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Abstract

The relevance and presence of Electric Vehicles (EVs) are increasing all over the
world since they seem an effective way to fight pollution and greenhouse gas
emissions, especially in urban areas. One of the main issues related to EVs is the
necessity of modifying the existing infrastructure to allow the installation of new
charging stations (CSs). In this scenario, one of the most important problems is the
definition of smart policies for the sequencing and scheduling of the vehicle
charging process. The presence of intermittent energy sources and variable execu-
tion times represent just a few of the specific features concerning vehicle charging
systems. Even though optimization problems regarding energy systems are usually
considered within a discrete time setting, in this paper a discrete event approach is
proposed. The fundamental reason for this choice is the necessity of limiting the
number of the decision variables, which grows beyond reasonable values when a
short time discretization step is chosen. The considered optimization problem
regards the charging of a series of vehicles by a CS connected with a renewable
energy source, a storage element, and the main grid. The objective function to be
minimized results from the weighted sum of the (net) cost for purchasing energy
from the external grid, the weighted tardiness of the services provided to the
customers, and a cost related to the occupancy of the socket during the charging.
The approach is tested on a real case study. The limited computational burden
allows also the implementation in real-case applications.
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Discrete Event Dynamic Systems

1 Introduction

Greenhouse gas emissions, and pollution in general, are affecting negatively cities. Sustainable
energy sources and new technologies can help to reconcile the huge energy demand with an
acceptable climatic impact. A significant contribution to emissions is represented by transport
and logistics. The use of Electric Vehicles (EVs) may produce a huge reduction of emissions
when the power to feed the vehicles is produced by renewable resources. However, also when
renewables are not used, the use of EVs may have positive impacts on pollution in cities
because of the shift from traditional vehicles to EVs. Mass deployment of EVs may be a good
solution (Shareef et al. 2016; Ferrero et al. 2016), but, unfortunately, wide usage of EVs may
cause technical problems. As an example, the power grid can be harmfully affected by
uncontrolled charging, long charging times, and interruptions (Sbordone et al. 2015; Qian
et al. 2015). New technologies, such as Vehicle-to-Grid (V2G), Smart Charging (SC), and
Vehicle to Building (V2B), would allow the vehicles to inject power into the electrical grid
and/or modulating power during the charging process.

Another drawback is that the use of EVs is prevented by insufficient charging infrastruc-
ture, the high cost of vehicles, and the long times for charging. Moreover, to manage a large
number of EVs, as highlighted in (Shaukat et al. 2018), there is an impelling need to introduce
an aggregator as an intermediate between EVs and the grids. This new figure can also provide
ancillary services to the distribution grid through the retail market, increasing network stability
and reliability (Zhu et al. 2018; Islam et al. 2019).

At the city level, it is necessary to integrate the transportation and the electrical networks to
plan the distribution over the territory of the charging stations and the definition of optimal
scheduling policies for vehicle charging. In fact, many problems may arise such as: a) the
electrical grid can become unstable due to distributed and intermittent loads; b) charging
stations cannot be used at their maximum power capacity because they are positioned in a
portion of the electrical grid in which there are high loads; c) electrical vehicles can be charged
in a much longer time because the charging station is not able to manage multiple vehicles
through optimized power management strategies; d) long queues can be present in some
charging stations while others may suffer from a lack of demand.

In the present paper, attention is focused on the optimal scheduling of electric vehicles in
charging stations with multiple sockets and in islands of recharge (for example parking areas
equipped with renewables and storage systems). In the literature, several approaches that aim
at the optimal scheduling of electric vehicles are based on discrete time decision models and
result in problems difficult to be solved, especially for the high number of variables. For this
reason, heuristics and metaheuristics have been applied as well as decision architectures based
on decentralized optimization. Differently from the majority of papers in literature, following
the same approach as in (Ferro et al. 2019), in this paper, a discrete event approach is used to
formalize the optimization model. The reason lies in the necessity of reducing the number of
variables and computational time.

Differently with the respect to the above cited paper, in which only one vehicle can be
under charge, at a given time instant, in this paper the case of a multiple charging service
station is considered. That is, in the model presented in the following sections there is the
possibility of simultaneously charging several vehicles, up to a maximum integer number,
which is represented by the number of possible electrical connections (sockets) in the charging
station. The necessity of limiting the number of vehicles simultaneously under charging gives
rise to the necessity of introducing a set of binary variables, whose presence makes the
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optimization problem a (nonlinear) Mixed Integer Problem (MIP). This serious complication,
with respect to the single-vehicle charging case, can still be managed for moderate size
problem instances, like those that are expected to be solved in real cases (possibly in real-time).

The rest of the paper is structured as follows. In the next section, a brief survey of the state
of the art is provided, based on the current scientific literature. In the third section, the
proposed model is presented. In the fourth section, the optimization problem is introduced
and discussed. In the fifth section, the application of the proposed approach to a case study is
provided. In the sixth section, an extension of the model is considered in which power flow
from vehicles is allowed (V2G). Even for this model, an application study is presented.
Finally, some concluding remarks will end the paper.

2 State of the art

In recent literature, there are several papers related to EVs’ charging and optimization. In
(Shen et al. 2019), a survey is presented on EVs operations management. Different
models and methods have been considered for the following topics: location of charging
stations, charging operations (considering centralized and decentralized approaches),
business models, and policy.

Other survey papers (Tan et al. 2016; Yang et al. 2015; Zheng et al. 2019) are focused on
smart grids that integrate EVs. In (Tan et al. 2016), a review of papers on V2G technology
integrated in smart grid is present, with a special focus on optimization-based approaches,
while in (Yang et al. 2015) scheduling methods to integrate plug-in electric vehicles are
reviewed, examined and categorized on the basis of different possible approaches (i.e.
analytical scheduling, conventional optimization methods (e.g. linear, non-linear mixed-inte-
ger programming and dynamic programming), game theory, and meta-heuristic algorithms). A
major problem is represented by multi-objective and high-dimension problems that result from
the formalization of scheduling problems for EVs that integrate stochastic charging behaviors
and intermittent renewable energy generation. In (Zheng et al. 2019), particular attention is
paid to the V2G technology.

Another interesting paper (Rahman et al. 2016) reviews the use of optimization methods for
the charging infrastructure related to plug-in hybrid electric vehicles (PHEVs) and EVs. The
authors conclude that there is a need for optimization models with a specific application in
solar-based charging stations to attain an optimal integration of EVs in the charging infra-
structure while guaranteeing a reduction of emissions.

From an application point of view, the optimal management of EVs is performed in
connection with different frameworks: energy market, microgrids, and transportation prob-
lems. As regards the energy market, attention is focused on the figure of an aggregator of EVs
that has to bid in the energy market (Ferro et al. 2020a).

In (Song et al. 2019), the authors propose two stochastic programming models (for day-
ahead planning and real-time operation management) for the management of EVs fleet’s
charging and reservation assignment. In the day ahead, bids and spot market are determined
by the fleet operator to the balancing market and then refined during the real-time operation
management. In (Gupta et al. 2018), multiple aggregators are considered and the total profit
and the number of scheduled EVs are maximized.

In (Hashemi et al. 2019), the aggregator profit is considered, taking into account network
operation indices and Distribution System Operator’s (DSO’s) policies. In particular, the
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aggregator participates in day-ahead and real-time electricity markets offering power quality
services to DSO.

Also in (Cao et al. 2020), the aggregator profit is considered for EVs’ scheduling, and
robust optimization techniques are used to face the uncertainty of grid price.

In the present paper, EVs are scheduled during the day at the local level and thus the profit
of an aggregator is not considered. In fact, in our paper, the detailed scheduling process in
terms of due dates, deadlines, and release times is considered.

Other articles study the optimal integration of EVs in smart cities, sustainable
districts, and microgrids.

As reported in (Sachan and Adnan 2018), it is necessary to consider the technical constraints
imposed by the electrical grid to reduce the network peak load demand and voltage violations.
Then, it is also crucial to consider the needs of electric vehicles to define their optimal charging
process. The authors in (Sachan and Adnan 2018) propose a coordinated scheme for the
assessment of the optimal number of EVs that can be charged from a distribution network
without reinforcing the grid or changing the grid infrastructure. In (Aujla et al. 2019), other
important aspects are considered: energy trading and pricing for electrical vehicles in smart
cities. An energy-trading scheme is proposed which allows EVs to obtain energy from any
available CSs (Charging Stations) using a multi-leader multi-follower Stackelberg game and a
multi-parameter pricing scheme. Then, as highlighted in (Amini et al. 2017), EVs and renew-
able resources should be coupled and managed together to have a reduction of emissions.
Generally, EVs are seen as an intermittent forecasted load (or in some case deferrable) within a
local Energy Management System (EMS) (Delfino et al. 2019). In (Ferro et al. 2018a), a first
attempt to define an optimization model for EVs’ scheduling in microgrids in terms of due
dates, deadlines and release times is considered. (Khalkhali and Hosseinian 2020) present a
scheduling framework based on stochastic programming and Model Predictive Control for EVs
parking lots where both fast and slow charging modes are present.

Besides, there is a portion of literature that couples EVs charging and transportation
systems. In particular, User Equilibrium (UE) traffic assignment approach is extended to the
case in which a certain amount of traffic is generated by EVs (He et al. 2014; Xiang et al.
2016; Ferro et al. 2020b) and routing and charging algorithms are considered (Ferro et al.
2018b; Chen et al. 2018; Froger et al. 2017; Hiermann et al. 2016).

In the present paper, attention is focused on the optimal scheduling of charging of EVs,
based on discrete event optimization. The proposed model is thought to manage charging
stations with multiple sockets (or even multiple charging stations in an area of recharge) either
from a remote control or directly installed in the charging station.

From a methodological point of view, different approaches have been considered (Yang
et al. 2015) and different mathematical models have been formalized for optimal scheduling of
EVs charging. In particular, some papers (Aliasghari et al. 2018; Ito et al. 2018; Sarikprueck
et al. 2018; Ferro et al. 2018a, 2018b) have used discrete time problem formalizations, solved
by mathematical programming techniques, which have the drawback of a high number of
variables with a consequent high computational time. In (Zhang et al. 2018), the authors use a
contract theoretic approach (i.e., a tool from microeconomics that allows agreeing two entities
by providing economic incentives) for the optimal charging of a platoon of vehicles that
maximizes the utilities of the CSs satisfying quality of service constraints. The algorithm is
iterative, and the convergence is demonstrated. In (Atallah et al. 2018), the authors consider
several supercharge facilities with multiple charging outlets and compare centralized and
decentralized methods for the optimal scheduling of EVs. The centralized linear integer
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optimization model provides the best results in terms of waiting time, with a drawback of low
scalability. Instead, the distributed game-theoretic approach overcomes the scalability issue
obtaining promising results. In (Liu et al. 2018) the authors propose a day-ahead EV charging
scheduling based on an aggregative game model in which the pure strategy Nash equilibrium
is proved. The charging costs are minimized under constraints representing the users’ require-
ments. The authors in (Shah et al. 2018) propose the application of an algorithm that is usually
adopted for the control of communication networks’ congestion: the Additive Increase Mul-
tiplicative Decrease algorithm. In (Liu et al. 2019) an aggregator of EVs is considered and a
predictive transactive control is proposed to manage day-ahead electricity procurement and
real-time EVs charging management to minimize its total operating cost, based on a quanti-
fication of the charging flexibility. In (Latifi et al. 2019), the authors want to maximize grid
efficiency, minimize customers’ costs, and maximize the capacity for ancillary services. A
game-theoretic decentralized approach is proposed for the optimal scheduling of EVs. In
(Wang et al. 2017) the customers’ charging preferences are considered by developing an
architecture that is based on both centralized and decentralized optimization and that uses a
model predictive control-based adaptive scheduling strategy.

In recent literature, event-triggered approaches for the integrated management of EVs, and
charging stations are present in many works as in (Linsenmayer et al. 2018) where a framework
for decentralized control of platoons of vehicles using event-triggered communication is
presented. In (Azar and Jacobsen 2016) a hierarchical event-triggered multi-agent system
approach is proposed for coordinated scheduling of the charging process of electric vehicles.

However, as noted in (Ferro et al. 2019), event-triggered approach present in the literature
commonly consists of on-line scheduling algorithms capable of “correcting” a pre-existing
schedule when a new vehicle requiring charging service arrives at the station. Instead, the
approach presented in this paper consists in developing a predictive discrete event optimization
model for the optimal scheduling of electric vehicles in charging stations with multiple sockets
that can be used for parallel charging. This is essentially the same approach followed in (Ferro
et al. 2019), but it is now extended to the case in which several vehicles may be charged
simultaneously. Besides, a further extension is provided with respect to the model in (Ferro
et al. 2019), consisting of the possibility of power flows from the vehicles, that is, the so-called
V2G model.

3 The model

The system architecture is presented in Fig. 1. We consider a charging station made of a
charging unit plus a storage element and a renewable energy source. The charging unit may
provide charging services simultaneously to various vehicles. The maximum number of
vehicles that can be connected to the charging unit is N (we say that the charging station
has N sockets).

The (monodirectional) power flow to the vehicle V; is denoted with f; (0, j=1, ..., M
(obviously f7, (#) =0 if V; is not connected at time instant #). The total power flow provided to
the charging station is f; tor(?), given by the sum of the power flows provided to the vehicles
under charge.

The power flow drawn (delivered) from (to) the storage element is denoted as fs(¢). This
flow is bi-directional, and, by convention, it is assumed to be positive when the power is drawn
from the storage.

@ Springer



Discrete Event Dynamic Systems

MAIN GRID

t
0 o

ror(t
Srror® CHARGING & v

fs(®
s/' w(t) UNIT

STORAGE
ELEMENT
RENEWABLE
|
ENERGY %
SOURCE

Fig. 1 Schematic representation of the charging station
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Similarly, f5(¢) is the power flow from (to) the main grid. Also, this flow is bi-directional
and is retained as positive when power is obtained from the main grid. Besides, fz(?) is the
(monodirectional) power flow coming from the renewable energy source. This function is
assumed given for the whole optimization horizon of interest.

Finally, BP(f) and SP(¢) are the time-varying buying/selling prices from/to the main grid.
Also the function BP(¢) and SP(f) are assumed as given.

Every vehicle V; requiring charging service is characterized by the following
parameters:

* Release date (+/)), that is, the time instant at which the charging service may begin; for the
sake of simplicity we can assume that this time instant coincides with the arrival time
instant [h];

* Due date (dd)), that is, the time instant at which the service should be completed [h];

* Deadline (dl)), that is the time instant at which the service must be completed [h];

*  Energy request (ER)), that is the amount of energy required for the charging service [kWh];

* Penalty tardiness coefficient (), that is, the cost paid for a unit delay (with respect to the
due date dd) regarding the completion of the service, for a unit of energy requested; o is
expressed in [57].

The required energy must in any case be satisfied and no service can be denied.

The optimization problem that is considered refers to a number M of vehicles that are
already present within the system. In this paper, the formalization of the problem will be
provided in a form that encompasses the case M> N as well as the case M < N.

A discrete event approach is adopted in the formalization of the optimization problem. A
continuous time approach would lead to a functional optimization problem, difficult to handle
also for the presence of nonlinearities and constraints. On the counterpart, a discrete time
formalization would require the introduction of a very large number of decision variables (one
for each kind of variable and one for each discretization interval), thus leading to unmanage-
able problem sizes for real-world applications. This issue will be discussed more thoroughly
later in the paper.

The discrete event approach is formalized in our model by dividing the time horizon of
interest in time intervals (in general, of unequal length) separated by events corresponding to a
(single) service completion time instant (as it is shown in Fig. 2).
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Fig. 2 Time axis discretization

It is assumed that the order of the completion time instants is given, in accordance with
some criterion a-priori defined, as, for instance, the arrival order of the customers.
Then, regarding time interval (C;_1, Cy), i=1, ..., M (let Cy=0 by definition), define

* Ji i~ the constant power flow delivered for charging of vehicle V, j=i,i+1, ..., M;
* fc. = the constant power flow from/to the grid;

M
Srrori = 2 f1, ;= the (constant) total power flow delivered to vehicles.
=

Of course, at any time instant, the following power balance equation holds

Sfrror(t) = f6(t) + fs(t) + fr(2) (1)

where 7 707(?) is the function representing the total power flow delivered to vehicles at time ¢.

However, in the formalization as a discrete event optimization problem, instantancous
constraints cannot be imposed. To transform constraint (1) into a constraint referring to time
intervals, we must write, instead of constraint (1),

fL,TOT,i:fG,i+J7S‘i+/7R,i i=1,...M (2)

where 7SJ~ is defined as the average value of fi(f)in time interval (C;-, Cy) and 7thas a
similar meaning, namely

_ 1 G
= i=1,....M
fS,z Ci_Ci—l C-’[.]fs(t) dr i ) ’ (3)
a 1 G
fR,i:mchR(t)dt i=1,...M (4)

It is apparent that 7111‘ turns out to be a function of C;_;, C;. Note that (3) is a definition,
whereas (4) is a constraint to be embedded within the statement of the optimization problem.

In the solution of the optimization problem that we are going to formalize, only the average
values 73,;', i=1, ..., M will be determined (and not, of course, the function fs(¢)). These
average values will be constrained in order to avoid physically infeasible power flows from/to
the storage. It is clear that such a constraint should be imposed on the values of f(#), for any
value of ¢. However, this is not possible, owing to the discrete event formalization of the
model, and thus the bounds over f'g ; are to be chosen in order to easily allow the fulfilment of
the physical constraint on fy(#)for any time instant.
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Besides, note that we have imposed that functions f5(?), /7, (?) (the latter is the power flow to
vehicle V), as well asf; 707(?), are, in the solution of the optimization problem, piece-wise
constant. Obviously, this is a somewhat restrictive condition, but it is necessary if we want to
deal with parametric (and not functional) optimization problems.

Finally, for the formalization of the optimization problem, it is necessary to introduce a set
of binary variables to indicate whether, in a considered time interval, a certain vehicle is under
charging or not. Namely, we define

1 if vehicle V; is under charging in time interval (C;-, C;)

Yij =

0 otherwise fori=1,...M,j=1,...M

Then, the following constraints must be introduced
VijK=f1;;20 i=1,...Mj=1,..M (35)

in order to impose that when the power flow f; ; ; is greater than zero, the binary variable y; ;
takes value 1. Note that K is the so called “big M” constant whose value is arbitrarily chosen
provided that it is considerably higher with respect to the possible values of the variables and
parameters appearing in the statement of the problem.

Clearly, constraint (5) does not prevent that y; ; is 1 even when f; ; ; is equal to 0, and thus
(5) does not seem to be equivalent to the definition of y; ;. However, in the statement of the
optimization problem in the next section, we will introduce a cost term that prevents that in an
optimal solution there is y; ;=1 and f; ; ;=0.

Besides it is necessary to impose that the charging process cannot start before the arrival
time of a vehicle, that is, its release time. This is equivalent to imposing

yH_l’j:O 1f rl]>C, l:07,M_1,j:1,7M (6)
The above condition can be also stated as

(1—yi+17].) K~(rl~C)=0 i=0,.. ,M-1,j=1,..,M (7)

In this way, when C; <71, that is, when vehicle V; is not yet ready for service at the end of time
interval (C;-y, Cy), (1 =y;41, ;) must be equal to 1, hence y;, 1, ; must be equal to 0, and thus
vehicle V; cannot be under charging in time interval (C;, Ci.1).

Note that writing this constraint as in (7) prevents the possibility of starting the
service for a vehicle immediately after it has become ready for service. In fact, a vehicle
ready for service before time instant C; but later than that time instant C;_, cannot be
put under charging, according to (7) before C;, and thus has to wait for service even in
the case that some socket is free before C;. This fact seems in some way to reduce the
responsiveness of the management policy adopted for the whole system, but it is of some
help in reducing the number of time intervals (and thus of the decision variables)
considered in the formalization of the problem.

The requirement that the entire energy request ER; is satisfied for any vehicle V; is
accomplished by introducing the constraints
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J
ZlfL,i,j(Ci’Cz'—l) =ER;, j=1,...M (8)
f

The dynamics of the state variable xg(f) [kWh] representing the energy contents of the storage
element can be traced by the discrete event equation

_+ -
.X'S(C,‘) = xS(Ci’l)_ndixch.fS4i(Ci_Ci’1) + ncharge.fS,i(Ci_Cl‘*l) J = 17 7M

or even, more simply,

_+ -
Xsi = xS,i*lindischfS,i(Ciicifl) + TNeharge S,i(CiiCifl) j=1...M (9)

where the initial state xg(Cp) = x5(0) = x5, ¢ is known. In (9) 7;1 and f'g ; are the “positive” and

“negative” components of f ;, namely

_ 4+ _-
fS,i:fS,i_fSti i=1,...M (10)
—+ _-

f&i,fSJZO i=1,...M (11)

and Ngigeh» Neharge are coefficients considering losses in discharging and charging of the storage
element, respectively. In particular, 74, is a (fixed and known) parameter greater than 1,
whereas 7)cjqrge 18 @ (fixed and known) positive parameter lower than 1.

Note that (10) and (11) are written by implicitly assuming that when J7s,i > 0, then fi(£) >0
for C;—; <t<C; (and when ]7S,i < 0, then fs(©) <0 for in the same time interval). This
assumption may be not verified in practical conditions. However, it is likely to be verified
for large values of !757i| More important, its removal would greatly increase the complexity of
the problem statement, since this would require the computation of the integral in (3) over
separate time intervals, whose number and lengths can hardly be expressed, owing to the fact
that variables C; are indeed decision variables, whose values are determined by solving the
optimization problem.

Note that there is no need to impose explicitly the complementarity condition

]7; -fs; =0, since, owing to (9), a pair (T;mJTsl) with both variables greater than zero
may be replaced by a pair with at least one variable equal to zero, that allows the same

behavior for the system but reduces the energy losses.
Summing up, the assumptions that characterize the present model are:

e the arrival times (release dates) of all vehicles are perfectly known and no stochastic
behavior is modeled;

* the power flows f; (?) and f; ; (¢) are kept constant during any time interval (C; -, C);

» the sign of the average power flow ?S,i is taken as representative of the direction of the
power flow f«(#) during the whole time interval (C;_1, C;).
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4 The optimization problem

Having defined in the previous section the model of the system, we can now define the optimal
scheduling problem concerning the vehicle charging.

4.1 Problem - Optimal scheduling of vehicle charging

M M
min Z {FGCOSTI + a,»-tard,»-ER,- + Z B'y,-‘j‘(C,-—Cil)} (12)
i=1 J=1

subject to (2), (4), (5), (7), (8), (9), (10) and

FGCOST; = { lep(z)dz fér C?ISP(t)dt fcﬁl.} i=1,...M (13)
fG‘i:fJGr,i_fE‘.i i=1,...M (14)
~Foux<fg;<Fomx i=1,...M (15)
Frigmn<friSFiamx i=1,.Mj=i,...M (16)
0<f; rori<Frrormx i=1,... M (17)
~Fsmuux<fs;<Fsmax i=1,...,M (18)
Xs v <xsi<xspax i=1,...,M—1 (19)
X§ MINFIN <X§ M SX§ MAX (20)
C>Ciyte i=1,..M (21)

M
j;y,}_JSN i=1,..M (22)
tard;>Ci=dd; j=1,...M (23)
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Ci<dl; j=1,...M (24)

M
fL,TOT,i = Z‘fL,i,j i=1,...M (25)
J=i

where all the variables, apart from fg ;, 7&[, FGCOST,, i=1, ..., M, are constrained to be
nonnegative.

The decision variables in the above problem formulation are: C;, fg i f1. 1071, > 7&,«, 7&«,
FGCOST, [§in g Xs, o tard, i=1, .., M,yand fy ;v i=1, ., M, j=1, ..., M.

Some comments are needed as regards the statement of the above problem.

First, note that the cost function to be minimized takes into account both economic costs/
revenues due to buying/selling power from/to the grid, the overall tardiness cost (where
tardiness is “weighted” by the amount of the recharging request), plus a cost term penalizing
the occupation of the sockets. Namely, the constant /3 [€/h] represents the (fixed) occupation
cost of a socket per unit time, and is considered as independent from the value of the power
flow for the specific considered time interval. Note that the presence of the third term in the
cost to be minimized in (12) ensures that no socket is engaged when the relevant power flow is
zero. In this way, the possibility that y; ; is 1 when f; ; ; is equal to 0 is removed. This clarifies
the observation made in Section 3 about this point.

The meaning of variables f;; and S, appearing in (13) and (14) is straightforward.
Namely, fg‘i = max{fGﬂl-, 0} and fg, = max{—fGﬁ,-, O}. We assume (as it is reasonable)
that BP(#) > SP(t), for any time instant z. This rules out the possibility of having both f;; and
[, nonzero for the same value of index i, owing to the structure of the function (12) to be
optimized. In fact, having in the same time interval the couple (f’ gl S G,;) with both terms non-
zero (say, for instance, f’ ai > f,) would provide a higher value of FGCOST;, with respect to
the choice of the couple (f g,i_f Gi» 0

Assuming that the function BP(#) and SP(¢) are perfectly known for all the time horizon of
interest, any term of type FGCOST; results (through the evaluation of the two definite integrals
appearing in (13)) to be a function of decision variable C; and C;_;.

Inequalities (15)—(18) are introduced to take into account physical constraints on the power
flows. Note that constraints (16) are written considering different lower bounds depending on i
and j. In particular, it is assumed that /7y ; ; yv=0if i#j and Fy ; ; yunv=F7, 10w if i=. In this
way, we ensure that the vehicle V; completing its charging at C; receives at least a power flow
Fy, 1oy during time interval (C;_, C;). Constraints (19) and (20) prevent the attainment of too
low and too high values of the state of charge of the storage element. In particular, (20) makes
use of a final minimum value that must be properly specified. Constraints (17) represents the
integral version of constraints (16), because the upper bound limit on the overall power flow
may be tighter than the sum of the upper bounds relevant to the charging process of the various
vehicles.

Constraints (21) are introduced to prevent the presence of zero-length time intervals.

Constraints (22) are introduced to impose that the number of vehicles simultaneously under
charge does not exceed the value N that is characteristic of the charging station.

Constraints (23) are necessary to give significance to the term tard; appearing in (12).
Actually, tard; is the tardiness of the charging service provided to vehicle V; and is defined as
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tll}’dj = max{C/—ddj7 0}

Indeed, constraints (23) are equivalent to this definition, since fard; in constrained to be
nonnegative, and the structure of the cost to be minimized in (12) prevents that constraints
(23) is satisfied by a strong inequality.

It is worth observing that the statement of the above problem does not ensure that there are
optimal solutions in which no vehicle is waiting for service in the presence of free sockets. In
the terminology of scheduling theory, this means that there is no guarantee that an optimal
“semi-active” schedule exists. This observation is justified considering that it could be
convenient to shift the service for a vehicle to a time interval with a lower energy cost.

Finally, note that, in the formulation of the cost function to be minimized, no benefit arises
from the sale of energy to customers (vehicles). This can be justified within two possible
modeling frameworks. In the first one, it is assumed that the charging service cannot be refused
by the provider and that the energy selling prices (to customers) are fixed. In the second one,
the vehicles are considered as a property of the company providing the charging service.

5 Case study application

In this section, the proposed approach is applied to a real case study referring to a set of
facilities located in the Savona municipality. The vehicle demand is relevant to 10 electrical
vehicles (M= 10) to be charged in a grid-connected microgrid characterized by the presence of
renewable power production, an electrical storage, and an EV charging station equipped with 3
sockets (N = 3).

The optimal schedule of storage systems and EV charging is obtained by solving the mixed
integer nonlinear optimization problem introduced in the previous section using Lingo opti-
mization tool on a PC Intel i7, 16 GB RAM.

First, let us provide, in Table 1, the values of the parameters of the elements of the
microgrid for this case study.

A forecast of the renewable power production fr(¢) is available over a whole day
with a time discretization step equal to 15 min. To be able to express j_‘RJ as a

Table 1 System Parameters

Parameter Value

X5, MAX 110 [kWh]
XS, MIN 40 [kWh]
Fo, max 200 [kW]
Fs, max 36 [kW]
Fromax 22 [kW]
Fy, ror, Max 66 [kW]
F L, low 1 [kW]
Xs.0 100 [kWh]
x}s, MINFIN 60 [kWh]
[ 1 [€/h]

K 1000

€ 0.01 [h]
Tdisch 1.1

Tcharge 0.9
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Table 2 Polynomial Approximation Parameters of Power Production from RES

Parameter Value

a’7 2.978e-05
aé —1.572¢-03
dl 3.071e-02
a, —2.606e-01
d 7.742¢-01
aé 1.862¢-01
a’l 1.358e+00
al 4.850e+00

function of C;_; andC;, we have chosen to interpolate the available forecasts via a
seventh order polynomial function

frt) = dbt’ +dkt® + di + d\t* + b + a4 dl e+ dl

Using the MATLAB tool, the following values for the parameters of the above function are
found (see Table 2).

In Fig. 3 the original pattern of the renewable power production fz(?) is represented, as well
as the interpolating curve. Clearly, other kinds of interpolating functions could have been used,
but, in our opinion, the quality of the proposed approximation is acceptable.

In Fig. 4 the time varying buying price, as well as the fourth order polynomial interpolation,
is represented (even in this case, of course, other interpolating functions could have been
chosen). Then, the first term in Eq. (8) can be computed as functions of C;_ |, C; by determining
the definite integrals of the fourth order interpolating function shown in Fig. 4 and given by

) =dit* + P + doP + dt + d

PV Data
30 T \ I i i I
——PV Data

Kk ——PV Polynomial Approximation

25 r\/\
. pj/”* .
|

7

RELAERNY
17 W
ST W

fr(t) [kW]

N

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time[h]

Fig. 3 PV power production function and its polynomial approximation
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Buying price
0.24

——BP data
0.22 | ™~ —— Approximation

N
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o2}

BP; [kW]

0.14

0.12

0.1
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

Fig. 4 The time-varying buying price and its polynomial approximation

The coefficients of the interpolating function are reported in Table 3.

Instead the selling price is assumed to be constant and equal to 0.08 [€/kWh].

Table 4 reports the data for the considered Base Vehicle Dataset. Numbers represent time
instants expressed in hours, starting from an initial time instant put equal to 0. The initial time
instant corresponds to 9.00 and the available data for renewables and buying prices refer to a
time horizon from 9.00 to 24.00.

We consider three Scenarios:

*  Scenario 1: Base Vehicle Dataset with variable energy prices (as previously specified) and
no renewable power source;

*  Scenario 2: same as Scenario 1 but with renewable power source (as previously specified);

*  Scenario 3: same as Scenario 2 but with different values for due dates and energy requests.

Table 3 Parameters of the time-varying energy buying price polynomial approximation

Parameter Value

A 4.47e-06
a‘g -3.91e-05
& —7.99¢-04
& —6.94¢-06
a’(’, 2.40e-01

Table 4 The Parameters of the Base Vehicle Dataset

Vehicle 1 2 3 4 5 6 7 8 9 10
dd; [h] 1 1.5 1.5 2 2 12 125 13 14 14
dl;[h) 4 4 4 6 6 14 14 15 15 15
i [h] 0 03 0.5 1 1 12 2 25 25 4

ER; [kWh] 2 2 2 22 2 2 2 22 2 2
oy [€/kWh - h] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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Table 5 The results corresponding to the optimal schedule for Scenario 1

Vehicle 1 2 3 4 5 6 7

8 9 10

Ci[h] 2.00 4.00 4.01 4.02 6.00 10.45 12.01
tard; [h] 1.00 2.50 2.51 2.02 4.00 0.00 0.00

13.00 14.00 14.01
0.00 0.00 0.01

5.1 Scenario 1

The results obtained, providing the optimal schedule, are reported in Table 4, 5 and repre-
sented in the following Figs. 5, 6 and 7. The state of charge (SOC;) of the storage represents the
variable xg ; of Eq. (9) normalized using the capacity of the storage (equal to 120 [kWh]).

Gantt Diagram - Scenario 1

17
LB 5
1/ 1/ e
1 - e

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [h]

Fig. 5 The Gantt diagram representing the optimal schedule Scenariol. The charging intervals of the 10 vehicles

are clearly represented by various colors

Power from the Main Grid - Scenario 1

100

80

falkW]

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Timel[h]

Fig. 6 The pattern representing the power bought/sold from/to the external grid in the optimal solution for

Scenario 1
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SOC of the Storage - Scenario 1

0.8

0.6

SOC,

0.4

0.2

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Timelh]

Fig. 7 The pattern representing the state of charge of the storage in the optimal solution for Scenario 1

As it can be seen from Fig. 5, the variable buying prices and the distribution of the due dates
(clustered in two blocks) lead to an optimal solution characterized by a time period, relevant to
the central hours of the time horizon, where only one EV is under charging and two sockets are
free. The power from the main grid (Fig. 6) reflects this behavior since it is bought in the first
hours and then in the last part of the time horizon while in the middle is zero because the
vehicle is charged by means of the storage (Fig. 7). Note also that the service for charging
vehicle 7 is preempted (Fig. 5).

5.2 Scenario 2

The second scenario is equal to the first one, but for the introduction of renewables. The results
obtained, providing the optimal schedule are reported in Table 6.

As in the previous case the following Figs. 8, 9 and 10 represent the obtained solution.

In this case, it is possible to denote that the scheduling is different with respect to the first
scenario but the central part of the time horizon is still characterized by only one vehicle
charging. This is due to the same reason already presented in Scenario 1. The main difference
brought by the renewables mainly regards the exchange with the main grid which is lower
since part of the balance is satisfied by the PV plant.

5.3 Scenario 3

In this scenario the Vehicle Dataset is the same as for Scenarios 1 and 2, but for the values of
due dates and energy requests reported in Table 7.

Table 6 The results corresponding to the optimal schedule for Scenario 2

Vehicle 1 2 3 4 5 6 7 8 9 10

C;[h] 2.00 4.00 4.01 4.02 6.00 8.50 12.00 13.00 13.99 14.00
tard; [h) 1.00 2.50 2.51 2.02 4.00 0.00 0.00 0.00 0.00 0.00
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Gantt Diagram - Scenario 2

'rV
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|
L 1/ 1 ‘
| 4 V4 75 i
| |
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Time [h]

Fig. 8 The Gantt diagram representing the optimal schedule Scenario 2. The charging intervals of the 10 vehicles
are clearly represented by various colours

Table 8 and Figs. 11, 12 and 13 represent the results obtained providing the optimal
schedule.

As it can be observed from the above figures, the results obtained for Scenario 3 present
significant differences with respect to Scenario 2 in the schedule and in the storage behavior. In
fact, the variation of the schedule is induced by the new values of the energy requests and due
dates. Namely, one can note the earlier completion of the service for vehicle 6, and the fact that
in the central hours there is only one free socket. The storage behavior differs from the
previous cases since it is discharged between 12.00 and 14.30 to sustain the anticipated service
of vehicle 6.

The computational times and the values of the objective function are reported in Table 9.

Overall, these results show that the model is compatible with real-time applications.

100 Power from the Main Grid - Scenario 2

80

60

falkW]

40

20

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time[h]

Fig. 9 The pattern representing the power bought/sold from/to from the external grid in the optimal solution for
Scenario 2
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SOC of the Storage - Scenario 2

0.8

0.6

S0C,

0.4

0.2

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time[h]

Fig. 10 The pattern representing the state of charge of the storage in the optimal solution for Scenario 2

Table 7 Values of due dates and energy requests in Scenario 3

Vehicle 1 2 3 4 5 6 7 8 9 10

dd; [h] 1.00 1.50 1.50 2.00 2.00 3.00 1250  13.00 14.00  14.00
ER;[kWh] 2200  18.00  22.00 2200 18.00  22.00  22.00 18.00  18.00  22.00

Table 8 The results corresponding to the optimal schedule for Scenario 3

Vehicle 1 2 3 4 5 6 7 8 9 10

C;[h] 2.00 3.64 4.00 4.36 5.27 5.64 12.28 13.00 13.99 14.00
tard; [h] 1.00 2.14 2.50 2.36 3.27 2.64 0.00 0.00 0.00 0.00

Gantt Diagram - Scenario 3

i
9 10 11 1

13 14 15 16 17 18 19 20 21 22 23 24
Time [h]

Fig. 11 The Gantt diagram representing the optimal schedule Scenario 3
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Power from the Main Grid - Scenario 3
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Fig. 12 The pattern representing the power bought/sold from/to the external grid in the optimal solution for
Scenario 3

As regards the numbers of variables and constraints we report the results of Scenario 2. The

total number of variables is 295, 180 of them are nonlinear and 55 are binary. Focusing on the
M

binary variables, their number is equal to ) 7, since in any time interval (C;_ , C;) at most M —
i=1

i+ 1 vehicles can be under charging. This reduction in the number of binary variables (with

respect to the expected value M2) is achieved by introducing in the problem formalization an
additional (“technical”) constraints, namely

Y =0 i=1..M j<i

A comparison with respect to a discrete time formalization of the problem has been carried out.
First, we have to note that the discrete time formalization differs from the discrete event one at
least for the following reasons:

SOC of the Storage - Scenario 3

0.8

0.6

SOC,

0.4 —

0.2

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Timelh]

Fig. 13 The pattern representing the state of charge of the storage in the optimal solution for Scenario 3
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Table 9 Run time and objective function results of the three scenarios

Run Time [s] Objective Function [€]
Scenario 1 22 94.11
Scenario 2 21 66.82
Scenario 3 40 115.54

* in the discrete time formalization, there is no need for approximating the original patterns
of the power coming from the renewable sources and the buying prices;

* in the discrete time formalization, there is no need of imposing that the power flows to
vehicles, from/to the storage element, and from/to the main grid are piecewise constant
(that is, constant within a time interval larger than the discretization time interval, such as,
for instance, the charging time interval for a vehicle).

On the counterpart, as it has been already pointed out, the discrete time formalization is
affected by a very high number of decision variables as compared with the discrete event one.
To be more precise, we have considered a time discretization interval of 0.125 [h], i.e.,
7.5 min. With this discretization interval, using the same software platform above mentioned,
we have not been able to solve problem instances corresponding to 10 vehicles in reasonable
computational times (after 1 h the program did not find any feasible solution).

To make a comparison between the two formalizations, we had to consider a problem instance
with 3 vehicles and 1 socket. In this case, the values of the objective functions determined by solving
the discrete time and the discrete event formalizations were different for some percent. Instead, the
computational time for the discrete event case was 1 s, while the computational time for the discrete
time case was over 5 min. More important, the number of binary variables for the discrete event
formalization was 6, whereas in the discrete time formalization we had 363 binary variables!

Additional scenarios obtained modifying Scenario 1 and considering 15 and 20 EVs have
led to computational times of about 2.5 min and 6 min, respectively. Thus, although no
extensive analysis has been carried out about this point, we can believe that the proposed
approach is compatible with real-time application for problem instances whose size is greater
with respect to the instances leading to the results represented in the previous pictures.

6 Vehicle-to-grid (V2G) extension

In this section, we extend the above introduced model in order to allow vehicle-to-grid power flows.
To this end, we must point out the differences with respect to the previously introduced model.

In this case, for each vehicle V; requiring service, besides to parameters ddj, dl;, rl;, o; the
following information is available:

* Initial state of the vehicle’s battery, namely x’\ﬁ”’/,

*  Desired final state, namely X}/ ;3 of course, the energy request is ER; = xf"/” X

Besides, even for the vehicle’s battery, a couple of parameters v, ; and Ugparge, 7 is assumed to
be available. Such parameters have an analogous meaning with respect to the already
introduced parameters 7y, and 7gjqrge, Teferring to the main storage element.
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In this case, there is the necessity of considering the state equations for the energy contents
of the various vehicles’ batteries, that is

Xvij = Xvi1j + Vaharge j S 1 (CimCimt)Vaisen j 1 j(CiCim1)  j=1,...., M i=1,...,]

(26)
where
. L ydnit.
xVAO,] - xV,j’
xy, ;, /= state of the battery of vehicle V; at time instant C;
e  f L*, ;and /7 ; ; are positive and negative components of /7 ; ;, namely
ij_j:fZl.ﬁj—ﬁ,l_’j j=1...Mi=1,..j (27)
fripf1;20 j=1,...Mi=1,..j (28)
Now the binary variables y; ; have the following meaning
_J1 if vehicle V; is either under charging or discharging in time interval (Ci-1,C;)
yi,j - otherwise
0
J=1. . Mi=1, ..
and constraints (5) must be replaced by
y,.,jK—le.ﬁjzo j=1,...M,i=1,..j (29)
VijK=f1,;,20 j=1,...Mi=1,..j (30)

in order to impose that, whenever there is a flow to/from vehicle V;, this vehicle must be
connected to a socket. The requirement that the energy request must be totally satisfied may
still be ensured by constraint (8), that could also be replaced by

. J
S5+ 3 fag(CrC) =y =1, M ey

along with
Xy <xyi i <xyamax i=1,...M,j=1,....M (32)
Note that Eq. (31) is written by assuming that, as regards V}, the V2G operation mode could be

adopted only before the time instant C;. Observe that there is no constraint preventing the
discharging of the battery of a vehicle even though it has already reached the desired energy

value x{’,” ;» provided that at the “final” time instant C; this value has been exactly reached.
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Clearly, xv, y;v and xy, pay are the lower and upper bounds of xy, ; ;, respectively (the same for
any vehicle).

The value of xy,; ; is allowed to vary only in correspondence with time intervals (C;-, C))
for which C;_ >rl;, according to (7).

Besides, constraints (16) and (17) must be substituted by

~Frjvax<f1,;<Frjmy i=1,..M j=i..M (33)

~Frrormx<frror;SFrrormax i=1,...M (34)

since now the power flow to the vehicles may be positive or negative.

Then, the optimization problem to be considered in the case in which V2G operation mode
is allowed consists still in the minimization in (12) subject to (2), (4), (7), (9)=(11), (13)+(15),
(18)+(34). All variables, apart from f; ;, 7&!-, FGCOSTf;, ror,ii=1,....,Mandf; ; ,i=1,...,
M, j=1, ..., M are constrained to be non-negative.

The decision variables in the above problem formulation are: C;, fg. ;, /1. ror, i» 7&[, 7R_’i,
FGCOST, f G [ G.is ¥s.is tardyy i=1, ..o Myand fi i jy vijs Xviijs [ 1o jp S 1o 1= 1o Moj=1,
e M.

A case study has been considered for the V2G case. The values of the data related to each
vehicle are reported in Table 10.

The values of the parameters are the same of Table 1 except for those reported in Table 11.

Essentially the considered case study is the same as that in Scenario 2 in Section 5, but with
the above Vehicle Dataset, and with the buying and selling prices corresponding to

BP(f) = 0.15-0.0025¢
SP(f) = 0.14-0.08¢

where the prices are expressed in €/kWh and ¢ is expressed in hours.

Figure 14 represents the pattern (over time) of BP(f), SP(f) and fz(?).

From these patterns one can infer that in the beginning of the time horizon (the hours
immediately after 9.00 AM) it should be convenient to discharge the vehicles whose comple-
tion of service is not immediately requested. That is what is obtained by solving the above
optimization problem for the considered instance. In fact, this is confirmed by Fig. 15 that
shows the patterns of the power exchanged with the main grid, and the power flows from/to
three vehicles (1, 9, 10).

Table 12 reports the values of the completion times C; for the presented case study.

Table 10 V2G Extension: Data relevant to the EVs

Vehicle 1 2 3 4 5 6 7 8 9 10
dd; [h] 3 3 3 3 3 8 8 8 8 8
dl; [h] 10 10 10 10 10 10 10 10 10 10
i, [h] 0 0 0 0 0 0 0 0 0 0
ER; [kWh] 4 4 4 4 4 4 4 4 4 4
Xt ] 40 40 40 40 40 40 40 40 40 40
o, [h] 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1
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Table 11 V2G Extension: Values of the additional parameters

Parameter Value
Xs,0 40 [kWh]
XS, MINFIN 40 [kWh]
)CV, MIN 0 [kWh]
XV’ MAX 44 [kWh]
30 T I T 0.2
— fr(t) kW]
——BP(t) [€/kWh]
25 - - .SP(t) [€/kWh]
e L] 10.15
20 / =
B AE / \_\\ =
_ il e >
S I~ 0
=15 s 0.1 =
/ =l it ~\ E
10 / St
// \ T40.05
. N
0 0
9 10 11 12 13 14 15 16 17 18 19 20
Time[h]
Fig. 14 V2G extension: Pattern of BP(t), SP(t) and fi(t)
0 Power Exchang-g with the Main Grid 30 Power Exchange for Vehicle 1
-10 | 20
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= = 0 .
=0 =410
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% 0 % 0
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Fig. 15 V2G extension: Power exchange with the main grid and power exchange for vehicles 1, 9, and 10
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Table 12 V2G extension: Completion time results

Vehicle 1 2 3 4 5 6 7 8 9 10

C;[h] 1.36 2.06 2.41 2.72 3.00 4.44 4.04 5.31 7.17 10.00

7 Conclusions and future developments

In this paper, a model to represent the charging of electric vehicles at a station with
multiple sockets is presented, to define an optimization problem whose solution is
compatible with real-time operations. To this end, a discrete event representation of the
dynamics of the system has been adopted, to limit the number of variables to be deter-
mined. It has been assumed that the main decision variables of the problem, namely the
power flows to the vehicles and the those from/to the main grid are kept constant within
each time interval between two successive service completion time instants, referring to
two different vehicles. This limitation seems to be not too restrictive and, in any case, it is
necessary to allow the definition of a parameter optimization problem instead of a
functional optimization one).

The approach presented in this work refers to the optimization of the charging of a set of
vehicles either already present at the charging station or whose arrival times are perfectly
known, and thus it is intrinsically a finite horizon optimization problem.

Two different formalizations of the problem have been presented. In the first one, the
power flow to vehicles is constrained to be monodirectional, whereas in the second one
power flows from the vehicles are allowed (V2G). It is important to note that in both cases,
for reasonable sizes of the problem instances, the computational times are compatible with
a real-time application.

A limitation of the proposed model is the constraint relevant to the order of the
sequence of the completion times, which is considered as fixed, owing to some
priority order (given, for instance, by the order of the arrivals of the vehicles at the
station). The removal of this constraint would allow considering even cases in which
the arrival of a new vehicle, with some service urgency, may perturb the pre-existing
service order.

This last issue is a matter of current research. Besides, a further research effort is needed if
one wants to consider a periodic service demand, as, for instance, that required in public
transportation. In this case, the scheduling problem should be solved by finding a schedule that
can be iterated over time.

Another different formalization of the model could be that in which the arrivals of vehicles
are represented as a stochastic process. In this case, the model would necessarily be of a
stochastic type, and optimization over an infinite horizon should be sought.

However, remaining within the framework of deterministic models, like that considered in
this paper, one could think of applying the decision model that has been developed by running
again the model every time a new vehicle arrives. Of course, this would give rise to a sort of
receding horizon (predictive) control scheme.

Funding Open access funding provided by Universita degli Studi di Genova within the CRUI-CARE
Agreement.
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Appendix A
Nomenclature for the first model
Functions:

Ji, {O=power flow to the j-th electric vehicle at time ¢ [kW];
1. ror(t)=power flow to the charging station at time ¢ [kW];
fs(t)= power flow from the storage at time ¢ [KWT;
fo(H)= power flow from the main grid at time ¢ [kW];
fr(®)= power flow from renewable sources at time ¢ [kKWT;
BP(f)= energy buying price at time ¢ [€/kWh];

SP(f)= energy selling price at time 7 [€/kWh].

Parameters:

dd= due date, i.e. the time instant at which the charging service for vehicle V; should be
completed [h];

dl= deadline, i.e. the time instant at which the charging service for vehicle V; must be
completed [h];

rl= release time of vehicle V; [h];

ER= energy required for the charging of the vehicle V; [kWh];

ay= tardiness penalty coefficient for vehicle V; [€/kWh-h];

K= “big M” constant;

(3= fixed occupation cost of a socket per unit time [€/h];

Xs, yax= maximum value of the storage energy level [kWh];

Xs, puv= minimum value of the storage energy level [kWh];

Xs, panpiv= minimum value of the final storage energy level [kWh];

Fg. yax= maximum value of the absolute value of the power flow from/to the main grid
(kW]

Fs yax= maximum value of the absolute value of the average power flow from /to the
storage [kW];

Fy, yax= maximum power flow from the charging station to a generic electric vehicle [kW];

Fy, i, j, yov= minimum power flow to vehicle V; in the time interval (C;-, C;) [kW];

Fi jow= minimum power flow to vehicle V; in the time interval (C;_, C;) [kW];

Fy. ror, max= maximum power flow to the charging station [kW];

a' = coefficient of the polynomial approximation function relative to the PV plant;

ab= coefficient of the polynomial approximation function relative to the buying price;

Naisch» Neharge= 108s coefficients affecting the storage element behavior [-].

Decision Variables:

C;= completion time instant of vehicle V; [h];
fc. = constant power flow from the grid in the time interval (C;_, C;) [kW];
/1. ror, = total power flow to the charging station in the time interval (C;—,, C;) [kW];
Ji,i,/= constant power flow delivered for charging of vehicle V; in the time interval (C;- 1,
C) [kW];
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7&,: average power flow from the storage in the time interval (C;-, C;) [kW];
7RJ= average power flow from the renewable sources in the time interval (C;_1, C;) [kW];
v; /= binary variable, equal to 1 if the vehicle V; is under charging in the time interval (C;, C;

—1), and 0 otherwise;

x5(C;) = x5, ; = energy level of the storage at the end of the time interval (C;—, C;) [kWh];

FGCOST= total cost/benefit of the power exchange with the main grid in the time interval
(Ci-1, C) [€];

f gﬁl: power flow from the main grid in the time interval (C;_,, C;) [kW];

f ;= power flow to the main grid in the time interval (C;—,, C;) [kW];

tardy= tardiness of the vehicle V; service completion [h];

SOC=State of Charge of the storage at time instant C; [-].

Appendix B
Additional nomenclature for the V2G model
Parameters:

Xy, yax= maximum energy level for the battery of a vehicle [kWh];
Xy, yax= minimum energy level for the battery of a vehicle [kWh];
xy"= initial energy level of the battery of vehicle V; [kWh];
v ;= final energy level of the battery of vehicle V; [kWh];
Ucharge, j» Vdisch, /= 10ss coefficients affecting the behavior of the battery of vehicle V; [-].

Decision Variables:

xy, ;, /= energy level of the battery of vehicle V; at time instant C; [kWh];
f L*, ;=power flow to the vehicle V; in the time interval (C; -, C)) [kW];
S 1; =power flow from the vehicle V; in the time interval (C;;, C)) [kW].
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