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ABSTRACT: Tower buildings can be very sensitive to dynamic actions and their dynamic analysis 

is usually carried out numerically through sophisticated finite element models. In this paper, an 

equivalent nonlinear one-dimensional shear-shear-torsional beam model immersed in a three-

dimensional space is introduced to reproduce, in an approximate way, the dynamic behavior of 

tower buildings. It represents an extension of a linear beam model recently introduced by the 

authors, accounting for nonlinearities generated by the stretching of the columns. The constitutive 

law of the beam is identified from a discrete model of a 3D-frame, via a homogenization process, 

which accounts for the rotation of the floors around the tower axis. The macroscopic shear strain in 

the equivalent beam is produced by the bending of columns, accompanied by negligible rotation of 

the floors. A coupled nonlinear shear-torsional mechanical model is thus obtained. The coupling 

between shear and torsion is related to a non-symmetric layout of the columns, while mechanical 

nonlinearities are proportional to the slenderness of the columns. The model can be used for the 

analysis of the response of tower buildings to any kind of dynamic and static excitation. A first 

application is here presented, to investigate the effect of mechanical and aerodynamic coupling on 

the critical galloping conditions and on the postcritical behavior of tower buildings, based on a 

quasi-steady model of aerodynamic forces. 

 

KEY WORDS: Equivalent beam model, Homogenization procedure, Nonlinear beam model, 

Perturbation approach, Shear-type building. 
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1 INTRODUCTION 

Tower buildings are very sensitive to dynamic actions induced by wind and earthquake. 

Simplified one-dimensional beam models can be very useful at a preliminary design stage. The 

continuum approach generally proves to be simple, and it can provide reasonable results with 

significantly reduced computing time with respect to refined numerical models. In addition, in 

certain cases, good preliminary hand estimates can be done without much difficulty and general 

parametric studies can be easily performed. 

The possibility of adopting equivalent one-dimensional coarse models representative of the global 

behavior of different kinds of three-dimensional systems is deeply analyzed in [1]. In the analysis of 

tall buildings subjected to lateral loads, different models have been proposed in the literature 

idealizing the structure as a beam with continuum properties along its height. Basu and Dar [2] 

determined the dynamic characteristics (natural frequencies and mode shapes) of multistory 

buildings idealized as an equivalent planar coupled shear wall connected in series to an equivalent 

frame: they modelled the coupled wall as a continuum of uniform properties and the frame as a 

uniform shear beam. Balendra et al [3] analyzed a completely asymmetric building through an 

equivalent beam model with in parallel arrangement of bending and shear stiffness, using a 

Galerkin technique in the continuum approach. Chajes at al [4] introduced a plane equivalent 

Timoshenko beam model with an additional degree of freedom, whose properties are determined 

from the equivalence of the strain energy of the continuum and the discrete model. Miranda and 

Taghavi [5] introduced an approximate method to estimate floor acceleration demands in multistory 

buildings: the dynamic characteristics of the building are approximated by using a simplified model 

based on an equivalent beam that consists of a combination of a flexural and a shear beam. 

Malekinejad and Rahgozar [6] provided approximate formulas for the modal properties of tubular 

tall building structures, considering a parallel cantilevered flexural-shear beam and deriving the 

governing dynamic equation using the energy method and Hamilton’s principle. Cluni et al [7] 
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proposed two plane equivalent beam models, using in series and in parallel arrangement of the 

bending and shear stiffness, in order to estimate the dynamic wind-excited response of tall 

buildings: the parameters of the mechanical model are calibrated using equivalence criteria based 

on static and dynamic response features of finite element models. 

The equivalent beam models proposed in the literature are mainly limited to the representation of 

the lateral behavior of tall buildings, neglecting the coupling between shear and torsion components 

of the motion. However, as described many times in the technical literature, the coupling between 

shear and torsion may be important in the determination of the wind-excited response (e.g. [8], [9], 

[10]). Concerning shear-type buildings, the authors have recently introduced a continuous one-

dimensional equivalent beam model immersed in a three-dimensional space, that allows to take into 

account also the coupling between the two shear components and the torsion around the beam axis 

[11]. In this model, the macroscopic shear strain is produced by bending of the columns, 

accompanied by negligible rotation of rigid floors, prevented by the high axial stiffness of the 

columns. The torsional effect induced by the rotation of the floors around the tower axis is also 

included. 

In this paper, the linear model introduced in [11] through a heuristic identification method 

(similarly to, e.g., [12],[13]) is extended, taking into account the nonlinearities generated by the 

stretch of the columns. In a way similar to [4], based on the equivalence between the elastic energy 

of the building and of the equivalent beam model, a constitutive law is introduced relating the 

internal forces to the three strain components. However, differently from [4] and [11], the 

equivalent model here proposed is nonlinear and it allows to consider the intrinsic mechanical 

coupling between torsion and shear, related to a generic non-symmetric positioning of the columns. 

The introduced model can be applied to evaluate the response of shear-type buildings to dynamic 

actions of different nature (e.g., earthquake, wind). In this paper, a preliminary application to an 

ideal square building with non-symmetrically disposed columns subjected to wind excitation is 
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proposed. The effect of the coupling between shear and torsion on the galloping critical condition is 

studied. Furthermore, the influence of the aerodynamic and mechanical nonlinearities on the 

galloping post-critical oscillation amplitude is analyzed. 

2 SHEAR-BEAM MODEL: KYNEMATICS 

A shear-beam is characterized by shear strains much larger than flexural ones: it is a coarse model 

for shear-type frames under planar excitation transverse to the axis. The beam is considered as a 

one-dimensional polar continuum whose points, in the reference configuration, lie on the segment 

s[0,] (assumed to be coincident with the centroidal axis of the underlying three-dimensional 

model). The beam is endowed with a rigid local structure, described by mutually orthogonal unit 

vectors attached to the material points. Let 1a , 2a , 3a  be the triad in the reference configuration, 

with 1a  aligned on the beam axis (Fig. 1), and let a1(s,t), a2(s,t), a3(s,t) be the transformed triad in 

the current configuration, occupied at time t (Fig. 2). The beam is assumed internally constrained, 

namely unflexurable and clamped at one end. Therefore 1a a1 and a2= 2a cos+ 3a sin, a3=− 2a

sin+ 3a cos, where  is the twist angle. Consequently, the current configuration of the beam is 

described by four scalar configuration variables, the displacement of the centroidal axis u:= u1(s,t)

1a +u2(s,t) 2a + u3(s,t) 3a  and the twist (s,t) (Fig. 2). 

The vectors 
T: =e R u , ( ) 1: s,t=κ a , where R represents the rotation tensor around 1a  and the dash 

denotes differentiation with respect to s, are defined as the strain vector and torsion, respectively; 

moreover, 1: = +e a γ ,  being the axial and  the shear strain. By letting =2 2a + 3 3a , := t 1a , 

their scalar components in the current configurations are: 
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1

2 2 3

3 2 3

cos sin

sin cos

t

u

u u

u u



  

  

 

=

 = +

 = − +

=

 (1) 

Geometrical boundary conditions at the clamped end D require: 

 1 2 3 0D D D Du u u = = = =  (2) 

3 SHEAR-BEAM MODEL: DYNAMICS 

External forces p:= p2(s,t) 2a +p3(s,t) 3a  and couples c:=c(s,t) 1a  are acting on the beam (Fig. 1). The 

internal contact force t:= N(s,t)a1+T2(s,t)a2+T3(s,t)a3 and the couple m:=Mta1 are assumed as stress 

measures, and referred as the stress force (composed of the normal N and shear force T2, T3 

components) and the torsional moment Mt. Equilibrium in the current configuration, requires t′+p=0 

and m′+( 1a +u′)×t+c=0 [1]. When forces are projected onto the reference configuration, the scalar 

balance equations read: 

 
( )

( )

( ) ( )

1

2 3 2

2 3 3

2 2 3 3 2 3

0

cos sin 0

sin cos 0

sin cos cos sin 0t

N p

T T p

T T p

M T u u T u u c

 

 

   

 + =

− + =

+ + =

    + − + + + =

 (3) 

The mechanical boundary conditions, to be satisfied at the free end E, are: 

 

1 1

2 3 2

2 3 3

0

cos sin 0

sin cos 0

0

E E

E E E E E

E E E E E

tE E

N P

T T P

T T P

M C

 

 

− =

− − =

+ − =

− =

 (4) 

where PE:= P1E(t) 1a +P2E(t) 2a +P3E(t) 3a  and CE:=CE(t) 1a  are possible (known) forces and couple, 

respectively, dynamically acting in E. 
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4 SHEAR-BEAM MODEL: HYPERELASTIC LAW 

A nonlinear hyperelastic law is introduced starting from an expression of the density of elastic 

potential energy that takes into account the stretching of the single columns. In order to account for 

the stretching effect, an axial displacement of columns is allowed to occur. This, however, is 

condensed by requiring that the resulting axial force is zero. The condition entails that, in the fine 

model, when a floor rotates with respect to an adjacent one, columns undergo axial strains, which 

depend on their position with respect the center of rotation; therefore, axial forces arise. Their sum, 

however, must be zero, and then a shortening of the inter-story distance occurs. For this fact, 

although the resultant of the axial forces is zero, an elastic energy is stored in the cell due to the 

stretching of the single columns.  

In this section, at first a single column is analyzed (Section 4.1). Then, a cell made of two adjacent 

floors is considered (Section 4.2) and, by enforcing that the resulting axial force is zero, a 

relationship between the axial displacement (slave variable) and the transverse displacement and 

twist of the floor is obtained. Thus, starting from the density of elastic potential energy, the 

nonlinear elastic law is derived by the Green law (Section 4.3). 

4.1 Single column analysis 

Let us consider a column c of longitudinal axis 1a , and principal inertia axes 2a , 3a , clamped at 

both ends C and B, undergoing a displacement uB=u1B 1a +u2B 2a +u3B 3a  and a twist B, assigned at B 

(Fig. 3). In the framework of the linear theory, the column experiences a displacement field: 

 ( ) ( ) ( )( )1 1 2 2 3 3B B B  s u g s f s u u= + +u a a a  (5) 

where s is an abscissa with origin at C, and the functions g and f are given by: 

 ( ) ( ) ( ) ( )
2 3

3 2g s : s / h f s : s / h s / h= = −  (6) 
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h being the length of the column. Based on a perturbation approach, we substitute this first-order 

solution in the expression for the (truncated) axial strain c, and we find: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )2 2 2 2 2
1 2 3 1 2 3

1 1

2 2
c B B Bs u s u s u s u g s u u f s     = + + = + +  (7) 

Substitution of Eq. (6) into Eq. (7) and integration on the domain [C, B], provides the axial strain: 

 ( )
( ) 22 2 2

2 31

2 2

1
6 6

2

B BB
c

u uu s s
s

h hh h


+  
= + − 

 
 (8) 

The elastic energy stored by the generic column can be expressed as the sum of the flexural-

torsional ft
cU  and axial a

cU  contributions as follows: 

 
ft a

c c cU U U= +
 (9) 

where the two contributions are given by: 

 

( )

( )
( )

( )
1

2 2 2
2 2 3 3

2
2 2
2 32 2 2 2 1

2 32

0

1
:

2

1 1 18 6
: d

2 2 35 5B

ft f f t
c c B c B c B

h
B Ba a B

c c c B B

U k u k u k

u u u
U EA s s k u u u

hh





= + +

 +
 = = + + +
 
  

  (10) 

where 2
f
ck :=12EI3c/h

3; 3
f
ck :=12EI2c/h

3 are flexural stiffnesses, 
t
ck :=GJt/h is the torsional stiffness, 

and 
a
ck :=EA/h is the axial stiffness. The energy is, therefore, quartic in the displacements. 

It should be noted that, in order the column experiences the assigned displacements, not only 

moments and shear forces are needed at the ends, but also the axial force: 

 ( )2 2
1 2 3

1

3

5

ac
c c B B B

B

U
N k u u u

u h

  
= = + +   

 (11) 
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4.2 Cell analysis 

Let us consider a cell made of two adjacent floors, parallel to the 2a , 3a  plane, connected by N 

columns of equal height h aligned along 1a . Let us consider the relative motion of the upper floor 

with respect to the lower, consisting in a translation uG=u1G 1a +u2G 2a +u3G 3a , G being the centroid, 

and in a rotation  around the axis 1a . Using a linear kinematics since the twist angle   is generally 

small, the displacement of the top point of the i-th column, of coordinates x2i, x3i, is ui=u1i 1a +u2i 2a

+u3i 3a , where: 

 

1 1

2 2 3

3 3 2

i G

i G i

i G i

u u

u u x

u u x





=

= −

= +

 (12) 

Assuming that all the columns have principal axes aligned with 2a , 3a , the total elastic energy of the 

N columns can be expressed as: 

 
1

:
N

i

i

U U
=

=  (13) 

where Ui represents the elastic energy of the i-th column. Substituting Eqs. (9)-(10) (by replacing 

subscripts c and B with the new generic one i) into Eq. (13), the elastic energy of the cell is given 

by: 

 

( )
( )

1

2
2 2
2 32 2 2 2 2 2 1

2 2 3 3 2 32
1

1 18 6
:

2 35 5i

N
i if f t a i

i i i i i i i i

i

u u u
U k u k u k k u u u

hh


=

  +  = + + + + + +  
    

  (14) 

Then, substituting Eq. (12) into Eq. (14), one obtains the following expression of the elastic energy 

U as a function of the displacements of the centroid (u1G, u2G, u3G) and of the rotation : 
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( ) ( )

( ) ( )( )
( ) ( )( )1

2 2 2
2 2 3 3 3 2

1

2
2 2

2 3 3 2 2 22 1
2 3 3 22

1

1

2 18 6

35 5G

N
f f t
i G i i G i i

i

N G i G i
a G
i G i G i

i

k u x k u x k

U
u x u x u

k u u x u x
hh

  

 
 

=

=

  − + + + +  
 
 

 =  − + +  + + − + +  
    





 (15) 

The axial force necessary to enforce such displacements is: 

 
( ) ( )

2 2

1 2 3 3 2

11

3 3

5 5

N
a
i G G i G i

iG

U
N k u u x u x

u h h
 

=

  
= = + − + +   

  (16) 

If no axial forces are applied, then N = 0, and therefore the centroidal axial displacement can be 

obtained as slave of the centroidal transversal displacements and of the twist: 

 ( )2 2 2 2
1 2 3 3 2 2 3

3
2 2

5
G G G A G A Gu u u x u x u

h
   =− + + − +  (17) 

where 2 is the squared polar inertia radius of the axial stiffnesses with respect to the centroid, x2A 

and x3A are the coordinates of the center A of the axial stiffness (generally A does not coincide with 

the flexural center F), given by: 

 ( )2 3 2 3

2 2 2
2 3

1 1 1

1 1 1
: : :j j j j

N N N
a a a
j A j A ja a a

j j j

k x x x k x x k x
K K K


= = =

= + = =    (18) 

being 
1

:
Na a

jj
K k

=
=  the total axial stiffness. 

By substituting u1G given by Eq. (17) into Eq. (15), the passive variable u1G is eliminated, and we 

obtain: 
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( ) ( )

( )

( ) ( )( )

( ) ( )( ) ( )

2 2 2
2 3 3 22 3

1

2

2 2 2 2
2 3 3 2 2 3

2
2 2

2 3 3 2

2

2 2 2 2 2 2
2 3 3 2 2 3 3 2 2 3

3
2 2

5
1

2 18

35

6 3
2 2

5 5

N
f f t

G i G i ii i

i

G G A G A G

G i G i
a
i

G i G i G G A G A G

k u x k u x k

u u x u x u
h

U
u x u x

k
h

u x u x u u x u x u
h h

  

   

 

     

=

 − + + + +
 

  
− + + − + + 

 
=

− + +
+ +


  
+ − + + − + + − +  

 




1

N

i=

 
 
 
 
 
 
 
 
 
 
 
 
 
  


(19) 

The second term in the sum of Eq. (19) is the axial contribution to the elastic potential energy of the 

cell: it is a 4-degree homogeneous polynomial. 

4.3 Constitutive law identification 

Let us assume that the strain components are constant along the interstorey distance h. The 

constitutive law of the coarse model is obtained by expressing the centroid displacements through 

the (constant) admissible strains: 

 2 2 3 3G G tu h u h h   = = =  (20) 

The elastic energy per unit length of the equivalent beam is thus simply deduced by the elastic 

energy of the cell, =U/h. By substituting Eq.(20) into Eq. (19), we obtain: 

 

( ) ( )

( )

( ) ( )( )

( ) ( )( ) ( )
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2
2 2
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2 3 3 2 2 3 3 2 2 3
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2 18

35

6 3
2 2

5 5

N
f f t

t i t i i ti i

i

t A t A t

N
a
i t i t i

i

t i t i t A t A t

k x k x k

x xh

k x x

x x x x

    

       


   

           

=

=

 − + + + +
 

 
 − + + − + + 
 =  

 
+ − + + + 

 
  + − + + − + + − +    





 
 
 
 
 
 
 
 
 
 
 
  

 (21) 

By the Green law 
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 2 3

2 3

t

t

T , T , M
  

  

  
= = =

  
 (22) 

a constitutive law is obtained: 

 

2 3 2 3 2

3 2 3

2 3 2 3 2

3 3 3 2 2
2222 2333 2 2223 222

2 2 32 2 2 2 2 2
2332 233 2 2 2 2 3 3 223 2 3

3 3 3 2
3222 3333 3 3223 322

3 3 23 3
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t t t t
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ttt tf f
F t

t tt tt t
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C C C C C
T hK hx K

C C C C C
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T hK hx K

      
  

          

     
  

 + + + + +
= − +  

 + + + + + 

+ + + +
= + +

( )

3 2 3

2 3 2 3 2

3 2 3

2

2 2 2 2
3332 333 3 2 2 3 3 3 323 2 3

3 3 3 2 2
222 333 223 22

3 2 2 32 3 2 2 2 2
332 33 2 2 3 3 23

t

t t t t

t t

t t t

t tt tt t

t t tttt t t tt tf f f
t t F F

t t t ttt ttt t

C C C C C

C C C C C
M h K K hx K hx K

C C C C C



          

      
   

       

 +
 
 + + + + + 

+ + + + +
= + − + +

+ + + + + 2 3 tt  

 
 
 
 

 (23) 

characterized by a linear and a nonlinear (cubic) part, which accounts for pure torsion, pure shear 

and coupling between shear and torsion. 

In Eq. (23), 2 21
:

Nf f
ii

K k
=

=  and 3 31
:

Nf f
ii

K k
=

=  are the total flexural stiffnesses, 
1

:
Nt t

ii
K k

=
=  is the 

total torsional stiffness, ( )2 2
3 22 31

:
Ntf f f

i ii ii
K k x k x

=
= +  is the contribution to the torsional stiffness given 

by the flexural stiffness of the columns, and =18/175Kah; x2F and x3F are the coordinates of the 

center F of the flexural stiffness: 

 
2 32 33 2

1 13 2

1 1
: :i i

N N
f f

F Fi if f
i i

x k x x k x
K K= =

= =   (24) 

The explicit expression of coefficients of the cubic terms in Eq. (23) are given in Appendix A. 
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5 THE FUNDAMENTAL PROBLEM 

The fundamental problem is governed by the kinematic relationships (1), (2), the balance equations 

(3), (4), and the elastic law (23). External forces are in general given by the sum of inertial, 

damping and aerodynamic terms: 

 

( )

1 1 1

1 1

a u

a

E Ea E E uE E

E Ea E E E E

m

I

M

I







  

 

= − −

= − −

= − − 

= − − 

p p u u

c c a a

P P u u

C C a

 (25) 

where the index a denotes aerodynamic; m is the mass per unit length of the beam; I1 is the inertia 

mass moment of the cross section with respect to 1a ; ME is a lumped mass, possibly attached at the 

free end of the beam, and I1E its inertia moment. External damping forces are taken proportional to 

the masses, via the damping coefficients , ; internal damping, if any, must be accounted via a 

visco-elastic constitutive law. Note that the centroidal axis was taken as the beam axis in order to 

simplify the expression of the inertia forces. 

The general form of the equations of motion becomes: 
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In absence of external applied forces at the free end E, the boundary conditions are given by: 
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Drawing inspiration from the exact solution of the mechanically linear system [11], we can follow 

a Galerkin approach to solve the boundary value problem (26)-(27) by taking: 
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where q2, q3, qt are unknown amplitudes. Introducing the nondimensional parameters: 
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c and  being related to the slenderness of the column and of the tower building, respectively, 2c 

being the radius of inertia of the section of the column with respect to x2 axis, 2, 3 and  the 

circular frequencies of the building in the uncoupled case (i.e., symmetrical cross-section with 

respect to the reference axes; [14]),  
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the resulting non-dimensional system of second-order ordinary differential equations can be written 

in the following synthetic matrix form: 
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where q  is the vector of the non-dimensional principal coordinates,  is a suitable control 

parameter, fk (k=1,2,3) are homogenous polynomials of k-degree in q ,q  and their combinations, 

also depending from the parameter , and M, Cs, Ks are the structural mass, damping and stiffness 

matrixes, 
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q M C K (32) 

Specifying the aerodynamic forces to the self-excited aeroelastic case through a quasi-steady 

approach [11], the linear vector f1 is expressed as a function of the aerodynamic damping and 

stiffness matrixes: 

 ( ) 2
1 a a, ;  =− −f q q C q K q  (33) 

where  is the nondimensional (reduced) mean wind velocity, 3( )U / b = . The explicit expression 

of these matrices, together with that of the aerodynamic forces pa2, pa3, ca, is  given in Appendix B. 

Therefore, in this case, the nonlinear vectors f2 and f3 are the following quadratic (aerodynamic) and 

cubic (aerodynamic and mechanical) force vectors: 
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where 2 (2 )ab / m = , and the non-dimensional coefficients ijhkC  (i,j,h,k=1,2,t) are strictly related 

to their dimensional counterparts (see Eq. (35), Appendix A), with the inertia radii  substituted by 

their corresponding non-dimensional values / b=  . 

The linear bifurcation analysis may be carried out by writing the linearized reduced equation of 

motion in the state-space form (Appendix C). Appendix D illustrates the evaluation of the post-

critical amplitude, based on the Multiple-Scale Method [15]. 

6 NUMERICAL APPLICATIONS 

Preliminary numerical applications for the analysis of the aeroelastic stability of a shear-type 

building with external square shape are here proposed. Different layouts of the columns are 

considered, according to Figure 4: the position of the central columns rows is modified by varying 

x2c- and x3c-values in order to explore different eccentricity conditions. It is assumed that the 

uncoupled natural frequencies in the two orthogonal directions are coincident (23=1), while the 

torsional-to-shear frequency ratio is set  3=1.3. The non-dimensional coefficients  and  are fixed 
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as =0.004, =1/6; damping ratios are set as 2=3==0.01. The mean wind velocity is assumed to 

be aligned with 2a , so that =0. The aerodynamic coefficients for the square section are chosen 

according to [16] and [17] (i.e., cd = 2.09, cl = 0, cm = 0, dc  = 0, lc = -5.69, mc = 0.196, dc = -18.35, 

lc= 0, mc = 0, dc = 0, lc  = 2337, mc  = 130.7). 

At first, the coefficients of the mechanical nonlinear terms are evaluated as functions of the position 

of the central row of the columns. Then, a linear bifurcation analysis is carried out and the influence 

on critical conditions of the non-dimensional abscissa of the central column row 2cx , 3cx  is studied. 

Finally, three particular column configurations are considered and the role of the mechanical and 

aerodynamic nonlinearities on the post-critical behavior is analyzed. 

6.1 Mechanical nonlinear coefficients 

Figure 5 plots values of the coefficients of the nonlinear mechanical terms as functions of the non-

dimensional position of the central columns row ( 2 2c cx x / b= , 3 3c cx x / b= ); the constant coefficients 

and those linearly depending on 2Fx  or 3Fx  are not plotted. As observed by a direct inspection of 

the expression of the coefficients (Appendix A), C2ttt and C2tt2 have the same shape as C3ttt and C3tt3, 

respectively, with C2ttt and C2tt2 being strongly influenced by 3cx , C3ttt and C3tt3 being strongly 

influenced by 2cx . The coefficients C2tt3 and Ctttt depend on both the eccentric positions 2cx  and 

3cx . By comparing the numerical values of the coefficients, it can be deduced that, among the ones 

plotted, the most important nonlinear terms are those related to C2tt2 and C3tt3 coefficients, also for 

their role in the cubic coefficients appearing in the solution of the steady amplitude (Appendix D). 

6.2 Bifurcation analysis 

Linear bifurcation analysis is carried out by analyzing the complex eigenvalues and eigenvectors of 

the state-space matrix as functions of the non-dimensional mean wind velocity  (considered as a 

bifurcation parameter), when the eccentricity of the central column rows 2cx  and 3cx  is varying. 
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Figure 6 shows the absolute value of the alongwind u02 (a), crosswind u03 (b) and torsional u0 (c) 

components of the critical eigenvector u0 as functions of 2cx  and 3cx . It clearly shows that the 

critical mode is, in general, a coupled vibration in the alongwind ( 2a ), crosswind ( 3a ) and torsional 

directions. In particular, the vibration is purely crosswind (u0 = u0 =0) for negligible eccentricity 

between the flexural and inertia center ( 2cx  close to zero). The torsional component is mainly a 

function of 2cx , and it tends to increase on increasing 2cx . The alongwind component becomes 

remarkable for significant values of both 2cx  and 3cx  (i.e. when the lack of symmetry regards both 

axes). This is due to the fact that the wind acts along an axis of symmetry of the cross-section (i.e, 

=0) and the alongwind component would be fully decoupled from an aerodynamic point of view. 

Figure 7 shows the ratio between the critical non-dimensional mean wind velocity and the Den 

Hartog limit value (45) as a function of 2cx  and 3cx . It is evident that the coupling between shear 

and torsion has a predominant stabilizing effect, which may cause a significant increase of the 

critical wind velocity with respect to the classic Den Hartog criterion; this aspect is particularly 

relevant for high negative values of 2cx  and high values of 3cx . However, there exist some 

particular configurations (i.e. for 2cx  in the interval 0.02-0.12 and 3 0 08cx . ) in which the critical 

velocity is lower than the Den Hartog limit value: in such cases, the coupling between shear and 

torsion has a destabilizing effect and the traditional stability analysis which neglects such a coupling 

is not on the safe side. 

6.3 Post-critical analysis 

The post-critical analysis is carried out in the state space, assuming a small perturbation of the 

dimensionless mean wind velocity  around its critical value, and applying the Multiple Scale 

Method (Appendix D; [11]). For the aims of this paper the stationary amplitude has been evaluated 

for some specific cases, in which the central columns row has been set in three different positions: 
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2cx = 3cx = -0.15 – configuration (a); 2cx =0.15, 3cx = -0.15 – configuration (b); 2cx =0.02, 3cx = -0.2 

– configuration (c). Furthermore, the slenderness of the building and of the columns have been set 

=2.7, c=10. Analyses have been carried out both taking into account and neglecting mechanical 

nonlinearities. Figure 8 plots the stationary amplitude of oscillations (deduced by Eq. (46) in 

Appendix D) for the three configurations specified. The stationary amplitude evaluated taking into 

account both mechanical and aerodynamic nonlinearities (solid black line – mech+aero) is 

compared with results obtained taking into account only aerodynamic nonlinearities (dashed black 

line – aero); furthermore, the post-critical amplitude for the purely-crosswind 1 degree-of-freedom 

galloping (solid gray line – crosswind) is reported for comparison. It can be observed that, in the 

case (a), Fig. 8(a), mechanical nonlinearities decrease the postcritical response amplitude in a non-

negligible way. On the contrary, in the configuration (b), Fig. 8(b), the role of mechanical 

nonlinearities is almost negligible and the post-critical amplitude is fully dominated by aerodynamic 

nonlinearities. In the case (c), Fig. 8(c), a relevant reduction of the critical velocity with respect to 

Den Hartog limit is observed; furthermore, mechanical nonlinearities make the system stiffer, 

reducing the post-critical amplitude, even if terms of aerodynamic nature remain the most important 

ones. As a general remark, it can be observed that mechanical nonlinearities have a non-negligible 

effect when the coupling between shear and torsion provides a significant variation of the critical 

velocity. In any case, they always lead to a reduction of the postcritical amplitude. 

7 CONCLUSIONS AND PROSPECTS 

In this paper, a nonlinear equivalent beam model for the dynamic analysis of shear-type tower 

buildings has been introduced. The model allows to take into account the mechanical coupling 

between shear and torsion due to the lack of symmetry in the mechanical properties of the structure. 

This behavior leads to the appearance of nonlinear terms related to the stretching of the columns in 

the motion equations. This model lends itself to having applications in different fields, from wind 
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engineering to earthquake engineering. In the case of aeroelastic phenomena, usually dominated by 

the shape of the cross-section, it clearly highlights the possible influence of mechanics on 

aerodynamics, rarely considered. 

As a first application, the analysis of the critical conditions for a square building excited by the 

wind along a symmetry axis has been carried out. The influence of the lack of symmetry and of the 

coupling between shear and torsion on the critical galloping conditions has been studied. In the case 

here presented, the coupling between shear and torsion has a predominant stabilizing effect, 

producing an increase of the critical wind velocity and a reduction of the post-critical amplitude of 

oscillation with respect to the purely crosswind galloping. However, there exist some specific 

configurations in which the coupling between shear and torsion produces a decrease of the critical 

velocity with respect to the purely crosswind galloping. A preliminary example on a specific class 

of tower buildings has shown that mechanical nonlinearities can reduce the postcritical response 

amplitude in a non negligible way for specific column configurations even if, in some cases, the 

post-critical oscillation is dominated by aeroelastic nonlinearities. 

Based on the equivalent beam model here introduced, the critical wind velocity and the post-critical 

behavior can be estimated for different building shapes when the angle of attack of the mean wind 

is varying (i.e. ≠0). Furthermore, the influence of nonlinearities on the dynamic response to 

different kinds of excitation (e.g. vortex-induced actions, seismic actions) could be analyzed. 

The hyperelastic law has been obtained by assuming that only columns are connecting the 

different floors: a generalization may be provided taking into account also the presence of shear 

walls and bracings in the evaluation of the equivalent stiffness terms. 

Finally, the proposed equivalent beam model may be refined including a flexural deformation 

term and introducing an equivalent Timoshenko beam model. 
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APPENDIX A. THE NONLINEAR MECHANICAL TERMS 

The coefficients of the cubic mechanical terms in Eq. (23) are given by: 
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being x2A and x3A the coordinates of the center A of the axial stiffness (Eq. (18)) and  the inertia 

radii: 

 

( )

3 2

2 3 3 2

2 3

2 2 2 2 2
22 33 23 3 2

1 1 1

3 2 3 2 3 3 3 3
233 3 322 2 222 333

1 1 1 1

2
2 2 4 4 4

2222 3333 2233

1

1 1 1

1 1 1 1

1
2

i i

i i i i

i i

N N N
a a a
i i i i ia a a

i i i

N N N N
a a a a
i i i i i ia a a a

i i i i

N
a
ia

i

k x k x k x x
K K K

k x x k x x k x k x
K K K K

k x x
K

= = =

= = = =

=

= = =

= = = =

+ = + +

  

   



  

   

  

(36) 

where 
1

:
Na a

ii
K k

=
=  is the total axial stiffness. 

It is worth pointing out the particular symmetry properties of the coefficients: C3333=C2222, 

C3222=C2333, C3332=C2223, C3223=C2332, C3tt2=C2tt3, Ct222=3C222t, Ct333=C333t/3, Ct223=C322t, 

Cttt3=3C3ttt, Cttt2=3C2ttt, Ct23t=2C2tt3, Ct22t=C2tt2, Ct33t=C3tt3. Furthermore, the expressions for the 

couples of coefficients C3ttt, C3tt3, C3tt2 can be obtained from the definitions of the coefficients 

C2ttt, C2tt2 and C2tt3, respectively, by substituting 2 with 3. 
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APPENDIX B. THE AERODYNAMIC MODEL 

Aerodynamic forces are modeled based on the quasi-steady theory [18], assuming that the flow-

induced forces acting on a moving cylinder can be predicted adopting the expression pertinent to a 

fixed cylinder in which the asymptotic flow velocity is substituted with the flow-cylinder relative 

velocity [19]. 

The approximation at the third order of the components of the aerodynamic forces in the wind 

reference system (drag pad, lift pal, moment pam, Figure 9) can be expressed as follows [11]: 
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(37) 

where a is the air density, b is a characteristic dimension, U is the mean wind velocity and  the 

coefficients C are given by: 
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 (38) 

being the coefficients ci (=d,l,m, i=1,..4) functions of the aerodynamic coefficients cd, cl, cm, 

defined as follows: 
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 (39) 

where the prime symbol denotes the derivatives of the aerodynamic coefficients with respect to the 

instantaneous angle of attack , evaluated at the angle of attack . 

The components (pa2, pa3) of the aerodynamic forces in the structural reference system ( 2a , 3a ) are 

related to the forces in the wind reference system (pad, pal) through a simple rotation law (Fig. 9): 
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 (40) 

Thus, the components of the forces in the structural reference system pa2, pa3 can be defined through 

expressions analogous to Eq. (37), ( = 2,3), with coefficients given by: 
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             (i,j,k=2,3,t) (41) 

Aeroelastic forces are expressed as the sum of linear, quadratic and cubic terms, Eq. (37). 

The linear terms in the velocities 2u  and 3u  and in the torsional rotation  give rise to the so-

called aerodynamic damping and stiffness terms, that can be collected in the corresponding matrixes 

Ca and Ka, given by: 
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APPENDIX C. LINEAR BIFURCATION ANALYSIS 

The linearized reduced equations of motion (31) can be rewritten in the following state-space form: 

 =x Gx  (43) 

 
T

2 3 2 3t tq q q q q q=x  being the state-space vector and G the state-space matrix: 

 
2

1 1 s a s a 
− −
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= = + = + 

− − 

0 I
G C C C K K K

M K M C
 (44) 

From Eq.(44) it should be noted that the total damping of the structure is proportional to the 

nondimensional wind velocity , which acts as a bifurcation parameter. Linear bifurcation analysis 

is carried out by evaluating the complex eigenvalues and eigenvectors of the state-space matrix G 

as functions of . 

The classic Den Hartog criterion corresponds to the critical velocity DH  of the sole crosswind 

degree of freedom, 3q , and it is achieved when =0 and C(2,2)=0: 
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APPENDIX D. POST-CRITICAL ANALYSIS 

Applying the Multiple Scales Method [15], the stationary amplitude a can be expressed as a 

function of 0ˆ = −    being 0 the critical velocity, as follows [11]: 

 1

2

2
R

R

c
ˆa

c
= −  (46) 

where c1R and c2R denote the real parts of the coefficients c1 and c2, given by: 
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In Eq. (47), F2={0 f2}
T, F3={0 f3}

T, u0 and v0 are, respectively, the right critical eigenvector and the 

conjugate left critical eigenvector of G0: 
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Furthermore, G2 is defined as follows: 
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Finally, z0 and z2 are solutions of the following equations: 
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Figure 1. Tower building configuration and external loading. 
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Figure 2. Tower building: reference and current bases, configuration variables and internal forces. 

G
a2

a3

a2

a3

u

T2T3 mt 



30 

 

 

Figure 3. Single column deformation. 
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Figure 4: Numerical example: non-symmetric layout of the columns 

  

x2

x3

x2c

x3c



32 

 

(a) (b) 

(c) (d) 

(e) (f) 

 

Figure 5: Coefficients of nonlinear mechanical terms: 

 (a) C2ttt, (b) C3ttt, (c) C2tt2, (d) C3tt3, (e) C2tt3, (f) Ctttt. 
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Figure 6: Components of the critical mode. 
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Figure 7: Critical mean wind velocity (non-dimensional with respect to Den Hartog limit). 
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 (a) 

 (b) 

 (c) 

Figure 8: Post-critical amplitude: relative importance of aerodynamic and mechanical 

nonlinearities: 2cx = 3cx =-0.15 – configuration (a); 2cx =0.15, 3cx =-0.15 – configuration (b); 

 2cx =0.02, 3cx =-0.2 – configuration (c) . 
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Figure 9: Aerodynamic force components 
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