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BACKGROUND	  

Nowadays,	  radiomics	  [1]	  is	  one	  of	  the	  most	  promising	  techniques,	  with	  the	  potential	  

to	  improve	  cancer	  treatment.	  Radiomics	  is	  an	  advanced,	  quantitative	  feature-‐based	  

methodology	   for	   image	   analysis	   defined	   as	   the	   conversion	   of	   images	   to	   higher	  

dimensional	   data	   and	   the	   subsequent	  mining	   of	   these	   data	   for	   improved	   decision	  

support	   [1].	   Plasma	   cell	   dyscrasias	   (PCDs)	   are	   pathological	   conditions	   including	  

Monoclonal	   Gammopathy	   of	   Undetermined	   Significance	   (MGUS),	   Smoldering	  

Multiple	   Myeloma	   (SMM),	   and	   full-‐blown	  Multiple	   Myeloma	   (MM).	   MM	   definition	  

can	  rely	  on	  the	  International	  Myeloma	  Working	  Group	  (IMWG)	  consensus	  updates,	  

yet	  the	  significant	  clinical	  heterogeneity	  of	  MM	  patients	  implies	  that,	  as	  far	  as	  now,	  

we	   lack	   a	   set	   of	   consolidated	   biomarkers	   able	   to	   predict	   the	   outcome	   and	   risk	   of	  

progression,	   independently	   from	  the	   therapeutic	  approach.	  Risk	  stratification	  gold	  

standard	   is	   usually	   performed	   at	   diagnosis,	   by	  means	   of	   the	   International	   Staging	  

System	  (ISS)	  (which	  combines	  serum	  beta2-‐microglobulin	  and	  serum	  albumin	  for	  a	  

three-‐stage	   classification),	   and	   cytogenetics	   (which	  provides	   a	   binary	  normal-‐high	  

risk	   stadiation).	   In	  2003,	   IMWG	  replaced	   the	  Durie–Salmon	   system	  with	  a	   revised	  

version	   (Durie–Salmon	   system	   plus),	   replacing	   radiography	   with	   Magnetic	  

Resonance	   Imaging	   (MRI)	   and	  PET/CT	  data	  with	   [18F]	  Fluorodeoxyglucose	   (FDG)	  

as	  tracer.	  The	  extent	  of	  the	  bone	  disease	  is	  negatively	  related	  to	  a	  decreased	  quality	  

of	   life	   and	   bone	   disease	   in	  MM	   increases	  morbidity	   and	  mortality.	   Therefore,	   the	  

detection	   of	   lytic	   bone	   lesions	   on	   imaging,	   especially	   CT	   and	   MRI,	   is	   becoming	  

crucial	  from	  the	  clinical	  viewpoint	  to	  separate	  asymptomatic	  from	  symptomatic	  MM	  

patients;	  meanwhile,	   the	  detection	  of	   focal	   lytic	   lesions	   is	   becoming	   relevant	   even	  

when	  no	  clinical	  symptoms	  are	  present	  [3].	  Therefore,	  an	  analysis	  of	  multiple	  bone	  

lesions	   could	   be	   performed	   using	   AI	   and	   radiomics.	   A	   recent	   application	   of	  
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radiomics	  in	  MM,	  by	  our	  research	  group	  showed	  that,	  in	  clinical	  practice,	  radiomics	  

improves	  the	  radiological	  evaluation	  of	  focal	  and	  diffuse	  pattern	  on	  CT	  by	  increasing	  

the	  Area	  Under	  the	  Curve	  (AUC)	  of	  radiologists	  [2].	  Accuracy	  in	  terms	  of	  the	  AUC	  of	  

radiologists	  compared	  to	  the	  reference	  standard	  was	  lower	  (64%)	  than	  the	  accuracy	  

computed	   using	   a	   radiomics	   approach,	  which	   obtained	   a	  maximum	  value	   of	   79%.	  

However,	   the	  diagnostic	  and	  prognostic	  capabilities	  of	  medical	   imaging	   in	  MM	  are	  

still	   under	   investigation	   and	   development.	   Significant	   variability	   in	   image-‐based	  

prognostic	  scores	  is	  present	  among	  different	  centers	  and	  in	  clinical	  practice	  [3-‐8].	  In	  

addition,	  although	   the	  updated	  version	  of	   the	   IMWG	  criteria	  accepts	   the	  use	  of	  CT	  

and	   PET/CT	   to	   diagnose	   lytic	   bone	   disease	   in	  MM,	   there	   is	   still	   a	   lack	   of	   reliable	  

quantitative	   and	   computational	   tools	   for	   increasing	   the	   prognostic	   value	   of	   these	  

modern	  imaging	  modalities	  [3-‐8].	  	  

The	   study	   hypothesis	   is	   that,	   if	   aided	   by	   AI-‐based	   methods,	   data	   extracted	   from	  

clinical	  images	  used	  in	  the	  routine	  clinical	  practice	  for	  MM	  can	  predict	  its	  outcome,	  

with	   specific	   focus	   on	   the	   identification	   of	   patients	   at	   high-‐risk	   of	   progression	   or	  

non-‐responding	  to	  current	  therapy.	  
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Purpose	  of	  the	  research	  	  

The	  aim	  of	  our	  research	  activities	  is	  to:	  

-‐	  create	  comprehensive,	  solid	  and	  validated	  quantitative	  scores	  for	  CT	  and	  MRI	  and	  

PET-‐CT	  that	  can	  be	  adopted	  in	  clinical	  practice.	  

-‐	   To	   introduce	   a	   set	   of	   novel	   biomarkers	   extracted	   from	   X-‐ray	   Computed	  

Tomography	  (CT)	  and	  Magnetic	  Resonance	  Imaging	  (MRI)	  data	  by	  means	  of	  reliable	  

and	  sophisticated	  artificial	  intelligence	  tools.	  

-‐	  To	  introduce	  a	  personalized	  predictive	  process	  for	  MM	  integrating	  quantitative	  CT	  

and	  MRI	  and	  machine	   learning,	  which	   relies	  on	   the	  application	  of	  AI	  processes	  on	  

radiomics	  features	  in	  order	  to	  forecast	  the	  disease	  behaviour.	  	  
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CHAPTER	  1:	  	  FEASIBILITY	  STUDY	  

1.1	  Introduction	  

The	  limitations	  of	  the	  use	  of	  imaging	  for	  MM	  assessment	  are	  essentially	  due	  to	  three	  

open	   issues:	   the	   lack	  of	   accuracy	   in	  differentiating	   focal	   from	  diffuse	  patterns,	   the	  

difficulty	   in	   extracting	   reliable	   prognostic	   biomarkers	   from	   pattern	   allocation,and	  

the	  low	  agreement	  in	  staging	  MM	  patients	  based	  on	  imaging	  outcomes.	  

The	   application	   of	   pattern	   recognition	   algorithms	   for	   the	   extraction	   of	   radiomics	  

descriptors	  from	  images	  of	  MM	  patients	  and	  the	  post-‐processing	  of	  such	  radiomics	  

features	  by	  means	  of	  procedures	  based	  on	  artificial	   intelligence	  (AI)	  are	  nowadays	  

introducing	  a	  novel	  approach	  for	  increasing	  the	  reliability	  of	  imaging	  in	  MM	  clinical	  

assessment	  [4,6,9,10].	  

The	  objective	  of	  the	  present	  study	  is	  to	  assess	  the	  feasibility	  of	  an	  AI-‐based	  approach	  

for	  the	  automatic	  stratification	  of	  MM	  patients	  from	  CT	  data,	  and	  for	  the	  automatic	  

identification	   of	   radiological	   biomarkers	   with	   a	   possible	   prognostic	   value.	  

Specifically,	   relying	   on	   radiomics	   and	   AI-‐based	   computational	   analysis	   [9,11,12],	  

this	  feasibility	  study	  shows	  that	  a	  set	  of	  descriptors	  of	  the	  focal	  lesions	  in	  MM	  X-‐ray	  

CT	   at	   diagnosis	   allows	   for	   the	   automatic	   stratification	   of	   a	   cohort	   of	  MM	  patients	  

who	  have	  undergone	   transplantation	   in	   two	  clusters,	  whose	  characteristics	  can	  be	  

interpreted	  via	  comparison	  with	  clinical	  data,	  biological	  biomarkers,	  and	  the	  clinical	  

outcome	  of	  the	  disease.	  
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CHAPTER	  2:	  	  METHODOLOGY	  

2.1	  Study	  Populations,	  Inclusion	  Criteria,	  and	  Risk	  Stratification	  

This	   study	   was	   performed	   according	   to	   the	   Declaration	   of	   Helsinki	   and	   the	  

International	  Conference	  on	  Harmonization	  of	  Good	  Clinical	  Practice	  Guidelines.	  An	  

institutional	   review	   board	   was	   obtained	   (054REG2019).	   All	   patients	   signed	  

informed	  consent	  for	  retrospective	  research	  before	  CT	  examination;	  data	  collection	  

did	  not	  influence	  patient	  care.	  We	  considered	  51	  consecutive	  patients	  (mean	  age,	  56	  

years	  ±	  8;	  range,	  31–73	  years;	  18	  females;	  33	  males)	  admitted	  to	  the	  Hospital	  in	  the	  

last	   five	   years	   because	   of	   biopsy	   confirmed	   MM.	   Inclusion	   criteria	   were	   baseline	  

whole-‐body	   CT	   from	   the	   Hospital	   PACS	   or	   outpatient	   clinic.	   Among	   these	   51	  

patients,	   we	   selected	   the	   33	   presenting	   at	   least	   one	   focal	   lesion	   in	   one	   of	   the	   CT	  

slices,	  i.e.,	  at	  least	  one	  >5	  mm	  lytic	  lesion	  in	  the	  axial	  or	  extra-‐axial	  skeleton	  [16-‐18].	  

Two	   radiologists	  blinded	   to	   the	  diagnosis	   and	   to	   each	  other’s	   conclusion	  assessed	  

whether	  the	  CT	  pattern	  was	  diffuse	  or	  focal,	  and,	  for	  each	  patient	  presenting	  at	  least	  

one	  focal	  lesion,	  we	  identified	  the	  largest	  one.	  

Risk	  stratification	  was	  performed	  at	  diagnosis	  by	  the	  Revised	  International	  Staging	  

System	   (ISS)	   combining	   serum	   beta2-‐microglobulin	   and	   serum	   albumin,	   lactate	  

dehydrogenase	  for	  three-‐stage	  classification,	  and	  cytogenetics	  determining	  a	  binary	  

normal-‐high	   risk	   stadiation	   [13,14].	   Table	   1	   provides	   a	   summary	   of	   the	   clinical	  

features	  (diameter	  of	  focal	  lesion:	  mean:	  19.9	  mm,	  STD:	  13.4	  mm,	  min:	  4.5	  mm,	  max:	  

62.4	  mm).	  
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Table	  1.	  Clinical	  features	  of	  the	  33	  MM	  patients	  included	  in	  the	  analysis.	  R-‐ISS	  stage:	  
I:	  ISS	  stage	  I	  and	  standard-‐risk	  CA	  by	  iFISH	  and	  normal	  LDH.	  II:	  Not	  R-‐ISS	  stage	  I	  or	  
III;	  III:	  ISS	  stage	  III	  and	  either	  high-‐risk	  CA	  by	  iFISH	  or	  high	  LDH.	  CA—chromosomal	  
abnormalities;	   iFISH—interphase	   fluorescent	   in	   situ	   hybridization;	   ISS—
International	   Staging	   System;	   LDH—lactate	   dehydrogenase;	   MM—multiple	  
myeloma;	  R-‐ISS—revised	  International	  Staging	  System	  
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2.2	  Image	  Analysis	  

To	   compute	   each	  patient’s	   overall	   skeletal	   asset,	  we	  utilized	   a	   published	   software	  

tool(Bone-‐GUI,	   http://mida.dima.unige.it/software/bone-‐gui/;	   accessed	   on	   20	  

September	   2021)	   combining	   thresholding	   and	   active	   contours.	   For	   each	   subject,	  

Bone-‐GUI	   provided	   24	   features.	   Separately	   for	   the	   whole,	   axial,	   and	   skeleton	  

districts,	   it	   computed	   the	   following:	   the	   mean	   medullary	   Hounsfield	   value	   with	  

standard	   deviation,	   the	   volume	   of	   the	   global	   medullary	   asset,	   the	   mean	   cortical	  

Hounsfield	  value	  with	  standard	  deviation,	  the	  volume	  of	  the	  cortical	  asset,	  the	  rate	  

of	  volume	  occupied	  by	  the	  medullary	  tissue,	  and	  the	  overall	  volume.	  We	  also	  applied	  

an	   open	   source	   tool	   for	   radiomics	   (Slicer,	  

https://www.radiomics.io/slicerradiomics.html;	   accessed	   on	   20	   September	   2021)	  

[4,6]	  to	  the	  33	  lytic	  lesions	  on	  the	  compact	  bone	  tissue	  to	  extract	  109	  Slicer	  features	  

for	  each	  focal	  lesion.	  
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2.3	  Reduction	  of	  Redundancy	  

Our	  AI-‐based	  analysis	  for	  patients’	  stratification	  utilized	  Slicer	  features	  as	  the	  input.	  

To	   reduce	   information	   redundancy,	   we	   considered	   two	   approaches.	   In	   the	   first	  

approach,	  principal	  component	  analysis	  (PCA)	  [19]	  projected	  the	  feature	  space	  onto	  

a	  principal	   components’	   subspace	   explaining	   at	   least	  80%	  of	   the	  data	   variance.	   In	  

the	  second	  approach,	  we	  performed	  two	  Pearson’s	  correlation	  processes	  (p	  >	  95%)	  

involving	   the	   Slicer	   features	   and	   (a)	   the	   binary	   feature	   encoding	   patient’s	   relapse	  

one	  year	  after	  transplantation,	  and	  (b)	  all	  24	  Bone-‐GUI	  features.	  We	  applied	  PCA	  to	  

the	   features	  selected	  using	   the	   two	  correlation	  processes.	  Figure	   1	   illustrates	   this	  

redundancy	  reduction	  pipeline.	  

	  

	  

Figure	  1.	  The	  pipeline	  of	  the	  radiomics	  features	  analysis.	  For	  each	  patient,	  the	  focal	  
lesion	  was	  pointed	   out	   and	   the	   corresponding	  CT	   image	  was	   fed	   into	   a	   radiomics	  
tool	   (Slicer),	   which	   computed	   109	   radiomics	   features;	   these	   descriptors	   were	  
correlated	  with	  both	  the	  clinical	  outcome	  of	  the	  disease	  at	  one	  year,	  and	  the	  global	  
radiological	   features	   extracted	   by	   means	   of	   a	   segmentation	   tool	   (Bone-‐GUI);	   the	  
resulting	  mostly	  correlated	  features	  and	  the	  set	  of	  all	  local	  features.	  
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2.4	  Clustering	  

Clustering	   organized	   a	   set	   of	   unlabeled	   samples	   into	   clusters	   based	   on	   data	  

similarity	  [20].	  Data	  partition	  was	  obtained	  by	  minimizing	  a	  cost	  function	  involving	  

the	  distances	  between	   the	  data	  and	  cluster	  prototypes.	   In	  Fuzzy	  C-‐Means	   (FCM)	  a	  

degree	  of	  membership	   is	   assigned	   to	   each	   sample	  with	   respect	   to	   each	   cluster.	   In	  

addition	   to	   FCM,	   we	   applied	   a	   non-‐linear	   approach	   based	   on	   the	   filtering	   of	   an	  

extended	   version	   of	   the	   Hough	   transform	   (HTF)	   [21],	   according	   to	   the	   following	  

steps:	  

1.	  Downstream	  of	  the	  PCA	  process,	  the	  two-‐dimensional	  feature	  space	  given	  by	  the	  

two	  components	  explaining	  most	  of	   the	  data	  variance	   (namely,	  PC1	  and	  PC2)	  was	  

constructed	  for	  each	  data	  set.	  

2.	  Given	  a	  feature	  space,	  the	  Hough	  transform	  of	  each	  point	  in	  the	  patient’s	  set	  with	  

respect	   to	   the	   family	   of	   all	   parabolas	   was	   computed.	   As	   this	   family	   was	  

characterized	  by	  three	  parameters,	  i.e.,	  its	  equation	  is	  y_PC2	  =	  ax_PC1ˆ2	  +	  bx_PC1	  +	  

c,	  with	  a,	  b,	  and	  c	  being	  the	  parameters,	  and	  the	  corresponding	  parameter	  space	  has	  

three	  dimension.	  

3.	   The	   Hough	   accumulator	   was	   computed	   by	   counting	   the	   number	   of	   times	   each	  

Hough	  transform	  passed	  through	  one	  of	  the	  cells	  of	  the	  discretized	  parameter	  space.	  

4.	  The	  Hough	  accumulator	  was	  filtered	  by	  a	  5-‐pixel-‐side	  cube	  centered	  on	  the	  pixel	  

with	  a	  maximum	  grey	  value.	  This	  cube	  was	  the	  smallest	  one	  enclosing	  the	  cells,	  

with	  accumulator	  values	  higher	  than	  50%	  of	  the	  maximum	  [22].	  

	  

Each	  line	  passing	  through	  the	  filtered	  region	  was	  projected	  back	  to	  the	  image	  space,	  
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thus	  generating	  a	  cluster	  of	  points	  in	  a	  strip	  around	  the	  parabola	  corresponding	  to	  

the	  maximum	  in	  the	  Hough	  accumulator.	  The	  remaining	  points	  represent	  the	  second	  

cluster	  made	  of	  points	  outside	  of	  the	  strip	  of	  parabolas	  previously	  identified.	  
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CHAPTER	  3:	  RESULTS	  

3.1	  Clinical	  Findings	  

Focal	   lesion	  searching	   led	   to	   the	   selection	  of	  33/51	   (65%)	  patients	   (mean	  age,	  56	  

years	   ±	   7;	   range,	   45–69	   years;	   12	   females;	   21	   males)	   whose	   imaging	   data	   were	  

considered	   for	   our	   computational	   analysis.	   Inter-‐observer	   agreement	   in	  

differentiating	   diffuse	   from	   focal	   pattern	   between	   the	   two	   groups	   of	   radiologists	  

resulted	   in	   0.75	   (95%	   Confidence	   Interval:	   0.31–0.67)	   and	   0.96	   (95%	   Confidence	  

Interval:	  0.79–0.99)	  for	  the	  selection	  of	  patients	  with	  focal	  lesions.	  

	  

3.2	  AI-‐Based	  Analysis	  

The	   AI-‐based	   analysis	   involved	   three	   data	   sets:	   data	   set	   1,	   made	   of	   all	   109	   local	  

features	  extracted	  by	  Slicer	  from	  each	  focal	  lesion;	  data	  set	  2,	  made	  of	  the	  eight	  local	  

features	  mostly	  correlating	  with	  the	  relapsed/non-‐relapsed	  binary	  feature;	  and	  data	  

set	  3,	  made	  of	  the	  17	  local	  features	  mostly	  correlating	  with	  the	  24	  Bone-‐GUI	  global	  

features.	  The	  application	  of	  PCA	  to	  these	  three	  data	  sets	  led	  to	  three	  features	  spaces,	  

with	  n	  =	  5	  axes	  for	  data	  set	  1,	  n	  =	  3	  axes	  for	  data	  set	  2,	  and	  n	  =	  2	  axes	  for	  data	  set	  3.	  

In	  each	  one	  of	  these	  three	  feature	  spaces,	  FCM	  and	  HTF	  computed	  two	  clusters:	  

in	  each	  cluster,	  the	  black	  circles	  are	  associated	  with	  patients	  that	  underwent	  relapse	  

within	   one	   year	   of	   bone	   marrow	   transplantation.	   Cluster	   A	   (B)	   contained	   the	  

maximum	  (minimum)	  number	  of	  relapsed	  patients.	  

In	  order	  to	  assess	  the	  performances	  of	  the	  clustering	  algorithms,	  we	  computed	  the	  

confusion	  matrices	  for	  the	  observed	  relapsed	  patients;	  specifically,	  we	  counted	  the	  

number	  of	  true	  positives	  (TPs),	  true	  negatives	  (TNs),	  false	  positives	  (FPs),	  and	  false	  

negatives	  (FNs)	  using	  cluster	  A	  as	  the	  reference	  cluster	  for	  the	  “relapsed”	  class	  and	  
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cluster	  B	  as	   the	  reference	  cluster	   for	   the	  “non-‐relapsed”	  class.	  Using	   the	  entries	  of	  

such	  matrices,	  we	  computed	  four	  different	  skill	  scores:	  

Sensitivity	  =	  TP/(TP	  +	  FN)	  

Specificity	  =	  TN/(TN	  +	  FP)	  

Youden’s	  index	  =	  Sensitivity	  +	  Specificity	  −	  1	  

Critical	  Success	  Index	  (CSI)	  =	  TP/(TP	  +	  FN	  +	  FP).	  

We	  show	  that	  the	  CSI	  ranged	  from	  0	  to	  1	  and	  it	  was	  higher	  as	  much	  as	  the	  number	  

of	  FPs	  and	  FNs	  was	  small,	   regardless	   the	  number	  of	  TNs.	  CSI	   is	   therefore	  a	  useful	  

score	   in	  conditions	   like	   the	  one	  we	  considered	  here,	  where	  we	  had	  an	  unbalanced	  

data	  set	  with	  more	  non-‐relapsed	  cases	  than	  relapsed	  ones.	  

We	  tested	  the	  robustness	  of	  our	  results	  by	  performing	  a	  bootstrap	  analysis	  on	  the	  

set	   33	   17-‐dimension	   feature	   vectors	   of	   that	   set.	   We	   constructed	   100	   random	  

realizations	  of	   training	   sets	  made	  of	  20	   feature	  vectors	   (of	  which	  10	   representing	  

relapsed	  patients)	  and,	  for	  each	  realization,	  we	  applied	  the	  HTF	  clustering	  process.	  

Then,	  for	  each	  realization	  of	  the	  training	  set,	  we	  computed	  the	  membership	  cluster	  

for	   each	  one	  of	   the	   remaining	  13	  vectors	   representing	   the	   test	   set.	  Repeating	   this	  

procedure	  for	  each	  one	  of	  the	  100	  realizations	  of	  the	  training-‐test	  set	  pairs	  led	  to	  the	  

construction	   of	   100	   confusion	   matrices	   and,	   therefore,	   to	   100	   sets	   of	   skill	   score	  

values	  that	  we	  averaged,	  together	  with	  the	  corresponding	  standard	  deviations.	  We	  

also	  performed	  a	  bootstrap	  analysis	  on	  the	  cytogenetics	  values.	  In	  order	  to	  compute	  

the	  entries	  of	   these	   last	  confusion	  matrices,	  we	  compared	  the	  relapse/non-‐relapse	  

with	   the	   high/standard	   cytogenetic	   stages:	   a	   relapsed	   patient	   with	   a	   “high”	  

cytogenetic	   stage	   was	   a	   TP	   event,	   while	   a	   relapsed	   patient	   with	   a	   “standard”	  

cytogenetic	  stage	  was	  an	  FN.	  A	  non-‐relapsed	  patient	  with	  a	  “standard”	  cytogenetic	  

stage	  was	  a	  TN	  event	  and	  a	  non-‐relapsed	  patient	  with	  a	  “high”	  cytogenetic	  stage	  
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was	   an	   FP	   event.	   We	   show	   that	   the	   separation	   between	   the	   standard	   and	   high	  

cytogenetic	  stage	  was	  realized	  according	  to	  the	  standard	  cytogenetic	  evaluation	  for	  

separating	   patients	   with	   a	   high-‐risk	   mutation	   (poor	   prognosis	   in	   general)	   from	  

patients	  without	  high-‐risk	  mutations	  [14,23].	  

	  

3.3	  Feature	  Ranking	  

To	   investigate	   which	   radiomics	   features	   mostly	   contribute	   to	   an	   effective	  

stratification	  of	  the	  MM	  patients,	  we	  focused	  on	  the	  case	  of	  data	  set	  3.	  The	  reason	  for	  

this	  choice	  is	  because,	  when	  analyzed	  with	  HTF,	  this	  set	  provided,	  by	  far,	  the	  highest	  

sensitivity	  values	  and,	  significantly,	  the	  highest	  CSI	  values	  among	  the	  three	  data	  sets	  

considered.	   Therefore,	   we	   analyzed	   the	   feature	   compositions	   of	   the	   two	   axes	  

produced	   by	   the	   application	   of	   PCA	   on	   the	   original	   feature	   space	   of	   this	   data	   set,	  

made	   of	   17	   features.	   	   These	   contributions	   were	   weighted	   by	   the	   percentage	   of	  

explained	   variance	   of	   the	   two	   PCs	   (77%	   and	   9%	   for	   the	   first	   and	   second	   PC,	  

respectively).	  A	  Mann–Whitney	  U-‐test	   on	   these	   features	   showed	   that	   just	   three	  of	  

them	  did	  not	  pass	  the	  null	  hypothesis	  (p	  >	  99%):	  “MaskMaximum”,	  which	  denotes	  

the	  maximum	  grey	  level	  value	  in	  the	  mask	  segmenting	  the	  focal	  lesion	  (172.6	  ±	  64.4	  

in	  Cluster	  A;	  321.9	  ±	  48.6	  in	  Cluster	  B);	  “firstorderRange”,	  which	  denotes	  the	  range	  

of	  the	  distribution	  of	  the	  voxel	  intensities	  (194.7	  ±	  61.8	  in	  Cluster	  A;	  343.4	  ±	  66.9	  in	  

Cluster	  B);	  and	  “ngtdmComplexity”	  (29.8	  ±	  24.9	  in	  Cluster	  A;	  79.4	  ±	  43.5	  in	  Cluster	  

B),	  which	   is	   a	  measure	  of	   the	  non-‐uniformity	  of	   the	   lesion	   image	   in	   the	  grey	   level	  

intensity.	  
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DISCUSSION	  

This	  study	  demonstrates	  that	  AI	  supported	  radiomics	  realize	  a	  clustering	  of	  MM	  

patients	  with	  a	  statistical	  reliability	  that,	  for	  some	  skill	  scores,	  is	  higher	  than	  the	  one	  

provided	  by	  standard	  biochemical	  staging.	  The	  possibility	  to	  increase	  the	  predictive	  

potential	  of	  the	  standard	  CT	  images	  of	  patients	  with	  multiple	  myeloma	  is	  clinically	  

relevant	  for	  several	  reasons.	  

The	   first	   is	   that	   although	   MM	   is	   still	   considered	   a	   single	   disease,	   it	   is	   actually	   a	  

collection	  of	  several	  different	  cytogenetically	  distinct	  plasma	  cell	  malignancies	  [24].	  

Trisomies	   	   and	   IgH	   translocations	   are	   considered	   primary	   cytogenetic	  

abnormalities,	  and	  occur	  at	  	  the	  time	  of	  establishment	  of	  MGUS	  [24].	  At	  the	  present	  

time,	  there	  are	  three	  specific	  biomarkers	  for	  MM	  with	  an	  approximately	  80%	  risk	  of	  

progression	  to	  symptomatic	  endorgan	  damage	  in	  two	  or	  more	  independent	  studies:	  

clonal	   bone	  marrow	   plasma	   cells	   	   ≥60%,	   serum	   free	   light	   chain	   (FLC)	   ratio	   ≥100	  

(provided	   involved	   FLC	   level	   is	   ≥100	  mg/L),	   	   and	  more	   than	   one	   focal	   lesion	   on	  

magnetic	   resonance	   imaging	   (MRI).	   It	   is	   known	   that	   	   almost	   all	   patients	  with	  MM	  

eventually	  relapse	  and	  the	  choice	  of	  a	   treatment	  regimen	  at	   	  relapse	   is	  affected	  by	  

many	   factors,	   including	   the	   timing	   of	   relapse,	   response	   to	   prior	   therapy,	  

aggressiveness	  of	  relapse,	  and	  performance	  status	  (TRAP)	  [24].	  	  

Therefore,	  the	  prediction	  of	  relapse	  early	  is	  important	  to	  foresee	  a	  therapy.	  Second,	  

several	   studies	   have	   correlated	   bone	   patterns	   in	   MM	  with	   their	   prognostic	   value	  

using	  MRI	  and	  CT	  [4,6,11,25].	  MRI	  can	  be	  used	   to	  differentiate	  up	   to	   five	  different	  

patterns	  of	  plasma	  cell	  infiltration,	  including	  normal	  appearance,	  focal	  involvement,	  

homogeneous	   diffuse	   infiltration,	   diffuse	   infiltration	   with	   additional	   focal	   lesions,	  

and	  variegated	  or	  salt-‐and-‐pepper	  patterns;	  on	  the	  other	  hand,	  CT	  is	  well	  suited	  for	  

small	  (below	  5	  mm)	  focal	  bone	  lesions	  due	  to	  its	  high	  spatial	  resolution	  capabilities.	  
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The	  AI-‐based	  analysis	  of	  the	  radiomics	  properties	  extracted	  from	  the	  focal	  lesions	  

essentially	  pointed	  out	  two	  aspects.	  First,	  the	  redundancy	  of	  the	  radiomics	  features	  

seem	   to	   impact	   the	   prognostic	   power	   of	   the	   clustering	   methods.	   However,	   the	  

stratification	  power	   increases	  when	  correlation-‐based	  and	  PCA-‐based	  reduction	  of	  

redundancy	   processes	   are	   applied.	   Second,	   the	   use	   of	   a	   non-‐linear	   approach	   to	  

clustering,	   namely	   HTF,	   seems	   to	   provide	   better	   results	   with	   respect	   to	   a	   more	  

standard	   fuzzy	   clustering	   algorithm;	   this	   may	   be	   explained	   because	   of	   the	   high	  

degree	  of	  heterogeneity	  that	  characterizes	  MM.	  

The	  skill	  scores	  computed	  for	  each	  data	  set	  and	  each	  classification	  method	  helped	  us	  

to	   determine	   which	   approach	   to	   redundancy	   reduction	   and	   which	   algorithm	  

performs	   better	   for	   stratification	   purposes.	   Among	   the	   four	   skill	   scores,	   CSI	  

probably	   represents	   the	   one	   that	   best	   interprets	   the	   outcomes	   of	   the	   confusion	  

matrices	   in	   this	   context.	   Indeed,	   this	   score	   emphasizes	   the	   correct	   prediction	   of	  

relapses	   in	   correspondence	  with	   a	   low	   rate	   of	  misclassification.	   Interestingly,	   the	  

application	  of	  HTF	  on	  the	  focal	  features	  mostly	  correlating	  with	  the	  skeleton	  asset’s	  

global	  properties	  (which	  are	  extracted	  by	  Bone-‐GUI)	   leads	  to	  the	  highest	  value	   for	  

this	   score:	   this	   seems	   to	   point	   out	   a	   favorable	   prognostic	   role	   for	   the	   interplay	  

between	  local	  and	  global	  descriptors	  of	  the	  MM	  bone	  tissue.	  In	  this	  case,	  

the	   CSI	   value	   is	   higher	   than	   the	   discriminative	   value	   provided	   by	   the	   cytogenetic	  

data,	  which	  supports	  the	  reliability	  of	  radiomics	  as	  a	  prognostic	  tool	  for	  MM	  clinical	  

practice.This	  conclusion	  is	  confirmed	  by	  a	  bootstrap	  analysis	  performed	  on	  data	  set	  

3.	  Data	  set	  3	  is	  made	  of	  the	  focal	  descriptors	  that	  mostly	  correlate	  with	  the	  whole	  

skeleton’s	   asset	   properties.	   Therefore,	   this	   correlation	   analysis	   per	   se	   realizes	   a	  

feature	   selection	   process	   whose	   outcome	   is	   a	   set	   of	   17	   features.	   A	   finer	   feature	  

selection	  is	  provided	  by	  PCA.	  This	  figure	  and	  the	  related	  Mann–Whitney	  U-‐test	  point	  
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to	   a	   significant	   emphasis	   on	   properties	   related	   to	   the	   heterogeneity	   of	   the	   focal	  

lesion,	  such	  as	  the	  Hounsfield	  unit	  range	  and	  maximum	  values	  found	  in	  the	   lesion,	  

and	   the	   complexity,	   which	   measures	   the	   non-‐uniformity	   of	   the	   image	   and	   the	  

presence	  of	  rapid	  changes	  in	  intensity.	  

We	  finally	  show	  that	  the	  data	  collection	  for	  this	  study	  has	  been	  realized	  by	  means	  

of	   a	   single,	   specific	   CT	   scanner,	   so	   that	   the	   images	  we	  used	   for	   feature	   extraction	  

were	  homogeneous.	  Recent	  studies	  [26]	  have	  shown	  that	  the	  characteristics	  of	  the	  

extracted	  features	  may	  depend	  on	  non-‐tumor	  related	  factors	  like	  the	  signal-‐to-‐noise	  

ratio	  of	  the	  experimental	  data.	  Therefore,	  in	  the	  case	  of	  studies	  that	  utilize	  data	  from	  

more	   than	  one	   scanner,	   data	  homogenization	   should	  be	   implemented	  prior	   to	   the	  

data	  extraction	  process	  [27].	  
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CONCLUSIONS	  

This	  computational	  approach	  to	  the	  interpretation	  of	  radiomics	  focal	  features	  shows	  

the	   potential	   for	   the	   stratification	   of	   relapsed	   and	   non-‐relapsed	  MM	  patients,	   and	  

could	  represent	  a	  prognostic	  procedure	   for	  determining	  the	  disease	   follow-‐up	  and	  

therapy.	  

Concerning	   the	   technical	   issues	   to	   be	   discussed,	   the	   present	   study	   has	   several	  

strengths:	   the	   use	   of	   clinically	   available	   CT	   images	   collected	   in	   the	   normal	   daily	  

workup	  did	  not	   influenced	  patient	   care	   in	   any	  way.	   Second,	  we	  used	   a	   free	   open-‐

source	  tool	  for	  radiomics	  assessment	  of	  the	  focal	  lytic	  lesions.	  Among	  the	  limitations	  

of	  the	  present	  study,	  we	  acknowledge	  the	  retrospective	  nature,	  which	  did	  not	  allow	  

for	   perfect	   timing	   between	   CT,	   diagnosis,	   and	   therapy	   or	   relapse.	   In	   addition,	   the	  

evaluation	  of	  the	  radiomics	  features	  was	  made	  only	  with	  one	  open-‐source	  tool,	  and	  

we	   did	   not	   evaluate	   whether	   the	   usage	   of	   other	   tools	   would	   have	   introduced	  

variability	   to	   a	   significant	   extent.	   Finally,	   the	   overall	   number	   of	   patients	   included	  

was	  relatively	   low:	   indeed,	  a	  correct	  sample	  size	   in	  radiomics	   is	  at	   least	   five	   times	  

the	   number	   of	   extracted	   features	   [28],	   and	   this	   condition	   would	   require	   a	  

population	   of	   at	   least	   100	   MM	   patients.	   Nonetheless,	   the	   possibility	   to	   obtain	   a	  

cluster	  of	  features	  to	  identify	  relapses	  even	  in	  a	  33	  patient	  sample	  is	  in	  favor	  of	  the	  

validity	  of	   this	  method.	  This	   initial	  study	  warrants	  prospective	  studies	  with	  a	  high	  

number	   of	   patients,	   which	   are	   currently	   underway,	   in	   order	   to	   validate	   this	  

approach,	  with	   the	  aim	  of	   implementing,	   it	   in	  a	  more	  systematic	  way,	  a	  method	  of	  

obtaining	  a	  more	  robust	  prognostic	  score	  for	  MM	  patients.	  

Summing	  up	  the	  results	  of	  this	  study,	  we	  remind	  that	  our	  objective	  was	  to	  validate	  

the	  feasibility	  of	  the	  automatic	  stratification	  of	  MM	  patients	  by	  means	  of	  an	  analysis	  

of	   the	   descriptors	   extracted	   fromCT	   data	   within	   the	   framework	   of	   a	   radiomics	  
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retrospective	  study.	  This	  analysis	  showed	  that	  unsupervised	  AI	  can	  predict	  relapse	  

within	   one	   year	   after	   transplantation	   and	   can	   identify	   a	   few	   imaging	   features	  

associated	  with	  the	  heterogeneity	  of	  the	  focal	  lesion	  with	  a	  high	  prognostic	  value.	  

	  

	  

	   	  



	  

	   19	  

References	  

1.	   Gillies	  RJ,	  Kinahan	  PE,	  Hricak	  H.	  Radiomics:	   Images	  Are	  More	  than	  Pictures,	  

They	  Are	  Data.	  Radiology.	  2016;278(2):563-‐77.	  doi:	  10.1148/radiol.2015151169.	  

2.	  	   Tagliafico	  AS,	  Belgioia	  L,	  Bonsignore	  A,	  Signori	  A,	  Formica	  M,	  Rossi	  F,	  Piana	  

M,	   Schenone	   D,	   Dominietto	   A.	   Development	   and	   definition	   of	   a	   simplified	   scoring	  

system	  in	  patients	  with	  multiple	  myeloma	  undergoing	  stem	  cells	  transplantation	  on	  

standard	  computed	  tomography:	  myeloma	  spine	  and	  bone	  damage	  score	  (MSBDS).	  

Cancer	   Imaging.	   2020	  Apr	   28;20(1):31.	   doi:	   10.1186/s40644-‐020-‐00306-‐1.	   PMID:	  

32345379;	  PMCID:	  PMC7189746.	  

3.	   Tagliafico,	  A.S.;	  Dominietto,	  A.;	  Belgioia,	  L.;	  Campi,	  C.;	  Schenone,	  D.;	  Piana,	  M.	  

Quantitative	  Imaging	  and	  Radiomics	  in	  Multiple	  Myeloma:	  A	  Potential	  Opportunity?	  

Medicina	  2021,	  57,	  94.	  https://doi.org/10.3390/medicina57020094	  

4.	   Tagliafico	  AS,	  Cea	  M,	  Rossi	  F,	  Valdora	  F,	  Bignotti	  B,	  Succio	  G,	  Gualco	  S,	  Conte	  

A,	   Dominietto	   A.	   Differentiating	   diffuse	   from	   focal	   pattern	   on	   Computed	  

Tomography	   in	   multiple	   myeloma:	   Added	   value	   of	   a	   Radiomics	   approach.	   Eur	   J	  

Radiol.	  2019	  Dec;121:108739.	  doi:	  10.1016/j.ejrad.2019.108739.	  Epub	  2019	  Nov	  7.	  

PMID:	  31733431.	  

5.	   Rossi	  F,	  Torri	  L,	  Dominietto	  A,	  Tagliafico	  AS.	  Spectrum	  of	  magnetic	  resonance	  

imaging	   findings	   in	   transplanted	  multiple	   myeloma	   patients	   with	   hip/pelvic	   pain	  

(according	   to	   MY-‐RADS):	   A	   single	   center	   experience.	   Eur	   J	   Radiol.	   2020	  

Sep;130:109154.	   doi:	   10.1016/j.ejrad.2020.109154.	   Epub	   2020	   Jun	   24.	   PMID:	  

32629214.	  

6.	   Schenone,	  D,	  Lai,	  R,	  Cea	  M,	  Rossi	  F,	  Torri	  L,	  Bignotti	  B,	  et	  al.	  Radiomics	  

and	   artificial	   intelligence	   analysis	   of	   CT	   data	   for	   the	   identification	   of	   prognostic	  

features	  in	  multiple	  myeloma.	  Med	  Imaging	  2020	  11314,	  113144A	  



	  

	   20	  

7.	   Valdora	   F,	   Houssami	   N,	   Rossi	   F,	   Calabrese	   M,	   Tagliafico	   AS.	   Rapid	   review:	  

radiomics	   and	   breast	   cancer.	   Breast	   Cancer	   Res	   Treat.	   2018	   Feb	   2.	   doi:	  

10.1007/s10549-‐018-‐4675-‐4.	  

8.	   Limkin	   EJ,	   Sun	   R,	   Dercle	   L,	   Zacharaki	   EI,	   Robert	   C,	   Reuzé	   S,	   Schernberg	   A,	  

Paragios	  N,	  Deutsch	  E,	  Ferté	  C.	  Promises	  and	  challenges	   for	   the	   implementation	  of	  

computational	   medical	   imaging	   (radiomics)	   in	   oncology.	   Ann	   Oncol.	   2017	   Jun	  

1;28(6):1191-‐1206.	  doi:	  10.1093/annonc/mdx034.	  

9.	   	   	   	   	   	   	   	   	   	  Ekert,	  K.;	  Hinterleitner,	  C.;	  Baumgartner,	  K.;	  Fritz,	   J.;	  Horger,	  M.	  Extended	  

Texture	   Analysis	   of	   Non-‐Enhanced	   Whole-‐Body	   MRI	   Image	   Data	   for	   Response	  

Assessment	   in	   Multiple	   Myeloma	   Patients	   Undergoing	   Systemic	   Therapy.	   Cancers	  

2020,	  12,	  761.	  	  

10.	  	  	  	  	  	  	  	  	  Morvan,	  L.;	  Nanni,	  C.;	  Michaud,	  A.-‐V.;	  Jamet,	  B.	  Learned	  Deep	  Radiomics	  for	  

Survival	  Analysis	  with	  Attention.	   In	  Proceedings	  of	   the	   International	  Workshop	  on	  

Predictive	   Intelligence	   in	   Medicine	   (PRIME	   2020),	   Lima,	   Peru,	   8	   October	   2020;	  

Springer:	  Berlin/Heidelberg,	  Germany,	  2020;	  pp.	  35–45.	  

11.	   	   	   	   	   	   	   	   	   Reinert,	   C.P.;	   Krieg,	   E.-‐M.;	   Bösmüller,	   H.;	   Horger,	  M.	  Mid-‐term	   response	  

assessment	  in	  multiple	  myeloma	  using	  a	  texture	  analysis	  approach	  on	  dual	  energy-‐

CT-‐derived	  bone	  marrow	   images—A	  proof	   of	   principle	   study.	  Eur.	   J.	   Radiol.	   2020,	  

131,	  109214.	  	  

12.	  	  	  	  	  	  	  	  Jamet,	  B.;	  Morvan,	  L.;	  Nanni,	  C.;	  Michaud,	  A.-‐V.;	  Bailly,	  C.;	  Chauvie,	  S.;Moreau,	  

P.;	  Touzeau,	  C.;	  Zamagni,	  E.;	  Bodet-‐Milin,	  C.;	  et	  al.	  Random	  survival	  forest	  to	  predict	  

transplant-‐eligible	  newly	  diagnosed	  multiple	  myeloma	  outcome	  including	  FDG-‐PET	  

radiomics:	   A	   combined	   analysis	   of	   two	   independent	   prospective	   European	   trials.	  

Eur.	  J.	  Nucl.	  Med.	  Mol.	  Imaging	  2020,	  48,	  1005–1015.	  	  



	  

	   21	  

13.	  	  	  	  	  	  	  Joseph,	  N.S.;	  Gentili,	  S.;	  Kaufman,	  J.L.;	  Lonial,	  S.;	  Nooka,	  A.K.	  High-‐risk	  Multiple	  

Myeloma:	  Definition	  and	  Management.	  Clin.	  Lymphoma	  Myeloma	  Leuk.	  2017,	  17S,	  

S80–S87.	  	  

14.	   	   	   	   	   	   	   Palumbo,	   A.;	   Avet-‐Loiseau,	   H.;	   Oliva,	   S.;	   Lokhorst,	   H.M.;	   Goldschmidt,	   H.;	  

Rosinol,	   L.;	   Richardson,	   P.;	   Caltagirone,	   S.;	   Lahuerta,	   J.J.;	   Facon,	   T.;	   et	   al.	   Revised	  

International	   Staging	   System	   for	   Multiple	   Myeloma:	   A	   Report	   From	   International	  

Myeloma	  Working	  

Group.	  J.	  Clin.	  Oncol.	  2015,	  33,	  2863–2869.	  	  

15.	  	  	  	  	  	  	  	  Fiz,	  F.;	  Marini,	  C.;	  Piva,	  R.;	  Miglino,	  M.;	  Massollo,	  M.;	  Bongioanni,	  F.;	  Morbelli,	  

S.;	  Bottoni,	  G.;	  Campi,	  C.;	  Bacigalupo,	  A.;	  et	  al.	  

Adult	  Advanced	  Chronic	  Lymphocytic	  Leukemia:	  Computational	  Analysis	  of	  Whole-‐

Body	  CT	  Documents	  a	  Bone	  Structure	  Alteration.	  Radiology	  2014,	  271,	  805–813.	  	  

16.	  	  	  	  	  	  	  	  Kapur,	  T.;	  Pieper,	  S.;	  Fedorov,	  A.;	  Fillion-‐Robin,	  J.-‐C.;	  Halle,	  M.;	  O’Donnell,	  L.;	  

Lasso,	  A.;	  Ungi,	  T.;	  Pinter,	  C.;	  Finet,	  J.;	  et	  al.	  

Increasing	   the	   impact	   of	  medical	   image	   computing	   using	   community-‐based	   open-‐

access	  hackathons:	  The	  NA-‐MIC	  and	  3D	  Slicer	   experience.	  Med.	   Image	  Anal.	   2016,	  

33,	  176–180.	  	  

17.	  	  	  	  	  	  	  	  	  Kikinis,	  R.;	  Pieper,	  S.;	  Vosburgh,	  K.	  3D	  Slicer:	  A	  Platform	  for	  Subject-‐Specific	  

Image	  Analysis,	  Visualization,	  and	  Clinical	  

Support.	   In	   Intraoperative	   Imaging	   and	   Image-‐Guided	   Therapy;	   Springer:	  

Berlin/Heidelberg,	  Germany,	  2014;	  Volume	  3,	  pp.	  277–289.	  

18.	   	   	   	   	   	   	   	   Fedorov,	   A.;	   Beichel,	   R.;	   Kalpathy-‐Cramer,	   J.;	   Finet,	   J.;	   Fillion-‐Robin,	   J.-‐C.;	  

Pujol,	  S.;	  Bauer,	  C.;	  Jennings,	  D.;	  Fennessy,	  F.;	  

Sonka,	   M.;	   et	   al.	   3D	   Slicer	   as	   an	   Image	   Computing	   Platform	   for	   the	   Quantitative	  

Imaging	  Network.	  Magn.	  Reason.	  Imaging	  2012,	  



	  

	   22	  

30,	  1323–1341.	  	  

19.	   	   	   	   	   	   	   	   	   Jolliffe,	   I.T.	   Principal	   Component	   Analysis,	   2nd	   ed.;	   Springer:	  

Berlin/Heidelberg,	  Germany,	  2002.	  	  

20.	  	  	  	  	  	  	  	  	  Bezdek,	  J.C.	  Pattern	  Recognition	  with	  Fuzzy	  Objective	  Function	  Algorithms;	  

Kluwer	  Academic	  Publishers:	  Cambridge,	  MA,	  USA,	  1981.	  

21.	   	   	   	   	   	   	   	   Beltrametti,	   M.C.;	   Massone,	   A.M.;	   Piana,	   M.	   Hough	   Transform	   of	   Special	  

Classes	  of	  Curves.	  SIAM	  J.	  Imaging	  Sci.	  2013,	  6,	  391–412.	  	  

22.	  	  	  	  	  	  	  	  	  Massone,	  A.M.;	  Perasso,	  A.;	  Campi,	  C.;	  Beltrametti,	  M.C.	  Profile	  Detection	  in	  

Medical	   and	   Astronomical	   Images	   by	   Means	   of	   the	   Hough	   Transform	   of	   Special	  

Classes	  of	  Curves.	  J.	  Math.	  Imaging	  Vis.	  2015,	  51,	  296–310.	  	  

23.	  	  	  	  	  	  	  	  Roche-‐Lestienne,	  C.;	  Boudry-‐Labis,	  E.;	  Mozziconacci,	  M.J.	  Cytogenetics	  in	  the	  

management	  of	  “chronic	  myeloid	  leukemia”:	  An	  update	  by	  the	  Groupe	  francophone	  

de	  cytogénétique	  hématologique	  (GFCH).	  Ann.	  Biol.	  Clin.	  2016,	  74,	  511–515.	  	  

24.	  	  	  	  	  	  	  Rajkumar,	  S.V.	  Multiple	  myeloma:	  Every	  year	  a	  new	  standard?	  Hematol	  Oncol.	  

2019,	  37	  (Suppl.	  1),	  62–65.	  

25.	   	   	   	   	   	   Kobayashi,	   H.;	   Abe,	   Y.;	   Narita,	   K.;	   Kitadate,	   A.;	   Takeuchi,	   M.;	   Matsue,	   K.	  

Prognostic	   Significance	   of	   Medullary	   Abnormalities	   of	   the	   Appendicular	   Skeleton	  

Detected	   by	   Low-‐Dose	   Whole-‐Body	   Multidetector	   Computed	   Tomography	   in	  

Patients	  with	  Multiple	  

Myeloma.	  Blood	  2017,	  130	  (Suppl.	  1),	  1763.	  	  

26.	  	  Zhovannik,	  I.;	  Bussinik,	  J.;	  Traverso,	  A.;	  Shi,	  Z.;	  Kalendralis,	  P.;Wee,	  L.;	  Dekker,	  A.;	  

Fijiten,	   R.;	   Monshouwet,	   R.	   Learning	   from	   scanners:	   Bias	   reduction	   and	   feature	  

correction	  in	  radiomics.	  Clin.	  Transl.	  Radiat.	  Oncol.	  2019,	  16,	  33–38.	  	  



	  

	   23	  

27.	  Einstein,	  S.A.;	  Rong,	  X.J.;	   Jensen,	  C.T.;	  Liu,	  X.	  Quantification	  and	  homogenization	  

of	   image	  noise	  between	  two	  CT	  scanner	  models.	   J.	  Appl.	  Clin.	  Med.	  Phys.	  2020,	  21,	  

174–178.	  	  

28.	   Sollini,	  M.;	   Antunovic,	   L.;	   Chiti,	   A.;	   Kirienko,	  M.	   Towards	   clinical	   application	   of	  

image	  mining:	   A	   systematic	   review	   on	   artificial	   intelligence	   and	   radiomics.	   Eur.	   J.	  

Nucl.	  Med.	  Mol.	  Imaging	  2019,	  46,	  2656–2672.	  

	  



	  

	   24	  

PROVISIONAL	  RESULTS	  

	  
1.	  Tagliafico	  AS,	  Rossi	  F,	  Bignotti	  B,	  Torri	  L,	  Bonsignore	  A,	  Belgioia	  L,	  Domineitto	  A.	  

CT-‐derived	   relationship	   between	   low	   relative	   muscle	   mass	   and	   bone	   damage	   in	  

patients	  with	  multiple	  myeloma	  undergoing	  stem	  cells	  transplantation.	  Br	  J	  Radiol.	  

2021	  Dec	  21:20210923.	  doi:	  10.1259/bjr.20210923.	  	  

	  

2.	   Schenone	   D,	   Dominietto	   A,	   Campi	   C,	   Frassoni	   F,	   Cea	  M,	   Aquino	   S,	   Angelucci	   E,	  

Rossi	   F,	   Torri	   L,	   Bignotti	   B,	   Tagliafico	   AS,	   Piana	   M.	   Radiomics	   and	   Artificial	  

Intelligence	   for	   Outcome	   Prediction	   in	   Multiple	   Myeloma	   Patients	   Undergoing	  

Autologous	  Transplantation:	  A	  Feasibility	  Study	  with	  CT	  Data.	  Diagnostics	   (Basel).	  

2021	  Sep	  24;11(10):1759.	  doi:	  10.3390/diagnostics11101759.	  	  

	  

3.	  Tagliafico	  AS,	  Belgioia	  L,	  Bonsignore	  A,	  Rossi	  F,	  Succio	  G,	  Bignotti	  B,	  Dominietto	  A.	  

Subspecialty	   Second-‐Opinion	   in	   Multiple	   Myeloma	   CT:	   Emphasis	   on	   Clinically	  

Significant	   Lytic	   Lesions.	   Medicina	   (Kaunas).	   2020	   Apr	   23;56(4):195.	   doi:	  

10.3390/medicina56040195.	  

	  

4.	  Tagliafico	  AS,	  Cea	  M,	  Rossi	  F,	  Valdora	  F,	  Bignotti	  B,	   Succio	  G,	  Gualco	  S,	  Conte	  A,	  

Dominietto	  A.	  Differentiating	  diffuse	   from	  focal	  pattern	  on	  Computed	  Tomography	  

in	   multiple	   myeloma:	   Added	   value	   of	   a	   Radiomics	   approach.	   Eur	   J	   Radiol.	   2019	  

Dec;121:108739.	  doi:	  10.1016/j.ejrad.2019.108739.	  	  

	  
	  
	  



BJR

Cite this article as:
Tagliafico AS, Rossi F, Bignotti B, Torri L, Bonsignore A, Belgioia L,  et al. CT- derived relationship between low relative muscle mass and 
bone damage in patients with multiple myeloma undergoing stem cells transplantation. Br J Radiol 2021; 94: 20210923.

https:// doi. org/ 10. 1259/ bjr. 20210923

FULL PAPER

CT- derived relationship between low relative muscle 
mass and bone damage in patients with multiple 
myeloma undergoing stem cells transplantation
1,2ALBERTO STEFANO TAGLIAFICO, MD, 3,4FEDERICA ROSSI, MD, 1,4BIANCA BIGNOTTI, MD, 5LORENZO TORRI, MD, 
1,2ALESSANDRO BONSIGNORE, MD, 1,2LILIANA BELGIOIA, MD and 1ALIDA DOMINEITTO, MD

1IRCCS Ospedale Policlinico San Martino, Genoa, Italy
2Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
3Ospedale Santa Corona, Pietra Ligura, Italy
4Department of Experimental Medicine (DIMES), University of Genoa, Genoa, Italy
5Vascular Surgery Unit, Azienda Ospedaliero Universitaria Pisana, Pisa, Italy

Address correspondence to: Dr Alberto Stefano Tagliafico
E-mail:  atagliafico@ sirm. org; alberto. tagliafico@ unige. it

INTRODUCTION
Sarcopenia is the loss of skeletal muscle mass leading 
to a decline in physical performance and worse heath 
outcomes.1–26 The development of sarcopenia is complex 
and multifactorial not only linked to the physiological age- 
related decline of physical movement but also to a proin-
flammatory status due to decreased myokines muscular 
production.27,28 Indeed, the skeletal muscle is an organ 
not only related to movement, but it is also an organ with 
endocrine function.27 Muscular myokines regulating 
metabolic homeostasis influence other targets such as the 
adipose tissue, the liver, the kidney, the brain and event the 
bone.10,27–30 The bone is the target organ in patients affected 
by multiple myeloma (MM). Indeed, MM is a hematologic 

malignancy of differentiated plasma cells that accumu-
lates and proliferates in the bone marrow leading to bone 
lesions. In addition, MM is also characterized by an exces-
sive activation of osteoclasts leading to typical osteolytic 
lesions.31–51 The MM associated bone disease has a strong 
impact on the quality of life of MM patients increasing 
both morbidity and mortality.34–43 Imaging plays a crucial 
role when diagnosing MM. Indeed, both muscle and bone 
involvement can be easily assessed with imaging methods, 
especially CT and MRI. CT is not only considered the gold- 
standard to evaluate muscle mass on imaging2,20,26,31–34 
but it is also one of the best methods to assess the bone 
in MM.31–43 Detection of bone lesions and sarcopenia are 
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Objective: Sarcopenia or low muscle mass is related 
to worse prognosis in cancer patients. We investigated 
whether muscle mass is related to bone damage on CT 
in patients with multiple myeloma (MM).
Methods: Approval from the institutional review board 
was obtained. N = 74 consecutive patients (mean age, 
60.8 years ± 9.24 [standard deviation]; range, 36–89 
years) for MM who underwent transplant were included. 
Sarcopenia cut- off points defined as skeletal muscle 
index (SMI) used were<41 cm2/m2. To assess bone 
damage in MM the MSBDS (myeloma spine and bone 
damage score) was used. One- way analysis of variance 
and the X2 test were used. Kaplan–Meier analysis was 
performed to generate progression and survival curves 
according to SMI and MSBDS. The testing level was set 
at 0.05.
Results: The median SMI was 47.1 ± 14.2 and according 
to SMI 18/74 (24%) had sarcopenia which was more 

prevalent in females (p.001). A strong and significant 
association between patients with low muscle mass and 
elevated bone damage (24/74, 32.4%) and patients with 
normal/non- low muscle mass low bone damage (30/74, 
40.5%) was present. Multiple Logistic regression did 
not show any significant relationship or confounding 
influence among SMI and MSBDS regarding sex (p.127), 
cytogenetic status (p.457), staging (p.756) and relapse 
(.126). Neither SMI nor MSBDS resulted significantly 
related to overall survival as shown in Kaplan–Meier 
analysis.
Conclusion: Sarcopenia and bone damage affected MM 
patients undergoing stem cell transplantation and are 
significantly associated.
Advances in knowledge: Quantitative measurement of 
sarcopenia and bone damage on CT resulted present in 
MM patients undergoing stem cell transplantation and 
are significantly associated.
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clinically relevant because they are amenable of treatment, espe-
cially to prevent pathologic fractures or neurologic complica-
tions.31,32,35–37 Both the presence of sarcopenia and bone lesions 
(not osteoporosis) are linked to poor prognosis in MM33,39 and 
both conditions are amenable of treatments. However, it is not 
known if sarcopenia and bone lytic lesions are associated and 
to what extent. Given the fact that sarcopenia is amenable of 
treatment (muscular training and nutritional supplementation 
protein, amino acid, vitamin D and creatine for example) and the 
skeletal muscle is also a secondary secretory organ with endo-
crine functions via the myokines system influencing metabolism, 
patients with low muscle mass have an increased risk of falls and 
subsequent fractures.1–4 Detection of an association between 
sarcopenia and bone damage could lead to changes in manage-
ment in MM patients and offer new insights into pathophysio-
logical evaluation of MM.

As such, we sought to examine the relationship of muscle mass 
estimated using CT and bone damage using the myeloma spine 
and bone damage score (MSBDS) which is a descriptive criteria 
easy to be used, highly reproducible and developed for harmo-
nizing total body CT interpretation in MM.44

METHODS AND MATERIALS
Study population
This study was conducted following the available version of the 
Declaration of Helsinki and the International Conference on 
Harmonization of Good Clinical Practice Guidelines. The stan-
dard procedure of our center foresees for every patient a written 
informed consent form, encompassing the use of anonimized 
data for retrospective research purposes, before every radiolog-
ical procedure. Muscle mass and bone quantitative analysis was 
applied to CT data collected in the clinical workup and did not 
influence patient care in the present study. Approval from the 
institutional review board was obtained accordingly with the 
Italian laws (054REG2019). This study is a substudy of a mixed 
prospective and retrospective study on MM Radiomics and 
sarcopenia of our center and funded by the Italian Ministry of 
Health (rif.19117). N = 74 consecutive patients (mean age, 60.8 
years ± 9.24 [standard deviation]; range, 36–89 years) evaluated 
at the IRCCS Ospedale Policlinico San Martino Hospital (Genoa, 
Italy) for confirmed MM in the last 5 years and who underwent 
transplant. N = 66 patients received autotransplant from periph-
eral blood stem cells (PBSC), N = 6 patients received allogeneic 
stem cell transplantation from a sibling or human leukocyte 
antigen‐matched donor, N = 2 unknown type of transplant. 
Inclusion criteria were pre- transplant total- body CT available 
and fully retrievable from the Hospital picture archiving and 
communication system (PACS). Minimal and standard technical 
inclusion parameters for total- body CT resulted to be:

• number of detector rows: 16 or more up to 128; minimum scan 
coverage: skull base to femur;

• tube voltage(kV)/time–current product (mAs) 120/50–70, 
adjusted as clinically needed;

• thickness ≤3 mm;
• matrix, rotation time, table speed and pith index: 256 × 256, 

0.5 s, 24 mm per gantry rotation and 0.8, respectively.

CTs were acquired as total- body CT not only for bone evaluation 
but also for visceral organ involvement before transplantations.

Exclusion criteria were as follows: patients who did not receive 
transplantation, patients unable to understand or execute written 
informed consent, unable or unwilling to agree to follow- up during 
observation period, CT images not retrievable from PACS or 
images inaccurate due to artifacts (e.g. periprosthetic beam hard-
ening, or significant motion artifacts). In addition other causes of 
sarcopenia, e.g. post trauma, surgery infection, prolonged immo-
bilization were excluded. Clinical (including height and weight 
values) and follow- up data were recorded by hospital staff.

The patient baseline and clinical characteristics are summarized 
in Table 1. In the n = 74 patients were CT- derived data were eval-
uated, the median period between the date of the image taken 
and date of diagnosis was 22 days. The median follow- up period 
was 530 days. In total, eight patients relapsed and eight patients 
died during this period. All but two of these patients died from 
myeloma related causes. 12 patients had high- risk cytogenetic 
abnormalities separating patients with high- risk mutation (poor- 
prognosis in general) from patients without high- risk mutations 
according to standard of care45–47

Imaging measurements
Muscle mass
To assess reproducible measurement, a strict and largely vali-
dated method was used as follows.3–15 Reconstructed axial CT 
images of different vendors (GE and SIEMENS) with 5 mm 
slice thickness were analyzed using the software installed on 
the workstations of our Radiology Department (Suite- Estensa 
1.9- Ebit- Esaote Group company. 2015© and Horos v. 3, LGPL- 
3.0) (Figure  1). The third lumbar vertebra (L3), at the level in 
which both transverse processes are clearly visible, was used as 
a bony landmark to properly identify the psoas muscle. Verte-
brae were counted down from the cervical spine using scout 
images of the whole body or multiplanar reformatted (MPR) 
images from source thin- section axial images using the software 
on our workstations. In this study, scout images were available 
for each patient. If there is no scout image of the whole spine 
or reformatted images, it is possible to identify the first lumbar 
vertebrae (L1) that is the first vertebrae without a rib attachment. 
Once L1 has been found, the transverse processes can be used 
to downward to L3. The L3 region contains psoas, paraspinal 
muscles (erector spinae, quadratus lumborum), and abdom-
inal wall muscles (transversus abdominus, external and internal 
obliques, rectus abdominis). Skeletal muscle was identified and 
quantified by use of Hounsfield unit (HU) thresholds (–29 to 
+150) and then the muscle contours were manually adjusted 
to avoid pitfalls.4 Cross- sectional areas (cm²) of the sum of all 
these muscles were computed for each image. Cross- sectional 
area value is linearly related to whole- body muscle mass and was 
therefore normalized for stature (L3 skeletal muscle index- SMI-, 
cm²/m²).

Sarcopenia cut- off points defined as SMI used were <41 cm2/
m2 as suggested in literature.2–4 The worst data of SMI and 
MSBDS for each patient were considered for data analysis. To 
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assess interrater reliability, 30 images were randomly selected to 
be analysed by both readers. Readers were experienced muscu-
loskeletal radiologists involved in muscular CT evaluation and 
bone damage scores (AT, FR) with different level of experience 
in musculoskeletal and total body CT: Reader 1 (AT), >10 years; 
Reader 2 (FR), 5 years. Readers were blinded to the clinical data 
of the patients.

Bone damage
To assess bone damage in MM patients we used the MSBDS 
(Myeloma Spine and Bone Damage Score) which is a simple 
score tailored MM patients to be used on standard total- body 
CT in the routine clinical a complement of standard evalua-
tions in patients undergoing stem cells transplantation.44,48 The 
MSBDS is a recently introduced quantitative score to provide a 
semi- quantitative objective tool to evaluate the status of bone 
damage and risk of fracture and instability in MM patients.44,48 
The MSBDS score resulted to be fast, reproducible and appro-
priate for usage on standard CT. The MSBDS has the potential 
not only to assess spinal instability, but also bony involvement 
for prognosis. Bone density on CT was not estimated because 
calibration of CT scanners was not possible in standard clinical 
practice and in the retrospective nature of the study. MSBDS 
consists of an additive scale where the total score is given by the 
sum of single items scores for abnormalities detected. MSBDS 
values range from 0 (minimum) to values >10 where 10 is repre-
sented by high- risk patients requiring immediate surgical or 
radiation oncologist evaluation.

Statistical analysis
The one- way analysis of variance and the χ2 test were used to 
compare the characteristics of the study participants in the two 
groups. In detail, psoas muscle sizes and MSBDS scores were 
dichotomized according to average psoas area used to estimate 
SMI and average MSBDS score and evaluated for association 
with χ2 test as already done in literature.49 Multiple logistic 

Table 1. Baseline characteristics, SMI, MSBDS, ISS and Durie Salmon Plus

Total (n = 74) Male (n = 37) Female (n = 37) p (Male vs Female)
SMI 47.1 ± 14.2 (20.6–70.0) 55.1 ± 12.64 (29.0–70.0) 37.5 ± 9.8 (20.6–53.3) .001

Sarcopenia number 18 6 12 .001

MSBDS 4.2 ± 2.7 (1–10) 4.5 ± 2.5 (1–10) 4.0 ± 3.1 (1–9) .639

ISS .770

1 44 20 24

2 21 9 11

3 9 4 5

Durie Salmon Plus .770

1 3 1 2

2 8 3 5

3 53 27 26

4 10 4 6

High- risk cytogenetic abnormalities

Causes of death 12 7 5

Number 8 5 3

MM progression 4 2 1

Infection 3 2 1

Other 1 1 1

ISS, International Staging System; MSBDS, myeloma spine bone damage score; SMI, skeletal muscle index.

Figure 1. Examples of muscle (region of interests around 
psoas muscles, bliaterally, in a sarcopenic MM patient with 
purple and bullet line) and bone (green arrow showing a 
focal lesion >5 mm in diameter) evaluation on CT. See text for 
details. MM, multiple myeloma.
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regression was used to study any possible significant relationship 
or influence among SMI, MSBDS and standard confounders. 
The intra- and interobserver agreement of the SMI and MSBDS 
score was then calculated. K statistics were used and K values 
were reported as weighed k with linear weights. 95% confidence 
intervals (CIs) and standard error were also reported. Agree-
ment was defined on the basis of Fleiss classification: <0.40, 
poor; 0.40–0.59, moderate; 0.60–0.75, good; >0.75, excellent.50 
Kaplan–Meier analysis was performed to generate progression 
and survival curves according to SMI and MSBDS. The testing 
level was set at 0.05. All analyses were performed using STATA 
(STATA Corp 4905 Lakeway College Station, TX).

RESULTS
The median SMI as shown in Table  1 was 47.1 ± 14.2 and 
according to SMI 18/74 (24%) had sarcopenia which was more 
prevalent in female (p.001). When evaluating dichotomized SMI 
according to average psoas area and average MSBDS score, as 
shown in Table  2, there was a strong and significant associa-
tion between patients with low muscle mass and elevated bone 
damage (24/74, 32.4%) and patients with normal/non- low 
muscle mass and low bone damage (30/74, 40.5%). Multiple 
logistic regression did not show any significant relationship or 
confounding influence among SMI and MSBDS regarding sex (p. 

127), cytogenetic status (p. 457), staging (p. 756) and relapse (p. 
126). Neither SMI nor MSBDS resulted significantly related to 
overall survival as shown in Kaplan–Meier analysis (Figure 2).

Interobserver agreement among the two readers considering the 
items of the MSBDS scoring scale and SMI estimation using K 
value, 95% confidence intervals and standard error were 0.84with 
95% C.I. (0.65–0.93); 0.88 95% C.I. (0.71–0.94), respectively.

DISCUSSION
Our results show that patients with MM undergoing stem cells 
transplantation with low muscle mass may have an increased 
level of bone damage as evaluated quantitatively with standard 
CT. Psoas area measured at the L3 level used to estimate SMI and 
average MSBDS score resulted to have a strong and significant 
association. Low muscle mass and elevated bone damage were 
present in 24/74 (32.4%) of and normal/non- low muscle mass 
and low bone damage were present in 30/74 (40.5%) of patients. 
This relationship was not related to other confounding factors 
as evaluated sex, cytogenetic status, staging and relapse. In our 
group of patients, the number of female patients with sarco-
penia was higher than male patients with sarcopenia. This study 
examines the relationship of muscle mass estimated using CT 
and bone damage using a quantitative score recently introduced 

Table 2. Association between muscle mass estimated with SMI and bone damage in multiple myeloma patients estimated with 
MSBDS

Normal/non- low muscle mass Low muscle mass Total
MSBDS high 8 24 32 (43.2%)

MSBDS low 30 12 42 (56.8%)

Total 38 (51.4%) 36 (48.6%) 74

MSBDS, myeloma spine and bone damage score; SMI, skeletal muscle index.
p = 0.001 for McNemar’s test for paired binary data.

Figure 2. a) Kaplan–Meyer for SMI of patients with low (blue line) and normal muscular mass (green line). (b) Kaplan–Meyer plot 
for MSBDS of patients with high (blue line) and low bone damge scores (green line). MSBDS, myeloma spine and bone damage 
score; SMI, skeletal muscle index.
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and tailored to MM patients. Few data are present in literature 
regarding body composition evaluation made on CT images in 
patients with MM. Takeoka at al51 in 2016 studied the associ-
ation between several body composition indexes (such as SMI, 
subcutaneous adipose tissue index and visceral adipose tissue 
index) and the overall survival in consecutive MM patients with 
newly diagnosed symptomatic disease. This study showed that 
low subcutaneous adipose tissue at baseline could be considered 
a predictor of poor survival outcome,52 not only in MM patients, 
but also in other neoplastic conditions, such as colon, prostate, 
renal cell carcinoma or diffuse large B- cell lymphoma.53

Although sarcopenia evaluated on CT images is widely recog-
nized as a poor prognostic factor in several oncological and 
non- oncological diseases,5,11,12,14,21,24,26,32,36–40,42,48,51–60 few 
and controversial data regarding the role of sarcopenia and 
bone damage in MM are present. Williams et al61 conducted a 
single- centre retrospective study to assess the impact of muscle 
quality in MM finding that sarcopenia was found in 72 (51%) 
of patients and associated with increased early post- transplant 
cardiovascular complications in MM. In the study by Williams 
et al sarcopenia was defined as ≤80% high- density muscle which 
is different from our definition of CT- based sarcopenia. We used 
a more widely accepted cut- off for the SMI of <41 cm2/m2.2,3 
Compared to the study by Williams et al,61 the prevalence of 
patients with MM and sarcopenia was 18/74 (24%), which is 
lower than previously reported. Zakaria et al62 found that CT- de-
rived morphometric analysis of psoas size as a hallmark of sarco-
penia, could predict overall survival in patients with lung cancer, 
breast cancer, prostate cancer, and MM metastases to the spine 
even after multivariate analysis accounting for demographic, 
oncologic, functional, and therapeutic factors. Zakaria et al62 
stated that patients with spinal metastases (from lung, breast, 
prostate, or MM) and clinical signs of sarcopenia, as measured by 
psoas size, have decreased overall survival. However, the patients 
with MM in this study were only 46 and it is not clear if the 
decreased overall survival of the 417 patients considered is true 
also for the minority of MM patients. In our study, the presence 
of sarcopenia was not related to poorer survival as shown in the 
Kaplan–Meyer curve as well as the presence of bone damage was 
not related to worse survival. However, our study suggest that 
it is possible that muscular status and bone damage are linked 

is some way. Indeed, recent researches on the skeletal muscle 
showed that the skeletal muscle is not only the organ related to 
mobility, but also a secondary secretory organ with endocrine 
functions via the myokines system. Myokines regulates meta-
bolic homeostasis and represent an effective and underevaluated 
crosstalk between skeletal muscle and other target organs, such 
as the adipose tissue and the bone.10,27,29,30 Our study generates a 
hypothesis that in MM patients, muscular status and bone lesions 
typical of MM, such as the lytic lesions, evaluated specifically by 
the MSBDS, are somehow linked. Due to the retrospective nature 
of this study, we are not able to explore further this association 
with the data available, but we suggest that further investigations 
are needed to better describe the relationship and prognostic 
significance of bone damage and sarcopenia in MM patients.

Our study is limited by the retrospective nature of the data collec-
tion, by the relatively small number of patients considered, by the 
novelty of the quantitative score used to assess bone damage on 
CT, however we were not able to find another quantitative score 
tailored on MM, and by the necessity to arbitrary define sarco-
penia and high bone damage. Further analysis could include 
the evaluation of serial CT scans and increasing the number of 
patients.

We conclude that sarcopenia and bone damage, affected MM 
patients undergoing stem cell transplantation, are significantly 
associated. Our study results can be used for further future 
investigations to support our hypothesis about the relationship 
between muscle and bone in MM patients.
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Abstract: Multiple myeloma is a plasma cell dyscrasia characterized by focal and non-focal bone
lesions. Radiomic techniques extract morphological information from computerized tomography
images and exploit them for stratification and risk prediction purposes. However, few papers so far
have applied radiomics to multiple myeloma. A retrospective study approved by the institutional
review board: n = 51 transplanted patients and n = 33 (64%) with focal lesion analyzed via an
open-source toolbox that extracted 109 radiomics features. We also applied a dedicated tool for
computing 24 features describing the whole skeleton asset. The redundancy reduction was realized
via correlation and principal component analysis. Fuzzy clustering (FC) and Hough transform
filtering (HTF) allowed for patient stratification, with effectiveness assessed by four skill scores.
The highest sensitivity and critical success index (CSI) were obtained representing each patient, with
17 focal features selected via correlation with the 24 features describing the overall skeletal asset. These
scores were higher than the ones associated with a standard cytogenetic classification. The Mann–
Whitney U-test showed that three among the 17 imaging descriptors passed the null hypothesis.
This AI-based interpretation of radiomics features stratified relapsed and non-relapsed MM patients,
showing some potentiality for the determination of the prognostic image-based biomarkers in disease
follow-up.

Keywords: multiple myeloma; computerized tomography; image processing; pattern recognition;
artificial intelligence

1. Introduction

Plasma cell dyscrasias (PCDs) include monoclonal gammopathy of undetermined
significance (MGUS), smoldering multiple myeloma (SMM), and full-blown multiple
myeloma (MM) [1]. Around 5% of the population over 70 are MGUS patients, and for
around 1% of them MGUS will probably turn into MM every year. Around 10% of the SMM
population evolves into full-blown MM, whose early mortality is nowadays around 28%
five years after diagnosis [2]. MM is still an incurable disease, whose definition relies on the
International Myeloma Working Group (IMWG) consensus updates, which is characterized
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by a notable clinical heterogeneity, so that the search for consolidated biomarkers predicting
the disease outcome and progression is still a crucial open issue [3–5].

The presence of either single or multiple bone lesions is a typical signature of MM,
which is related to the proliferation of tumor cells from a single clone, so that the unbalanced
activation of osteoclasts erodes the medullary and even the cortical bone [6].Therefore,
the CRAB criteria of IMWG underlines the importance of imaging for MM assessment,
and recent staging systems rely on the use of imaging modalities like magnetic resonance
imaging (MRI), computerized tomography (CT) and hybrid positron emission tomography
with CT (PET/CT) [3,4,6–15]. However, just the availability of different imaging modalities
and the high variability of image interpretation imply a notable heterogeneity as far as the
use of imaging for MM clinical practice is concerned [6,12,16].

At a more specific level, the limitations of the use of imaging for MM assessment are
essentially due to three open issues: the lack of accuracy in differentiating focal from diffuse
patterns, the difficulty in extracting reliable prognostic biomarkers from pattern allocation,
and the low agreement in staging MM patients based on imaging outcomes [17,18].

The application of pattern recognition algorithms for the extraction of radiomics de-
scriptors from images of MM patients and the post-processing of such radiomics features
by means of procedures based on artificial intelligence (AI) are nowadays introducing a
novel approach for increasing the reliability of imaging in MM clinical assessment [17–20].
The objective of the present study is to assess the feasibility of an AI-based approach for
the automatic stratification of MM patients from CT data, and for the automatic identifi-
cation of radiological biomarkers with a possible prognostic value. Specifically, relying
on radiomics and AI-based computational analysis [19,21,22], this feasibility study shows
that a set of descriptors of the focal lesions in MM X-ray CT at diagnosis allows for the
automatic stratification of a cohort of MM patients who have undergone transplantation in
two clusters, whose characteristics can be interpreted via comparison with clinical data,
biological biomarkers, and the clinical outcome of the disease.

2. Materials and Methods
2.1. Study Populations, Inclusion Criteria, and Risk Stratification

This study was performed according to the Declaration of Helsinki and the Interna-
tional Conference on Harmonization of Good Clinical Practice Guidelines. An institutional
review board was obtained (054REG2019). All patients signed informed consent for retro-
spective research before CT examination; data collection did not influence patient care. We
considered 51 consecutive patients (mean age, 56 years ± 8; range, 31–73 years; 18 females;
33 males) admitted to the Hospital (BLIND for REVIEW) in the last five years because of
biopsy confirmed MM. Inclusion criteria were baseline whole-body CT from the Hospital
PACS or outpatient clinic. Among these 51 patients, we selected the 33 presenting at least
one focal lesion in one of the CT slices, i.e., at least one >5 mm lytic lesion in the axial or
extra-axial skeleton [17,18] (see Figure 1). Two radiologists blinded to the diagnosis and to
each other’s conclusion assessed whether the CT pattern was diffuse or focal, and, for each
patient presenting at least one focal lesion, we identified the largest one.

Risk stratification was performed at diagnosis by the Revised International Staging
System (ISS) combining serum beta2-microglobulin and serum albumin, lactate dehy-
drogenase for three-stage classification, and cytogenetics determining a binary normal-high
risk stadiation [23,24]. Table 1 provides a summary of the clinical features (diameter of
focal lesion: mean: 19.9 mm, STD: 13.4 mm, min: 4.5 mm, max: 62.4 mm).
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Table 1. Clinical features of the 33 MM patients included in the analysis. R-ISS stage: I: ISS stage I
and standard-risk CA by iFISH and normal LDH. II: Not R-ISS stage I or III; III: ISS stage III and
either high-risk CA by iFISH or high LDH. CA—chromosomal abnormalities; iFISH—interphase
fluorescent in situ hybridization; ISS—International Staging System; LDH—lactate dehydrogenase;
MM—multiple myeloma; R-ISS—revised International Staging System.

Characteristic Number %

Patients 33 100
Age (years) Mean 56

Age SD 1 6.7
Males 21 66.4

Females 12 34.6
Cytogenetics

Normal 22 66,7
High risk 11 33,3
Relapsed 17/33 51,5

Days before Relapse (mean) 1138
Days of follow-up (mean) 1317

International Staging
System
Stage I 15 45.4
Stage II 9 27.3
Stage III 9 27.3

1 Standard Deviation.

2.2. Image Analysis

To compute each patient’s overall skeletal asset, we utilized a published software tool
(Bone-GUI, http://mida.dima.unige.it/software/bone-gui/; accessed on 20 September
2021) [25] combining thresholding and active contours. For each subject, Bone-GUI pro-
vided 24 features. Separately for the whole, axial, and skeleton districts, it computed the
following: the mean medullary Hounsfield value with standard deviation, the volume of
the global medullary asset, the mean cortical Hounsfield value with standard deviation,
the volume of the cortical asset, the rate of volume occupied by the medullary tissue,
and the overall volume.

http://mida.dima.unige.it/software/bone-gui/
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We also applied an open source tool for radiomics (Slicer, https://www.radiomics.io/
slicerradiomics.html; accessed on 20 September 2021) [26–28] to the 33 lytic lesions on the
compact bone tissue to extract 109 Slicer features for each focal lesion.

2.3. Reduction of Redundancy

Our AI-based analysis for patients’ stratification utilized Slicer features as the input.
To reduce information redundancy, we considered two approaches. In the first approach,
principal component analysis (PCA) [29] projected the feature space onto a principal
components’ subspace explaining at least 80% of the data variance. In the second approach,
we performed two Pearson’s correlation processes (p > 95%) involving the Slicer features
and (a) the binary feature encoding patient’s relapse one year after transplantation, and (b)
all 24 Bone-GUI features. We applied PCA to the features selected using the two correlation
processes. Figure 2 illustrates this redundancy reduction pipeline.
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Figure 2. The pipeline of the radiomics features analysis. For each patient, the focal lesion was pointed out and the
corresponding CT image was fed into a radiomics tool (Slicer), which computed 109 radiomics features; these descriptors
were correlated with both the clinical outcome of the disease at one year, and the global radiological features extracted by
means of a segmentation tool (Bone-GUI); the resulting mostly correlated features and the set of all local features were
processed by means of two unsupervised AI algorithms (FCM and HTF) for stratification purposes.

2.4. Clustering

Clustering organized a set of unlabeled samples into clusters based on data similar-
ity [30]. Data partition was obtained by minimizing a cost function involving the distances
between the data and cluster prototypes. In Fuzzy C-Means (FCM) a degree of membership
is assigned to each sample with respect to each cluster. In addition to FCM, we applied a
non-linear approach based on the filtering of an extended version of the Hough transform
(HTF) [31], according to the following steps (Figure 3):

1. Downstream of the PCA process, the two-dimensional feature space given by the two
components explaining most of the data variance (namely, PC1 and PC2) was constructed
for each data set.

2. Given a feature space, the Hough transform of each point in the patient’s set with
respect to the family of all parabolas was computed. As this family was characterized
by three parameters, i.e., its equation is y_PC2 = ax_PC1ˆ2 + bx_PC1 + c, with a, b,
and c being the parameters, and the corresponding parameter space has three dimensions.

https://www.radiomics.io/slicerradiomics.html
https://www.radiomics.io/slicerradiomics.html
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3. The Hough accumulator was computed by counting the number of times each Hough
transform passed through one of the cells of the discretized parameter space.

4. The Hough accumulator was filtered by a 5-pixel-side cube centered on the pixel
with a maximum grey value. This cube was the smallest one enclosing the cells,
with accumulator values higher than 50% of the maximum [32].
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Figure 3. The HTF process for stratification. The feature space is constructed by applying PCA to the set of feature vectors
(top left panel); for each point in the feature space the HT is computed with respect to the family of all parabolas (top
right panel); the corresponding Hough accumulator is filtered by the smallest cube, including the cells with values higher
than 50% of the accumulator maximum (bottom left panel); each filtered line is projected back into the feature space, thus
generating the cluster of points associated to the parabola corresponding to the maximum of the Hough accumulator
(bottom right panel).

Each line passing through the filtered region was projected back to the image space,
thus generating a cluster of points in a strip around the parabola corresponding to the
maximum in the Hough accumulator. The remaining points represent the second cluster
made of points outside of the strip of parabolas previously identified.
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3. Results
3.1. Clinical Findings

Focal lesion searching led to the selection of 33/51 (65%) patients (mean age, 56 years
± 7; range, 45–69 years; 12 females; 21 males) whose imaging data were considered for
our computational analysis. Inter-observer agreement in differentiating diffuse from focal
pattern between the two groups of radiologists resulted in 0.75 (95% Confidence Interval:
0.31–0.67) and 0.96 (95% Confidence Interval: 0.79–0.99) for the selection of patients with
focal lesions.

3.2. AI-Based Analysis

The AI-based analysis involved three data sets (see Table 2): data set 1, made of all
109 local features extracted by Slicer from each focal lesion; data set 2, made of the eight
local features mostly correlating with the relapsed/non-relapsed binary feature; and data
set 3, made of the 17 local features mostly correlating with the 24 Bone-GUI global features.
The application of PCA to these three data sets led to three features spaces, with n = 5 axes
for data set 1, n = 3 axes for data set 2, and n = 2 axes for data set 3.

Table 2. Radiomics features extracted by means of image and correlation analysis.

Data Set Name Vector
Dimension SW Tool Feature Type Correlation

Data set 1 109 Slicer focal no
Data set 2 8 Slicer focal relapses
Data set 3 17 Slicer focal global features

In each one of these three feature spaces, FCM and HTF computed two clusters:
in each cluster, the black circles are associated with patients that underwent relapse within
one year of bone marrow transplantation. Cluster A (B) contained the maximum (minimum)
number of relapsed patients; in Figure 4, Clusters A (B) are coded with blue (orange).
Table 3 contains a summary of how the clusters are populated for each of the three data
sets and each of the two AI methods utilized for the analysis.

In order to assess the performances of the clustering algorithms, we computed the
confusion matrices for the observed relapsed patients; specifically, we counted the number
of true positives (TPs), true negatives (TNs), false positives (FPs), and false negatives (FNs)
using cluster A as the reference cluster for the “relapsed” class and cluster B as the reference
cluster for the “non-relapsed” class. Using the entries of such matrices, we computed four
different skill scores:

Sensitivity = TP/(TP + FN)
Specificity = TN/(TN + FP)
Youden’s index = Sensitivity + Specificity − 1
Critical Success Index (CSI) = TP/(TP + FN + FP).
We show that the CSI ranged from 0 to 1 and it was higher as much as the number

of FPs and FNs was small, regardless the number of TNs. CSI is therefore a useful score
in conditions like the one we considered here, where we had an unbalanced data set with
more non-relapsed cases than relapsed ones.

We tested the robustness of our results by performing a bootstrap analysis on the
set 33 17-dimension feature vectors of that set. We constructed 100 random realizations
of training sets made of 20 feature vectors (of which 10 representing relapsed patients)
and, for each realization, we applied the HTF clustering process. Then, for each realization
of the training set, we computed the membership cluster for each one of the remain-
ing 13 vectors representing the test set. Repeating this procedure for each one of the
100 realizations of the training-test set pairs led to the construction of 100 confusion ma-
trices and, therefore, to 100 sets of skill score values that we averaged in Table 4, together
with the corresponding standard deviations. We also performed a bootstrap analysis on
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the cytogenetics values. In order to compute the entries of these last confusion matrices, we
compared the relapse/non-relapse with the high/standard cytogenetic stages: a relapsed
patient with a “high” cytogenetic stage was a TP event, while a relapsed patient with a
“standard” cytogenetic stage was an FN. A non-relapsed patient with a “standard” cyto-
genetic stage was a TN event and a non-relapsed patient with a “high” cytogenetic stage
was an FP event. We show that the separation between the standard and high cytogenetic
stage was realized according to the standard cytogenetic evaluation for separating patients
with a high-risk mutation (poor prognosis in general) from patients without high-risk
mutations [24,33].
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Table 3. Results of the clustering process provided by a fuzzy clustering method (FCM) and a non-linear filtering approach
based on an extended version of the Hough transform (HTF). The symbol # denotes the cardinality of the set of vectors.

Method Data Set # of Vectors
Cluster A

# of Vectors
Cluster B

# of Relapses
Cluster A

# of Relapses
Cluster B

FCM 1 16 17 6 10
FCM 2 25 8 8 8
FCM 3 23 10 11 5
HTF 1 20 13 8 8
HTF 2 12 21 7 9
HTF 3 25 8 16 0

Table 4. Skill scores corresponding to the clustering analysis performed by means of FCM and HTF
on the three data sets considered in the paper. The mean and standard deviation values are obtained
by means of a bootstrap analysis that generated 100 random training sets made of 30 patients and,
correspondingly, 100 random validation sets made of 13 patients. The last two rows contain the
results of the analysis for the cytogenetics data associated with the patients.

Method Data Set Sensitivity Specificity Youden CSI

FCM 1 0.46 ± 0.12 0.5 ± 0.14 −0.04 ± 0.13 0.3 ± 0.08
FCM 2 0.58 ± 0.35 0.55 ± 0.48 0.13 ± 0.15 0.3 ± 0.08
FCM 3 0.4 ± 0.24 0.55 ± 0.22 −0.06 ± 0.15 0.25 ± 0.12
HTF 1 0.38 ± 0.13 0.55 ± 0.16 −0.06 ± 0.15 0.25 ± 0.09
HTF 2 0.63 ± 0.19 0.33 ± 0.25 −0.04 ± 0.34 0.37 ± 0.16
HTF 3 0.87 ± 0.14 0.4 ± 0.13 0.27 ± 0.2 0.52 ± 0.1

Cytogenetics 0.45 ± 0.16 1.00 ± 0.02 0.44 ± 0.16 0.44 ± 0.16

3.3. Feature Ranking

To investigate which radiomics features mostly contribute to an effective stratification
of the MM patients, we focused on the case of data set 3. The reason for this choice is
because, when analyzed with HTF, this set provided, by far, the highest sensitivity values
and, significantly, the highest CSI values among the three data sets considered. Therefore,
we analyzed the feature compositions of the two axes produced by the application of
PCA on the original feature space of this data set, made of 17 features. In Figure 5,
we show the contribution of the 17 features to the first (light blue) and second (dark
purple) principal component (PC). These contributions were weighted by the percentage of
explained variance of the two PCs (77% and 9% for the first and second PC, respectively).
A Mann–Whitney U-test on these features showed that just three of them did not pass the
null hypothesis (p > 99%): “MaskMaximum”, which denotes the maximum grey level value
in the mask segmenting the focal lesion (172.6 ± 64.4 in Cluster A; 321.9 ± 48.6 in Cluster
B); “firstorderRange”, which denotes the range of the distribution of the voxel intensities
(194.7 ± 61.8 in Cluster A; 343.4 ± 66.9 in Cluster B); and “ngtdmComplexity” (29.8 ± 24.9
in Cluster A; 79.4 ± 43.5 in Cluster B), which is a measure of the non-uniformity of the
lesion image in the grey level intensity.
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4. Discussion

This study demonstrates that AI supported radiomics realize a clustering of MM
patients with a statistical reliability that, for some skill scores, is higher than the one
provided by standard biochemical staging. The possibility to increase the predictive
potential of the standard CT images of patients with multiple myeloma is clinically relevant
for several reasons.

The first is that although MM is still considered a single disease, it is actually a col-
lection of several different cytogenetically distinct plasma cell malignancies [2]. Trisomies
and IgH translocations are considered primary cytogenetic abnormalities, and occur at the
time of establishment of MGUS [2]. At the present time, there are three specific biomarkers
for MM with an approximately 80% risk of progression to symptomatic end-organ damage
in two or more independent studies: clonal bone marrow plasma cells ≥60%, serum free
light chain (FLC) ratio ≥100 (provided involved FLC level is ≥100 mg/L), and more than
one focal lesion on magnetic resonance imaging (MRI). It is known that almost all patients
with MM eventually relapse and the choice of a treatment regimen at relapse is affected by
many factors, including the timing of relapse, response to prior therapy, aggressiveness
of relapse, and performance status (TRAP) [2]. Therefore, the prediction of relapse early
is important to foresee a therapy. Second, several studies have correlated bone patterns
in MM with their prognostic value using MRI and CT [9,10,17,18,21,34]. MRI can be used
to differentiate up to five different patterns of plasma cell infiltration, including normal
appearance, focal involvement, homogeneous diffuse infiltration, diffuse infiltration with
additional focal lesions, and variegated or salt-and-pepper patterns; on the other hand, CT
is well suited for small (below 5 mm) focal bone lesions due to its high spatial resolution
capabilities [9].
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The AI-based analysis of the radiomics properties extracted from the focal lesions
essentially pointed out two aspects. First, the redundancy of the radiomics features seem to
impact the prognostic power of the clustering methods. However, the stratification power
increases when correlation-based and PCA-based reduction of redundancy processes are
applied. Second, the use of a non-linear approach to clustering, namely HTF, seems to
provide better results with respect to a more standard fuzzy clustering algorithm; this
may be explained because of the high degree of heterogeneity that characterizes MM.
The skill scores computed for each data set and each classification method helped us to
determine which approach to redundancy reduction and which algorithm performs better
for stratification purposes. Among the four skill scores, CSI probably represents the one
that best interprets the outcomes of the confusion matrices in this context. Indeed, this
score emphasizes the correct prediction of relapses in correspondence with a low rate
of misclassification. Interestingly, the application of HTF on the focal features mostly
correlating with the skeleton asset’s global properties (which are extracted by Bone-GUI)
leads to the highest value for this score: this seems to point out a favorable prognostic role
for the interplay between local and global descriptors of the MM bone tissue. In this case,
the CSI value is higher than the discriminative value provided by the cytogenetic data,
which supports the reliability of radiomics as a prognostic tool for MM clinical practice.
This conclusion is confirmed by a bootstrap analysis performed on data set 3.

Data set 3 is made of the focal descriptors that mostly correlate with the whole
skeleton’s asset properties. Therefore, this correlation analysis per se realizes a feature
selection process whose outcome is a set of 17 features. A finer feature selection is provided
by PCA, as shown in Figure 5. This figure and the related Mann–Whitney U-test point
to a significant emphasis on properties related to the heterogeneity of the focal lesion,
such as the Hounsfield unit range and maximum values found in the lesion, and the
complexity, which measures the non-uniformity of the image and the presence of rapid
changes in intensity.

We finally show that the data collection for this study has been realized by means
of a single, specific CT scanner, so that the images we used for feature extraction were
homogeneous. Recent studies [35] have shown that the characteristics of the extracted
features may depend on non-tumor related factors like the signal-to-noise ratio of the
experimental data. Therefore, in the case of studies that utilize data from more than
one scanner, data homogenization should be implemented prior to the data extraction
process [36].

5. Conclusions

This computational approach to the interpretation of radiomics focal features shows
the potential for the stratification of relapsed and non-relapsed MM patients, and could
represent a prognostic procedure for determining the disease follow-up and therapy.
Concerning the technical issues to be discussed, the present study has several strengths:
the use of clinically available CT images collected in the normal daily workup did not
influenced patient care in any way. Second, we used a free open-source tool for radiomics
assessment of the focal lytic lesions. Among the limitations of the present study, we
acknowledge the retrospective nature, which did not allow for perfect timing between CT,
diagnosis, and therapy or relapse. In addition, the evaluation of the radiomics features was
made only with one open-source tool, and we did not evaluate whether the usage of other
tools would have introduced variability to a significant extent. Finally, the overall number
of patients included was relatively low: indeed, a correct sample size in radiomics is at
least five times the number of extracted features [37], and this condition would require
a population of at least 100 MM patients. Nonetheless, the possibility to obtain a cluster
of features to identify relapses even in a 33 patient sample is in favor of the validity
of this method. This initial study warrants prospective studies with a high number of
patients, which are currently underway, in order to validate this approach, with the aim of
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implementing, it in a more systematic way, a method of obtaining a more robust prognostic
score for MM patients.

Summing up the results of this study, we remind that our objective was to validate
the feasibility of the automatic stratification of MM patients by means of an analysis of
the descriptors extracted fromCT data within the framework of a radiomics retrospective
study. This analysis showed that unsupervised AI can predict relapse within one year after
transplantation and can identify a few imaging features associated with the heterogeneity
of the focal lesion with a high prognostic value.
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Abstract: Background and objectives: In order to increase the accuracy of lytic lesion detection in multiple
myeloma, a dedicated second-opinion interpretation of medical images performed by subspecialty
musculoskeletal radiologists could increase accuracy. Therefore, the purpose of this study is to
evaluate the added value (increased accuracy) of subspecialty second-opinion (SSO) consultations
for Computed Tomography (CT) examinations in Multiple Myeloma (MM) patients undergoing
stem cell transplantation on standard computed tomography with a focus on focal lesion detection.
Materials and Methods: Approval from the institutional review board was obtained. This retrospective
study included 70 MM consecutive patients (mean age, 62 years ± 11.3 (standard deviation); range,
35–88 years) admitted in the last six years. Pre-transplant total-body CT (reported by general
radiologists) was the only inclusion criteria. Each of these CT examinations had a second-opinion
interpretation by two experienced subspecialty musculoskeletal (MSK) radiologists (13 years of
experience and 6 years of experience, mean: 9.5 years), experts in musculoskeletal radiology and
bone image interpretation with a focus on lytic lesions. Results: Per lesion intra- and inter-observer
agreement between the two radiologists was calculated with K statistics and the results were good
(K = 0.67: Confidence Inteval (CI) 95%: 0.61–0.78). When the initial CT reports were compared with
the re-interpretation reports, 46 (65%) of the 70 cases (95% CI: 37–75%) had no discrepancy. There
was a discrepancy in detecting a clinically unimportant abnormality in 10/70 (14%) patients (95% CI:
7–25%) unlikely to alter patient care or irrelevant to further clinical management. A discrepancy
in interpreting a clinically important abnormality was registered in 14/70 (21%) patients for focal
lesions. The mean diameter of focal lesions was: 23 mm (95% CI: 5–57 mm). The mean number of
focal lesions per patient was 3.4 (95% CI). Conclusions: subspecialty second-opinion consultations
in multiple myeloma CT is more accurate to identify lesions, especially lytic lesions, amenable to
influence patients’ care.

Keywords: multiple myeloma; computed tomography; second-look; lytic lesions; bone; staging

1. Introduction

Multiple myeloma (MM) is a hematologic disorder characterized by an excessive production of the
immunoglobulin M component of plasma cells. In MM, the bone lesions of myeloma are determined
by the proliferation of cells from a single clone. Then, osteoclasts are activated and destroy the bone [1].
MM, known with the abbreviation CRAB (hyperCalcemia, Renal failure, Anaemia, and lytic Bone lesions)
is a cytogenetically heterogenous disorder of clonal plasma cells [1]. The extent of the bone disease
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negatively influences patients’ quality of life, increasing both morbidity and mortality. The detection of
lytic bone lesions on imaging separates asymptomatic from symptomatic MM patients, even if no clinical
symptoms are present [1–4]. Medical imaging is pivotal in the management of patients with MM. Imaging
is used to detect bone lesions, to predict the risk of early progression from smoldering MM (sMM) to
active MM, to identify extra-medullary disease and to identify the sites of possible pathologic fractures
or neurologic complications [3]. In patients with a recent diagnosis of MM, focal lesions detected with
Magnetic Resonance Imaging (MRI) or Computed Tomography (CT) or Positron Emission Tomography
(PET)/CT are important for correct treatment and for prognosis [3]. In MM, “focal lesions” detected
by MRI should not be confused with “lytic lesions” detected by CT. Indeed, the detection of at least
one lytic lesion is a negative prognostic factor for patients with MM [2,5,6]. In 2014, the International
Myeloma Working Group (IMWG) updated the definition of MM: the presence of at least one lytic lesion
detected not only by conventional radiography but also by CT, WBLDCT, or PET/CT was included in
the definition [7]. The incorporation of imaging modalities such as CT and PET/CT is recommended
(grade A) according to the recent literature [3]. However, in MM patients, differentiation between a focal
and a diffuse pattern on CT is still difficult even with Radiomics [6]. To increase the accuracy in lytic
lesion detection, a dedicated second-opinion interpretation of medical images performed by subspecialty
musculoskeletal radiologists could be more accurate.

In many centres, consultation and second-opinion interpretation of medical images by subspecialty
radiologists are routinely performed [8–12]. Therefore, the purpose of this study is to evaluate the
increased detection of focal lesions and other radiological findings of subspecialty second-opinion
(SSO) consultations for CT examinations in MM patients undergoing stem cell transplantation on
standard computed tomography.

2. Materials and Methods

Approval from the institutional review board was obtained (003REG2019). All patients signed
a written, informed consent form for retrospective research purposes, before CT examination. SSO
was applied to CT data collected in the clinical workup and did not influence patient care in any way
because the study was made retrospectively.

2.1. Inclusion Criteria

This retrospective study evaluated n = 70 consecutive patients (mean age, 62 years ± 11.3 (standard
deviation); range, 35–73 years) treated at the IRCCS Policlinico San Martino Hospital (Genoa, Italy) for
MM in the last six years. Pre-transplant total-body CT with minimal technical standard (Table 1) available
in the Hospital Picture Archiving and Communication System (PACS) or available in DICOM format
from CT acquired outside the hospital were the only inclusion criteria—the initial CT reading was done
by general radiologists with no known formal (ESSR Diploma, track record in MSK radiological activities)
or informal (staff rounds, reports of specialized MSK exams) specialized experience in MSK radiology.

Table 1. Minimal and standard Computed Tomography Technical parameters for inclusion.

Number of Detector Rows 16 or More up to 128

Minimum Scan coverage Skull base to femur

Tube voltage(kV)/time-current product (mAs) 120/50–70, adjusted as clinically needed

Reconstruction convolution kernel
Sharp, high-frequency (bone) and smooth (soft tissue).

Middle-frequency kernel for all images are adjusted by the
radiologist as deemed necessary

Iterative reconstruction algorithms Yes (to reduce image noise and streak artefacts)

Thickness ≤5 mm

Multiplanar Reconstructions (MPRs) Yes (sagittal, coronal and parallel to long axis of proximal limbs)

Matrix, Rotation time, table speed, pith index 128 × 128, 0.5 s, 24 mm per gantry rotation, 0.8
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2.2. Study Design

CT examinations were studied with a second-opinion interpretation by two experienced MSK
radiologists (A.T. 13 years of experience, F.R. 6 years of experience, mean: 9.5 years). The two
radiologists evaluated the CT examination blindly and in different sessions. To avoid reading
biases, an independent medical student was enrolled as data controller (DC). The DC checked that
second-opinion interpretation was done after removing all the information of the original CT. The
original report was removed. In addition, the DC made sure not to include a CT examination when the
radiologists had already been involved in image re-interpretation. The use of a DC has already been
explored in the literature [12].

Second-opinion consultation was made independently by using a 3-point scoring system.
The scoring system is similar to a scoring system already published and now adapted to MM patients [12]:
1, no discrepancy; 2, discrepancy in detecting an unimportant abnormality (e.g., interpreting a bone
infarct as a bone island, osteophytes, disc degeneration, old vertebral collapse, not neoplastic or clearly
benign bone lesions); 3, discrepancy in interpreting an important abnormality (e.g., interpreting the
presence of a lytic lesion >5 mm). Lytic bone lesions, size or number, non-lytic lesions, extramedullary
manifestations and osteonecrosis (only if not detected by general radiologists), and fractures were
considered. The clinically important differences were defined as those likely to change patient care
or diagnoses according to suggestions given by our clinician on a per patient analysis (for example,
a lytic lesion in a CT reported as negative at initial reading). For example, a lytic lesion could be used
to stage the disease according to the Durie and Salmon PLUS staging system. After per lesion intra-
and inter-observer agreement calculation, reports were re-evaluated together when their scorings were
discordant. Discrepancies, mainly lytic lesions, that were significant enough to warrant a change in
diagnosis, prognosis, invalidity (for medico-legal implications) or treatment or referral (e.g., orthopedic
surgeon, radiation oncologist specialist) were recorded.

2.3. Reference Standard

For this study, radiologists’ consensus was the best feasible reference standard available [2,6]
because biopsy is not always available for all suspicious areas on CT. The best valuable comparator, or
reference standard (BVC), was constructed as described elsewhere [5–7,13,14]. One hematologist, two
radiologists and one radiation oncologist, all with > 10-year clinical experience, reviewed CT, MRI
and PET/CT examinations and clinical follow-up for clinical significance. True positive or negative
examinations were defined by lesion progression or by new lesions on follow-up imaging, or lesion
response with therapy, and evolution of biologic parameters. False positive examinations were defined
by an absence of new lesions on follow-up imaging studies. False negative examinations were defined
by the failure of lesion detection [15]. Diffuse bone marrow infiltration in the skeleton was recorded
according to Staebler et al. (lesions <5 mm, not osteoporosis) [15]. Focal pattern was defined as the
presence of at least one >5 mm focal or lytic lesion. The presence of at least one focal or lytic lesion was
considered relevant because it is a prognostic factor MM [5,6].

2.4. Statistical Analysis

(1) Per lesion intra- and Inter-observer agreement between the two radiologists was calculated
with K statistics. p values below 0.05 were considered statistically significant. Agreement was assessed
according to Altman [16] and adapted from Landis and Koch [17]. Values of 0.81–1.00 indicated
very good agreement, 0.61–0.80 indicated good agreement, 0.41–0.60 indicated moderate agreement,
0.21–0.40 indicated fair agreement, and 0.20 or lower indicated poor agreement;

(2) Statistical comparisons of rates were performed using a chi-square test with Bonferroni
corrections. Statistical tests were done using statistical software (STATA MP, StataCorp, 4905 Lakeway
Dr, College Station, TX, USA and MedCalc).



Medicina 2020, 56, 195 4 of 7

3. Results

Intra- and Inter-observer agreement between the two radiologists was calculated with K statistics
and the results were good (K = 0.67: IC 95%: 0.61–0.78) in scoring the discrepancies between
subspecialized second-opinion consultations and standard CT reports, but consensus scores were used
for further analysis as planned in the study protocol. Overall scores of subspecialized second-opinion
consultations versus outside reports are summarized in Table 2.

Table 2. Consensus Scores of Subspeciality Second-Opinion Consultation Versus Standard
CT Interpretation.

Discrepancy Score Category No. (%) of Examinations

1, no discrepancy. 46 (65%)

2, discrepancy in detecting a clinically unimportant abnormality (e.g., a
missed case of mild degenerative disease, interpreting a bone infarct as a
bone island).

10 (14%)

3, discrepancy in interpreting a clinically important abnormality (e.g.,
interpreting the presence of a lytic lesion >5 mm or the presence of
osteonecrosis or vice versa).

14 (21%)

Total 70 (100%)

As reported in Table 2, when the initial CT reports were compared with the re-interpretation
reports, 46 (65%) of the 70 cases (95% CI: 37–75%) were graded 1, no discrepancy. There was a
discrepancy in detecting a clinically unimportant abnormality in 10/70 (14%) patients (95% CI: 7–25%)
unlikely to alter patient care or irrelevant to further clinical management. A discrepancy in interpreting
a clinically important abnormality (e.g., interpreting the presence of a lytic lesion >5 mm) was registered
in 14/70 (21%) patients. As shown in Table 3, the majority of discrepancies that were clinically significant
(Score Category 3) were due to significant focal lesion detection discrepancies. The mean diameter of
all detected focal lesions was: 23 mm (95% CI: 5–57 mm). The mean number of focal lesions per patient
was 3.4 (range: 0-20; 95% CI:1.1–4.7). As a whole, n = 60 patients had focal lesions and n = 10 had
none. In n = 14 patients without detected lesions by the initial report SSO found “new” lesions, thus
potentially changing further treatment planning.

Table 3. Disease Category Versus Discrepancy Rates.

Disease Category Discrepancy Score
Category 1

Discrepancy Score
Category 2

Discrepancy Score
Category 3

Focal Lesion Detection 46 - 14

Diffuse Pattern 17 4 -

Osteonecrosis - 1 -

Number of Focal Lesion - 6 -

4. Discussion

In radiological clinical practice, it is quite common to have dedicated subspecialty second-opinion
consultations, especially in tertiary academic centres with tumor board meetings, often known as
disease management teams. However, we were not able to find the relevant literature regarding
subspecialty second-opinion consultations in multiple myeloma CT. Indeed, there is growing interest
in the evaluation of bone status in MM due to the increasing evidence that the presence of certain bone
marrow patterns may be useful to stage and predict the outcome of MM [5–7,13,18,19]. In addition,
there is a growing interest in the evaluation of lytic lesions due to their possible influence on
prognosis [5]. For example, Rasche et al. [5] investigated the prognostic value of focal lesion size
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in 404 transplant-eligible, newly diagnosed, MM patients with Magnetic Resonance Imaging. The
authors [5] used a diffusion-weighted sequence to identify the presence of multiple large focal lesions.
They found that focal lesions are strong prognostic factors. According to Rasche et al. [5], of patients
with at least three large focal lesions with a product of the perpendicular diameters >5 cm, two were
associated with poor progression-free survival and overall survival. This pattern was seen in 13.8% of
patients and was independent of the Revised International Staging System [5]. In 2010, Hillengass et
al. [18], using Whole Body Magnetic Resonance Imaging, found that the presence of focal lesions is the
strongest adverse prognostic factor for progression. CT and PET/CT are now highly recommended in
MM evaluation [3] and the lytic lesion assessment in MM is difficult [6]. Therefore, the focus of the
present study is to improve the detection and characterization of clinically significant lytic lesions. In
the past, discrepancies between reports by radiologists at different levels of training and radiologists at
different clinical settings had discrepancy rates from 0.1% to 15% [12,20]. Compared to the published
literature, we found that the discrepancy rate in interpreting a clinically important abnormality
(e.g., interpreting the presence of a lytic lesion >5 mm) was 21% (14/70 patients), which is slightly higher
than the literature data. However, we do not have any MM-related data for comparison, but only
data derived from other pathological conditions. Our results highlight the necessity and the potential
benefit of a subspecialty second-opinion consultation in multiple myeloma CT, in order to avoid
medico-legal consequences. Furthermore, the main pathological finding that determined discrepancies
was the presence of a lytic lesion. The lytic lesion of MM could be difficult to detect, especially when
the diameter was between 5 and 10 mm and when located in an osteoporotic and degenerated vertebral
body. In these cases, the experience of dedicated MSK radiologists could be important. Some small
lytic lesions, for example, could be confused with Schmorl nodes, also referred to as intravertebral disc
herniations. This study has several limitations. We acknowledge that some CTs were not primarily
acquired to evaluate and detect focal lesions, therefore it is likely that these focal abnormalities were
under-reported. Perhaps a more focused clinical indication before CT acquisition and report could
improve focal lesion detection. Proper education of radiologists reporting MM radiological evaluation,
could improve the quality of the report further. There is no clear instruction at present in the primary
report for how to categorize disease entities regarding clinical relevance, therefore some of those
related to MM may be overlooked or even overestimated. In addition, second-look interpretations and
primary readings have been performed in different environments with different clinical priorities and
different levels of expertise. Furthermore, in certain radiological environments, there is an emphasis
on the quantity of work produced, which is easier to measure than the quality of interpretation [11].
Another limitation is that the scenario where expert MSK radiologists are present to reevaluate the CTs
of MM patients is difficult to propose. Indeed, subspecialty radiologists practice in large and academic
departments and are rare in smaller centres. In many developing countries, only general radiologists
are available and imaging interpretation is sometimes performed by physicians with very limited
training [21]. Finally, no correlation between discrepancies and the clinical outcome of MM patients
was possible to report due to the limited number of patients, the retrospective nature of the study, and
the fact that the presence of focal lesion is not the only determinant of poor prognosis.

5. Conclusions

In conclusion, our study demonstrated that subspecialty second-opinion consultation in multiple
myeloma CT could identify lytic lesions, previously missed, amenable to influence patients’ care.
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A B S T R A C T

Purpose: Focal pattern in multiple myeloma (MM) seems to be related to poorer survival and differentiation from
diffuse to focal pattern on computed tomography (CT) has inter-reader variability. We postulated that a
Radiomic approach could help radiologists in differentiating diffuse from focal patterns on CT.
Methods: We retrospectively reviewed imaging data of 70 patients with MM with CT, PET-CT or MRI available
before bone marrow transplant. Two general radiologist evaluated, in consensus, CT images to define a focal (at
least one lytic lesion> 5mm in diameter) or a diffuse (lesions< 5mm, not osteoporosis) pattern. N= 104
Radiomics features were extracted and evaluated with an open source software.
Results: The pathological group included: 22 diffuse and 39 focal patterns. After feature reduction, 9 features
were different (p < 0.05) in the diffuse and focal patterns (n= 2/9 features were Shape-based:
MajorAxisLength and Sphericity; n= 7/9 were Gray Level Run Length Matrix (Glrlm)). AUC of the Radiologists
versus Reference Standard was 0.64 (95 % CI: (0.49–0.78) p= 0.20. AUC of the best 4 features
(MajorAxisLength, Median, SizeZoneNonUniformity, ZoneEntropy) were: 0.73 (95 % CI: 0.58–0.88); 0.71 (95 %
CI: 0.54–0.88); 0.79 (95 % CI: 0.66–0.92); 0.68 (95 % CI: 0.53–0.83) respectively.
Conclusion: A Radiomics approach improves radiological evaluation of focal and diffuse pattern of MM on CT.

1. Introduction

Abnormal production of monoclonal immunoglobulin M component
of plasma cells and bone marrow increase of plasma cells is the typical
characteristic of multiple myeloma (MM). The bone lesions of myeloma
are caused by the proliferation of tumor cells from a single clone and
the activation of osteoclasts that destroy the bone [1]. Indeed, bone
disease reduces patients’ quality of life increasing both morbidity and
mortality, therefore the role of imaging is crucial in the management of
patients with MM. Imaging is important to detect bone lesions requiring
immediate start of therapy of follow-up after treatment, to predict the
risk of early progression from smoldering MM (SMM) to active disease,
to identify sites of extra-medullary disease and to identify sites of bone
disease at potential risk of pathologic fractures or neurologic compli-
cations [2]. According to recent staging systems for MM, in patients
with newly diagnosis, a correct treatment approach and evaluation of
prognostic factors rely also on focal lesion identification on Magnetic

Resonance Imaging (MRI), Computed Tomography (CT) or PET/CT [3].
Indeed, the role of conventional radiography, the standard of care for
many years, is going to be replaced by more sensitive methods. Com-
pared to conventional radiography, PET/CT [4] and whole-body low-
dose CT (WBLDCT) are able to detect the presence of active disease in
up to 25 %–40 % of cases, according to large retrospective studies [4].
It was demonstrated that the presence of at least one lytic lesion is a
negative prognostic factor for patients with MM [5]. In 2014, the In-
ternational Myeloma Working Group (IMWG) updated the definition of
MM including in the definition the presence of at least one lytic lesion
detected not only by conventional radiography but also by one of the
novel morphologic imaging techniques, such as CT, WBLDCT, or PET/
CT; and the presence of more than one FL on MRI [6]. At diagnosis the
incorporation of new imaging modalities

(WBLDCT and PET/CT) for accurate diagnostic purposes is re-
commended with a grade A recommendation [2]. However, there is still
considerable heterogeneity in clinical practice regarding imaging usage
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in MM [2] and, as for every radiological techniques, variability among
readers could reduce the diagnostic efficacy due to difficulties in dif-
ferentiating small lesion of approximately 5mm in diameter typical of a
focal pattern with a worse prognosis [3]. Even among expert, agree-
ment in detecting lytic lesions on PET/CT for staging using the Italian
myeloma criteria for PET USe (IMPeTUs) criteria was 0.54 (0.41_0.68)
using Krippendorff’s alpha for lesions probably> 5mm in diameter
[7]. The cutting-edge research topic of Radiomics analysis aim to ex-
tract complex data from clinical images to help radiologists and clin-
icians in both diagnosis and prognosis. [8–10]. We made the hypothesis
that Radiomics analysis could help radiologists to unveil imaging
characteristic on CT specific of a MM pattern, especially to identify lytic
lesions. Therefore, the aim of this study was to assess if a Radiomics
approach could improve radiological accuracy in differentiating a focal
pattern from a diffuse pattern on CT.

2. Methods

The study was performed in accordance with the current version of
the Declaration of Helsinki and the International Conference on
Harmonization of Good Clinical Practice Guidelines. Approval from the
institutional review board was obtained (003REG2019). According to
our standard procedure, all patients signed a written informed consent
form, encompassing the use of anonimized data for retrospective re-
search purposes, before CT examination. Radiomic analysis was applied
to CT data collected in the clinical workup and did not influence patient
care in any way. According to the nature of the study, STARD checklist
was followed as appropriate [11].

2.1. Study design, inclusion criteria

Our retrospective study included 70 consecutive patients (mean age,
60 years± 9.2 [standard deviation]; range, 35–88 years) admitted to
the IRCCS Policlinico San Martino Hospital (Genoa, Italy) because they
were suspected of having MM in the last five years. Inclusion criteria
were pre-transplant total-body CT available and retrievable from the
Hospital Picture archiving and communication system (PACS) or
available from outpatient clinic with minimal technical standard.
Minimal and standard technical inclusion parameters for CT are re-
ported in Table 1.

All CT scans were read in consensus by two groups of radiologists.
The first group included two general radiologists (G.S. 15 years of

experience, A.C. 1 year of experience) one of them, the senior, with
extensive track record in CT reporting and musculoskeletal radiology.
The two general radiologists were blinded to the diagnosis of the pa-
tients and they were asked to assess if the CT pattern was diffuse or
focal (Fig. 1).

The second group included two experienced radiologists (A.T. 12
years of experience, F.R. 5 years of experience) expert in musculoske-
letal Radiology and bone image interpretation, one of them with
European Diploma and Member of tumour sub-committee of the
European Society of Musculoskeletal Radiology. After six months to
avoid biases, the two expert radiologists worked in consensus aware of
the diagnosis of MM and able to check follow-up radiological

evaluation to assess if the pattern on CT had to be considered diffuse or
focal, and their consensus was the reference standard of our study.
Considering that biopsy is not available for all suspicious area identified
on CT, radiologists’ consensus could be considered the best feasible
reference standard, as already done in literature [12].

2.2. Test methods

2.2.1. Index test1 - Computed Tomography
Diffuse bone marrow infiltration in the skeleton was recorded ac-

cording to the criteria proposed by Staebler (lesions< 5mm, not os-
teoporosis) [13,14]. Focal pattern was defined as the presence of at
least one> 5mm of focal or lytic lesion in the axial skeleton (ie, spine
and sacral bone) or extra-axial skeleton (ie, all other parts of the ske-
leton). Soft tissue lesions were not considered because outside the scope
of the study. Lesions in typical locations for degenerative changes and
osteoporotic changes were not counted. The presence of at least one
focal or lytic lesion was considered clinically relevant because it is a
highly significant adverse prognostic factors for patients with MM, and
recored [5].

2.2.2. Index test2 - radiomics analysis
Radiomics analysis was performed on all CT images suspected of

having pathology within
manually selected regions of interest (ROIs) including all the bone

of axial and extra-axial skeleton on single slices where the bone was
visually judged different from a normal bone by radiological assess-
ment. All images were read and processed in the raw Digital Imaging
and Communications in Medicine (DICOM) format. Raw imaging data
underwent pre-processing to discriminate the signal from the noise.
ROIs were placed by two researchers (A.T. and F.R.) expert in quanti-
tative image analysis (9 and 3 years of experience). Theoretically, ROIs
placement would have been independent from the kind of bone lesion
present on CT. From CT images, we extracted 104 image features using
an open-source software platform for medical image informatics, image
processing, and three-dimensional visualization (3D Slicer 4.10; www.
slicer.org) built over two decades through support from the National
Institutes of Health and a worldwide developer community and largely
used in literature [15]. 3D-Slicer can be employed for quantitative
image feature extraction and image data mining research in large pa-
tient cohorts [15]. Definitions, descriptions and subdivisions into
classes of Radiomics features are available in literature [16]. We com-
puted a total of n=104 features per patient. This feature initial pool
was subjected to the selection procedure. From the total of n=104
features, z-score normalization was applied making the range of the
features more uniform and removing features that had high similarity
with other features. Therefore, we selected strongly correlated features
(P value below 0.05) and eliminated the redundancies as normally done
in literature [17].

Mean time for single patient Radiomics analysis was calculated with
a commercially available stopwatch, including the time to download
images, perform image adjustment and analysis and finally data col-
lection in the database. Radiologists were well trained in the usage of
Radiomics tools and probably reduced the reading time.Statistical

Table 1
Minimal* and standard Computed Tomography Technical parameters for inclusion.

Number of detector rows* 16 or more up to 128
Minimum Scan coverage* Skull base to femur
Tube voltage(kV)/time-current product (mAs) 120/50–70, adjusted as clinically needed
Reconstruction convolution kernel Sharp, high-frequency (bone) and smooth (soft tissue). Middle-frequency kernel for all images are adjusted by the radiologist as

deemed necessary
Iterative reconstruction algorithms Yes (to reduce image noise and streak artifacts)
Thickness* ≤5mm
Multiplanar Reconstructions (MPRs) Yes (sagittal, coronal and parallel to long axis of proximal limbs)
Matrix, Rotation time, table speed, pith index 128×128, 0.5 s,24 mm per gantry rotation, 0.8
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Analysis
Inter-observer agreement in differentiating diffuse from focal pat-

tern was estimated among the two groups of radiologists to confirm the
need of more accurate (Radiomics) measurements to improve CT in-
terpretation. For research purposes Cronbach's alpha was considered
acceptable if between 0.7 and 0.8. Comparison of Radiomics features of
diffuse and focal pattern was done with non-parametric tests (Mann-
Whitney U test for unpaired data with 1000 bootstraps samples) con-
sidering a p value of 0.05 as statistically significant; then feature re-
duction was done to avoid over-fitting. Accuracy was measured using
receiver operating characteristic (ROC) analyses to estimate the area
under the curve (AUC) and compare Radiologists and Radiomics eva-
luation against reference standard using statistical software, p values
below 0.05 were considered statistically significant.

Kaplan–Meier analysis was performed to generate progression and
survival curves according to diffuse or focal pattern. Time to event and
survival between groups was compared with the two-tailed log-rank
test. Statistical tests were done using statistical software (STATA MP,
StataCorp, 4905 Lakeway Dr, College Station, TX, USA and MedCalc).

3. Results

N=9/70 did not have any CT available before bone marrow
transplant and were excluded, therefore the study group included 60
patients: 27 men (mean age, 59,7 years± 9,1; range, 35–72 years) and
34 women (mean age, 61,7 years± 9,2; range, 49–88 years).

Inter-observer agreement in differentiating diffuse from focal pat-
tern among the two groups of radiologists resulted to be 0.57 (95 %
Confidence Intervals: 0.32–0.64), p < 0.03.

After feature reduction and selection, n= 16/104 (15 %) of
Radiomics features were different in focal and diffuse pattern (Table 2).

AUC of the radiologists' evaluation and AUC of the best four features
(MajorAxisLength; Median; SizeZoneNonUniformity; ZoneEntropy) re-
sulted to be between 0.642 (95 % Confidence Intervals: 0.494 to 0.789)
and 0.790 (0.665 to 0.916) as shown in Fig. 2 and Table 3. The lowest
value of AUC belonged to radiologist's evaluation.

Mean time for single patient Radiomics analysis resulted to be 1 h
per patient± 20min. The time to read the CT scan without Radiomics

was 10min.
Kaplan-Meier plots for relapse of patients who had focal pattern

compared with patients who had diffuse pattern demonstrated that the
median time to progression was significantly worse for patients with a
focal pattern (Fig. 3).

4. Discussion

The present study demonstrated that a Radiomics approach on
standard CT images of patients with multiple myeloma acquired before
transplantation strongly improves accuracy in differentiating focal from
diffuse patterns. Indeed, accuracy in terms of area under the curve of
Radiologists compared to the reference standard was lower (64 %) than
accuracy calculated using a Radiomics approach which obtained a
maximum value of 79 %. The possibility to increase diagnostic accuracy
in differentiating focal from diffuse pattern on standard CT images of
patients with multiple myeloma is clinically relevant for several

Fig. 1. Examples of focal and diffuse bone
patterns on CT.
In a.1) graphical example of focal lytic lesion
(> 5mm) of the spine on CT. In a.2) the same
lesion with manually selected regions of in-
terest (ROIs) in green using 3D Slicer 4.10. In
b.1) graphical example of diffuse bone pattern
lesion of the left hemi-sacrum and left iliac
bone. In b.2) the same lesion with manually
selected regions of interest (ROIs) in green
using 3D Slicer 4.10.

Table 2
Summary of n= 16/104 Radiomics features resulted to be different in
focal and diffuse pattern. P values< 0.05 are considered statistically
significant.

Feature Name P value

MajorAxisLength ,030
Sphericity ,012
SmallDependenceLowGrayLevelEmphasis ,032
ZoneVariance ,006
Correlation ,041
SumEntropy ,031
Skewness ,004
RunEntropy ,001
Median ,001
LowGrayLevelEmphasis ,013
Energy ,024
ShortRunLowGrayLevelEmphasis ,023
LowGrayLevelRunEmphasis ,045
SizeZoneNonUniformity ,001
LowGrayLevelZoneEmphasis ,038
SmallAreaLowGrayLevelEmphasis ,038
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reasons.
First, new staging systems suggested to replace standard radio-

graphy with more sensitive methods such as CT, due to its higher
capability of differentiate bone inner texture [2,7]. Therefore, more
patients will undergo CT for staging of MM [2].

Second, several studies correlate pattern allocation with prognostic
value [18]. Although MRI can differentiate up to five different patterns
of plasma cell infiltration, including normal appearance, focal in-
volvement, homogeneous diffuse infiltration, diffuse infiltration with

additional focal lesions and variegated or salt-and-pepper pattern, CT
can also identify patterns similarly to MRI [18] and CT is well suited for
small (below 5mm) focal bone lesions due to high spatial resolution
capabilities [18].

Third, the low agreement between reader in staging patients af-
fected by multiple myeloma is well known in literature [8], as con-
firmed by our study. Indeed, we found that the agreement among
radiologists in differentiating between focal and diffuse patters was
0.57 (95 % Confidence Intervals: 0.32–0.64), p < 0.03 which is below
the values considered acceptable for research and clinical purposes.
Nanni et al. [7], calculating inter-observer variability with Krippen-
dorff’s alpha, found values of 0.56 to 0.58 indicating only moderate
agreement for focal lesions. Data reported in the study by Nanni et al.
[7] are consistent with our results and underlines the need of im-
provement to correctly identify patients with a focal pattern. In addi-
tion, the use of slight different modalities of agreement calculation such
as Cronbach's alpha in the present study versus Krippendorff’s alpha
which automatically corrects for a casual agreement between re-
viewers, is not sufficient to stop seeking for better methods, such as
Radiomics, to improve focal pattern recognition.

Nowadays, there is still a certain lack of agreement about the exact
definition of a diffuse imaging pattern [18] In our study, we defined the
presence of a focal pattern as the presence of at least one>5mm of
focal lytic lesion in the axial skeleton or extra-axial skeleton because it
has been demonstrated that the presence of more than one focal lesion
could be an optimal cut-off point: indeed patients with greater than one
focal lesions had significantly shorter progression-free survival than
those without [5], and our results confirmed the worse prognosis for
patients with focal pattern.

Concerning technical issues to be discussed, the present study has
several strengths: we used clinically available CT images collected in
the normal clinical workup without influencing patient care in any way
and we used a free open source software for Radiomics assessment of
involved bones. Finally, Radiomics assessment was made in a
Radiological environment with significant expertise in quantitative
imaging assessment and software development [10,19].

Concerning Radiomics feature assessment, we found that 15 % of
features (16/104) were different in diffuse and focal patterns reflecting
a significant difference in bone phenotype in patients with the same
disease.

Among the limitations of the present study we acknowledge the
retrospective nature which did not allow a perfect timing between CT
acquired before transplantation and diagnosis. In addition, the eva-
luation of Radiomics features was made only with one software and we
do not know if the usage of other software could introduce variability in

Fig. 2. The Area Under the Curve (AUC) of the radiologists' evaluation and the AUC of the best four features.

Table 3
Area Under the Curve (AUC) of the best four features. P values< 0.05 are
considered statistically significant.

Feature Name AUC P value 95 % CI (lower
limit)

95 % CI (upper
limit)

MajorAxisLength 0,733 0,005 0,580 0,885
Median 0,715 0,010 0,549 0,881
SizeZoneNonUniformity 0,790 0,010 0,665 0,916
ZoneEntropy 0,682 0,029 0,531 0,833

Fig. 3. Kaplan Meyer plot for relapse of patients with focal pattern (blue line)
compared with patients with diffuse pattern (green line).
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feature assessment. Finally, we did not correlate CT patterns with sta-
ging before transplant, but Kaplan-Meyer results confirmed the worse
prognosis for patients with focal pattern.

In conclusion, in this work we have proven that, in multiple mye-
loma patients, differentiation between focal and diffuse pattern on CT is
difficult, but a Radiomic approach strongly improves standard radi-
ological evaluation with implications for prognosis, patient stratifica-
tion and therapeutical choices.
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