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Abstract

A deductive system for Lewis counterfactuals is presented, based directly on Lewis’
influential generalisation of relational semantics that uses ternary similarity relations.
This deductive system builds on a method of enriching the syntax of sequent calculus
by labels for possible worlds. The resulting labelled sequent calculus is shown to be
equivalent to the axiomatic system VC of Lewis. It is further shown to have the struc-
tural properties that are needed for an analytic proof system that supports root-first
proof search. Completeness of the calculus is proved in a direct way, such that for any
given sequent either a formal derivation or a countermodel is provided; it is also shown
how finite countermodels for unprovable sequents can be extracted from failed proof
search, by which the completeness proof turns into a proof of decidability.

1 Introduction

Kripke’s introduction of the relational semantics for modal logic was a decisive turning
point for philosophical logic: the earlier axiomatic studies were replaced by a solid seman-
tical method that displayed the connections between modal axioms and conditions on the
accessibility relation between possible worlds. It took a mere ten years after Kripke for
David Lewis’ semantical approach to conditionals to emerge, in a work that has become
almost as classic as that of Kripke: the little book Counterfactuals of 1973.

The successes of the semantic methods have not been followed by equally powerful
syntactic theories of modal and conditional concepts and reasoning: Concerning the former,
the situation was so depicted by Melvin Fitting in his article (2007) in the Handbook of
Modal Logic: “No proof procedure suffices for every normal modal logic determined by a
class of frames”; Concerning the latter, as stated by Graham Priest “there are presently no
known tableau systems” for Lewis’ logic for counterfactuals (2008, p. 93).

In the article Proof analysis in modal logic, the first author showed in 2005 how Kripke’s
semantics can be exploited to enrich the syntax of systems of proof, especially sequent cal-
culi, to answer to the challenge of developing analytic proof systems for standard systems
of modal logic. In particular, it has turned out that a more expressive language, with a for-
mal notation of labels that represent possible worlds, is the crucial component in answering
to the challenge, set by the successful semantical methods, for the proof theory of philo-
sophical logic. The approach has been extended to wider frame classes in later work (Negri
2014), and in Dyckhoff and Negri (2014) it was shown how the method can capture any
nonclassical logic characterized by arbitrary first-order frame conditions in their relational
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semantics. Notably, in these calculi, all the rules are invertible and a strong form of com-
pleteness holds for them, with a simultaneous construction of formal proofs, for derivable
sequents, or countermodels, for underivable ones (Negri 2014a).

In this paper, we show how, in perfect analogy to the method of proof analysis in modal
logic, systems of proof can be introduced for Lewis’ counterfactuals. The main novelty
is that the basic relation to be expressed in the syntax is three dimensional. Ternary re-
lations where proposed by Lewis himself as a formal account of the topological topolog-
ical truth conditions for counterfactuals, in the setting of comparative similarity based on
sphere semantics, a special form of neighbourhood semantics for the conditionals. In this
semantics, there is an ∃∀ nesting of quantifiers in the truth conditions for the counterfactual
conditional, which makes the determination of the rules of the calculus an interesting and
challenging task. Our solution uses indexed modalities, which allow to split the semantic
clause in two separate parts, and correspondingly, the rules for the counterfactual condi-
tional depend on rules for the indexed modality, which are standard modal labelled rules.
The result is a system, called G3LC below, which is a sound and complete Gentzen-style
sequent calculus for Lewis’ original counterfactual. The system has all the structural rules
(weakening, contraction, and cut) admissible, and all its rules are invertible.

We introduce the system G3LC in Section 2 and then briefly discuss its extension to a
system provided with a non-trivial aletheic modality (in the case at hand, S4). In Section
3, we present some interesting structural properties of G3LC and in particular a cut elimi-
nation theorem. Then we show (Section 4) that Lewis’ axioms and rules are, respectively,
admissible and derivable, which allows us to show that the calculus is complete (by sound-
ness and by Lewis’ own proof of completeness). Finally, we prove directly completeness
and decidability results in Section 5. Related literature and further work is discussed in the
concluding Section.

2 A sequent calculus for Lewis conditional

In this Section, we shall present a labelled sequent calculus for Lewis conditional starting
from Lewis’ own semantics based on ternary relation (Lewis 1973, 1973a).

We recall that the strategy for internalising the semantics into the syntax of a good se-
quent calculus consists of the following stages: to start with, the language is extended by
labelled formulas, of the form x : A, and by expressions of the form xRy. Labelled formulas
x : A correspond to the statement that A is true at node/possible world x; expressions of
the form xRy corresponds to relations between nodes/possible worlds in a frame. Then the
compositional semantic clauses that define the truth of a formula at a world are translated
into natural deduction inference rules for labelled expressions; second, such rules are ap-
propriately converted into sequent calculus rules; third, the characteristic frame properties
that distinguish the modal system at hand are converted into rules for the relational part of
the calculus following the method of translation of axioms into sequent calculus rules intro-
duced in Negri and von Plato (1998) and further developed in Negri and von Plato (2011).
In this way, the frame properties are carried over to the calculus by the addition of rules
for binary accessibility relations regarded as binary atomic predicates with the labels as ar-
guments. In the case of normal modal logics the method allows to obtain analytic sequent
calculi for any system characterised by arbitrary first-order frame conditions (Dyckhoff and
Negri 2014). All these stages from meaning to rules are detailed in the case of intuitionistic
and standard modal logics in Negri and von Plato (2014).
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The truth conditions for Lewis’ conditional are spelled out in terms of a three-place
similarity relation � among worlds, with the intuitive meaning of “x �w y” being “x is at
least as similar to w as y is”. The following properties are generally assumed for this ternary
relation:

1. Transitivity: If x �w y and y �w z then x �w z,

2. Strong connectedness: Either x �w y or y �w x,

3. L-Minimality: If x �w w then x = w.

Through the method of conversion into rules (cf. Negri and von Plato 1998 or chapter 6
of Negri and von Plato 2001, or, for more generality, part III of Negri and von Plato 2011)
these are converted into the following sequent calculus rules:

x �w z, x �w y, y �w z,Γ⇒ ∆

x �w y, y �w z,Γ⇒ ∆
Trans

x �w y, ,Γ⇒ ∆ y �w x,Γ⇒ ∆

Γ⇒ ∆
SConn

x = w,Γ⇒ ∆

x �w w,Γ⇒ ∆
LMin

Lewis’ truth conditions for the counterfactual conditional are as follows:

w  A� B iff either

1. There is no z such that z  A, or

2. there is x such that x  A and for all y, if y �w x then y  A ⊃ B.

As previously anticipated, the truth condition for A � B has a universal quantification in
the scope of an existential, and thus it is not of a form that can be directly translated into rules
following the method of generation of labelled sequent rules for intensional operators (as
expounded in Negri 2005); a more complex formalism in the line of the method of systems
of rules (cf. Negri 2014) would have to be invoked to maintain the primitive language.

We observe however that the rules for the labelled calculus for Lewis’ conditional can
be presented following the general method of embedding the neighbourhood semantics
for non-normal modal logics into the standard relational semantics normal modal systems
through the use of indexed modalities (cf. the method formulated in general terms in Gas-
quet and Herzig (1996) for classical modal logics and used in Giordano et al. (2003) for
obtaining a tableau calculus for preference-based conditional logics). Specifically, the rela-
tion of similarity is used to define a ternary accessibility relation

xRwy ≡ y �w x

In turn, this relation defines an indexed necessity modality with the truth condition

x  �wA ≡ ∀y.xRwy→ y  A

Then the truth condition for the conditional gets replaced by the following

w : A� B iff either

1. There is no z such that z : A, or
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2. there is x such that x : A and x : �w(A ⊃ B).

Observe that the presentation of a calculus formulated in terms of indexed modalities is
directly faithful to Lewis’ original idea of conditional implication as a variably strict condi-
tional.

The sequent system is obtained as an extension of the propositional part of the contrac-
tion and cut-free sequent calculus G3K for basic modal logic introduced in Negri (2005).
In addition there are rules for the similarity and the equality relation. For the latter, we have
just two rules, reflexivity and the scheme of replacement, ReplAt, where At(x) stands for an
atomic labelled formula x : P or a relation of the form y = z, yRwz, with x one of y,w, z.
Symmetry of equality follows as a special case of ReplAt as well as Euclidean transitivity
which, together with symmetry, gives the usual transitivity.1

The intuitive meaning of the rules for the similarity relation is obtained directly by
rephrasing them in terms of the meaning of the ternary similarity relation. For example,
L-Minimality asserts that every world is as close as possible to itself.

The following rule, corresponding to reflexivity of the relation Rw, will be useful

xRwx,Γ⇒ ∆

Γ⇒ ∆
Ref (x,w in Γ,∆)

The rule need not be taken as a primitive rule of the calculus because it is derivable, simply
by writing its premiss twice and applying SConn. This admissible rule is used to simplify
the derivation of the third of the Lewis axioms below.

The rules for Lewis conditional are obtained from its truth condition following the gen-
eral method of Negri (2005) for turning the truth conditions of alethic modalities into rules
of a labelled sequent calculus: the right to left direction in the semantic explanation gives
the right rule and the other direction gives the left rules. Quantification over world is re-
placed by the condition that certain variables in the rules (eigenvariables) should be fresh.
Since the truth condition for the Lewis conditional is a disjunction of two conditions, there
are two right rules and one left rule with two premisses. The system is presented in Table 1.
We can now state a couple of important results that will be needed below. First we need a
definition of weight of formulas:

Definition 2.1. The weight w(A) of a formula A is defined inductively by the following:
w(γ) = 1 for γ the constant ⊥, an atomic formula, or a relational atom,
w(A ◦ B) = w(A) + w(B) + 1 for ◦ conjunction, disjunction, or implication,
w(�xA) = w(A) + 1,
w(A� B) = w(A) + w(B) + 3.

Observe that since we have taken negation ¬A as defined by A ⊃⊥, we have w(¬A) ≡
w(A) + 2. Observe also that w(�x(A ⊃ B)) < w(A� B).

We can further prove the following lemma:

Lemma 2.2. All the sequents of the form x : A,Γ⇒ ∆, x : A are derivable in G3LC .

Proof. By induction on the weight of A. The base cases, with weight 1 holds because
x : A,Γ⇒ ∆, x : A is either an initial sequent or conclusion of L⊥. For the inductive steps,

1The general reasons for the architecture behind the rules of equality are discussed in section 6.5 of Negri
and von Plato (2001) for extensions of first-order systems and the equality rules for labelled systems in Negri
(2005) and Negri and von Plato (2011).
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Table1 : Lewis basic counterfactual conditional sequent system (G3LC)
based on ternary similarity

Initial sequents:

x : P,Γ⇒ ∆, x : P

Propositional rules:

x : A, x : B,Γ⇒ ∆

x : A&B,Γ⇒ ∆
L&

Γ⇒ ∆, x : A Γ⇒ ∆, x : B
Γ⇒ ∆, x : A&B

R&

x : A,Γ⇒ ∆ x : B,Γ⇒ ∆

x : A ∨ B,Γ⇒ ∆
L∨

Γ⇒ ∆, x : A, x : B
Γ⇒ ∆, x : A ∨ B

R∨

Γ⇒ ∆, x : A x : B,Γ⇒ ∆

x : A ⊃ B,Γ⇒ ∆
L⊃

x : A,Γ⇒ ∆, x : B
Γ⇒ ∆, x : A ⊃ B

R⊃

x :⊥,Γ⇒ ∆
L⊥

Similarity rules:

xRwz, xRwy, yRwz,Γ⇒ ∆

xRwy, yRwz,Γ⇒ ∆
Trans

xRwy,Γ⇒ ∆ yRwx,Γ⇒ ∆

Γ⇒ ∆
SConn (x, y,w in Γ,∆)

x = x,Γ⇒ ∆

Γ⇒ ∆
Ref (x in Γ,∆)

x = y, At(x), At(y),Γ⇒ ∆

x = y, At(x),Γ⇒ ∆
ReplAt

x = w,wRwx,Γ⇒ ∆

wRwx,Γ⇒ ∆
LMin

Conditional rules:

xRwy,Γ⇒ ∆, y : A
Γ⇒ ∆, x : �wA

R�w (y fresh)
xRwy, x : �wA, y : A,Γ⇒ ∆

xRwy, x : �wA,Γ⇒ ∆
L�w

z : A,Γ⇒ ∆,w : A� B
Γ⇒ ∆,w : A� B

R�1 (z fresh)

Γ⇒ ∆,w : A� B, x : A Γ⇒ ∆,w : A� B, x : �w(A ⊃ B)
Γ⇒ ∆,w : A� B

R�2

w : A� B,Γ⇒ ∆, z : A x : A, x : �w(A ⊃ B),Γ⇒ ∆

w : A� B,Γ⇒ ∆
L� (x fresh)
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the propositional cases as well as the case of A ≡ �wA are obtained by root-first application
of the right and left rules of the outermost connective of A and the inductive hypothesis.
If A is B � C we have the following derivation, with the leaves derivable by inductive
hypothesis:

z : B, x : B� C,Γ⇒ ∆, x : B� C, z : B

y : B, y : �x(B ⊃ C), z : B,Γ⇒ ∆, x : B� C, y : B y : B, y : �x(B ⊃ C), z : B,Γ⇒ ∆, x : B� C, y : �x(B ⊃ C)

y : B, y : �x(B ⊃ C), z : B,Γ⇒ ∆, x : B� C
R�2

z : B, x : B� C,Γ⇒ ∆, x : B� C
L�

x : B� C,Γ⇒ ∆, x : B� C
R�1

QED

2.1 Adding the alethic modality

We can consider also alethic modalities defined in terms of a suitable binary accessibility
relation R defined in terms of the given ternary relation. Building on Lewis’ idea2 that
worlds accessible from x are worlds in the union of the set of spheres around x, and using
the relation between spheres and ternary relations, we establish the following equivalence:

xRy iff zRxy for some z

By standard prenex conversions we thus have that the alethic modality defined by R is
expressed, in terms of the ternary accessibility relations, as follows:

x  �A iff ∀zy.zRxy ⊃ y  A

The forcing condition gives the following rules for � in terms of the ternary accessibility
relation

y : A, x : �A, zRxy,Γ⇒ ∆

x : �A, zRxy,Γ⇒ ∆
L�

zRxy,Γ⇒ ∆, y : A
Γ⇒ ∆, x : �A

R� (y, z fresh)

As usual for systems with a classical base, ^A does not have to be treated separately since
it can defined in terms of �A and negation.

The definition of necessity in terms of conditional

�A ≡ ¬A� A

can now be formally derived as an equivalence in the calculus G3LC extended with the
above two rules as follows (for brevity, we omit to copy the main formula in the premisses).
In one direction we have

z : ¬A⇒ z : ¬A

zRxy, y : ¬A, x : �A, y : A⇒ y : A
zRxy, y : ¬A, x : �A⇒ y : A L�

zRxy, x : �A⇒ y : ¬A ⊃ A R ⊃

x : �A⇒ z : �x(¬A ⊃ A)
R�x

z : ¬A, x : �A⇒ x : ¬A� A R�2

x : �A⇒ x : ¬A� A R�1

where the topmost sequents are derivable by Lemma 2.2. For the converse direction we
have

2Cf. Counterfactuals, pp. 22–23.
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zRxy, y : A,⇒ y : A
zRxy⇒ y : A, y : ¬A R¬

zRxy,wRxw,w : ¬A,w : ¬A ⊃ A⇒ y : A
zRxy,wRxw,w : ¬A,w : �x(¬A ⊃ A)⇒ y : A

L�x

zRxy,w : ¬A,w : �x(¬A ⊃ A)⇒ y : A
Ref

zRxy, x : ¬A� A⇒ y : A L�

x : ¬A� A⇒ x : �A R�

where the topmost sequents are derivable, the left one by Lemma 2.2 and the right one by a
step of L ⊃ and Lemma 2.2. Similarly for the equivalence ^A ≡ ¬(A� ¬A) (the proof is
left to the reader).

Observe that the rules of � can be simplified if Rx is a reflexive relation because R then
turns out to be total; the necessity modality then becomes the universal modality and the
rules are simply obtained by removing the accessibility relation.

y : A, x : �A,Γ⇒ ∆

x : �A,Γ⇒ ∆
L�

Γ⇒ ∆, y : A
Γ⇒ ∆, x : �A

R� (y fresh)

If the analysis of counterfactuals is embedded in a Kripke frame for modalities, then the
truth conditions are the following3:

w : A� B iff either:

1. there is no z such that wRz and z : A, or

2. there is x such that wRx and x : A and for all y, if y �w x then y : A ⊃ B.

Accordingly, we give a table for Lewis’ counterfactual conditional with an S4-accessibility
relation. This can be regarded as the “full” system (Table 2).

For the sake of simplicity, we shall refer below only to the version of the system without
accessibility relation, but the same results can be obtained, mutatis mutandis for the full
systems. To consider the system without an accessibility relation is equivalent to assuming
that the accessibility relation is total, i.e. that all the worlds are accessible.

3 Structural properties

The proof of admissibility of the structural rules in G3LC follows the pattern presented in
Negri and von Plato (2011), section 11.4. Likewise, some preliminary results are needed,
namely height-preserving admissibility of substitution (in short, hp-substitution) and height-
preserving invertibility (in short, hp-invertibility) of the rules. We recall that the height of
a derivation is its height as a tree, i.e. the length of its longest branch, and that `n denotes
derivability with derivation height bounded by n in a given system. In what follows, the
results are all referred to system G3LC. The definition of substitution of labels is obtained
by extending in the obvious way the clauses given in the definition of substitution given in
the aforementioned reference to the ternary relations and the indexed modalities of G3LC.

Proposition 3.1. If `n Γ⇒ ∆, then `n Γ(y/x)⇒ ∆(y/x).

Proof. By induction on the height of the derivation. If it is 0, then Γ ⇒ ∆ is an initial
sequent or a conclusion of L ⊥. Then the same is true of Γ(y/x)⇒ ∆(y/x). If the derivation
height is n > 0, we consider the last rule in the derivation. If Γ ⇒ ∆ has been derived by

3Cf. Countefactuals, pp. 49.
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Lewis counterfactual conditional sequent system (G3LC4)
based on comparative similarity in S 4

Initial sequents:

x : P,Γ⇒ ∆, x : P

Propositional rules:

x : A, x : B,Γ⇒ ∆

x : A&B,Γ⇒ ∆
L&

Γ⇒ ∆, x : A Γ⇒ ∆, x : B
Γ⇒ ∆, x : A&B

R&

x : A,Γ⇒ ∆ x : B,Γ⇒ ∆

x : A ∨ B,Γ⇒ ∆
L∨

Γ⇒ ∆, x : A, x : B
Γ⇒ ∆, x : A ∨ B

R∨

Γ⇒ ∆, x : A x : B,Γ⇒ ∆

x : A ⊃ B,Γ⇒ ∆
L⊃

x : A,Γ⇒ ∆, x : B
Γ⇒ ∆, x : A ⊃ B

R⊃

x :⊥,Γ⇒ ∆
L⊥

Similarity rules:

xRwz, xRwy, yRwz,Γ⇒ ∆

xRwy, yRwz,Γ⇒ ∆
Trans

xRwy,Γ⇒ ∆ yRwx,Γ⇒ ∆

Γ⇒ ∆
SConn (x, y,w in Γ,∆)

x = x,Γ⇒ ∆

Γ⇒ ∆
Ref (x in Γ,∆)

x = y, At(x), At(y),Γ⇒ ∆

x = y, At(x),Γ⇒ ∆
ReplAt

x = w,wRwx,Γ⇒ ∆

wRwx,Γ⇒ ∆
LMin

Modal rules:

wRw,Γ⇒ ∆

Γ⇒ ∆
RefR

xRz, xRy, yRz,Γ⇒ ∆

xRy, yRz,Γ⇒ ∆
TransR

zRxy,Γ⇒ ∆, y : A
Γ⇒ ∆, x : �A

R�(y, z fresh)
zRxy, y : A, x : �A,Γ⇒ ∆

zRxy, x : �A,Γ⇒ ∆
L�

zRxy,Γ⇒ ∆, x : ^A, y : A
zRxy,Γ⇒ ∆, x : ^A

R^
zRxy, y : A, x : ^A,Γ⇒ ∆

x : ^A,Γ⇒ ∆
L^(y, z fresh)

Conditional rules:

xRwy,Γ⇒ ∆, y : A
Γ⇒ ∆, x : �wA

R�w (y fresh)
xRwy, x : �wA, y : A,Γ⇒ ∆

xRwy, x : �wA,Γ⇒ ∆
L�w

wRz, z : A,Γ⇒ ∆,w : A� B
Γ⇒ ∆,w : A� B

R�1 (z fresh)

wRx,Γ⇒ ∆,w : A� B, x : A wRx,Γ⇒ ∆,w : A� B, x : �w(A ⊃ B)
wRx,Γ⇒ ∆,w : A� B

R�2

wRz,w : A� B,Γ⇒ ∆, z : A wRz,wRx, x : A, x : �w(A ⊃ B),Γ⇒ ∆

wRz,w : A� B,Γ⇒ ∆
L� (x fresh)
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a propositional or a relational rule, or by L�w or R �2, we apply the induction hypoth-
esis and then the rule. Rules with variable conditions require that we avoid a clash of the
substituted variable with the fresh variable in the premiss. This is the case of R�w, R�1,
and L�. So, if Γ ⇒ ∆ has been derived by any of these rules, we apply the inductive hy-
pothesis twice to the premiss, first to replace the fresh variable with another fresh variable
different, if necessary, from the one we want to substitute, then to make the substitution,
and then apply the rule. QED

Proposition 3.2. The rules of left and right weakening are hp-admissible in G3LC.

Proof. Straightforward induction, with a similar proviso as in the above proof for rules with
variable conditions. QED

Next, we prove hp-invertibility of the rules of G3LC, i.e. for every rule of the form
Γ′⇒∆′

Γ⇒∆
, if `n Γ ⇒ ∆ then `n Γ′ ⇒ ∆′, and for every rule of the form Γ′⇒∆′ Γ′′⇒∆′′

Γ⇒∆
if

`n Γ⇒ ∆ then `n Γ′ ⇒ ∆′ and `n Γ′′ ⇒ ∆′′.

Lemma 3.3. All the propositional rules of G3LC are hp-invertible.

Proof. Similar to the proof of Lemma 11.7 in Negri and von Plato (2011). QED

Lemma 3.4. The following hold:
(i) If `n Γ⇒ ∆, x : �wA, then `n xRwy,Γ⇒ ∆, y : A,

(ii) If `n w : A� B,Γ⇒ ∆, then `n x : A, x : �w(A ⊃ B),Γ⇒ ∆.

Proof. Both proofs are by induction on n.
(i) Base case: suppose that Γ ⇒ ∆, x : �wA is an initial sequent or conclusion of L ⊥.

Then, in the former case, x : �wA not being atomic, xRwy,Γ⇒ ∆, y : A is an initial sequent,
in the latter it is a conclusion of L ⊥. Inductive step: assume hp-invertibility up to n, and
assume `n+1 Γ ⇒ ∆, x : �wA. If x : �wA is principal, then the premiss xRwy,Γ ⇒ ∆, y : A
(possibly obtained through hp-substitution) has a derivation of height n. Otherwise, it has
one or two premisses of the form Γ′ ⇒ ∆′, x : �wA of derivation height ≤ n. By induction
hypothesis we have xRwy,Γ′ ⇒ ∆′, y : A for each premiss, with derivation height at most n.
Thus, `n+1 xRwy, y : A,Γ⇒ ∆, y : A.

(ii) Base case: Similar to the above. Inductive step: assume hp-invertibility up to n, and
assume `n+1 w : A � B,Γ ⇒ ∆. If w : A � B is principal in the last rule, then the
the left premiss is, or gives by hp substitution on the eigenvariable, a derivation of height
at most n of x : A, x : �w(A ⊃ B),Γ ⇒ ∆. If the last rule is a relational rule, or a logical
rule in which w : A � B is not principal, consider the one or two premisses of the form
w : A � B,Γ′ ⇒ ∆′ of derivation height ≤ n. Then, by induction hypotesis, we have at
most `n x : A, x : �w(A ⊃ B),Γ′ ⇒ ∆′ for each premiss. By application of the last rule, the
conclusion `n+1 x : A, x : �w(A ⊃ B),Γ⇒ ∆ follows. QED

Observe that Lemma 3.4(ii) states hp-invertibility of L� with respect to the second
premiss; its hp-invertibility with respect to the first premiss is a special case of Proposition
3.2. Therefore, as a general result, we have:

Corollary 3.5. All the rules of G3LC are hp-invertible.

Proof. By Lemmas 3.3 and 3.4, and Proposition 3.2 for all the other cases. QED
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The rules of contraction of G3LC have the following form, where φ is either a relational
atom of the form xRwy or a labelled formula x : A:

φ, φ,Γ⇒ ∆

φ,Γ⇒ ∆
LC

Γ⇒ ∆, φ, φ

Γ⇒ ∆, φ
RC

Since relational atoms never appear on the right, there are just three contraction rules to be
considered. We do not need to give different names for these rules since we can prove that
all of them are hp-admissible:

Theorem 3.6. The rules of left and right contraction are hp-admissible in G3LC.

Proof. By simultaneous induction on the height of derivation for left and right contraction.
If n = 0 the premiss is either an initial sequent or a conclusion of a zero-premiss rule.

In each case, the contracted sequent is also an initial sequent or a conclusion of the same
zero-premiss rule.

If n > 0, consider the last rule used to derive the premiss of contraction. If the con-
traction formula is not principal in it, both occurrences are found in the premisses of the
rule and they have a smaller derivation height. By the induction hypothesis, they can be
contracted and the conclusion is obtained by applying the rule to the contracted premisses.
If the contraction formula is principal in it, we distinguish three cases: 1. A rule in which
the principal formulas appear also in the premiss (such as Trans, SConn, LMin, the left rule
for �w or the rules for�). 2. A rule in which the active formulas are proper subformulas
of the principal formula (such as the rules for &, ∨, ⊃). 3. A rule in which active formulas
are relational atoms and proper subformulas of the principal formula (like rule R�w). 4.
Rule L�.

In the first case we have, for instance,

xRwy, x : �wA, x : �wA, y : A,Γ⇒ ∆

xRwy, x : �wA, x : �wA,Γ⇒ ∆
L�w

By the induction hypothesis applied to the premiss we obtain

xRwy, x : �wA, y : A,Γ⇒ ∆

with height n, and by a step of L�w we have

xRwy, x : �wA,Γ⇒ ∆

with height n + 1.
In the second case, contraction is reduced to contraction on shorter derivations (and

smaller formulas).
In the third case, a subformula of the contraction formula and a relational atom are

found in the premiss, for instance

xRwy,Γ⇒ ∆, x : �wA, y : A
Γ⇒ ∆, x : �wA, x : �wA

R�w

By Lemma 3.4 applied to the premiss, we obtain a derivation of height n − 1 of

xRwy, xRwy,Γ⇒ ∆, y : A, y : A

10



that yields, by the induction hypothesis for left and right contraction, a derivation of height
n − 1 of

xRwy,Γ⇒ ∆, y : A

and the conclusion Γ⇒ ∆, x : �wA follows in one more step by R�w.
Finally, if the premiss of contraction is derived by L� we have

w : A� B,w : A� B,Γ⇒ ∆, z : A x : A, x : �w(A ⊃ B),w : A� B,Γ⇒ ∆

w : A� B,w : A� B,Γ⇒ ∆
L�

By inductive hypothesis applied to the left premiss we have a derivation of height n − 1 of
w : A� B,Γ⇒ ∆; by Lemma 3.4 and inductive hypothesis applied to the second premiss
we have a derivation of height n − 1 of x : A, x : �w(A ⊃ B),Γ ⇒ ∆. Thus, by a step of
L� we obtain a derivation of height n of w : A� B,Γ⇒ ∆. QED

Theorem 3.7. Cut is admissible in G3LC.

Proof. The proof is by induction on the weight of the cut formula and subinduction on the
sum of the heights of derivations of the premisses (cut-height). The cases pertaining initial
sequents and the propositional rules of the calculus are dealt with as in Theorem 11.9 of
Negri and von Plato (2011) and therefore omitted here. Also the cases with cut formula not
principal in both premisses of cut are dealt in the usual way by permutation of cut, with
possibly an application of hp-substitution to avoid a clash with the fresh variable in rules
with variable condition. So, the only cases to focus on are those with cut formula of the
form �wA or A� B which is principal in both premisses of cut. The former case presents,
apart from the indexing on the accessibility relation, no difference with respect to the case
of a plain modality, so we proceed to analyse the latter. This case splits into two cases,
depending on whether the left premiss is derived by R�1 or R�2.

In the first case we have a derivation of the form
D1

y : A,Γ⇒ ∆,w : A� B
Γ⇒ ∆,w : A� B

R�1

D2
w : A� B,Γ′ ⇒ ∆′, z : A

D3
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A� B,Γ′ ⇒ ∆′
L�

Γ,Γ′ ⇒ ∆,∆′
Cut

This is converted into a derivation with three cuts of reduced height as follows (we have to
split the result of the conversion to fit it in the page): First, we have a derivationD4

D1
Γ⇒ ∆,w : A� B

D2
w : A� B,Γ′ ⇒ ∆′, z : A

Γ,Γ′ ⇒ ∆,∆′, z : A Cut

Further, by application of hp-substitution, we have another derivationD5

D1(z/y)
z : A,Γ⇒ ∆,w : A� B

D2
w : A� B,Γ′ ⇒ ∆′, z : A

D3
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A� B,Γ′ ⇒ ∆′
L�

z : A,Γ,Γ′ ⇒ ∆,∆′
Cut

The two derivations are then used as premisses of a third cut of reduced weight as follows

Γ,Γ′ ⇒ ∆,∆′, z : A z : A,Γ,Γ′ ⇒ ∆,∆′

Γ2,Γ′2 ⇒ ∆2,∆′2
Cut

Γ,Γ′ ⇒ ∆,∆′
Ctr∗
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In the second case we have a derivation of the form

D1
Γ⇒ ∆,w : A� B, x : A

D2
Γ⇒ ∆,w : A� B, x : �w(A ⊃ B)

Γ⇒ ∆,w : A� B
R�2

D3
w : A� B,Γ′ ⇒ ∆′ , z : A

D4
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A� B,Γ′ ⇒ ∆′
L�

Γ,Γ′ ⇒ ∆,∆′
Cut

The cut is converted into six cuts of reduced height or weight of cut formula as follows:
First we have the derivation (call itD5)

D1
Γ⇒ ∆,w : A� B, x : A

D3
w : A� B,Γ′ ⇒ ∆′, z : A

D4
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A� B,Γ′ ⇒ ∆′

Γ,Γ′ ⇒ ∆,∆′, x : A Cut

with a cut of reduced height. We also have the derivation (call itD6)

D2
Γ⇒ ∆,w : A� B, x : �w(A ⊃ B)

D3
w : A� B,Γ′ ⇒ ∆′, z : A

D4
y : A, y : �w(A ⊃ B),Γ′ ⇒ ∆′

w : A� B,Γ′ ⇒ ∆′
L�

Γ,Γ′ ⇒ ∆,∆′, x : �w(A ⊃ B)
Cut D4(x/y)

x : A, x : �w(A ⊃ B),Γ′ ⇒ ∆′

x : A,Γ,Γ′2 ⇒ ∆,∆′2
Cut

with two cuts, the upper of reduced height, and the lower of reduced weight; finally we
obtain the derivation

D5 D6

Γ2,Γ′3 ⇒ ∆2,∆′3
Cut

Γ,Γ′ ⇒ ∆,∆′
Ctr∗

with a cut or reduced weight and repeated applications of contraction. QED

To ensure the consequences of cut elimination we need to establishing another crucial
property of our system. We say that a labelled system has the subterm property if every
variable occurring in any derivarion is either an eigenvariable or occurs in the conclusion.4

Clearly, the rules of G3LC do not, as they stand, satisfy the subterm property, but we can
prove that we can, without loss of generality, restrict proof search to derivations that have
the subterm property.

Proposition 3.8. Every sequent derivable in G3LC is derivable by a derivation that satis-
fies the subterm property.

Proof. By induction on the height of the derivation. For the inductive step, the conclusion
is clear if the last step is one of the rules in which all the labels in the premisses satisfy
the subterm property. For the other rules (in this specific calculus, rules Ref and R�1),
we consider the violating cases in which the premisses contain a label which is not in the
conclusion. Using hp-substitution, we replace it to a label in the conclusion and obtain a
derivation of the same height that satisfies the subterm property. QED

By the above result, in the following we shall always restrict attention to derivations
with the subterm property.

4This property is called analyticity in Dyckhoff and Negri (2012).
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4 Lewis’ axioms and rules

In this Section we shall prove that Lewis’ axiomatic system for counterfactuals VC, re-
garded as Lewis’ official logic of counterfactuals, is captured by our system G3LC by
showing that Lewis’ axioms are provable in G3LC and that the inference rules of VC are
admissible.5 Together with a proof of soundness of our rules with respect to Lewis’ se-
mantics for counterfactuals based on a ternary accessibility relation, this result will give
an indirect completeness proof for our system. We shall however present in Section 5 a
direct completeness proof for G3LC with respect to the same semantics. For brevity, in the
following proofs the repetition of the main formula in the premisses is not indicated.

Proposition 4.1. The following rules are admissible in G3LC:

1. Modus Ponens: `A `A⊃B
`B

2. Deduction within Conditionals: for any n ≥ 1

` A1& . . .&An ⊃ B
` ((D� A1)& . . .&(D� An)) ⊃ (D� B)

3. Interchange of logical equivalents: if ` A ⊃⊂ B and ` Φ(A) then ` Φ(B), where Φ is
an arbitrary formula in the language.

For the proof, see the Appendix, on Section 8.1.

Next, we prove that all the axioms of VC are derivable in G3LC, i.e. for each axiom A the
sequent⇒ x : A is derivable in the calculus where x is an arbitrary label.

Proposition 4.2. The following axioms are derivable in G3LC:

1. Propositonal tautologies,

2. A� A,

3. (¬A� A) ⊃ (B� A),

4. (A� ¬B) ∨ (((A&B)� C) ⊃⊂ (A� (B ⊃ C))),

5. (A� B) ⊃ (A ⊃ B),

6. (A&B) ⊃ (A� B).

For the proof, see the Appendix, on Section 8.2.

4.1 Equivalence with L-SC

We can show that the rules of G3LC are interderivable with Lewis’ defining semantic con-
dition for the counterfactual, suitably formalized in a first-order language with variables
ranging over possible worlds as follows:

w : A� B↔ ∀z(z : ¬A) ∨ ∃x(x : A & x : �w(A ⊃ B)) L-SC
5Cf. p. 132 of Counterfactuals.
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For brevity, we will shorten the right-hand side of the biconditional L-SC with the letter K.
Observe that the proofs below use quantification over worlds that is not part of the

calculus that we have introduced. The derivations have to be read as a formal account of
the reasoning that can be done at the meta-level to justify the rules in view of the semantic
explanation of the counterfactual, and vice versa. As possible worlds can be regarded as
first-order entities, we take the usual rules for the quantifiers for that purpose.

Given the above constraints, we show:

Proposition 4.3. The rules of G3LC are interderivable with L-SC.

Proof. To save space, we shall not copy the main formula in the premisses. The following
is a proof that L� gives the left-to-right direction of L-SC:

Lemma 2.2
z : A⇒ z : A, . . .

Lemma 2.2
x : A⇒ x : A, . . .

Lemma 2.2
x : A, x : �w(A ⊃ B)⇒ x : �w(A ⊃ B)

x : A, x : �w(A ⊃ B)⇒ x : A & x : �w(A ⊃ B)
R &

x : A, x : �w(A ⊃ B)⇒ ∃x(x : A & x : �w(A ⊃ B))
R∃

x : A, x : �w(A ⊃ B), z : A⇒ ∃x(x : A & x : �w(A ⊃ B))
LW

w : A� B, z : A⇒ ∃x(x : A & x : �w(A ⊃ B))
L�

w : A� B⇒ z : ¬A,∃x(x : A & x : �w(A ⊃ B))
R¬

w : A� B⇒ ∀z(z : ¬A),∃x(x : A & x : �w(A ⊃ B))
R∀

w : A� B⇒ K
R∨

⇒ w : A� B ⊃ K
R⊃

The following is a derivation of the right-to-left direction of L-SC that uses rules R�1 and
R�2:

Lemma 2.2
y : A⇒ y : A

y : ¬A, y : A⇒
L¬

∀z(z : ¬A), y : A⇒
L∀

∀z(z : ¬A)⇒ w : A� B
R�1

Lemma 2.2
x : A⇒ x : A

Lemma 2.2
. . . , x : �w(A ⊃ B)⇒ x : �w(A ⊃ B)

x : A, x : �w(A ⊃ B)⇒ w : A� B
R�2

x : A & x : �w(A ⊃ B)⇒ w : A� B
L &

∃x(x : A & x : �w(A ⊃ B))⇒ w : A� B
L∃

K ⇒ w : A� B
L∨

⇒ K ⊃ w : A� B
L⊃

For the remaining derivations that prove the equivalence, we use the right-to-left direction
of L-SC to get first a derivation of rule R�1

z : A,Γ⇒ ∆,w : A� B
Γ⇒ ∆, z : ¬A,w : A� B

R¬

Γ⇒ ∆,∀z(z : ¬A),w : A� B
R∀

Γ⇒ ∆,∀z(z : ¬A),∃x(x : A & x : �w(A ⊃ B)),w : A� B
RW

Γ⇒ ∆,K,w : A� B
R∨

K ⇒ w : A� B
Γ⇒ ∆,w : A� B

Cut

and then a derivation of R�2 by the second disjunct

Γ⇒ ∆, x : A,w : A� B Γ⇒ ∆, x : �w(A ⊃ B),w : A� B
Γ⇒ ∆, x : A & x : �w(A ⊃ B),w : A� B

R &

Γ⇒ ∆,∃x(x : A & x : �w(A ⊃ B)),w : A� B
R∃

Γ⇒ ∆,∀z(z : ¬A),∃x(x : A & x : �w(A ⊃ B)),w : A� B
RW

Γ⇒ ∆,K,w : A� B
R∨

K ⇒ w : A� B
Γ⇒ ∆,w : A� B

Cut
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Finally we have a derivation of L� using the left-to-right direction of L-SC

w : A� B⇒ K

w : A� B,Γ⇒ ∆, z : A
w : A� B, z : ¬A,Γ⇒ ∆

L¬

w : A� B,∀z(z : ¬A),Γ⇒ ∆
L∀

x : A, x : �w(A ⊃ B),Γ⇒ ∆

x : A & x : �w(A ⊃ B),Γ⇒ ∆
L &

∃x(x : A & x : �w(A ⊃ B)),Γ⇒ ∆
L∃

w : A� B,K,Γ⇒ ∆
L∨

w : A� B,Γ⇒ ∆
Cut

QED

5 Completeness

In this Section we shall give a direct completeness proof for G3LC with respect to Lewis
semantics. The proof has the overall structure of the completeness proof for labelled sys-
tems for modal and non-classical logics given in Negri (2009) and Negri (2014a), but the
semantics is here based on comparative similarity systems rather than on Kripke models.

Definition 5.1. Let W be the set of variables (labels) used in derivations in G3LC. A
comparative similarity system S is an assignment to every w ∈ W of a two-place relation
�w with the aforementioned conditions:

1. Transitivity: If x �w y and y �w z then x �w z,

2. Strong connectedness: Either x �w y or y �w x,

3. L-Minimality: If x �w w then x = w.

An interpretation of the labels in W in S a map ~·� : W → S. A valuation of atomic
formulas in S is a mapV : AtFrm → P(S) that assigns to each atom P the set of elements
ofW in which P holds. Instead of writing w ∈ V(P), we adopt the standard notation w  P.

Valuations are extended to arbitrary formulas by the following inductive clauses:
V⊥: x  ⊥ for no x.
V&: x  A&B iff x  A and x  B.
V∨: x  A ∨ B iff x  A or x  B.
V⊃: x  A ⊃ B iff if x  A then x  B.
V�w : x  �wA iff for all y, if y �w x then y  A.
V�: x  A� B iff either z  A for no z, or y  A and y  �x(A ⊃ B) for some y.

Definition 5.2. A labelled formula x : A (resp. a relational atom xRwy) is true for an
interpretation ~·� and a valuation V in a system S iff ~x�  A (resp. ~y� �~w� ~x�).
A sequent Γ ⇒ ∆ is true for an interpretation ~·� and a valuation V in a system S if,
whenever for all labelled formulas x : A and relational atom xRwy in Γ it is the case that
~x�  A and ~y� �~w� ~x�, then for some w : B in ∆, ~w�  B. A sequent is valid in a
system S iff it is true for every interpretation and valuation in S.

Theorem 5.3. (Soundness) If a sequent is derivable in G3LC then it is valid in every
comparative similarity system S where conditions (1)-(3) hold.

For the proof, see the Appendix, on Section 8.3.
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Theorem 5.4. (Completeness) Let Γ ⇒ ∆ be a sequent in the language of G3LC. If it is
valid in every comparative similarity system, it is derivable in G3LC.

Proof. Immediate by Proposition 4.1, Proposition 4.2, Theorem 5.3 and Lewis’ own com-
pleteness proof (cf. Countefactuals, pp. 118-134). QED

Completeness can be established also as a corollary of the following:

Theorem 5.5. Let Γ⇒ ∆ be a sequent in the language of G3LC. Then either it is derivable
in G3LC or it has a countermodel in S.

For the proof, see Section 8.4 of the Appendix.

6 Decidability

In general cut elimination alone does not ensure terminating proof search in a given calculus.
The exhaustive proof search used in the proof of Theorem 5.5 is not a decision method nor
an effective method of finding countermodels when proof search fails, as it may produce
infinite branches and therefore infinite countermodels. By way of example, consider the
following branch in the search for a proof of the sequent ⇒ w : �x¬�xA ⊃ �xB (this is
analogous to the case for S4 discussed in Section 11.5 of Negri and von Plato 2011):

...
wRxy, yRxz,wRxz, zRxt,w : �x¬�xA⇒ t : A, z : A, y : B
wRxy, yRxz,wRxz,w : �x¬�xA⇒ z : �xA, z : A, y : B

R�x

wRxy, yRxz,wRxz,w : �x¬�xA, z : ¬�xA⇒ z : A, y : B
L⊃

wRxy, yRxz,wRxz,w : �x¬�xA⇒ z : A, y : B
L�x

wRxy, yRxz,w : �x¬�xA⇒ z : A, y : B
Trans

wRxy,w : �x¬�xA⇒ y : �xA, y : B
R�x

wRxy,w : �x¬�xA, y : ¬�xA⇒ y : B
L⊃

wRxy,w : �x¬�xA⇒ y : B
L�x

w : �x¬�xA⇒ w : �xB
R�x

⇒ w : �x¬�xA ⊃ �xB
R⊃

Clearly the search goes on forever because of the new accessibility relations that are created
by the right rules for the indexed modalities, R�x, together with Trans. To see that this
search does not end up in a derivation, we may nevertheless exhibit a finite countermodel
by a suitable truncation of the otherwise infinite countermodel provided by the completeness
proof.

Following the method of finitization of countermodels generated by proof search in a
labelled calculus, presented for intuitionistic propositional logic in Negri (2014a) and for
multi-modal logics in Garg et al. (2012), we define a saturation condition for branches on a
reduction tree. Intuitively, a branch is saturated when its leaf is not an initial sequent nor a
conclusion of L⊥, and when it is closed under all the rules except for R�x in case it generates
a loop modulo new labelling. To obtain the finite countermodel, we define a partial order
through the reflexive and transitive closure of the similarity relation together with a relation
that witnesses such loops. Let ↓ Γ(↓ ∆) be the union of the antecedents (succedents) in a
branch from the endsequent up to Γ⇒ ∆.

Let us define the following sets of formulas:
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F 1
Γ⇒∆

(w) ≡ {A |w : A ∈↓Γ} ∪ {�xA | y : �xA, yRxw ∈ Γ}

F 2
Γ⇒∆

(w) ≡ {A |w : A ∈↓∆}

and let w ≤Γ⇒∆ y iff F i
Γ⇒∆

(w) ⊆ F i
Γ⇒∆

(y) for i = 1, 2.

Definition 6.1. A branch in a proof search up to a sequent Γ ⇒ ∆ is saturated if the
following conditions are satisfied:

1. If w is a label in Γ,∆, then w = w and wRxw are in Γ.

2. If wRxy and yRxz are in Γ, then wRxz is.

3. If wRwx is in Γ, then x = w is.

4. If w, x, y are labels in Γ,∆, then either wRxy or yRxw is in Γ

5. There is no w such that w : ⊥ is in Γ.

6. If w : A&B is in ↓Γ, then w : A and w : B are in ↓Γ.

7. If w : A&B is in ↓∆, then either w : A or w : B is in ↓∆.

8. If w : A ∨ B is in ↓Γ, then either w : A or w : B is in ↓Γ.

9. If w : A ∨ B is in ↓∆, then w : A and w : B are in ↓∆.

10. If w : A ⊃ B is in ↓Γ, then either w : A is in ↓∆ or w : B is in ↓Γ.

11. If w : A ⊃ B is in ↓∆, then w : A is in ↓Γ and w : B is in ↓∆.

12. If w : �xA and wRxy are in Γ, then y : A is in ↓Γ.

13. If w : �xA is in ↓∆, then either

a. for some y, there is wRxy in Γ and y : A is in ↓∆, or
b. for some y such that y , w, there is yRxw in Γ and w ≤Γ⇒∆ y.

14. If w : A � B is in Γ, then either z : A is in ↓ ∆ for z in Γ,∆, or for some y,
y : A, y : �w(A ⊃ B) is in Γ.

15. If w : A� B is in ↓∆, then y : A is in ↓Γ and either z : A or z : �w(A ⊃ B) is in ↓∆

for z in Γ,∆.

Notice that this definition blocks the proof search in the example above when it produces
the formula t : �xA because of clause 13.b (since we then have t ≤Γ⇒∆ z). The finite
countermodel is defined as in the proof of Theorem 5.5 starting from the sets ↓Γ, ↓∆.

Proposition 6.2. The finite countermodel defined by the saturation procedure is a compar-
ative similarity system.

For the proof, see the Appendix, on Section 8.5. We further observe that by the subterm
property the number of distinct formulas in the sequents of an attempted proof is bounded.
Since duplication of the same labelled formulas is not possible by hp-admissibility of con-
traction, we can prove the following result:

Theorem 6.3. The system G3LC allows a terminating proof search.
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Proof. Let F be the set of (unlabelled) subformulas of the endsequent and consider a string
of labels w0Rxw1,w1Rxw2,w2Rxw3, . . . generated by the saturation procedure. For an ar-
bitrary x j consider the values of the sets F i(xk) for k < j at the step in which x j was
introduced. Clearly F i(x j) * F i(xk) or else x j would not have been introduced. So each
new label corresponds to a new subset of F × F. Since the number of these subsets is finite,
also the length of each chain of labels must be finite. QED

7 Conclusion

We presented G3LC, a Gentzen-style sequent calculus for David Lewis’ logic of counter-
factuals VC, and proved it sound and complete with respect to Lewis’ semantics. In G3LC,
substitution of labels and left and right weakening and contraction are height-preserving
admissible and cut is admissible. Moreover, all the rules are invertible. Finally, we proved
a decidability result based on a bounded procedure of root-first proof search that for any
given sequent either provides a derivation or a countermodel.

What remains to be spelled out in detail are similar results for the calculus G3LC4, i.e.
the embedding of G3LC in an S4 modal logic, which we presented in Section 2. We expect
these further results to be achieved by routine application of the methods used here.

In his book Countefactuals, Lewis presents a class V of axomatic systems for condi-
tional logics, among which is VC. We leave for further work a detailed deductive analysis
of the entire class, as well as of conditional logics that are based on alternative versions of
Lewis’ semantics.

With respect to related work, it is worth mentioning that Lellman and Pattinson (2012)
present an unlabelled sequent calculus for Lewis’ logic with the binary connective “at least
as possible as” as primitive. Since, according to Lewis, if p were the case, then q would
be the case is definable in terms of p is at least as possible as q plus propositional mate-
rial, their work can be seen as indirectly providing an analysis of Lewis conditional logics.
However, their proof-theoretic results fail to carry over straightforwardly when the calculus
is extended by the explicit addition of Lewis counterfactual (Lellman and Pattinson 2012,
p.13). The work by Olivetti et al. (2007) presents a labelled sequent calculus for Lewis con-
ditional logics and is methodologically close to our approach but rests crucially on the limit
assumption. In so far as Lewis’ preferred interpretation of the counterfactual conditional
notoriously rejects the limit assumption, the strategy followed in the present paper appears
to be a more faithful proof-theoretic analysis of Lewis’ work. Priest (2008) gives a survey
of the closely related topic of tableau systems for conditional logics.
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8 Appendix

8.1 Proof of Proposition 4.1

Proof. (1) The rule of modus ponens of an axiomatic system is translated as the sequent
calculus rule

⇒ x : A ⇒ x : A ⊃ B
⇒ x : B

The rule is shown admissible in G3LC using invertibility of R ⊃ and admissibility of cut.
(2) Assume ⇒ z : A1& . . .&An ⊃ B for an arbitrary z. By invertibility of R ⊃ and

L& we obtain z : A1, . . . , z : An ⇒ z : B. Then for an arbitrary x we have to derive
⇒ x : ((D� A1)& . . .&(D� An)) ⊃ (D� B). Consider the following proof search:6

z : D⇒ z : D

yi : D⇒ yi : D

y1Rxw1, . . . , ynRxwn, y1 : �x(D ⊃ A1), . . . , yn : �x(D ⊃ An),w1 : D, . . . ,wn : D⇒ w1 : B, . . . ,wn : B

y1Rxw1, . . . , ynRxwn, y1 : �x(D ⊃ A1), . . . , yn : �x(D ⊃ An)⇒ w1 : D ⊃ B, . . . ,wn : D ⊃ B
R⊃,n times

y1 : �x(D ⊃ A1), . . . , yn : �x(D ⊃ An)⇒ y1 : �x(D ⊃ B), . . . , yn : �x(D ⊃ B)
R�x ,n times

y1 : D, . . . , yn : D, y1 : �x(D ⊃ A1), . . . , yn : �x(D ⊃ An)⇒ x : D� B
R�2 ,n times

z : D, x : D� A1, . . . , x : D� An ⇒ x : D� B
L�,n times

x : D� A1, . . . , x : D� An ⇒ x : D� B
R�1

x : (D� A1)& . . .&(D� An)⇒ x : D� B
L&,n times

⇒ x : ((D� A1)& . . .&(D� An)) ⊃ (D� B)
R⊃

Observe that we cannot conclude by applications of L�x to obtain a sequent derivable
from the assumption because the formulas in the right topsequent of the above tree have
different labels by the freshness conditions. Instead we apply at most n times SConn with
the following pattern on the right premiss:

...
y1Rxy3, y1Rxy2,Γ

′′ ⇒ ∆

...
y3Rxy1, y1Rxy2,Γ

′′ ⇒ ∆

y1Rxy2,Γ
′ ⇒ ∆

...
y2Rxy3, y2Rxy1,Γ

′′′ ⇒ ∆

...
y3Rxy2, y2Rxy1,Γ

′′′ ⇒ ∆

y2Rxy1,Γ
′ ⇒ ∆

y1Rxw1, . . . , ynRxwn,Γ⇒ ∆

Thus by Trans at each topsequent there is a yh such that y1Rxyh, . . . , ynRxyh. Correspond-
ingly, there is a wh such that (again by n applications of Trans), y1Rxwh, . . . , ynRxwh. On
this wh we apply n times L�x, obtaining the following (the relational atoms are omitted for
brevity):

wh : D⇒ wh : D wh : A1, . . . ,wh : An ⇒ wh : B
wh : D ⊃ A1, . . . ,wh : D ⊃ An,wh : D⇒ wh : B

L⊃,n times

y1 : �x(D ⊃ A1), . . . , yn : �x(D ⊃ An),wh : D⇒ wh : B
L�x,n times

6For brevity, some of the repetitions of principal formulas in the premisses as well as the derivable left
premisses of R�2 have been omitted. Use of indexes for formulas should be obvious.
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The right premiss now derivable from the assumption (with the arbitrary label z chosen to
be wh).

(3) By induction on the structure of Φ. If Φ is⊥ or an atomic formula the claim is trivial;
if it is a conjunction, disjunction, implication, or an indexed modality, corresponding steps
and invertibility of R ⊃ give the claim. If Φ is a conditional and the interchange is done in
the succedent, the conclusion follows from (2). If the interchange is in the antecedent, the
claim follows from admissibility of

` A ⊃⊂ B
A� C ` B� C

First, we observe that from the assumption we have that for arbitrary y, z the sequents y :
A ⇒ y : B and z : B ⇒ z : A are derivable, hence also the sequent y : �w(A ⊃ C) ⇒ y :
�w(B ⊃ C) is. We then have the following derivation

z : B⇒ z : A
. . . y : A⇒ y : B . . . . . . y : �w(A ⊃ C)⇒ y : �w(B ⊃ C) . . .

y : B, y : �w(A ⊃ C)⇒ w : B� C
R�2

z : B,w : A� C ⇒ w : B� C
L�

w : A� C ⇒ w : B� C
R�1

QED

8.2 Proof of Proposition 4.2

Proof. All propositional tautologies are clearly derivable because G3LC is an extension of
a complete calculus for classical propositional logic. For items 2–6 we have the following
derivations:
(2)

z : A⇒ z : A

zRxy, z : A, y : A⇒ y : A
zRxy, z : A⇒ y : A ⊃ A

R⊃

z : A⇒ z : �x(A ⊃ A)
R�x

z : A⇒ x : A� A
R�2

⇒ x : A� A
R�1

(3)

z : B⇒ z : B

y : A⇒ y : A
⇒ y : A, y : ¬A

R⊃

w : A⇒ w : A
⇒ w : ¬A,w : A

R⊃

w : ¬A⇒ w : ¬A
L⊃

w : A⇒ w : A
w : ¬A,w : A⇒

L⊃

wRxw,w : ¬A,w : ¬A ⊃ A⇒
L⊃

wRxw,w : ¬A,w : �x(¬A ⊃ A)⇒
L�x

w : ¬A,w : �x(¬A ⊃ A)⇒
Ref

zRxy, y : B, x : ¬A� A⇒ y : A
L�

zRxy, x : ¬A� A⇒ y : B ⊃ A
R⊃

x : ¬A� A⇒ z : �x(B ⊃ A)
R�x

z : B, x : ¬A� A⇒ x : B� A
R�2

x : ¬A� A⇒ x : B� A
R�1

⇒ x : (¬A� A) ⊃ (B� A)
R⊃

(4)
...

⇒ x : A� ¬B, x : A&B� C ⊃⊂ A� (B ⊃ C)
R&

⇒ x : (A� ¬B) ∨ (A&B� C ⊃⊂ A� (B ⊃ C))
R∨
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The proof branches; we continue below with the two premisses

⇒ x : A� ¬B, x : ((A&B)� C) ⊃ (A� (B ⊃ C))

and
⇒ x : A� ¬B, x : (A� (B ⊃ C)) ⊃ ((A&B)� C)

Proof of the former:7

y : A⇒ y : A y : B⇒ y : B
y : A, y : B⇒ y : A&B

R&

t : A⇒ t : A t : B⇒ t : B
t : A, t : B⇒ t : A&B

R&
t : C ⇒ t : C

t : A&B ⊃ C, t : A, t : B⇒ t : C
L⊃

t : A&B ⊃ C, t : A⇒ t : B ⊃ C
R⊃

wRxt, t : A&B ⊃ C ⇒ t : A ⊃ (B ⊃ C)
R⊃

wRxt,w : �x(A&B ⊃ C)⇒ t : A ⊃ (B ⊃ C)
L�x

w : A,w : B,w : �x(A&B ⊃ C)⇒ w : �x(A ⊃ (B ⊃ C))
R�x

w : A,w : B,w : �x(A&B ⊃ C)⇒ x : A� (B ⊃ C)
R�2

w : A&B,w : �x(A&B ⊃ C)⇒ x : A� (B ⊃ C)
L&

y : A, y : B, x : A&B� C ⇒ x : A� (B ⊃ C)
L�

y : A, x : A&B� C ⇒ y : ¬B, x : A� (B ⊃ C)
R⊃

zRxy, x : A&B� C ⇒ y : A ⊃ ¬B, x : A� (B ⊃ C)
R⊃

x : A&B� C ⇒ z : �x(A ⊃ ¬B), x : A� (B ⊃ C)
R�x

z : A, x : A&B� C ⇒ x : A� ¬B, x : A� (B ⊃ C)
R�2

x : A&B� C ⇒ x : A� ¬B, x : A� (B ⊃ C)
R�1

⇒ x : A� ¬B, x : A&B� C ⊃ A� (B ⊃ C)
R⊃

Proof of the latter:8

y : A⇒ y : A y : B⇒ y : B
y : A, y : B⇒ y : A&B

R&

z : A⇒ z : A
z : B⇒ z : B z : C ⇒ z : C

z : B, z : B ⊃ C ⇒ z : C
L⊃

z : A, z : B, z : A ⊃ (B ⊃ C)⇒ z : C
L⊃

wRxz,wRxy, yRxz, z : A&B, z : A ⊃ (B ⊃ C)⇒ z : C
L&

wRxz,wRxy, yRxz, z : A&B,w : �x(A ⊃ (B ⊃ C))⇒ z : C
L�x

wRxy, yRxz, z : A&B,w : �x(A ⊃ (B ⊃ C))⇒ z : C
Trans

wRxy, yRxz,w : �x(A ⊃ (B ⊃ C))⇒ z : A&B ⊃ C
R⊃

wRxy,w : �x(A ⊃ (B ⊃ C))⇒ y : �x(A&B ⊃ C)
R�x

wRxy, y : A, y : B,w : �x(A ⊃ (B ⊃ C))⇒ x : A&B� C
R�2

wRxy, y : A,w : �x(A ⊃ (B ⊃ C))⇒ y : ¬B, x : A&B� C
R⊃

wRxy,w : �x(A ⊃ (B ⊃ C))⇒ y : A ⊃ ¬B, x : A&B� C
R⊃

w : A,w : �x(A ⊃ (B ⊃ C))⇒ w : �x(A ⊃ ¬B), x : A&B� C
R�x

w : A,w : �x(A ⊃ (B ⊃ C))⇒ x : A� ¬B, x : A&B� C
R�2

t : A, x : A� (B ⊃ C)⇒ x : A� ¬B, x : A&B� C
L�

x : A� (B ⊃ C)⇒ x : A� ¬B, x : A&B� C
R�1

⇒ x : A� ¬B, x : A� (B ⊃ C) ⊃ A&B� C
R⊃

7Here an below, to save space, the (derivable) premisses of R�2 and L� that have the same formula in
the antecedent and succedent have been omitted.

8Observe that this derivation, among others, shows that the left premiss of R�2 is not dispensable.
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(5)

w : A⇒ w : A w : B⇒ w : B
w : A ⊃ B,w : A⇒ w : B

L⊃

wRxw,w : �x(A ⊃ B),w : A⇒ w : B
L�x

x = w, xRxw,w : �x(A ⊃ B), x : A⇒ x : B
Repl

xRxw,w : �x(A ⊃ B), x : A⇒ x : B
LMin

x : A⇒ x : A x : B⇒ x : B
x : A ⊃ B, x : A⇒ x : B

L⊃

wRxx,w : �x(A ⊃ B), x : A⇒ x : B
L�x

w : A,w : �x(A ⊃ B), x : A⇒ x : B
S Conn

x : A� B, x : A⇒ x : B
L�

x : A� B⇒ x : A ⊃ B
R⊃

⇒ x : A� B ⊃ (A ⊃ B)
R⊃

(6)

x : A⇒ x : A

y : A, y : A, y : B⇒ y : B
y : A, y : B⇒ y : A ⊃ B

R⊃

x = y, xRxy, x : A, x : B⇒ y : A ⊃ B
Repl

xRxy, x : A, x : B⇒ y : A ⊃ B
LMin

x : A, x : B⇒ x : �x(A ⊃ B)
R�x

x : A, x : B⇒ x : A� B
R�2

x : A&B⇒ x : A� B
L&

⇒ x : (A&B) ⊃ (A� B)
L⊃

QED

8.3 Proof of Theorem 5.3 (Soundness)

Proof. The proof is by induction on the height of the derivation and follows the method-
ology employed for modal and non-classical logics in Negri and von Plato (2011), Negri
(2009) and Negri (2014a). We use Φ′ to denote the set Φ without the principal formula of
the inference step considered, which should be everywhere clear from the context.

Assume that Γ⇒ ∆ is derivable and that ~·� makes true all the formulas in Γ.
If Γ⇒ ∆ is an initial sequent, it is valid since both Γ and ∆ contain some formula x : A,

and then the claim is obvious. Likewise, if it is the conclusion of L⊥, since no interpretation
would then make all the formulas in Γ true.

If Γ ⇒ ∆ is the conclusion of L&, then ~x�  A&B, whence ~x�  A and ~x�  B
by V&. By inductive hypothesis, x : A, x : B,Γ′ ⇒ ∆ is valid, and so ~·� makes true
some formula in ∆. Hence Γ ⇒ ∆ is valid. The argument is routine for the remaining
propositional rules, and similarly for Ref and ReplAt.

If Γ ⇒ ∆ is the conclusion of Trans, then ~y� �~w� ~x� and ~z� �~w� ~y�, whence
~z� �~w� ~x� by Transitivity of S. By inductive hypothesis, xRwz, xRwy, yRwz,Γ′ ⇒ ∆ is
valid, and so ~·� makes true some formula in ∆. Hence Γ⇒ ∆ is valid.

If Γ ⇒ ∆ is the conclusion of SConn, then for any w, x, y, either ~x� �~w� ~y� or
~y� �~w� ~x�, by Strong connectedness of S. By inductive hypothesis, both (i) xRwy,Γ⇒ ∆

and (ii) yRwx,Γ⇒ ∆ are valid. So if ~x� �~w� ~y�, then by (i) ~·� makes true some formula
in ∆. Otherwise if ~y� �~w� ~x�, then by (ii) ~·� makes true some formula in ∆. In either
case, Γ⇒ ∆ is valid.

If Γ ⇒ ∆ is the conclusion of LMin, then ~x� �~w� ~w�, whence ~x� = ~w� by Mini-
mality of S. By inductive hypothesis, x = w,wRwx,Γ′ ⇒ ∆ is valid, and so ~·� makes true
some formula in ∆. Hence Γ⇒ ∆ is valid.
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If Γ ⇒ ∆ is the conclusion of R�w, let z be an arbitrary element ofW such that z �~w�
~x� holds in S. Let ~·�′ be the same as ~·� except possibly on ~y�, where we set ~y�′ = z.
Then ~·�′ makes all the formulas in xRwy,Γ true. By inductive hypothesis, xRwy,Γ⇒ ∆′, y :
A is valid, so either some formula in ∆′ or y : A is true under ~·�′. If the former holds, then
Γ ⇒ ∆ is valid independently of the choice of ~·�′. If the latter, then ~y�′  A for arbitrary
~y�′. Hence ~x�′  �wA byV�w . But ~·�′ be the same as ~·� w.r.t. ~x�, and so ~x�  �wA.
Either case, Γ⇒ ∆ is valid.

If Γ⇒ ∆ is the conclusion of R�w, then ~y� �~w� ~x� and ~x�  �wA, whence ~y�  A
by V�w . By inductive hypothesis, xRwy, x : �wA, y : A,Γ ⇒ ∆ is valid, and so ~·� makes
true some formula in ∆. Hence Γ⇒ ∆ is valid.

If Γ ⇒ ∆ is the conclusion of R�1, choose z < Γ,∆ and let ~·�′ be the same as ~·�
except possibly on ~z�, which we set ~z�′ = y for some arbitrary y ∈ W such that y  A.
By inductive hypothesis, z : A,Γ ⇒ ∆′,w : A � B is valid. The case in which there is
such a y is obvious. If there is no such y, notice that ~·�′ ≡ ~·� and ~w�  A� B byV�.
Hence Γ⇒ ∆ is valid.

If Γ⇒ ∆ is the conclusion of R�2, then both Γ⇒ ∆, x : A and Γ⇒ ∆, x : �w(A ⊃ B)
are valid by inductive hypothesis. If ~·�makes some formula in ∆ true, then Γ⇒ ∆ is valid.
Otherwise, ~x�  A and ~x�  �w(A ⊃ B). So by V�, ~w�  A � B. Hence Γ ⇒ ∆ is
valid.

If Γ ⇒ ∆ is the conclusion of L�, then ~w�  A � B, whence either for no z,
~z�  A, or for some x, ~x�  A and ~x�  �w(A ⊃ B), by V�. Suppose the former.
By inductive hypothesis, Γ ⇒ ∆, z : A is valid, so ~·� makes true some formula in ∆,
since ~z�  A is ruled out. Hence Γ ⇒ ∆ is valid. Suppose now the latter. By inductive
hypothesis, x : A, x : �w(A ⊃ B),Γ′ ⇒ ∆ is valid, and so ~·� makes true some formula in ∆.
Hence Γ⇒ ∆ is valid.

QED

8.4 Proof of Theorem 5.5

Proof. We define inductively a reduction tree for an arbitrary sequent Γ⇒ ∆ in the language
of G3LC by applying the rules of G3LC root first in every possible way. If the construc-
tion terminates, we have a proof of the sequent. If it doesn’t, then by König’s lemma the
reduction tree has an infinite branch which is used to define a countermodel to Γ⇒ ∆.

1. Construction of the reduction tree. Let us take an arbitrary sequent Γ ⇒ ∆ and take
it as the root of the tree (stage 0). At stage n, we distinguish two cases:

Either all topmost sequents are an initial sequent or a conclusion of L⊥, in which case
the construction terminates.

Otherwise, we continue the construction by applying every possible rule to all topmost
sequents in a given order. There are 11 + 5 different stages, 11 for the rules of G3LC, 5 for
the similarity rules. At stage n = 11 + 5 + 1 we repeat stage 1, at stage n = 11 + 5 + 2 we
repeat stage 2, and so on.

We start for n = 1 with L&. Suppose all topmost sequents have the form

x1 : B1&C1, ..., xm : Bm&Cm,Γ
′ ⇒ ∆

On top of each, we write

x1 : B1, x1 : C1, ..., xm : Bm, xm : Cm,Γ
′ ⇒ ∆
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This step corresponds to applying root first m times rule L&.
For n = 2 we consider all sequents of the form

Γ⇒ x1 : B1&C1, ..., xm : Bm&Cm,∆
′

We write on top of each 2m sequents of the form

Γ⇒ x1 : D1, ..., xm : Dm,∆
′

where Di is either Bi or Ci and all possible choices are taken. This step corresponds to
applying root first R& for each conjunction in the right-hand side.

For n = 3 we consider all sequents of the form

x1 : B1 ∨C1, ..., xm : Bm ∨Cm,Γ
′ ⇒ ∆

We write on top of each 2m sequents of the form

x1 : D1, ..., xm : DmΓ′ ⇒ ∆

This case is analogous to step n = 2 and corresponds to the application root first of L∨.
For n = 4 we consider all sequents of the form

Γ⇒ x1 : B1 ∨C1, ..., xm : Bm ∨Cm,∆
′

On top of each, we write

Γ⇒ x1 : B1, x1 : C1, ..., xm : Bm, xm : Cm,∆
′

This step corresponds to applying root first m times rule R∨.
For n = 5 we consider all sequents of the form

x1 : B1 ⊃ C1, ..., xm : Bm ⊃ Cm,Γ
′ ⇒ ∆

On top of each, we write 2m sequents of the form

xi1 : Ci1 , ..., xik : CikΓ
′ ⇒ x jk+1 : B jk+1 , ..., x jm : B jm∆

where i1, ...ik ∈ {1, ...,m} and jk+1, ..., jm ∈ {1, ...,m} − {i1, ..., ik}. This step correspond to the
root first application of L ⊃.

For n = 6 we consider all sequents of the form

Γ⇒ x1 : B1 ⊃ C1, ..., xm : Bm ⊃ Cm,∆
′

On top of each, we write

x1 : B1, ..., xm : Bm,Γ⇒ C1, ..., xm : Cm,∆
′

This step corresponds to applying root first m times rule R ⊃.
For n = 7 we consider all sequents with relational atoms x1Rwy1, ..., xmRwym and for-

mulas x1 : �wB1, ..., xm : �wBm on the left-hand side. On top of each, we write

x1Rwy1, ..., xmRwym, x1 : �wB1, ..., xm : �wBm, y1 : B1, ..., ym : Bm,Γ
′ ⇒ ∆
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This step corresponds to applying root first m times rule L�w.
For n = 8 we consider all sequents of the form

Γ⇒ x1 : �wB1, ..., xm : �wBm,∆
′

Let y1, ..., ym be fresh variables, not yet used in the reduction tree. Then on top of each
sequent we write

x1Rwy1, ..., xmRwym,Γ⇒ y1 : B1, ..., ym : Bm∆′

This step corresponds to applying root first m times rule R�w.
For n = 9 we consider all sequents of the form

x1 : B1 � C1, ..., xm : Bm � Cm,Γ
′ ⇒ ∆

Let y1, ..., ym be fresh variables, not yet used in the reduction tree, and suppose z1, ..., zm

are any variables already used in the reduction tree, hence disjoint from the y’s. Then on
top of each sequent, we write 2m sequents with formulas yi1 : Bi1 , ..., yik : Bik together with
yi1 : �x(Bi1 ⊃ Ci1), ..., yik : �x(Bik ⊃ Cik ), as well as formulas x jk+1 : B jk+1 � C jk+1 , ..., x jm :
B jm � C jm , on the left-hand side, and formulas z jk+1 : B jk+1 , ..., z jm : B jm on the right-hand
side, where i1, ...ik ∈ {1, ...,m} and jk+1, ..., jm ∈ {1, ...,m} − {i1, ..., ik}. This step correspond
to the root first application of L�.

For n = 10, we consider all sequents with formulas x1 : B1 � C1, ..., xm : Bm � Cm

on the right-hand side. Let y1, ..., ym be fresh variables, not yet used in the reduction tree.
We write on top of each the sequent

y1 : B1, ...ym : Bm,Γ⇒ x1 : B1 � C1, ..., xm : Bm � Cm,∆
′

This step corresponds to applying root first m times rule R�1.
For n = 11, we consider again all sequents with formulas x1 : B1 � C1, ..., xm :

Bm � Cm on the right-hand side. Then suppose z1, ..., zm are any variables already used in
the reduction tree and write 2m sequents of the form

Γ⇒ x1 : B1 � C1, ..., xm : Bm � Cm, z1 : D1, ..., zm : Dm,∆
′

on top of each, where Di is either zi : Bi or zi : �w(Bi ⊃ Ci), and all possible choices are
taken. This step corresponds to applying root first m times rule R�2.

Finally, for n = 11 + j we consider the generic case of a frame rule, viz. rules for the
relation Rw and identity. Because of the subterm property, these rules need to be instantiated
only on terms in the conclusion (notice there are no frame rules with eigenvariables). Thus,
e.g., for Ref, a step corresponding to the rule consists in adding to the left-hand side all
atoms x = x for all x in Γ ⇒ ∆ and then writing the sequent thus obtained on top of each
topmost sequent.

For any n, for sequents that are neither initial nor conclusions of L⊥ nor treatable by
any one of the above reductions, we copy the sequent above itself. This step is needed to
treat uniformly the failure of proof search in the following two cases: the case in which the
search goes on for ever because new rules always become applicable, and the case in which
a sequent is reached which is not a conclusion of any rule nor an initial sequent.

If the reduction tree is finite, all its leaves are initial or conclusions of L⊥, and the
tree read from the leaves to the root, yields a derivation by spelling out in individual rule
applications the simultaneous reduction steps.
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2. Construction of the countermodel. If the reduction tree is infinite, it has an infinite
branch. Let Γ0 ⇒ ∆0 ≡ Γ ⇒ ∆,Γ1 ⇒ ∆1, ...,Γi ⇒ ∆i, ... be one such branch. Consider the
set of labelled formulas and relational atoms

Γ ≡
⋃
i>0

Γi ∆ ≡
⋃
i>0

∆i

We define a model that forces all the formulas in Γ and no formula in ∆ and is therefore
a countermodel to the sequent Γ ⇒ ∆. Consider the system S whose elements are all the
labels appearing in Γ and whose relations are all those expressed by the relations xRwy in Γ.
The system S is transitive, strongly connected and L-minimal by construction. The model
is defined as follows: for all atomic formulas P such as x : P is in Γ, we stipulate that x  P.

We now show inductively on the weight of formulas that A is forced at world x if x : A
is in Γ and is not forced at world x if x : A is in ∆.

If x : A ≡ x : ⊥, x : A cannot be in Γ since no sequent in Γ0 ⇒ ∆0 has x : ⊥ on the
left-hand side, so it is not forced at any world of the model.

The antecedent atomic case has already been taken care of by definition, and the succe-
dent one follows from the fact that no initial sequent is in the branch.

If x : A ≡ x : B&C is in Γ, there exists i such that x : B&C appears first in Γi and
therefore, for some g ≥ 0, x : B and x : C appear in Γi+g. By inductive hypothesis, x  B
and x  C, hence x  B&C.

If Ax :≡ x : B&C is in ∆, consider the step i in which the reduction for x : B&C applies.
This gives a branching, such that one of the branches belongs to Γ0 ⇒ ∆0. So either x : B
or x : C is in ∆, and so by inductive hypothesis, either x 1 B or x 1 C. Hence x 1 B&C.

If x : A ≡ x : B ∨ C is in Γ, consider the step i in which the reduction for x : B ∨ C
applies. This gives a branching, such that one of the branches belongs to Γ0 ⇒ ∆0. So
either x : B or x : C is in Γ, and so by inductive hypothesis, either x  B or x  C. Hence
x  B ∨C.

If x : A ≡ x : B ∨ C is in ∆, there exists i such that x : B ∨ C appears first in ∆i and
therefore, for some g ≥ 0, x : B and x : C appear in ∆i+g. By inductive hypothesis, x 1 B
and x 1 C, hence x 1 B ∨C.

If x : A ≡ x : B ⊃ C is in Γ, consider the step i in which the reduction for x : B ⊃ C
applies. This gives a branching, and one of the premisses belongs to the infinite branch.
So either x : B is in ∆ or x : C is in Γ. In the former case, by inductive hypothesis we
have x 1 B and so x  B ⊃ C. Otherwise, by inductive hypothesis we have x  C and so
x  B ⊃ C. Hence x  B ⊃ C.

If x : A ≡ x : B ⊃ C is in ∆, there exists i such that x : B ⊃ C appears first in ∆i and
therefore, for some g ≥ 0, x : B appears in Γi+g and x : C in ∆i+g. By inductive hypothesis,
x  B and x 1 C, hence x 1 B ⊃ C.

If x : A ≡ x : �wB is in Γ, we consider all the relational atoms xRwy that occur in Γ
(notice that at least there occurs the atom xRwx). For any such atom, we find an occurrence
of y : B in Γ by construction of the reduction tree. So by inductive hypothesis, y  B, hence
x  �wB.

If x : A ≡ x : �wB is in ∆, consider the step i in which the reduction for x : �wB
applies. Then for some g ≥ 0, we find y : B in ∆i+g for some xRwy in Γi+g. So by inductive
hypothesis, y 1 B, hence x 1 �wB.

If x : A ≡ x : B� C is in Γ, consider the step i in which the reduction for x : B� C
applies. This gives a branching, such that one of the premisses belongs to Γ0 ⇒ ∆0 . So
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either z : B is in ∆ for any given z already occurring in the reduction tree, or else we find
some y : B and y : �x(B ⊃ C) in Γ. In the latter case, by inductive hypothesis we have
y  B and y  �x(B ⊃ C), and so x  B � C. In the former case we have by inductive
hypothesis z 1 B, which does not yet allow us to infer x  B� C. However, x : B� C
always gets repeated in the premiss and for each branching determined by an application
of L � either the first or the second premiss belongs to the infinite branch. It is enough
that the right premiss belongs to the infinite branch once to conclude that x  B � C. In
the opposite case, we have that the left premiss always belongs to the infinite branch, and
therefore z 1 B for each available label. So, by the forcing condition for�, we have that
x  B� C because the antecedent is never satisfied.

If x : A ≡ x : B � C is in ∆, consider the step i in which the first reduction for
x : B � C applies. Then z : B appears in Γi. So by inductive hypothesis, z  B. This is
not sufficient to conclude that x 1 B� C, but proves that the first disjunct in the semantic
clause for � is false. We need to prove that also the second disjunct is false, i.e. that
there is no y in the model such that y  B and y  �x(B ⊃ C). By the saturation clause
for R �2 we have that for all available labels y, either y : B or y : �x(B ⊃ C) are in the
succedent in the infinite branch. In case the former holds for all available labels, then in
particular we would have that z : B would be in the succedent in the branch, with z : B in
the antecedent introduced by the clause for R�1. Since the infinite branch cannot contain
an initial (or derivable) sequent, this is excluded. So for at least one label the latter case
holds and we obtain by inductive hypothesis that y 1 �x(B ⊃ C). Since y was an arbitrary
y in the model such that y  A, together with the first part, we have the conclusion, namely
x 1 B� C. QED

8.5 Proof of Proposition 6.2

Proof. We need to show (i) that the saturated branch provides a countermodel, and (ii) that
the countermodel thus obtained is a comparative similarity system. For a given Γ ⇒ ∆, let
W be the set of labels in Γ, the relation Rw be the reflexive and transitive closure of Rw

together with ≤Γ⇒∆, the definition of interpretation and valuation being as usual. Then:
(i) 〈W,Rw〉 is a countermodel to Γ ⇒ ∆ iff x  A for all x : A in Γ, and x 1 A for all

x : A in ∆. Notice that this is a consequence of the following:
(a) If A is in F 1(x), then x  A.
(b) If A is in F 2(x), then x 1 A.

The two claims are proved by induction on the length of the formula. If it is atomic, they
hold by definition of . If it is a conjunction, disjunction, implication or conditional, they
hold by the corresponding saturation clauses and the inductive hypothesis. If A ≡ �wB is
in F 1(x), let x ≡ x0Rw . . .Rwxn ≡ y. For n = 0, either x : �wB is in ↓Γ, hence in Γ, or for
some y, y : �wB and yRwx are in Γ. In both cases we get the conclusion by step (12) of the
saturation procedure. For the inductive step, suppose first A ≡ �wB is in F 2(x). Then either
for some y we have xRwy in Γ and y : B in ↓∆, or there is a y distinct form x and such that
yRwx is in Γ and x ≤ y. From the former, we have B ∈ F 2(y) and so by inductive hypothesis,
y 1 B, whence x 1 �wB. From the latter, F 2(x) ⊆ F 2(y), and so �xB ∈ F 2(y). By inductive
hypothesis (y is a smaller label in the Rw-ordering), y 1 �wB, whence x 1 �wB.

(ii). 〈W,Rw〉 is a comparative similarity system iff Rw is transitive, strongly connected
and L-minimal. The result follows immediately from points (2), (3) and (4) of the definition
of saturation. QED
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