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ABSTRACT: In this paper, an equivalent one-dimensional beam model immersed in a three-

dimensional space is proposed to study the aeroelastic behaviour of tower buildings: linear and 

nonlinear dynamics are analyzed through a simple but realistic physical modeling of the structure and 

of the load. The beam is internally constrained, so that it is capable to experience shear strains and 

torsion only. The elasto-geometric and inertial characteristics of the beam are identified from a 

discrete model of three-dimensional frame, via a homogenization process. The model accounts for 

the torsional effect induced by the rotation of the floors around the tower axis; the macroscopic shear 

strain is produced by bending of the columns, accompanied by negligible rotation of the floors. 

Nonlinear aerodynamic forces are evaluated through the quasi-steady theory. The first aim is to 

investigate the effect of mechanical and aerodynamic coupling on the critical galloping conditions. 

Furthermore, the role of aerodynamic nonlinearities on the galloping postcritical behavior is analyzed 

through a perturbation solution which permits to obtain a reduced one-dimensional dynamical system, 

capable of capturing the essential dynamics of the problem.  

 

KEY WORDS: equivalent beam model, homogenization procedure, aeroelastic instability, 

perturbation approach 
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1 INTRODUCTION 

Tower buildings are usually slender structures very sensitive to wind-induced vibrations. If these 

structures are lightweight and with low damping capacity, they can be potentially subjected to 

aeroelastic instability phenomena. 

Finite Element techniques are not in question for the detailed design and analysis of beam systems 

(e.g., [1,2]); nevertheless, in recent years there is a renewed and growing interest in the technical 

literature about simple models which can be useful for preliminary design analysis. Semi-analytical 

approaches may offer interpretive advantages compared to purely numerical modeling in terms of 

structural global behavior. In this context, different models have been proposed in the literature to 

analyze the distribution of the external forces on high-rise buildings [3,4], to estimate their dynamic 

characteristics [5-10], and to estimate their dynamic response to wind loadings [11-14]. An 

approximated method to determine displacements and member forces of multiple-bay bi-dimensional 

frames using continuum models is presented in [15]. The possibility of adopting equivalent one-

dimensional coarse models representative of the global behavior of three-dimensional systems is 

deeply analyzed, for instance, in [16]. 

On the other hand, if the tower building is sufficiently slender, it is prone to phenomena of 

aeroelastic instability, such as galloping (e.g., [17,18]). The galloping is usually dealt with section 

models or ideally homogeneous beam, in which the shape of the cross-section governs the stability 

of the problem, whereas the mechanics is usually modeled in a very simplified way; problems similar 

to galloping instability can be found in wave propagation (e.g., [19]). The importance of the possible 

resonance between modes involved (generally two, flexural-flexural or flexural-torsional modes) has 

been highlighted (e.g., [20]) pointing out the limitations of a treatment that involves only the 

crosswind vibrations as in the well-known Den Hartog criterion [21]. But the joint analysis of 

aeroelastic actions and mechanical coupling between different motion components of the building 

has never been highlighted to the best knowledge of the authors.  
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In this paper, a continuous model of beam immersed in a three-dimensional space and capable to 

experience shear strains and torsion only is proposed by using a heuristic identification method 

similar to the one presented, for instance, in [22,23]; a comprehensive description of these class of 

models using variational techniques can be found in [24]. The paper’s aim is to study the critical and 

postcritical aeroelastic behavior of slender tower-buildings. Based on results of literature related to 

fluid-structure interaction phenomena [21], according to which the most important nonlinearities are 

usually of aerodynamic nature, it is assumed here that the structure behaves as a linear system, while 

the aerodynamic forces nonlinearly depend on torsional rotation and velocities. A coarse linear model 

is adopted for the frame, modeled as a three-dimensional shear-type, capable to experience 

translations of the floors transverse to the axis, and twist rotations around the same axis, via a 

homogenization process. A rigorous proof of this convergence could be obtained by means of the 

methods discussed in [25]. In the proposed model, the macroscopic shear strain is produced by 

bending of the columns, accompanied by negligible rotation of rigid floors, prevented by the high 

axial stiffness of the columns. The torsional effect induced by the rotation of the floors around the 

tower axis is included. Thus, starting from the desired macroscopic kinematics, the microscopic 

kinematics is assumed to be known following an approach already present in the pioneering work of 

Gabrio Piola [26]. The limits of this procedure are related to the possibility that the assumed 

microscopic kinematics could not be respected: in this case, the model should be improved by the 

addition of suitable kinematic parameters (as a generalized continuum) in order to take into account 

possible microscopic motions neglected in the proposed approach. From a general point of view, the 

proposed model of shear-shear torsional beams can be considered as one-dimensional Cosserat 

continuum with internal constraints (e.g., [27]). Aerodynamic forces are evaluated through the classic 

quasi-steady theory considering nonlinear terms up to the third order. The fundamental problem for 

the aeroelastic behavior is derived, including kinematics relationships, balance equations, elastic law 

and external forces. Based on the proposed beam model, the critical wind velocity and the post-critical 
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behavior of tower buildings can be determined taking into account the mechanical and aerodynamic 

coupling between torsional and transversal vibrations. The linearized problem allows to perform a 

linear bifurcation analysis in order to analyze critical instability conditions as a function of the 

mechanical and aerodynamic characteristics of the structure. The post-critical analysis is carried out 

applying the Multiple Scale Method. As a sample system, a square building excited along a symmetry 

axis is considered. The effect of mechanical eccentricity on critical galloping conditions and the 

influence of the aerodynamic nonlinearities on the post-critical amplitude are studied. 

2 THE STRUCTURAL MODEL 

A shear-beam is characterized by shear strains much larger than flexural ones: it is a coarse model 

for shear-type frames under planar excitation transverse to the axis. In this Section, the kinematics of 

this model is described (Sect 2.1), then its dynamics (Sect 2.2); finally, a constitutive law is derived 

via a homogenization procedure (Sect 2.3). 

2.1 Kinematics 

The shear-beam is considered as a one-dimensional polar continuum whose points, in the reference 

configuration, lie on the segment s[0,] (assumed to be coincident with the centroidal axis of the 

underlying three-dimensional model). The beam is endowed with a rigid local structure, described by 

mutually orthogonal unit vectors attached to the material points. Let 1a , 2a , 3a  be the triad in the 

reference configuration, with 1a  aligned on the beam axis (Fig. 1), and let a1(s,t), a2(s,t), a3(s,t) be 

the transformed triad in the current configuration, occupied at time t (Fig. 2). The beam is assumed 

internally constrained, namely unflexurable and clamped at one end. Therefore 1a a1 and a2= 2a

cos+ 3a sin, a3=− 2a sin+ 3a cos, where  is the twist angle (Fig. 2). Consequently, the current 

configuration of the beam is described by four scalar configuration variables, the displacement of the 

centroidal axis u:=u1(s,t) 1a +u2(s,t) 2a + u3(s,t) 3a  and the twist (s,t). 
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The vectors : T =e R u , ( ) 1: s,t=κ a , where R represents the rotation tensor around 1a  and a dash 

denotes differentiation with respect to s, are defined as the strain vector and torsion, respectively; 

moreover, 1= +e a γ , with  the axial and  the shear strain. By letting = 2 2a + 3 3a , := t 1a , 

under the hypothesis of small displacement gradients, the scalar components in the current 

configurations are: 

 

1

2 2

3 3

t

u

u

u

=

=

=

=







 

 (1) 

Geometrical boundary conditions at the clamped end D require: 

 1 2 3 0D D D Du u u= = = =  (2) 

2.2 Dynamics 

External forces p:=p1(s,t) 1a +p2(s,t) 2a +p3(s,t) 3a  and couples c:=c(s,t) 1a  act on the beam (Fig. 1). The 

internal contact force t:=N(s,t)a1+T2(s,t)a2+T3(s,t)a3 and the couple m:=Mta1 are assumed as stress 

measures, and referred as the stress forces (constituted by the normal N and shear forces T2,T3) and 

the torsional moment. Equilibrium in the current configuration requires  +  + =m u t c 0  and 

 + =t p 0 ; considering small displacement gradients and small displacements, the linearized scalar 

balance equations read: 

 

1

2 2

3 3

0

0

0

0t

N p

T p

T p

M c

 + =

 + =

 + =

 + =

 (3) 

The mechanical boundary conditions, to be satisfied at the free end E, are: 
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1 1

2 2

3 3

0

0

0

0

E

E

E

E

E E

tE E

N P

T P

T P

M C

− =

− =

− =

− =

 (4) 

where PE:=P1E(t) 1a +P2E(t) 2a +P3E(t) 3a  and CE:=CE(t) 1a  are a known force and a couple, 

respectively, acting at E. In this paper distributed and concentrated forces in axial direction 

(characterized by the subscript 1) are neglected; therefore, the normal force N is set to zero.  

External forces are here distinguished in (a) aerodynamic, (b) inertial, and (c) damping forces; 

accordingly: 

 

( )

1 1 1

1 1

a u

a

E Ea E E uE E

E Ea E E E E

m

I

M

I







  

 

= − −

= − −

= − − 

= − − 

p p u u

c c a a

P P u u

C C a

 (5) 

where the index a denotes aerodynamic; m is the mass per unit length of the beam; I1 is the inertia 

mass moment of the cross section with respect to 1a ; ME is a lumped mass, possibly attached at the 

free end of the beam, and I1E its inertia moment. External damping forces are taken proportional to 

the masses, via the damping coefficients , ; internal damping, if any, must be accounted via a visco-

elastic constitutive law. Note that the centroidal axis was taken as coincident with the beam axis in 

order to simplify the expression of the inertia forces. 

2.3 Hyperelastic law 

Let us consider a generic column c of axis 1a , and principal inertia axes 2a , 3a , clamped at both ends 

C and B, undergoing a displacement uB=u1B 1a +u2B 2a +u3B 3a  and a twist B, assigned at B (Fig. 3). In 

the framework of the Euler-Bernoulli beam linear theory, the column experiences a displacement 

field: 
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 ( ) ( ) ( )( )1 1 2 2 3 3B B B  s u g s f s u u= + +u a a a  (6) 

where s is an abscissa with origin at C, and the functions g and f are given by: 

 ( ) ( ) ( ) ( )
2 3

3 2g s : s / h f s : s / h s / h= = −  (7) 

h being the length of the column. The elastic energy stored by the column is given by: 

 ( )2 2 2 2
1 2 2 3 3

0

1
d

2

h

c t c cW EA GJ EI EI s   = + + +  (8) 

where  is the axial strain and i (i=1,2,3) are the curvatures of the column: 

 1 1 2 3 3 2u u u       = = = − = −  (9) 

Taking into account Eqs. (6)-(9), the column elastic energy Wc can be expressed as a function of its 

end-section displacements as follows: 

 ( )2 2 2 2
1 2 2 3 3

1

2

a f f t
c c B c B c B c BW k u k u k u k = + + +  (10) 

where 
a
ck :=EA/h is the axial stiffness, 2

f
ck :=12EI3c/h

3, 3
f
ck :=12EI2c/h

3 are flexural stiffnesses, and 
t
ck

:=GJt/h is the torsional stiffness. 

Let us now analyze a cell made of two adjacent floors, parallel to the 2a , 3a  plane, connected by N 

columns of equal height h aligned along 1a . The relative motion of the upper floor with respect to the 

lower one is considered, consisting in a translation uG=u1G 1a +u2G 2a +u3G 3a , with G the centroid, and 

in a rotation  around the axis 1a . By linear kinematics, the displacement of the top point of the i-th 

column, of coordinates x2i, x3i, is ui=u1i 1a +u2i 2a +u3i 3a , where: 

 

1 1

2 2 3

3 3 2

i G

i G i

i G i

u u

u u x

u u x





=

= −

= +

 (11) 



9 

 

Assuming that all the columns have principal axes aligned with 2a , 3a , the elastic energy of the N 

columns can be expressed as: 

 
1

:
N

i

i

W W
=

=  (12) 

where Wi represents the elastic energy of the i-th column. Substituting Eq. (10) (by replacing c and B 

with i) into Eq. (12), the elastic energy of the cell is given by: 

 
 2 2 2 2

1 2 2 3 3

1

1
:

2

N
a f f t
i i i i i i i

i

W k u k u k u k 
=

= + + +  (13) 

Then, substituting Eq. (11) into Eq. (13), one obtains the following expression of the elastic energy 

as a function of the displacements of the centroid (u1G, u2G, u3G) and of the rotation : 

 ( ) ( )
1

2 22 2
2 2 3 3 3 2

1

1

2 G

N
a f f t
i i G i i G i i

i

W k u k u x k u x k  
=

 = + − + + +
   (14) 

The axial force necessary to enforce such displacements is: 

 1

11

N
a
i G

iG

W
N k u

u =


= =


  (15) 

If no axial forces are applied, then N = 0, and therefore the centroidal axial displacement must vanish 

( 1 0Gu = ). 

The elastic energy of the cell is thus given by: 

 ( ) ( )
2 2 2

2 3 3 22 3

1

1

2

N
f f t

G i G i ii i

i

W k u x k u x k  
=

 = − + + +
   (16) 

The constitutive law of the coarse model is obtained by expressing: 
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 2 2 3 3G G tu h u h h   = = =  (17) 

Furthermore, let us express the elastic energy per unit length of the equivalent beam as =W/h. By 

substituting Eq. (17) into Eq. (16), we obtain: 

 ( ) ( )
2 2 2

2 3 3 22 3

12

N
f f t

t i t i i ti i

i

h
k x k x k     

=

 = − + + +
   (18) 

By the Green law: 

 2 3

2 3

t

t

T , T , M
  

  

  
= = =

  
 (19) 

a linear constitutive law is deduced: 

 

( )

2 2 32 2

3 3 23 3

3 2 2 32 3

f f
F t

f f
F t

t tf f f
t t F F

T hK hx K

T hK hx K

M h K K hx K hx K

 

 

  

= −

= +

= + − +

 (20) 

In Eq. (20), 2 21
:

Nf f
ii

K k
=

=  and 3 31
:

Nf f
ii

K k
=

=  are the total flexural stiffnesses, 
1

:
Nt t

ii
K k

=
=  is the total 

torsional stiffness, ( )2 2
3 22 31

:
Ntf f f

i ii ii
K k x k x

=
= +  is the contribution to the torsional stiffness given by the 

flexural stiffness of the columns, x2F and x3F are the coordinates of the center F of the flexural 

stiffness: 

 2 32 33 2

1 13 2

1 1
: :i i

N N
f f

F Fi if f
i i

x k x x k x
K K= =

= =   (21) 

3 THE AERODYNAMIC MODEL 

Aerodynamic forces are modeled based on the quasi-steady theory, assuming that the flow-induced 

forces acting on a moving cylinder can be predicted adopting the expression pertinent to a fixed 

cylinder in which the asymptotic flow velocity is substituted with the flow-cylinder relative velocity 



11 

 

(e.g., [28]). This requirement is often met at high reduced velocity Ur, i.e. / ( ) 20 30r cU U f b=   −  

[21], where U is the modulus of the mean wind velocity U, fc is the cylinder’s oscillation frequency 

and b is a reference size of the cylinder cross-section (e.g., the diameter or the side). Even if 

technicians involved in the study of structures subjected to aeroelastic actions may consider the quasi-

steady approach as too simplistic and often unrealistic, it remains an irreplaceable, though 

approximate, simple tool to perform preliminary predictive analyses before performing more 

sophisticated ones. 

Under the assumption of the quasi-steady theory, the aerodynamic forces pa and couple ca acting 

on the beam can be expressed as a function of the relative wind velocity as follows [29]: 

 

( ) ( )( )

( )

1

2 2
1

1

2

1

2

a a d l

a a m

Vb c c

V b c

  

 

= + 

=

p V a V

c a

 (22) 

where a is the air density, V:=U-u  is the relative wind velocity, difference between the absolute 

(mean) velocity of the wind U and the local velocity of the structure 2 2 3 3u u= +u a a , V = V  is the 

modulus of the relative wind velocity; furthermore cd(), cl(), cm() are aerodynamic coefficients, 

called drag, lift and moment coefficients, respectively, evaluated for the instantaneous angle of attack 

: 

 
( )13

2

arctan arctan  
   

= = − +   
    

V a UV a

V a V U
 (23) 

being  the angle of incidence of the absolute wind velocity U with respect to the reference 

configuration, Fig. 4. 

The components of the aerodynamic forces in the wind reference basis (drag pad, lift pal, moment pam) 

are defined as follows: 
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( )1

ad a

al a

am a

p
U

p
U

p c

= 


= 

=

U
p

a U
p  (24) 

Their approximation at the third order is obtained from Eq.(22) by a power series expansion of the 

relative wind velocity V and the angle of attack , Eq. (23), with respect to the mean value U and the 

angle of incidence , respectively, considering small rotations  and structural velocities u  (see, e.g., 

[28]), and can be expressed as follows: 

 

( )

( )
2 2 3 3

2 2 2 2
22 2 33 3 2 2 3 3 23 2 3

3 3 2 2 3 3 2 2
222 2 333 3 223 2 3 233 2 3 2 2

2 2 2 2
3 3 22 2 33 3

1

2

1

t

a a tt t t

ttt tt

tt t t

U C u C u UC

p b C u C u U C UC u UC u C u u

C u C u C u u C u u U C U C u

U U C u UC u UC u UC

  

      

     

  



   

 

  

+ + +

= + + + + + +

+ + + + + +
+

+ + + +

( )

23 2 3t

d ,l ,m

u u





 
 
 
  

= 
 

  
   

   

 (25) 

where the coefficients C are defined in Appendix A.  

The components (pa2, pa3) of the aerodynamic forces in the structural reference basis ( 2a , 3a ) are 

related to the forces in the wind reference basis (pad, pal) through a simple rotation law (Fig. 4): 

 
2

3

cos sin

sin cos

a ad al

a ad al

p p p

p p p

 

 

= −

= +
 (26) 

Thus, the components of the forces in the structural reference basis pa2, pa3 can be defined through 

expressions analogous to Eq. (25), ( = 2,3), with coefficients given by: 

  
2

3

cos sin

sin cos

a ijk dijk lijk

a ijk dijk lijk

C C C

C C C

 

 

= −

= +
             (i,j,k=2,3,t) (27) 
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where one, two or three subscripts i,j,k are taken into consideration depending on the order of the 

corresponding coefficient. 

Resulting aeroelastic forces are expressed as the sum of linear, quadratic and cubic terms, as in Eq. 

(25). 

4 THE FUNDAMENTAL PROBLEM 

The fundamental problem is governed by the kinematic relationships (1), (2), the balance equations 

(3), (4), with external forces given by Eq.(5), and the elastic law (20). Starting from the kinematic 

relationships and the balance equations, the equations of motion may be expressed as follows: 

 

( )

2 3 2 2 2 22 2

3 2 3 3 3 33 3

3 2 2 3 12 3

0

0

0

f f
F a

f f
F a

t tf f f
F F a

hK u hx K p mu c u

hK u hx K p mu c u

h K K hx K u hx K u c I c





  

 − + − − =

 + + − − =

  + − + + − − =

 (28) 

where the aerodynamic forces pa2, pa3, ca are given by Eq.(25). 

In absence of external forces at the free end E, the boundary conditions are given by: 

 

( ) ( ) ( )

( ) ( )

( ) ( )

( ) ( ) ( ) ( )

2 3

2 32 2

3 23 3

3 2 2 32 3

0 0 0 0

0

0

0

f f
F

f f
F

t tf f f
F F

u u

hK u hx K

hK u hx K

h K K hx K u hx K u









= = =

 − =

 + =

  + − + =

 (29) 

By direct inspection, the exact solution of the boundary value problem (28)-(29) is expressed as 

follows: 

 

( ) ( )

( ) ( )

( ) ( )

2 2

3 3

sin
2

sin
2

sin
2

t

s
u s,t q t

l

s
u s,t q t

l

s
s,t q t

l








 
=  

 

 
=  

 

 
=  

 

 (30) 

Introducing the nondimensional parameters: 
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2 3 2 3
3 2 3 2 3

2 3

2 3 2
2 3 23 3

1 3 3

2
1

2
3

2 2

2

1

2

t t

F F
F F

a

q q c c
t t , q , q , q q , , ,

b b m m

c x x
, x , x , , ,

I b b

I U b
, ,

b mmb

 
 



  
 

 
  

  


  



= = = = = =

= = = = =

= = =

 (31) 

being 2, 3 and  the circular frequencies of the building in the uncoupled case (i.e., symmetrical 

cross-section with respect to the reference axes) given by [18]: 

 
( )2 2 2

2 2 22 3
2 3

12 2 2

t tff f h K KhK hK
, ,

m m I


  
  

+     
= = =     

     
 (32) 

the resulting non-dimensional system of second-order ordinary differential equations can be written 

in the following matrix form: 

 ( ) ( )2
2 3s s a a , ; , , ;   + + =− − + +Mq C q K q C q K q f q q f q q q  (33) 

where q  is the vector of the non-dimensional principal coordinates, M, Cs, Ks are the structural mass, 

damping and stiffness matrixes: 

 

2 2
2 2 23 23 3 23

3 3 2

2 2
3 3 23 2 3

1 0 0 2 0 0 0

0 1 0 0 2 0 0 1

0 0 0 0 2

F

s s F

t F F

q x

q x

q x x  

   



      

 −     
      

= = = =      
       −       

q M C K

 (34) 

Furthermore, Ca and 2Ka are the aerodynamic damping and stiffness matrixes: 

 

22 23 2

32 33 3

2 3

0 0 0

0 0 0

0 0 0

a a a t

a a a a a t

at at att

C C C

C C C

C C C

 

− − −   
   

= − − = −
   
   − − −   

C K  (35) 

Finally, the vectors f2 and f3 are the quadratic and cubic aerodynamic force vectors: 
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( )

2 2 2 2
222 2 233 3 2 22 2 23 3 223 2 3

2 2 2 2
2 322 2 333 3 3 32 2 33 3 323 2 3

2 2 2 2
22 2 33 3

8

3

a a a tt t a t t a t t a

a a a tt t a t t a t t a

at at attt t

C q C q C q C q q C q q C q q

, ; C q C q C q C q q C q q C q q

C q C q C q C

  

    


 

+ + + + +

= + + + + +

+ + +

f q q

( )

2 2 3 3 23 2 3

3 3 2 2 3 3 2 2
2222 2 2333 3 2223 2 3 2233 2 3 2 2 2 2

2 2 2
2 3 3 2 22 2 2 33

3

3

4

at t t at t t at

a a a a a ttt t a tt t

a tt t a t t a t t

q q C q q C q q

C q C q C q q C q q C q C q q

C q q C q q C q

, , ;



 

  






 
  
 
 

+ +  

+ + + + + +

+ +

=f q q q

2
3 2 23 2 3

3 3 2 2 3 3 2 2
3222 2 3333 3 3223 2 3 3233 2 3 3 3 2 2

2 2 2 2
3 3 3 3 22 2 3 33 3 3 23 2 3

222

a t t

a a a a a ttt t a tt t

a tt t a t t a t t a t t

at

q C q q q

C q C q C q q C q q C q C q q

C q q C q q C q q C q q q

C



 

   

 
 
 + 

 + + + + + +
 
 + + + 

3 3 2 2 3 3 2 2
2 333 3 223 2 3 233 2 3 2 2

2 2 2 2
3 3 22 2 33 3 23 2 3

at at at atttt t attt t

attt t att t att t att t

q C q C q q C q q C q C q q

C q q C q q C q q C q q q

 

   

 
 
 
 
 
 
 
 

 + + + + + + 
   + + +  

 (36) 

5 LINEAR BIFURCATION ANALYSIS 

The linearized reduced equations of motion (33) can be rewritten in the following state-space form: 

 =x Gx  (37) 

 
T

2 3 2 3t tq q q q q q=x  being the state-space vector and G the state-space matrix: 

 
2

1 1 s a s a 
− −

 
= = + = + 

− − 

0 I
G C C C K K K

M K M C
 (38) 

From Eq.(38) it should be noted that the total damping of the structure is proportional to the 

nondimensional wind velocity , which acts as a bifurcation parameter. Linear bifurcation analysis is 

carried out by evaluating the complex eigenvalues and eigenvectors of the state-space matrix G as 

functions of . 

The classic Den Hartog criterion corresponds to the critical velocity DH  of the sole crosswind 

degree of freedom, 3q , and it is achieved when =0 and C(2,2)=0: 

 
( )

32
DH

d lc c






−
=

+
 (39) 
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6 POST-CRITICAL ANALYSIS 

The nonlinear equation of motion can be expressed in the state-space form as follows: 

 ( ) ( )2
2 3, ; , , ;   = + +x Gx F x x F x x x  (40) 

where  is a dimensionless small parameter and F2 and F3 represent, respectively, the quadratic and 

cubic forcing functions: 

 ( ) ( )2 3

2 3

, ; , , ; 
   

= =   
   

0 0
F x x F x x x

f f
 (41) 

Assuming a small perturbation of  around its critical value 0, =0+2 ̂ , the stiffness and damping 

matrices may be expressed as: 

 2 2
0 2 0 2ˆ ˆ   = + = +K K K C C C  (42) 

where: 

 

2
0 0 2 0

0 0 2

2s a a

s a a

 



= + =

= + =

K K K K K

C C C C C
 (43) 

Thus, the bifurcation parameter can also be made explicit in the state-space matrix G: 

 2
0 2ˆ = +G G G  (44) 

where: 

 0 21 1 1 1
0 0 2 2

− − − −

   
= =   

− − − −   

0 I 0 0
G G

M K M C M K M C
 (45) 

In order to apply the Multiple Scale Method [30], the solution is expanded as: 

 
2

0 1 2 = + +x x x x  (46) 
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After introducing two independent time scales t0:=t and t2:=2t, the derivative with respect to the 

time assumes the expression d/dt=d0+2d2, where di= /ti (i=0,2). As a consequence, the perturbation 

equations read as: 

 ( )

( ) ( )

0
0 0 0 0

1
0 1 0 1 2 0 0 0

2
0 2 0 2 2 0 2 0 2 0 1 0 3 0 0 0 0

d

d ;

d d 2 ; ;

,

ˆ , , ,



 

   

− =

− =

− =− + + +

x G x 0

x G x F x x

x G x x G x F x x F x x x

 (47) 

Eq. (47)1 admits the generating solution: 

 ( ) 0i
0 2 0e tA t cc= +x u  (48) 

where i is the imaginary unit, u0 is the right critical eigenvector of G0 and cc denotes the complex 

conjugate. 

Substituting Eq. (48) into Eq. (47)2, the following equation is obtained: 

 ( ) ( )02 2
0 1 0 1 2 0 0 0 2 0 0 0d e ; ;i tA , AA , cc  − = + +x G x F u u F u u  (49) 

where the overbar denotes complex conjugate. 

The particular solution of Eq. (49) is given by: 

 02 2i
1 2 0e tA AA cc= + +x z z


 (50) 

where z0 and z2 are solutions of the following equations: 

 
( ) ( )

( )

0 2 2 0 0 0

0 0 2 0 0 0

2 ;

;

i ,

,

 



− =

− =

I G z F u u

G z F u u
 (51) 

Substituting Eq. (50) into Eq. (47)3, one obtains: 

 0i
0 2 0 2d e t

r NRT cc− = + +x G x F  (52) 
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where NRT denotes non resonant terms, while Fr represent the resonant forcing terms at the 2-order 

given by: 

 ( ) ( ) ( )( )2
2 0 2 0 2 0 2 0 2 0 0 0 3 0 0 0 0d 2 ; 4 ; 3 , ;r ˆA A A A , , ,   =− + + + +F u G u F u z F u z F u u u  (53) 

The solvability of Eq. (52) is enforced by imposing the condition: 

 T
0 0r =v F  (54) 

being v0 the conjugate critical left eigenvector of G0. 

From Eq. (54), the amplitude modulation equation is derived: 

 2
1 2ˆA Ac c A A= +  (55) 

where the coefficients c1 and c2 are given by: 

 
( ) ( ) ( )

T
1 0 2 0

T T T
2 0 2 0 2 0 0 2 0 0 0 0 3 0 0 0 02 ; 4 ; 3 , ;

c

c , , ,  

=

= + +

v G u

v F u z v F u z v F u u u
 (56) 

By introducing the polar form 
i1 2A / ae =  and separating real and imaginary parts of c1 and c2 

coefficients ( ii iR iIc c c= + , i=1,2), the modulation equation in the real amplitude a is obtained: 

 3
1 2

1

4
R Rˆa ac a c= +  (57) 

The stationary amplitude a is estimated by imposing 0a= : 

 
1

2

2
R

R

c
ˆa

c
= −  (58) 

The approximate perturbation solution of Eq. (40) is thus obtained from Eq. (46) reabsorbing the  

parameter. 
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7 NUMERICAL APPLICATIONS 

In order to appreciate the effective importance of the coupling between mechanical and aerodynamic 

terms, a numerical application is proposed. The building considered has an external square shape; the 

columns are supposed to be disposed symmetrically with respect to 2a  axis, so that 3Fx =0. 

Furthermore, it is assumed that the uncoupled natural frequencies in the two orthogonal directions 

are coincident (23=1). The non-dimensional coefficients  and  are fixed as =0.004, =1/6; 

damping ratios are set as 2=3==0.01. The mean wind velocity is assumed to be aligned with 2a , 

so that =0. The aerodynamic coefficients for the square section are chosen according to [31] and 

[32] (cd = 2.09, cl = 0, cm = 0, dc  = 0, lc = -5.69, mc = 0.196, dc = -18.35, lc= 0, mc = 0, dc = 0, lc  

= 2337, mc  = 130.7).  

At first, a linear bifurcation analysis is carried out and the effects on critical conditions of the 

eccentricity between flexural and inertia center 2Fx , and of the torsional-to-shear frequency ratio  3 

are studied. As a second step, a specific class of tower buildings is considered and the role of the 

different kinds of nonlinearities on the post-critical behaviour is analyzed. 

7.1 Linear bifurcation analysis 

Linear bifurcation analysis is carried out by analyzing the complex eigenvalues and eigenvectors of 

the state-space matrix as functions of the non-dimensional mean wind velocity  (considered as the 

bifurcation parameter), of the eccentricity between flexural and inertia center 2Fx , and of the 

torsional-to-shear frequency ratio  3. 

Figure 5 plots the complex eigenvalues on varying the non-dimensional mean wind velocity  (the 

arrow indicates the increase of ) for different values of the involved parameters ((a) 2Fx =0.1, 

 3=1.3,..2 from black to grey; (b)  3=1.3, 2Fx =0,..0.2 from black to grey). Figure 5(c) provides a 

schematic representation of the corresponding eigenvectors, showing that the first couple of 
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eigenvalues (1,2) is related to an alongwind mode, while the other two couples (3,4, 5,6) correspond 

to coupled lateral-torsional vibrations. It is evident that the couple of eigenvalues associated with the 

alongwind mode (1,2) have imaginary part independent of  and a real part that decreases on 

increasing  (the aerodynamic damping is proportional to , while the stiffness is independent of ), 

whereas it is independent of  3 and 2Fx . On the contrary, the other two couples of eigenvalues 

(referred to potentially coupled crosswind-torsional vibrations) are characterized by an imaginary part 

that slightly depends on   and a real part that is strongly affected by . In particular, the increase of 

 has a stabilizing effect (the real part decreases) on the stable couple of modes (3,4) while the 

unstable couple of modes (5,6) has a real part that increases with increasing . The imaginary part of 

the unstable eigenvalues (5,6) is almost independent of  3 for 2Fx =0.1, whereas it is slightly 

affected by 2Fx ; the imaginary part of the stable eigenvalue (3,4) is influenced by  3 but almost 

independent of 2Fx . 

Figure 6 plots the real parts of the eigenvalues as functions of the non-dimensional mean wind 

velocity , for different values of the involved parameters ((a) 2Fx =0.1,  3=1.3,..1.9; (b)  3=1.3, 

2Fx =0,..0.2). As already deduced from Fig. 5, the real part of the eigenvalues associated with 

crosswind and torsional motions is affected by the aerodynamic damping terms. In particular, there 

exists a critical value of velocity, cr, at which the real part of the unstable couple of eigenvalues (5,6) 

crosses the zero value; it is influenced by both 2Fx  and  3. For the example here examined, the 

critical value decreases when the eccentricity diminishes and the frequency ratio increases (i.e. when 

the coupling between lateral and torsional vibrations tends to vanish). 

Figure 7 shows the absolute value of the crosswind u03 (a) and torsional u0 (b) components of the 

critical eigenvector u0 as functions of  3 and 2Fx  (the alongwind component is not plotted since it 

is null). It clearly shows that the critical mode is a coupled vibration in the crosswind ( 3a ) and 
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torsional directions. In particular, the vibration is purely crosswind (u0 =0) for negligible eccentricity 

between the flexural and inertia center ( 2Fx  close to zero); on increasing 2Fx , the coupling between 

torsional and crosswind vibrations becomes remarkable. Furthermore, the coupling increases on 

decreasing the frequency ratio,  3→1. In any case, the coupling is significant even for large 

frequency ratios if the eccentricity 2Fx  is sufficiently large. 

Figure 8 shows the ratio between the critical non-dimensional mean wind velocity and the Den 

Hartog limit value (39) as a function of 3 and 2Fx . It is evident that the coupling between shear and 

torsion has always a stabilizing effect, causing a significant increase of the critical wind velocity with 

respect to the classic Den Hartog criterion. 

7.2 Post-critical analysis 

As a sample numerical application, the stationary amplitude has been evaluated for a specific case, in 

which 2Fx =0.05 is assumed. In this particular case, the right critical eigenvector is given by u0=

 
T

0 0 65 0 29 0 02i 0 0 64i 0 02 0 28i. . . . . .+ − − . The role of the different aerodynamic terms is 

investigated by comparing the full model with suitable reduced models, obtained neglecting the 

quadratic aerodynamic terms, or taking into account only the aerodynamic cubic terms proportional 

to the crosswind degree of freedom (which are the only ones present in a purely 1 degree-of-freedom 

crosswind galloping model), or considering the classic (Den Hartog) crosswind uncoupled galloping. 

Figure 9 plots the stationary amplitude of oscillation deduced by Eq. (58). The full nonlinear model 

shows post-critical amplitudes remarkably lower than the reduced model with only cubic 

nonlinearities in 3
3q . The solution obtained neglecting the quadratic aerodynamic terms is not reported 

since it almost perfectly coincides with the complete solution of the full model, demonstrating that 

the quadratic terms have a negligible role in this case and are not responsible for this reduction effect. 

The coupling between torsion and lateral vibrations causes a noteworthy modification of the post-
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critical behaviour with respect to the purely crosswind case. As already observed from Fig. 8, the 

critical velocity for the classic uncoupled crosswind galloping may be significantly lower than the 

one evaluated for coupled vibrations, and the corresponding post-critical amplitudes are higher than 

ones arising in coupled cases using the full model. 

In order to check the accuracy of the perturbation solution in predicting the post-critical stationary 

amplitude of vibration, a numerical integration of the nonlinear equations of motion (33) has been 

carried out, imposing an initial condition ( )  
T

0 0 0 1 0.=q  and assuming a non-dimensional mean 

wind velocity =1.2cr, (cr =1.58). Figure 10 shows the steady-state numerical time histories q  

(=3,t) ( 2q  is not reported since alongwind vibrations are not significant for the examined case), 

together with the corresponding steady-state amplitude a/2 u0 (=3,t; gray straight line), with a 

estimated from Eq. (58) ( cr̂  = − =0.316): the perturbation solution provides a reliable estimate of 

the stationary amplitude of the crosswind and torsional components of motion. Figure 11 plots the 

steady-state trajectory of a point located at a corner of the square building ( 2 3x x= =0.5), comparing 

the numerical solution with the perturbation one: the two solutions are almost coincident; 

furthermore, the coupling between crosswind vibration and torsion causes a non-negligible motion of 

the selected point also along 2a direction. 

8 CONCLUSIONS AND PROSPECTS 

The main novelty of this paper consists in modeling a wind-excited shear-type three-dimensional 

frame as an equivalent one-dimensional beam. The model is linear in accounting for inertial, elastic 

and damping forces, but nonlinear in describing fluid-structure interactive forces. It allows to take 

into account the mechanical coupling between shear and torsion due to the lack of symmetry in the 

mechanical properties of the structure. This makes it possible to study the linear and nonlinear 

dynamic interaction between elastic and non-conservative forces based on a realistic physical 
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modeling of the structure and the load. In the analyzed examples simple codimension-1 Hopf 

bifurcations occur. The use of Multiple Scale perturbation method permits to obtain a reduced one-

dimensional dynamical system ruling the main dynamics on the center manifold. It is obviously well 

different and richer than (usual) technical single degree-of-freedom section model, since it may 

include all the three components of the tower-building motion (and not only the crosswind lateral 

displacement as in the classic vertical galloping). 

As a sample application, the galloping analysis of a square building excited by the wind along a 

symmetry axis has been carried out. It should be noted that, although the requirements of the quasi-

steady theory (demanding a high slenderness of the tower-building) can be met with difficulty, it has 

been adopted in similar cases in the literature (e.g., [17],[18],[33],[34]). Anyway, it allows to carry 

out a preliminary analysis of the system stability, which may precede more detailed (and complicated) 

aeroelastic experimental tests and simulations. The influence of the lack of symmetry and of the 

coupling between shear and torsion on the critical galloping conditions has been studied. In the case 

here presented, this coupling always has a stabilizing effect, since it produces an increase of the 

critical wind velocity and a reduction of the post-critical amplitude of oscillation with respect to the 

purely crosswind galloping. Comparisons between results of a numerical integration of the equations 

of motion and the perturbation solution confirm the validity of the analytical approach in estimating 

the post-critical stationary amplitude. 

Based on the equivalent model here introduced, the critical wind velocity and the post-critical 

behavior can be estimated for different building shapes when the angle of incidence of the mean wind 

is varying (i.e. ≠0), recovering the possible influence of alongwind vibrations. Furthermore, the 

postcritical behaviour can be analyzed by applying the Multiple Scale Method directly to the partial 

differential equations of motion (as, e.g., done in [35]). Finally, the procedure can be extended to 

include mechanical nonlinearities (simply by using Biot strain and, for instance, the results found in 

[36],[37]) and non-homogeneous beams, possibly bearing lumped masses on the top.  
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APPENDIX A 

The coefficients defining the aerodynamic forces pa (=d, l, m) in Eq. (25) can be expressed as: 

( ) ( )

2 2 1 3 2 1 1

2 2

22 1 2 3 33 1 2 3

1 2 1 2 3 1 2

23 2 3 222 4

sin 2 cos cos 2 sin

cos sin sin cos sin cos

1
2 cos sin 2 sin cos

2

cos2 sin2 sin

t

tt t t

C c c C c c C c

C c c c C c c c

C c C c c C c c

C c c C c

       

       

       

    

   
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 

= − =− − =−

= − + = + +
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= − = ( ) ( )
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1 1
cos sin sin cos sin cos sin

2 2
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 
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         
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 

   
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  =− − − 2 3cos2 sin2c c   =− +

 (59) 

where the coefficients ci (=d,l,m, i=1,..4) are functions of the aerodynamic coefficients, defined as 

follows: 

 

1 1 1

2 2 2

3 3 3

4 4 4

2 2 2 2 2

2

2 6 2 6 2 6 2 6 3 6

d d l l m m

d l d l d l m m

d d l l m
d l l d m

l d l d d l d l m
d l m m

c c c c c c

c c c c c c c c

c c c c c
c c c c c

c c c c c c c c c
c c c c

= = =

  =− + = + =

  
 =− − + =− + + =

      
=− + − + = + + + = +

 (60) 

where the prime symbol denotes the derivatives of the aerodynamic coefficients with respect to the 

instantaneous angle of attack , evaluated at the angle . 

The coefficients of the linear terms of the forces in the structural reference basis (Ca22, Ca23, Ca32, 

Ca33) are coincident with those already introduced by Piccardo et al. [38]. 
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Figure 1. Tower building configuration and external loading. 
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Figure 2. Tower building: reference and current bases, configuration variables and internal forces. 
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Figure 3. Single column deformation. 
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Figure 4. Absolute (U) and relative (V) velocities, aerodynamic angles. 
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Figure 5: Complex eigenvalues ((a) 2Fx =0.1; (b)  3=1.3) and eigenvectors (c). 
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(a)  (b)  

Figure 6. Real part of the eigenvalues ((a) 2Fx =0.1, (b)  3=1.3). 
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(a)       (b) 

Figure 7. Absolute value of the components of the critical eigenvector as functions of 2Fx  and 3. 

  

1.4

1.6

1.8

2

-0.2

-0.1

0

0.1

0.2
0.45

0.5

0.55

0.6

0.65

0.7

0.75


t3

x
2F

u
0
3
c
r

1.4

1.6

1.8

2

-0.2

-0.1

0

0.1

0.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7


t3

x
2F

u
0


 c

r



37 

 

 

Figure 8. Ratio between the critical galloping velocity and the Den Hartog criterion as a function of 

3 and 2Fx . 
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Figure 9. Postcritical amplitude: full nonlinear model (full), only cubic nonlinearities in 3
3q  (q3

3 C), 

only cubic nonlinearities in 3
3q  and uncoupled crosswind motion (q3

3 UC). 
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Figure 10: Steady-state time histories of the non-dimensional coordinates 3q  and tq : comparison 

between numerical and analytical solution. 
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Figure 11: Steady-state trajectories of the tower-building corner point ( 2 3x x= =0.5; different scales 

for 2q  and 3q  axis). 
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