor (“simple shear condition”) whose righteral sense of shear creates the NW-SE
compression (figure 9C). This latter model is santlo the Riccomini (1995; 1997) proposal,

whose model considered that a NW-8E would reactive strike-slip faults related to long
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lineaments of the S&o Paulo state (SoutheasteBradil) in the neotectonic period. These
three models are characterized by the higher scadiae of the younger, non-systematic,
lineament domain (namely the NE domain)

The alternative models (Fig. 10) relate the develept of two lineament domains to
two different geodynamic events, which are suceessith time (Fig. 10A) or alternatively
coeval (Fig. 10B). In both cases the lineament domath the smaller scatter relates to the
younger event/episode (e.g. Cianfarra and Sal2idi,5; Rossi et al., 2018). In the studied
area the lineament domain analysis indicate thatytunger NW-SE regional compression
superimposed to the pre-existing NE-SW compres®vent. In this latter case two
geodynamic scenarios are possible. The first orge (A) is characterized by the tectonic
activity along an E-W trending shear zone that itesgkfrom an older left-lateral movement to
the more recent right-lateral one, in this way m@dg the horizontal stress inversion. The
other scenario (Fig. 10B) implies the existenceaofegional stress with NE-SW main
horizontal compression that combines with the difooous or successive activity of an E-W
right-lateral shear zone, responsible for the yeumW-SE main compression.

To sum up, the tectonic evolution of the Sdo Pealnd Botucatu region can be
explained through different models. Neverthelebg, comparison of our results with the
tectonic interpretations advanced by several astftdasui et al., 1993; Riccomini, 1995 and
1997; Saad 1997; Facincani, 2000; Fernandes andahn2@02; Sousa, 2002; Morales, 2005;
Santos and Ladeira, 2006; Pinheiro and Queiroz ,N28d5) suggests that the scenario
presented in Fig. 10B is the most reliable. Thenseio describes the activity of a regional E-
W strike-slip corridor with left-lateral sense dfesr. This kinematics is responsible for a NE-
SW main horizontal compression, and the formatibtine oldest lineament domain along the
same direction. This is in agreement also with phneposed tectonic evolution of the

Cenozoic basins in Southeastern Brazil (e.g. Riaeoet al., 2004; Zalan and Oliverira,
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2005) that suffered an E-W sinistral deformationPialeocene-Eocene times, followed by
dextral movements along E-W corridor with assoddf®V-SE normal faulting. Following
the geodynamic evolution of the region, relatedht® drifting of the South Atlantic with the
associated W and NW movement of the South Ameriate since Neogene times (Hasui,
1990; Saadi, 1993; Torsvik et al., 2009), the stskp corridor was affected by an inversion
of the sense of shear. The new right-lateral movermpeduced the exchange of the previous
Shmax and Shmin being the new Shmax NW-SE oriemtedresponsible for the formation
of the younger, NW-SE lineament domain. The smaltattering of the NW-SE lineament
domain (both from the regional and the local scatalysis) and of the main fracture
azimuthal family, confirms the relatively youngegeaof this domain (e.g. Cianfarra &
Salvini, 2015).

This model is compatible either with Hasui et 4943) proposal, who advanced the
hypothesis that the activity of the older NE-SWistures was followed by newer NW strike-
slip faults, and with Saad (1997) synthesis maghefmain structural features of the Parana
Basin in Sdo Paulo state that is characterizedhbypresence of older NE-SW trending
structural lineaments that were cut and rotateddwer NW-SE structures. Facincani (2000),
Sousa (2002) and Morales (2005) computed a NW-Sia h@izontal compression in the
current (since Neogene) tectonic environment. MegeoFernandes and Amaral (2002),
based on the brittle deformation and photo-lineamanalyses, identified tectonic
deformation events during the Cenozoic in the Eadberder of the Parana Basin. Among
these, two events were the most important at thpemal scale. The oldest one, assigned to
the Paleogene-Neogene transition, is charactebgeldE-SW main horizontal compression.
The youngest Quaternary event has a NW-SE maiadmal compression.

The detected NW-SE and NE-SW lineament domains ewsily represent the

Cenozoic reactivation (Zalan et al.,, 1987; Cordal®34; Hasui, 1990; Saadi, 1993;
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Vasconcelos et al., 2018) of structural trends waedkness zones that played an important
role during the Neoproterozoic craton accretiony.(@ankard et al., 1995; Almeida et al.,
2000; Tello et al., 2003) and Mesozoic fragmentafferanzese and Spalletti, 2001; Vaughan
et al., 2008; Torsvik et al., 2009) of the Gondwan@ercontinent. Such inherited crustal,
weakness corridor was/is compatibly oriented whih lleotectonic stresses to be reactivated.

The above considerations allow to constrain theviactof the E-W corridor, or the
youngest part it, in Cenozoic times. Specificalhe tpre-Neogene, left-lateral shear was
followed by a right-lateral sense of movement. Ewices of Quaternary faulting (Riccomini,
1995; Riccomini and Assumpcéao 1999; Siqueira, 2@1idheiro, 2014; Pinheiro and Queiroz
Neto, 2015; Morales, 2005) corroborates the prdsatwf the tectonic activity of the shear
corridor till Quaternary.

The proposed strike-slip corridor in intraplatetisgt characterized by a poly-phased
tectonic history may represent the on-land propagatf oceanic fracture zone (Figure 10). A
similar setting for the study region was previousjypothesized by Zalan (1987) and Saadi
(1993) based on the near parallelism between fleeré@d continental strike-slip corridor and
the offshore tectonic alignment. The same geodyoaoénario has been identified in the
Southern Ocean where the Tasman and Balleny Feagumes show evidence of continental
prosecution within the Northern Victoria Land, E&asitarctica (Salvini et al., 1997; Storti et

al. 2003; Zanutta et al. 2017 and 2018).

5 Conclusions
Results from the present work allow addressing reesef issues regarding the Cenozoic
tectonic evolution of the Northeastern boardernaf Parana Basin in the framework of the

regional geodynamics.
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The two main lineament domains identified in thedgtarea, NW—-SE and NE-SW trending,
allow to infer the crustal stress fields associdtedhe two successive tectonic events that
ruled the Cenozoic evolution of the region.

Specifically, the found lineament frame within agimal strike-slip deformation belt that
develops in the intraplate environment of South Acaewith E-W direction.

The poly-phased tectonic history of this corridocharacterized by-a-pre-Neegene Paleogene
left-lateral shear followed by (Neogene) right-fatenovement.

This last is also responsible for the brittle defation documented by various Authors in
Quaternary deposits. In this way the younger, figteral regime is currently affecting the
landform evolution of the region, classically ingested as related to old tectonics, lithological
variations, and climatic oscillations.

Following hypotheses advanced in the past decawes 6ther authors, we infer that the
described intraplate strike-slip deformation bealtan inherited weakness shear zone that
played a major role in the Neoproterozoic cratorrettonand Mesozoic fragmentation of the
Gondwana supercontinent and prensently represkatsdntinental prosecution of the off-

shore fracture zones.
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Figure captions

Figure 1: Simplified geological map of the Parana Basin, ified after Milani, 2004.

Figure 2: Location and hypsometry map of the Sao Pedro antlicBtu Ridges and

simplified geological scheme of the S&o Paulo State

Figure 3: Attitudes of the measured field structural datgsefected on a Schmidt Net (lower

hemisphere) by Daisy3 software

Figure 4: Results of the regional scale lineament analysighe Botucatu and S&o Pedro
region. Polymodal Gaussian fit of the detecteddments represented as rose diagrams. a.
Results of the analysis by areas to study the apuaé#iriation of the found domanins. b.
Cumulative analysis showing the existence in thdystirea of two main lineament domains,
nearly perpendicular and oriented NW-SE and NE-SWWe NW domain is systematically
characterized by a smaller standard deviation dad)in represented with the red color. The

NE, more scattered (higher sd) lineament domaiapsesented in blue color.

Figure 5: Polymodal Gaussian fit of the detected lineambwgththologies in the the Botucatu

and Sao Pedro region. The total number of lineasnegiated to the Tubardo Group and
Marilia Formation is not statistically significar{fc10) and were not considered in this
analysis. The NW-SE and NE-SW lineament domainsrgpeesented respectively with red

and blue colors.

Figure 6: Results of the local scale lineament analysishen $40 Pedro region. Polymodal
Gaussian fit of the detected lineaments represeagaedse diagrams. a. Results of the analysis
by areas to study the spatial variation of the tbdomains. b. Cumulative analysis showing
the existence in the Sao Pedro region of two magament domains, nearly perpendicular
and oriented NW-SE and NE-SW. The NW domain iseystically characterized by a
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smaller standard deviation (sd) and in represewitddthe red color. The NE, more scattered

(higher sd) lineament domain is represented in bbler.

Figure 7. Polymodal Gaussian fit of the detected lineamdmytdithologies in local scale

analysis of the S&o Pedro region. The total nundielineaments related to the Fluvial
Deposits (Quaternary) is not statistically sigrafit (<10) and were not considered in this
analysis. The NW-SE and NE-SW lineament domainsgpeesented respectively with red

and blue colors.

Figure 8: a. Results of the polymodal Gaussian fit of the fistductural data (extensional
fractures and faults) in the Sao Pedro region. Tivain azimuthal families are identified. The
NW-SE family set is characterized by a lower stadd#eviation (sd) with respect to the
secondary NE-SW azimuthal family. The third, mirfamily is nearly E-W orientedb.
Results of the polymodal Gaussian fit of the fgqudpulation;c. Results of the azimuthal
analysis the faults and fractures measured in thatépnary deposits]. Results of the

azimuthal analysis of the extensional fracturemfad! lithologies.

Figure 9: Possible tectonic models to frame the found linesndomain, considering that
they are divided into systematic and non-systenststem. a. Systematic lineament domain
(NW-SE) and non-systematic lineament domain (NE-$88ted to an extensional tectonics.
b. Systematic lineament domain (NW-SE) and non-syatiemineament domain (NE-SW)
related to a regional NW-SE compression (Shmax)aesible for an arching. ¢: Systematic
lineament domain (NW-SE) and non-systematic linggrdemain (NE-SW) related to a NW-
SE compression (kinematic stress, Shmax) due taghelateral movement of a regional E-

W strike-slip corridor.

Figure 10 Tectonic models considering two geodynamic sgesaro frame the nearly

perpendicular lineament domains detected in thestgated regiona. Combined effect of
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792 the Regional stress and of the stress induced éyright-lateral kinematic of the shear
793  corridor (Kinematic Shmin >> Regional Shmabk);stress inversion within the E-W corridor

794  related to the inversion of the regional sensenefs

795 Figure 11 Proposed model of intraplate, strike-slip deformatbelt within Southeastern

796 Brazil.
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809  Figure 3: Attitudes of the measured field structural dat@sejected on a Schmidt Net (lower
810 hemisphere) by Daisy3 software
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815 Figure 4: Results of the regional scale lineament analysithe Botucatu and Sao Pedro
816 region. Polymodal Gaussian fit of the detecteddiments represented as rose diagrams. a.

817 Results of the analysis by areas to study the apasiriation of the found domanins. b.
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Cumulative analysis showing the existence in thdystirea of two main lineament domains,
nearly perpendicular and oriented NW-SE and NE-SWWe NW domain is systematically
characterized by a smaller standard deviation gad)in represented with the red color. The

NE, more scattered (higher sd) lineament domaiapsesented in blue color.
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825  Figure 5: Polymodal Gaussian fit of the detected lineambwththologies in the the Botucatu
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(Eo-Cretaceous)
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843  Figure 7: Polymodal Gaussian fit of the detected lineamdmytdithologies in local scale
844  analysis of the S&o Pedro region. The total nundfelineaments related to the Fluvial
845 Deposits (Quaternary) is not statistically sigrafit (<10) and were not considered in this

846 analysis. The NW-SE and NE-SW lineament domaingepeesented respectively with red

847

848

and blue colors.
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849  Figure 8
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850

851 Figure 8: a. Results of the polymodal Gaussian fit of the fistcuctural data (extensional
852  fractures and faults) in the S&o Pedro region. vam azimuthal families are identified. The
853 NW-SE family set is characterized by a lower stadddeviation (sd) with respect to the
854 secondary NE-SW azimuthal family. The third, mirfamily is nearly E-W orientedb.
855 Results of the polymodal Gaussian fit of the faadpulation;c. Results of the azimuthal
856 analysis the faults and fractures measured in thatépnary depositsg. Results of the
857 azimuthal analysis of the extensional fracturemfadl lithologies.
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Figure 9
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b. Compression for the regional arching with
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Figure 9: Possible tectonic models to frame the found line@ndomain, considering that
they are divided into systematic and non-systenststem. a. Systematic lineament domain
(NW-SE) and non-systematic lineament domain (NE-$88ted to an extensional tectonics.
b. Systematic lineament domain (NW-SE) and non-syatenineament domain (NE-SW)
related to a regional NW-SE compression (Shmax)arsible for an arching. c: Systematic
lineament domain (NW-SE) and non-systematic linegrdemain (NE-SW) related to a NW-

SE compression (kinematic stress, Shmax) due tadhelateral movement of a regional E-

W strike-slip corridor.
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870  Figure 10

% Regional Shmax

o
e 5
—~ | |

1. Regional Shmin

S o

DS

Shmax =
2. /" NW-SE younger lineament domain / NW-SE younger lineament domain
/" NE-SW older lineament domain _~ NE-SW older lineament domain
Maximum (compressive) and minimum (extensional) BN = Maximum (compressive) and minimum
\ = horizontal stress components. - \ (extensional) horizontal stress components
il w Bigger arrows indicate the regional stress (1.), smaller
one refer to the stress induced by the kinemantic / Sense of shear of the regional E-W strike slip corridor
along the shear corridor (2.) /

% Sense of shear of the regional E-W strike slip corridor
Stress inversion within the E-W corridor related to the

) ) inversion of the regional sense of shear (pre-Neogene left-
Combined effect of the Regional stress and of the stress lateral and post-Neogene right-lateral)

induced by the right-lateral kinematic of the shear corridor.

Kinematic Shmin >> Regional Shmax

871

872  Figure 10 Tectonic models considering two geodynamic sdesato frame the nearly
873  perpendicular lineament domains detected in thestigated regiona. Combined effect of

874 the Regional stress and of the stress induced éyright-lateral kinematic of the shear
875  corridor (Kinematic Shmin >> Regional Shmak);stress inversion within the E-W corridor
876 related to the inversion of the regional senseéhebs
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Figure 11
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Figure 11 Proposed model of intraplate, strike-slip deforomtbelt within Southeastern

Brazil.
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Intraplate strike slip deformation belt within Southeastern Brazil
Pre-Neogene left lateral shear along E-W intraplate corridor
Post Neogene to Quaternary right lateral shear

Continental prosecution of oceanic fracture zones within South America





