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Abstract

The capability to structure the light in space or time is key in many important scientific and indus-
trial fields, such as telecommunications, imaging, and manufacturing. So far, the technological
advancements have been pushed by a variety of different beam-shaping tools, which typically pro-
vide either a high degree of customization or high-speed, but not both. This trade-off hinders the
throughput of many photonic-based technologies. To address this issue, we developed multiple
strategies to control the light at high-speed exploiting the acousto-optic effect. This latter is a
well-known phenomenon that consists of the diffraction of light by ultrasonic waves. Notably, the
spatio-temporal properties of the diffracted photons are directly related to those of the acoustic
wave, which can be easily controlled with an electronic driver. Additionally, ultrasonic frequencies
range from MHz to GHz, enabling high-speed generation of tailored light. Those exceptional fea-
tures led us to the design and implementation of a new instrument called the acousto-opto-fluidic
device. It is an acoustic resonant cavity immersed in a fluid, capable of generating ultrasonic
standing waves that can diffract a laser beam in multiple beamlets. Thus, the device parallelizes
the output of a laser source. However, the beamlets can be easily recombined to create inter-
ference fringes. In this case, the device works as a structured light generator. Importantly, the
structure of the light patterns can be tuned using the driving parameters, and it is possible to
switch between different patterns in less than a microsecond. In this thesis, we present a complete
theoretical model of the acousto-opto-fluidic device and full experimental characterization of its
optical performance. Additionally, we provide proof-of-principle experiments to demonstrate how
our novel device can be successfully integrated into a laser-direct-writing station to increase its
throughput greatly. The last important contribution of this thesis is the design and development
of an all-acousto-optic light-sheet microscope. Indeed, light-sheet fluorescence microscopy en-
ables gentle volumetric imaging of large samples, but it is limited in speed by the movement of
bulky components required to produce a z-stack. We used a tunable acoustic gradient lens –
namely a resonant varifocal lens – to perform a fast axial scan of the sample, which enables the
acquisition of images of different samples with no mechanical movements. However, this approach
degrades the signal-to-noise ratio of the images. To compensate, we designed a strategy to illu-
minate simultaneously multiple planes at choice, using a couple of acousto-optic deflectors. The
parallelized excitation enables the acquisition of multiple planes in a single frame, thus requiring
a decoding process. The retrieval of the individual images is performed via a simple algorithm,
which returns a decoded z-stack with an enhanced signal-to-noise ratio. Therefore, our novel
imaging technique enables fast volumetric imaging without sacrificing the quality of the images.
In conclusion, the work presented in this thesis paves the way for the fast and tailored generation
of tailored light, opening new roads for high-throughput material processing and microscopy.
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1
Introduction

Light is a tool at the core of a wide range of fields, such as imaging, manufacturing, and
telecommunications. Thus, the ability to tailor its features opens the door for many possibilities
of technological advancement. Light structuring – or beam shaping – is a very general concept
that refers to the customization of the spatial, temporal, or polarization properties of light [1].
So far, the impact of structured light has led to transformational breakthroughs in several areas.
Just to mention a few examples, beam shaping has been at the centerpiece of optical super
resolution methods capable to break the diffraction limit and achieve nanometric spatial reso-
lution. Among them, the microscopy technique called Stimulated Emission Depletion (STED)
can be achieved through point-scanning with a donut-shaped laser beam [2] and – thanks to it
astounding capabilities – it has been awarded a Nobel prize in 2014. Structured light enables
other very important microscopy techniques. A famous example is called Structured Illumina-
tion Microscopy (SIM), which exploits periodic illumination patterns to double the resolution of
wide-field fluorescence microscopes [3, 4]. Spatial patterning of light can also enable imaging
using a single element detector, which can be advantageous with respect to a camera thanks to
their sensitivity of non-visible wavelengths and high temporal resolution. If the light is structured
in detection the technique is known as ghost imaging [5, 6], while if the patterning is on the
illumination we talk about single-pixel imaging [7]. More recently, the fine-tuning of quantum
states of photons enabled Raman microscopy to achieve an unprecenteded signal-to-noise ratio
[8]. Quantum correlations have also been exploited to perform interaction-free imaging [9] and
holographic imaging with incoherent light [10].

As anticipated, light structuring plays a key role in many fields other than imaging. Laser
manufacturing, either additive or subtractive, can benefit from non-conventional laser beams.
Flat top beams provide a constant flux of energy [11], enabling homogeneous irradiation. Bessel
beams, thanks to their self-healing and non-diffracting properties, guarantee an elongated depth-
of-focus even in presence of obstacles [12, 13]. Other beam profiles, such as annular or vortex
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beams, provide unique features to the processed material [14].
The number of applications where shaped light proves advantageous is steadily growing.

However, the most advanced technologies currently available to control the light either lack
tunability or speed. Therefore, structuring the light is still a challenging task and a heavy burden
for the large-scale implementation of these methods. In the next sections, a brief overview of
the current light-structuring process and the most important devices apt for this purpose are
presented.

1.1 Structured Light

Figure 1.1: Depiction of an electromagnetic linearly polarized plane wave. The electric field E is drawn in red
and the magnetic field B is drawn in blue.

To understand the fundamentals of light shaping, we must consider the wave nature of light.
Classically, light is described by the Maxwell equations [15]. In a non-conducting medium, these
are

∇ ·E = 0 ∇×E = −∂B
∂t

∇ ·B = 0 ∇×B = µϵ
∂E

∂t

(1.1)

Where E and B are, respectively, the electric and magnetic field, µ is the magnetic permeability,
and ϵ is the dielectric permittivity of the medium. Combining these equations, it is possible to
obtain the following vector wave equations describing the propagation of light

∇2E =
n2

c2
∂2E

∂t2
∇2B =

n2

c2
∂2B

∂t2
(1.2)
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where c = (µϵ)−
1
2 is the speed of light in vacuum and n is the refractive index of the medium. The

simplest solution is the plane wave, depicted in Figure 1.1. It is composed by the two following
orthogonal fields oscillating at the angular frequency ω:

E = E0 exp (ik · x− iωt) B = B0 exp (ik · x− iωt) (1.3)

Here the fields are written for convenience as phasors, whose real parts represent the physical
fields. Light travels along the direction of the wave vector k, orthogonal to both fields. E0 is the
2-dimensional complex amplitude of the electric field and B0 = n

c
k̂ × E0 is the 2-dimensional

complex amplitude of the magnetic field. The average intensity – namely the energy per unit
area per unit time – transported by the electromagnetic wave is described by the Poynting vector

S =
E ×B∗

2µ
=

√︃
ϵ

µ

|E0|2

2
k̂ (1.4)

Interestingly, the intensity can be written proportional to the square modulus of the electric field.
Moreover, the majority of light-matter interactions are due to the response of electrons of a
medium to the oscillating electric field. Therefore, it is usually convenient to consider only this
latter to describe the light.

Thanks to equation 1.3, we can easily describe the process of tailoring the light as the act of
modulating the amplitude and the phase of the electric field. Amplitude modulation is performed
through absorption or partial reflection. The amplitude of the field passing through a medium
with thickness L and absorption coefficient α is

E(x, y) = E0 exp

(︃
−
∫︂ L

0

α(x, y, z) dz

)︃
(1.5)

Phase modulation is performed by retarding the wave. The phase retard accumulated by a field
passing through a medium with thickness L and refractive index n is

Φ(x, y) =

∫︂ L

0

n(x, y, z) dz (1.6)

Importantly, the electric field is a 2-dimensional vector, with each element describing a polarization
state. Therefore, through anisotropic media, it is possible to modulate the two polarization
directions separately. In order to define the result as structured light, the modulation processes
need to have a dependency (a structure) either on space or on time. In general, the finer is
the control on those dimensions and the wider is the range of complex patterns that is possible
to achieve. Thus, the ideal tool to generate structured light should be able to modulate the
amplitude or phase of light with high spatial and temporal resolution.

1.2 Technologies for structuring the light

In this section, we present the main state-of-the-art technologies used to structure the light, sum-
marized in Figure 1.2. In particular, we place particular attention to highlighting the advantages
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Figure 1.2: A sketch of the most important devices used for structuring the light. (a) A diffractive optical element,
(b) a deformable mirror, (c) a digital micromirror device, (d) a liquid crystal cell, the constitutive element of a
spatial light modulator, (e) an electro-optic deflector, (f) an acousto-optic device.

and disadvantages of each device.

1.2.1 Diffractive Optical Elements

A Diffractive Optical Element (DOE) is an engineered diffraction grating [16]. It consists of a
micro-structured material, whose pattern is designed to shape either the amplitude or the phase of
an incident beam. They can work either in reflection or transmission. Thanks to diffraction, the
shape of the beam is modified accordingly to the microstructure of the DOE. The result can be
almost arbitrary, being limited only by the precision of the manufacturing process. However, such
devices are fixed elements incapable of providing any degree of tunability. Thus, any particular
beam shape requires a different DOE.

1.2.2 Deformable Mirrors

A Deformable Mirror (DM) [17] is typically made by a continuous reflective surface which shape
can be modified with an array of actuators. Each one is independent and can deform locally the
mirror up to around 100 µm. Thus, the reflected beam is shaped accordingly to the form imposed
on the mirror. This device enables a high degree of flexibility, but its beam shaping capabilities
are severely hindered by some practical limitations. In particular, the number of actuators is
typically limited to a few hundred and they are separated by a pitch of as large as 1 mm. Such
coarse disposition of the active elements does not permit sophisticated structuring of the light.
Moreover, the deformation speed of this device is usually limited to 1 - 2 kHz.
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1.2.3 Digital Micromirror Devices

A Digital Micromirror Device (DMD) [18] is conceptually similar to a DM. Indeed, it is composed
of an array of micro-actuators controlling the orientation of a micro-mirror. Therefore, the surface
of a DMD is pixelated. This device contains a large number of pixels, typically millions, and the
pixel pitch can be as small as 5 µm. However, each micro-mirror can be in only two states, thus
enabling solely a digital modulation of light. The two states, on and off, are achieved by tilting
the micro-mirror at two opposite angles – usually ±12°. Both the pixelation and the binary
modulation limit the beam-shaping capabilities of this device. This latter could be compensated
with pulse width modulation, which enables gray values on average. Unfortunately this approach
limits the speed of the devices. Indeed, the refresh rate is usually in the order of 10 kHz [19].

1.2.4 Liquid Crystal Spatial Light Modulators

A Liquid Crystal Spatial Light Modulator (LC-SLM, or simply SLM) is an advanced tool that
exploits the optical properties of liquid crystals – usually nematic or ferroelectric – to perform light
shaping [20, 21]. The molecules composing such liquid crystals are elongated and exhibit a highly
birefringent behavior. Indeed, the refractive index is higher on the long axis and smaller on the
short axis. Such molecules are also sensitive to electric fields as they tend to align their long axis
parallel to the field lines. Thus, a liquid crystal cell acts as an electrically tunable optical retarder.
An SLM is an array of liquid crystal cells, being a pixelated phase or amplitude modulator.
Indeed, if a linear polarizer is placed at the output of each cell, it acts as an intensity modulator.
Otherwise, it acts as a phase modulator. These devices can contain millions of pixels, with a
pitch around 5 µm, enabling the highest level of tunability for beam shaping. Nonetheless, such
devices are extremely sensitive to polarization and wavelength. However, their biggest drawback
lies in the speed. Indeed, the frame rate of a typical SLM is of the order of 100 Hz.

1.2.5 Electro-optic devices

Electro-optic (EO) devices leverage the Pockels effect to change the optical properties of a ma-
terial [22]. If a voltage is applied to a non-centrosymmetric crystal, it exhibits a change of
refraction index proportional to the electric field. Thus, an Electro-Optic Modulator (EOM) con-
trols electrically the amount of retardance applied to the light. Notably, if an EOM is integrated
in a Mach-Zender interferometer, the phase modulation can be trasformed into an amplitude
modulation. The Pockels effect can also be used to design an Electro-Optic Deflector (EOD).
This latter consists in a wedged crystal, which fully refracts the incident beam exploiting the
electronically-controllable transmission angle [23]. These devices are amongst the fastest avail-
able, with a rise time as low as a few tens of ns. However, they lack in degrees of freedom for the
spatial control of light, limiting their use to almost exclusively high-speed scanners or modulators.
Additionally, they typically require additional instrumentation to provide extremely high driving
voltages, up to thousands of volts.
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1.2.6 Acousto-Optic devices

Acousto-optic (AO) devices [24] are tools that exploit pressure waves to modify the refractive
index of a medium – typically a birefringent crystal – in order to generate a phase grating. The
properties of this grating, and thus of the diffracted light, can be tuned with the driving signal.
Traditional devices work in the Bragg regime and are sensitive to polarization and wavelength. A
single instrument usually produce diffraction along a single axis, thus more devices in cascade are
needed to provide a spatial control over all the spatial dimensions. Notably, the sound frequencies
used are in the range from MHz to GHz, placing them among the fastest devices available for
light modulation.

1.3 Aim and organization of the thesis

Current devices for light shaping present a tradeoff between speed and flexibility. Among them,
the devices based on the acousto-optic effect enable high-speed control of light and provide many
degrees of freedom, suggesting that the road for fast and tunable structuring of light should
exploit this phenomenon.

The goal of this thesis is to demonstrate how acousto-optics can be leveraged to build ef-
fective beam-shaping solutions in demanding fields such as material processing and fluorescence
microscopy. More in detail, this thesis is composed by the following chapters:

1. In the current chapter, I discussed the concept of structured light, described the most
advanced tool used to tailor the light, and argumented the need for faster and more flexible
techniques.

2. In this chapter, I discuss the physics that lies behind the acousto-optic effect and I explain
the working principle of the most important acousto-optic devices.

3. In this chapter, I introduce a novel instrument – named acousto-opto-fluidic device – with
a full theoretical description. The result is a complete and predictive model realized with
analytical and computational methods.

4. In this chapter, I provide a complete experimental characterization of the acousto-opto-
fluidic device and its capabilities. I present experimental evidence of the implementation of
the AOF device in a direct-writing workstation for high-speed and high-throughput material
processing and I show how the AOF device can be used in synergy with other beam-shaping
tools, in order to further extend its beam shaping capabilities.

5. In this chapter, I describe how acousto-optic deflectors can be used to produce tailored
illumination patterns. This approach, combined with the depth-of-field extension enabled
with an acoustic varifocal lens, extends the capabilities of light-sheet microscopes. The dis-
cussed technique, called multiplane encoded light-sheet microscopy, enables fast volumetric
imaging at high signal-to-noise ratios.
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6. In the last chapter, I conclude the thesis with a summary of the results and discussing the
new paths paved by the research work presented herein.

Additionally, a vast number of appendices is available at the end. In those supplementary chapters
I discuss in greater detail most of the concepts mentioned in the thesis.
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2
Acousto-optic Effect and Devices

In this chapter we discuss the physics of the acousto-optic effect, namely a non-linear interaction
between the photons of light and the phonons of sound, mediated by a material. In the second
part of the chapter we will explore the most important acousto-optic devices and their working
principles. Note that a mathematically rigorous derivation of equations and concepts presented
in this chapter is available in appendix C.

2.1 The acousto-optic effect

The acousto-optic (AO) effect consists of the diffraction of light by ultrasonic waves [1–5]. All
kinds of materials – solids, liquids, or gases – can sustain the acousto-optic effect, even if in
different substances the efficiency of the diffraction can significantly vary. This phenomenon,
also known as the elasto-optic effect, is originated from the interaction of an electromagnetic
wave with a sound wave. Indeed, the sound creates regions of compression and rarefaction of the
propagating medium, changing the local values of the refractive index. This causes the light beam
to suffer from a phase transformation – as described in chapter 1 – and the overall effect is that
the light is split in multiple beams (see Figure 2.1). In Acousto-Optic devices, the sound wave
is generated by one or many piezoelectric transducers bonded to the facet of a solid material,
typically a crystal. In this case, the maximal mechanically induced variation of refractive index is

∆n ∝
(︃
n6
0p

2

ρc3s

)︃1/2

=
√︁
M2 (2.1)

Where n0 is the static refractive index, p is the elasto-optic coefficient, ρ is the density and cs
is the speed of sound of the material. The quantity M2 is called the figure of merit and it is used
to quantify the magnitude of the acousto-optic effect. As it is possible to see, solids with high
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Figure 2.1: The acousto-optic effect. (a) Interaction of light with an ultrasound wave: A piezoelectric actuator
generates an acoustic wave that periodically modulates the refractive index of a medium. A light wave upon
traversing the vibrating region is diffracted into one or multiple beams, depending on the operating regime. (b) In
the Raman-Nath regime, the diffraction pattern consists of multiple beams separated by angles θm. The resulting
light pattern is symmetrical around the undiffracted beam (m = 0). (c) In the Bragg regime, only a single beam
is diffracted at the incidence angle.

refractive index and low density and speed of sound show a more intense interaction [6, 7]. As
anticipated, Acousto-optic interaction can also take place in fluids. Acousto-optofluidic devices
are built filling a piezoelectric cavity with a liquid and sealing the edges with optically transparent
windows. In liquid materials, the maximal variation of the refractive index is

∆n ∝ c2s
τ

n4
0 + n2

0 − 2

n0

(2.2)

where τ is the kinematic viscosity of the fluid. Once again, materials with a high refractive index
show a stronger acousto-optic interaction, but in this case substances with high speed of sound
and low viscosity should be preferred [8–10]. For either solids or fluids, the maximal variation
of the refractive index increases with the pressure-induced inside the material that ultimately
depends on the voltage applied to the piezoelectric actuator.

The exact attributes of acousto-optic interaction - such as the number, intensity, and angle of
diffracted beams - depend heavily on many variables. Klein and Cook [11] identified a parameter,
defined as

Q =
K2L

kn0

(2.3)

that summarizes the role of the most important physical quantities. L is the length of the
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mechanical transducer, k = 2π
λ

is the wave number of light, and K = 2π
Λ

is the wave number of
sound. The parameter Q is a quantification of the effective thickness of the vibrating medium
[12]. It can be used to identify two limit regimes, as shown in Figure 2.2. Even though no sharp
transition exists between them, when Q ≪ 1 the sound wave acts as a thin phase grating and
diffraction is said to occur in the Raman-Nath regime. When Q ≫ 1, the modulated medium
acts as a thick phase grating and diffract occurs in the Bragg regime. The characteristics of the
two regimes are explained next.

2.1.1 Diffraction regimes

For simplicity and without loss of generality, we consider now the case of an acoustic wave
traveling along a single direction. If the acoustic medium is in between an piezoelectric actuator
and an acoustic absorber, the generated acoustic wave is a traveling one. The corresponding
refractive index profile assumes the form

n (x, t) = n0 +∆n sin (Kx− Ωt) (2.4)

where Ω = 2πf is the acoustic angular frequency and ∆n is maximum variation of refractive
index. Instead, when the acoustic medium is in between two actuators or one actuator and
an acoustic reflector, a resonant cavity is formed. Provided the sound frequency matches the
resonances of the cavity, a standing wave is established, whose refractive index profile is

n (x, t) = n0 +∆n sin (Kx) sin (Ωt) (2.5)

Traveling waves are prevailing in most AO devices, particularly in those operating at the Bragg
regime. Their main advantage is the possibility of usage over a continuous range of acoustic
frequencies. Standing waves are more commonly used with devices working in the Raman-Nath
regime. Because the cavity needs to be maintained in resonant conditions, it may be susceptible to
temperature fluctuations. Thus, feedback systems are helpful to maintain the diffraction pattern
at the resonant condition. Note, however, that once the steady-state is reached, standing waves
offer high-speed modulation of the diffracted intensity – only limited by the driving frequency.
Resonance also allows for minimal driving power of the ultrasound actuators [13].

2.1.1.1 Raman-Nath regime

When Q ≪ 1, which typically occurs at low acoustic frequencies (f < 10 MHz), the diffraction
pattern consists of many beamlets symmetrically distributed with respect to the 0th order. Every
beamlet is deflected at a different angle θm = mK/n0k, and is frequency shifted by mΩ (see
Figure 2.1b) – where m is the index order. In more detail, the diffraction efficiency of the mth

order, defined as the ratio of the intensity of that diffracted beamlet to the intensity of the
incident beam,is

ηm = J2
m (kL∆n) (2.6)
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where Jm is the Bessel function of the first kind. The diffraction efficiency is limited in the
Raman-Nath regime. Indeed, the maximal efficiency of the first order is 33.86%, while higher
orders reach lower values.

In the case of a standing wave, the diffraction efficiency depends on time as follows

ηm (t) = J2
m [kL∆n sin (Ωt)] (2.7)

Interestingly, the oscillation frequency is the same as the acoustic wave, enabling fast modulation
of the diffracted intensity. Moreover, the time dependency implies a larger spectrum. Diffracted
orders are frequency shifted of integer multiples of Ω.

In the Raman-Nath regime, it is possible to describe the acousto-optic device as a thin phase
grating. This means that it simply shifts the phase of the incident beam by ∆ϕ = kL∆n (x, t).
This is a powerful description of the interaction process, that enables the calculation of the
diffraction pattern with any arbitrary shape of the acoustic wave [14, 15].

2.1.1.2 Bragg regime

Figure 2.2: Smooth transition from Raman-Nath to Bragg regime as a function of the Klein-Cook parameter
Q. The simulations are run at the Bragg angle and at kL∆n = 3π/2. (a) Diffraction pattern. (b) Diffraction
efficiencies of the orders from −2 to +2. Higher orders are not shown for clarity.

Bragg diffraction occurs if Q ≫ 1, that typically means at acoustic frequencies f > 10 MHz. In
this case, only a single order is diffracted (see Figure 2.1c). In order for the process to take place,
the angle of the incident beam needs to satisfy the following relation

sin θB = ∓ K

2n0k
(2.8)

where θB is known as the Bragg angle. This requirement can be written equivalently as a
phase-matching condition

ki − kd =K (2.9)
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where ki and kd are respectively the wave vector of the incident and diffracted beam and K is the
sound wave vector (see Figure 2.3a). In other words, Bragg diffraction requires the conservation
of momentum.

The diffraction efficiencies of the undiffracted beam and the first order at the exit of the
vibrating medium are

η0 = cos2 (kL∆n/2) (2.10)

η1 = sin2 (kL∆n/2) (2.11)

It is interesting to notice that when kL∆n = (2j + 1) π (where j is an integer), the diffraction
intensities become η1 = 1 and η0 = 0. This is the case in which the diffraction efficiency reaches
the theoretical maximum, namely 100% of the energy of the incident light is transferred to the
diffracted beam [16]. An interesting feature of Bragg diffraction is that the direction of the 1st

order is deflected by the Bragg angle. Thus, incident and diffraction angle are the same – similarly
to Bragg’s law for crystals. Moreover, the frequency of the diffracted order is down or upshifted
by Ω, depending on the sign of the incident angle.

In the case of a standing wave, the diffraction efficiencies are time-modulated

η0 (t) = cos2 [kL∆n sin (Ωt)/2] (2.12)

η1 (t) = sin2 [kL∆n sin (Ωt)/2] (2.13)

The time-dependency implies the presence of multiple harmonics in its spectrum. Indeed, both
the 0th and 1st diffraction orders are frequency shifted of integer multiples of Ω.

2.1.2 Anisotropic Diffraction

So far, we have discussed acoustic diffraction in isotropic materials. We have implicitly assumed
that the polarization state of the incident beam is the same as the diffracted beam. However, in
birefringent materials, another type of diffraction is possible, with some peculiar attributes. In an
anisotropic crystal the refractive index and the photo-elastic coefficient are not scalar quantities,
but tensors. This implies that their values depend on the orientation of the crystal and the
polarization of light. In the simplest case of a uniaxial crystal, two axes are different from the
third one: the ordinary axes have refractive index no and the extraordinary axis has refractive index
ne. With this crystals it is possible to have anisotropic Bragg diffraction: the incident beam has
a polarization state parallel to the extraordinary axis and the diffracted beam has a polarization
state parallel to the ordinary axis. Then, the diffracted and incident angles are defined by the
following relations

sin θi =
λ

2necs

[︃
f +

c2s
fλ2

(︁
n2
e − n2

o

)︁]︃
(2.14)

sin θd =
λ

2nocs

[︃
f − c2s

fλ2
(︁
n2
e − n2

o

)︁]︃
(2.15)
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Figure 2.3: Representation of the Bragg diffraction using wave vector diagrams. (a) Isotropic diffraction; in this
case θd = −θi. (b) Isotropic diffraction with a sound wave with a large angular spectrum. A larger variability of K
allows a larger range of kd that satisfy the phase matching condition, thus obtaining a larger angular band for the
diffracted beam. (c) Anisotropic diffraction at the tangential limit; in this case θd = 0. (d) Anisotropic diffraction
at the collinear limit; in this case the incident and diffracted beams are parallel. (e) Plot of the angles of the
incident and diffracted beams as a function of the acoustic frequencies, in the case of anisotropic diffraction. The
collinear limit occurs at frequency fmin, while the tangential limit occurs at frequency f0.

Interestingly, in the case of anisotropic diffraction, the incident and diffraction angles are not
the same [17, 18], as shown in Figure 2.3e. In this scenario, two limits of particular interest can
be identified. The tangential limit is reached at the acoustic frequency f0 =

cs
λ

√︁
|n2

e − n2
o| and

the resulting diffraction angle θd is zero, as shown in Figure 2.3c. Note that around the frequency
f0 a small change in the incident angle ∆θi corresponds to a larger change in the diffraction angle
∆θd. In other words, any driving frequency close to f0 fulfills the Bragg condition, enabling a large
range of diffraction angles with approximately constant diffraction efficiency. This phenomenon
is exploited to design deflectors with a wide frequency band. The collinear limit, depicted in
Figure 2.3d, occurs at the acoustic frequency is fmin = (ne − no)

cs
λ

. In this limit, the angles θd
and θi are both equal to π/2, implying that the two beams exit parallel, while the acoustic wave
is anti-parallel. Many acousto-optic tunable filters are designed to exploit a collinear interaction.
Importantly the frequency fmin is also the minimum acoustic frequency usable for anisotropic
acoustic diffraction is possible. However, in an anisotropic crystal, is still possible to fulfill the
phase-matching condition with both beams with the same polarization state. In this case, isotropic
diffraction can occur for any acoustic frequency. Notably, Raman-Nath diffraction can only be
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isotropic.

2.2 Acousto-optic devices

The need for optimizing light control has spurred the development of an entire family of AO de-
vices. They all operate under the same principle and also feature the same key elements, including
an acousto-optic medium transparent to light, an ultrasound source (usually a piezoelectric trans-
ducer), and the control electronics. The latter enables adjusting the frequency and amplitude of
the driving signal, and consequently, the ultrasound waves and the diffraction regime. Because
all AO devices achieve light control without the inertia of moving mechanical components, they
have typical response times well below milliseconds. Despite these similarities, each AO device
has distinct characteristics suitable for performing a specific task, as briefly summarized in Figure
2.3. In the next sections, we detail the main features of the most important AO devices.

2.2.1 Bragg Cells

Acousto-optic devices working in the Bragg regime are called Bragg cells. Those devices exist
in different implementations, designed for different purposes, but they all share some common
characteristics. They typically consist of a piezoelectric actuator bonded to a facet of a crystal.
Since the vast majority of the Bragg cells work with traveling waves, the opposite facet of the
crystal is bonded to an acoustic absorber that prevents reflection. In this regime a light beam
hitting the device at the Bragg angle is split into two beams, separated by an angle. This latter
is controlled with the driving frequency, while the intensity of the two beams depends on the
voltage applied to the piezoelectric transducer. Even if – theoretically - it is possible to create
Bragg cells using liquid materials, their acousto-optic efficiency decreases with frequency, and
liquids cannot be anisotropic. Therefore, all the commercially available devices use solid materials
as the vibrating medium. The most common ones are Tellurium Dioxide (TeO2), α-quartz,
Fused Silica, and Germanium. The choice between one or another material depends on cost and
availability as well as the inherent properties of the medium, such as refractive index, birefringence,
acoustic attenuation, and transparency [6]. Among the many, Tellurium Dioxide became one of
the material of choice – especially for deflectors – thanks to its birefringence (no = 2.25 and
ne = 2.411 at λ = 633 nm) and high transparency in the visible range. Additionally, it allows
the propagation of shear waves with a speed of sound as low as 650 m/s. The material of
choice for the piezoelectric actuator is Lithium Niobate (LiNbO3), being able to handle high
powers, having low dissipation, and having an acoustic impedance similar to the acousto-optic
medium. Both of its faces are bonded to a metallic electrode, usually made of gold. However,
the exact material and design choices are made depending on the particular application. Based
on the purpose they serve, we can distinguish three main implementations of Bragg cells, called
Deflectors, Modulators, and Tunable Filters. Further details are presented next.
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2.2.1.1 AO deflectors

An Acousto-Optic Deflector (AOD) is designed to work as a single-axis scanner of the 1st diffrac-
tion order [19]. Interestingly, since the deflected beam is also frequency shifted by the acoustic
frequency, it is possible to use deflectors as well as variable frequency shifters [20]. The highest
diffraction efficiency is obtained at the Bragg angle which is a function of the acoustic frequency.
Therefore, by changing the driving frequency it is possible to tune the direction of the deflected
beam. However, if the incident angle is fixed, that typically causes a phase-mismatch and a
consequent loss of intensity of the diffracted beam. Hence, in order to scan over a wide angular
range, it is very important for these devices to maintain the diffraction efficiency as high as pos-
sible over a broad range of frequencies. This latter is known as the band ∆f and it is one of the
main parameters for an AOD. The second parameter is the resolution. The number of resolvable
spots is calculated as the ratio of the angular scanning range ∆θd to the divergence angle ∆Φ of
the light beam at the exit of the AOD. From the equation of the isotropic Bragg angle, we have
that ∆θd = λ∆f

n0cs
. The divergence angle ∆Φ for a Gaussian beam is approximately ∆Φ ∼ λ

n0w
,

where w is the size of the beam. Therefore, the number of resolvable spots is

N = τ∆f (2.16)

where τ = w/cs is the time needed for the acoustic wave to pass through the light beam and it is
generally known as access time. This latter defines the time needed to switch between different
angular positions and it is usually in the order of microseconds. Hence, materials with a slow
speed of sound cs can be used to build devices with high resolution. Practical devices implement
solutions to enlarge the range of possible working frequencies ∆f , while maintaining fixed the
incident angle. The simplest one is to reduce the length L of the piezoelectric transducer: a
shorter actuator increases the diffraction angle of the acoustic wave. Indeed, a larger angular band
of the acoustic wave relax the phase-matching condition, as depicted in Figure 2.3b, practically
widening the band of the device. However, the length L can be reduced only down to a certain
size, therefore other solutions are needed if an even broader band is required. Another option is
to use phased array transducers: a sequence of piezoelectric actuators is bonded in series on top
of the crystal and they are driven with a fixed phase-shift. This approach enables the control of
the direction of the acoustic wave, which can be tuned to compensate for the change of driving
frequency and restore the Bragg condition [21]. This is an effective solution but requires complex
manufacturing and proper design. Another successful solution is to use a birefringent crystal,
such as TeO2. Designing a device to work at the tangential limit, it is possible to achieve a large
range of diffraction angles with a minimal variation of the incident angle [17]. In this way, it
is possible to maintain a high diffraction frequency over a wide frequency interval (see Figures
2.3d and 2.3e). All the above solutions can be found combined sometimes in high-performance
devices with a broad frequency band and consequently a wide scanning range. The broad-band
feature of AODs makes possible to drive them with a multifrequency signal. Each harmonic
component of the wave diffracts the incident beam at the corresponding Bragg angle. Using this
strategy, it is possible to create an array of independently controlled beams [22], enabling highly
tunable beam shaping. However, Acousto-Optic devices are not linear systems, thus crosstalk
and intermodulation may occur [23]. While electronic crosstalk could be in principle eliminated
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using a controller with excellent linearity, acousto-optic intermodulation is unavoidable, and it
consists in the appearance of spurious diffraction orders. These latters have a lower intensity
with respect to the pure diffraction orders, hence they can be neglected if the AOD is operated
at low driving amplitudes. However, their presence should always be taken into account while
driving deflectors with signals having multiple frequency components. Interestingly, it is possible
to optically conjugate two orthogonal AODs in order to create a 2-axes scanner. With this
approach, a high-performance AOD system can resolve thousands of different spots over angular
ranges of the order of 50 mrad2. Combined with the high speed, deflectors have become an
invaluable tool for laser scanning and beam shaping [24]. Additionally, if driven with a chirped
signal, an AOD acts as a cylindrical lens [25]. Therefore, two orthogonal AODs can be used to
design a complete 3D scanner [26].

2.2.1.2 AO modulators

An acousto-optic modulator (AOM) is typically operated through a driving signal with fixed
frequency and time-verying amplitude. Thus, the intensity of the diffracted beams is modulated
in time. The main parameters of an AOM are contrast, throughput, and speed. The contrast is
defined as the ratio of the intensity of the full-on state to the off state, while the throughput is the
ratio between the experimental diffraction efficiency to the theoretical one. It is possible to work
with the 0th order and block the 1st one or do the opposite: both configurations have advantages
and disadvantages. The most common way to use an AOM is to exploit the 1st diffraction order
as the modulated beam. This approach enables the highest possible static contrast ratio (the
off state is easily provided by shutting down the driver), but due to the natural divergence of
the optical beam, not all the light is diffracted. This effect typically reduces the throughput
efficiency to around 70%. Moreover, the 1st order is frequency shifted by the acoustic frequency.
Alternatively, it is possible to use the 0th order. This approach grants the maximal throughput
efficiency since all the undiffracted light is parallel to the 0th order, but the contrast ratio is
limited. Indeed, in the off state, there is typically some residual light. The modulation speed is
of extreme importance and the main limiting factors are the rise and fall time. Both of them are
proportional to the access time. More in detail - for a Gaussian Beam - the rise time is

τR = 0.64 w/cs (2.17)

where w is the size of the light beam and cs is the speed of sound. Since the last is fixed by the
choice of the material, it is useful to decrease the dimension of the incident beam. The most
efficient way to do it is by focusing the beam inside the modulator. If the beam waist is narrow
enough, in the fastest modulators it is possible to achieve a rise time as low as a few nanoseconds.
Unfortunately, the narrower is the waist, the larger is the divergence angle. As a consequence, if
this angle is wider than the divergence angle of the acoustic wave, degradation of the 1st order
occurs. The two main side effects are the broadening of the diffracted spot and a worsening of
the throughput efficiency. Therefore, a trade-off exists between speed and beam quality. Thanks
to the high speed and tunability of AOMs, they are a key tool for fast optical switching.
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2.2.1.3 AO tunable filters

An acousto-optic tunable filter (AOTF) is a narrow-band wavelength selector [27]. An AOTF
diffracts a polychromatic light beam in a monochromatic 1st order and a 0th order containing the
rest of the spectrum. The device is a tunable band-pass filter since the driving frequency can select
the diffracted wavelength. The most important features of an AOTF are the resolution and the
wavelength scan rate. The first one is determined by the bandwidth that can be smaller than 1 nm.
However, the band normally contains undesired sidelobes that would cause different colors to not
be filtered out. In order to avoid this issue, commercial AOTFs adopt apodization technologies
– such as acoustic beam shaping – that suppress this effect. The scan rate is the inverse of the
time needed to pass from one filtered wavelength to a different one. Once again, the limiting
factor for the scan rate is the access time which can be as low as a few microseconds. All the
AOTFs exploit anisotropic Bragg diffraction and they can be divided into two typologies: collinear
and non-collinear filters. Collinear AOTFs are designed to work close to the acoustic frequency
fmin, where the incident and diffracted beams are parallel (see Figure 2.3d-e). In this region, the
angular sensitivity is maximal, therefore any color that does not fulfill almost exactly the phase-
matching condition is not diffracted and the device acts as a narrow-band filter. Conversely,
the diffracted beam contains only the phase-matched wavelength. Moreover, the 1st order does
not change the direction of propagation but rotates the polarization by 90°. Simply placing a
polarizer or a polarizing beam splitter, it is possible to separate the filtered beam from the original
one that maintains the original polarization state. However, the collinear architecture restricts
the usage of non-centrosymmetric crystals exclusively, which are unfortunately charecterized by a
relatively small figure of merit [6]. Therefore, non-collinear AOTFs have been developed and are
now more common – especially for imaging applications [28, 29]. Additionally, they require less
optical components both in input and output. The filtered and unfiltered beams are no longer
parallel, therefore they can be separated without the need of a polarizer.

The central wavelength λc of the filters can be tuned by changing the acoustic driving fre-
quency f as follows

λc =
cs∆nB

f
(2.18)

where ∆nB is the birefringence of the crystal. Thanks to their tunability, high-speed, and narrow-
band AOTFs have become a precious tool to separate wavelengths. Indeed, they are typically
implemented in the beam-combining unit of laser-scanning systems to control intensity and wave-
length of multiple laser lines. They can also be used as fast tunable beam splitters for multi-color
imaging [30, 31].

2.2.2 Raman-Nath Cells

Raman-Nath (RM) cells are the acousto-optic devices working in the Raman-Nath regime. A RM
device typically consists of a sealed chamber filled with an appropriate liquid – the acousto-optic
medium – with two optically transparent windows at the edges. The chamber contains one or
more piezoelectric transducers, in order to create a resonant cavity. The distance between the
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Figure 2.4: Types of Acousto-Optic devices. Top to bottom: Acousto-Optic Modulator (AOM), Acousto-Optic
Deflector (AOD), Acousto-Optic Tunable Filter (AOTF), Acousto-Opto-Fluidic (AOF) device, and Tunable Acous-
tic Gradient (TAG) lens.

actuators and the speed of sound define the resonant frequencies at which the devices work.
An RM device drove to resonance establishes a standing wave in the cavity. This latter can
diffract an incident light beam with a size larger than the acoustic wavelength in many orders,
symmetrically spaced around the optical axis. Instead, if the light beam size is smaller than the
acoustic wavelength, the device acts as a lens whose symmetry is the same as the device – for
example a spherical or cylindrical lens. The optical properties of the diffraction pattern can be
tuned using the driving amplitude and frequency, as with the Bragg cells. However, the standing
wave nature of the refractive index modulation grants an additional degree of freedom, namely the
phase of the wave. Because the diffraction efficiency of the different orders is a function of time
(see Equation 2.7), it is possible to synchronize a pulsed light source with the driving frequency.
In this way, the diffraction pattern can be tuned at the same speed as the acoustic frequency,
down to sub-microsecond time scales. In the Raman-Nath regime, the acoustic frequencies are
significantly smaller with respect to the Bragg regime. Since the variation of refractive index ∆n
in fluids is inversely proportional to the frequency, liquids are good acousto-optic materials for RM
cells. In general, any transparent liquid with low viscosity and high refractive index can be used
to build a Raman-Nath cell and the two most common ones are de-ionized water and silicone oil.
The last is particularly suited for this purpose, having a vapor pressure of less than 700 Pa and a
refractive index of 1.403. Note that low vapor pressure is key to avoid the formation of cavitation
bubbles, that would otherwise scatter the light passing through the device. Considering the
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symmetry of the resonant cavity, we can distinguish cylindrical and rectangular RM cells, known
as TAG lenses and AOF devices, respectively.

2.2.2.1 TAG lens

A Tunable Acoustic Gradient (TAG) lens is an AO device operating as a fast varifocal lens. It
is typically used in microscopy to extend the Depth-of-Field (DoF) of high numerical aperture
(NA) objective lenses, and as a fast axial scanner for high-speed volumetric imaging [32–35]. A
TAG lens has a cylindrical geometry, unique within the family of AO devices. It consists of a
piezoelectric tube filled with a liquid. When driven on resonance, an ultrasound standing wave
is formed, which can be described with a Bessel function [10]. Typically, a TAG lens requires
the illumination beam clearly underfilling its aperture, in order to remain smaller than the central
lobe of the Bessel function. In this mode, a TAG lens acts as a parabolic gradient-index (GRIN)
lens, with the optical power sinusoidally variating over time. The normal frequency range of a
TAG lens is between 50 kHz and 1 MHz. The effective NA of a TAG lens is low – as the aperture
is limited by the central lobe of the Bessel function. Thus, for imaging applications, TAG lenses
are always used in combination with high NA objectives. By placing the TAG lens in a conjugate
plane of the back focal plane of an objective lens, magnification effects can be avoided, and
the lens enables fast z-focus scanning [36]. Such continuous z-focusing at microsecond time
scales is faster than the integration time of many optical detectors. In this case, the collection
of multiple focal planes leads to a virtually extended DOF. Notably, if synchronized stroboscopic
illumination or fast detectors with appropriate electronics are used, information from multiple
axial positions can be acquired. When illuminated with a beam larger than the central lobe of
the Bessel function, the TAG lens acts as an axicon with a user-selectable cone angle [37]. In
this case, a pseudo-Bessel beam is formed.

2.2.2.2 AOF device

The Acousto-optofluidic device (AOF) functions as an electronic beam shaper to generate tunable
optical patterns. It consists of a water-filled chamber containing two pairs of piezoelectric plates.
Each pair is orthogonal to each other and forms an acoustic resonant cavity. When driven on
resonance, it produces an ultrasound standing wave that diffracts an incoming beam into an array
of beamlets. Thus, the direct construction of two-dimensional beam arrays is possible when both
cavities are operative [9]. Interestingly, by adding a focusing lens between the device and the
objective lens, the beamlets interfere, generating three-dimensional patterns in the focal plane of
the objective [8]. Working in the Raman-Nath regime, AOFs offer a wide acceptance angle for the
incident light, which eases alignment procedures and facilitates integration in microscopy systems.
The main features of AOFs are their high tunability and speed. By controlling the frequency and
amplitude of the driving signal, the properties of the diffraction pattern, such as the number,
spacing, and intensity of the diffraction orders, can be selected with the only constraint that
the diffracted beams are not independent of each other. Also, the use of standing waves offers
an extra control parameter. Employing synchronized pulsed illumination, the temporal phase
difference between light pulses and the ultrasound wave enables to select a diffraction pattern
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faster than the acoustic access time. Given typical operation frequencies in the 0.5 - 5 MHz, AOFs
can operate at a timescale below 1 µs. This is the only non-commercial device presented here
and its design and development is the core of the research work described in the two following
chapters.
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Laser-scanning systems are widely used for imaging and manufacturing purposes because of
their capability to guide light to specific sample locations. The precis control of beam position
enables to perform material modification [1] or excite fluorescence [2] at precise points, typically
scanning the sample on a pixel-by-pixel approach. However, the point-scanning nature of these
systems constraints their speed and thus their throughput. A shift of the paradigm is needed to
overcome this limitation. Indeed, higher throughput can be reached by irradiating large regions
with structured light or simultaneously shining multiple beams on the sample, thus parallelizing
the process.

As discussed in chapter 1, currently available light-sculpting devices either lack flexibility or
speed. In this chapter, we present a novel acousto-optofluidic (AOF) device, shown in Figure
3.1a, which is capable of performing beam sculpting at high-speed [3, 4]. The idea behind this
device is to exploit standing acoustic waves – established in a resonant cavity – that modulates
the light both in space and in time. A laser beam is split into multiple beamlets with properties –
such as number and intensity – tunable in less than a microsecond. Those beamlets can be used
independently, achieving beam parallelization, or can be easily combined, obtaining customizable
interference patterns. Moreover, the AOF device is compatible with virtually any other beam-
shaping tool. Thus, its flexibility can be further extended if used in synergy with other devices.
With an unprecedented combination of speed and tunability, the AOF device paves the way for
high-speed tailored light.

In the first part of this chapter, we introduce the AOF device by describing its design and
implementation. In the second part, we provide a complete theoretical model of the formation
of the acoustic wave inside the cavity. In the third and last part, we use the Raman-Nath theory
[5] to develop a complete optical model to predict the structure of the diffraction patterns. The
physics behind the AOF device is described in greater detail in appendices D, E, and F.
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3.1 Design and realization of the device

Figure 3.1: (a) Sketch of the AOF device diffracting light. (b) Orthogonal views of the AOF device with all its
components. (c) Photograph of a disassembled AOF device. The coin is placed as a reference for the size.

As schematically shown in 3.1b, the AOF device is essentially an acoustic cavity composed of four
piezoelectric plates arranged with a rectangular symmetry: we paired the plates so each element
in a group would face each other, while the groups were orthogonal. To hold the plates in the
required positions – namely to form two rectangular cavities – we used two 3D-printed plastic
scaffolds with a doughnut shape that featured four sockets, one for each piezoelectric plate. In
the current implementation, we used deionized water as the acoustic propagation medium. This
choice has numerous conveniences: water is cheap, safe, readily available, and, being an isotropic
and homogeneous material, is not sensitive to light polarization. Once assembled, we placed the
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acoustic cavity inside a hollow aluminum cylinder (3.1c) consisting of two independent parts that
can be screwed together. This enables easy access to the core components for maintenance or
customization. Both sides of each piezoelectric plate are soldered to a single wire, such that
each actuator can be driven individually. The electric wires reach the connectors located outside
the cavity, passing through holes on the metallic case. We sealed the holes using epoxy resin to
avoid possible leakages. Finally, we used two optically transparent circular windows to close the
cylinder, each glued to one of the cylinder bases. An inlet port, which can be closed with a screw
and an o-ring, allows replacing or refilling the cylinder with the liquid. Notably, air bubbles can
be present in the cavity, compromising its functionality. Therefore, we excavated an annular pit
onto the inner surface of the cylinder, acting as a bubble-trap [6, 7].

3.2 Mechanical model

The acousto-optic interaction in the AOF device depends dramatically on the properties of sound.
Thus, it is important to model the generation and propagation of acoustic waves in response to
the mechanical stimuli produced by the piezoelectric actuators. Once the acoustic wave is known,
it can be easily related to a refractive index variation. Thus, a full mechanical model enables to
predict the beam-shaping capabilities of the AOF device. To this end, we use the Navier-Stokes
equations [8]. These laws govern the motion of sound waves in a viscous liquid, as inside the
AOF device. Typically, acoustic phenomena perturb only slightly the fluid density and velocity.
In this case, the Navier-Stokes equations can be simplified, leading to the acoustic damped wave
equation

∂2ρ

∂t2
− c2s∇2ρ− ν∇2∂ρ

∂t
= 0 (3.1)

Here ρ is the density fluctuation of the fluid relative to the static case, cs is the speed of sound,
and ν is the kinematic viscosity of the liquid. A full derivation is available in appendix D. The
rectangular-symmetry of the AOF device allows to consider only a single spatial axis of propagation

∂2ρ

∂t2
− c2s

∂2

∂x2

(︃
ρ+ ν

∂ρ

∂t

)︃
= 0 (3.2)

This approximation neglects the angular spreading of the wave due to the finite size of the
actuator but greatly simplifies the calculations while preserving the critical elements of the physical
phenomenon. Indeed, the acoustic divergence angle is of the order of Λ/l. For typical ultrasound
frequencies and cavity length of the order of centimeters, the divergence is small and can be
neglected. The solution of equation 3.2 depends on the initial and boundary conditions. Assuming
the fluid is at rest before the actuators start moving, we get the following initial conditions

ρ(x, t)

⃓⃓⃓⃓
t=0

= 0
∂ρ

∂t

⃓⃓⃓⃓
t=0

= 0 (3.3)
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Assuming that the fluid has zero relative velocity with respect to the solid boundary [9], the
movement of the piezoelectric plates determines the boundary conditions

v(x, t)

⃓⃓⃓⃓
x=x0

= ±va cos (Ωdt) (3.4)

where v is the fluid velocity, va is the amplitude of the plate speed, Ωd is the driving angular
frequency, and x0 is the location of the boundary. This condition can hold for x0 = 0, x0 = L or
both, depending on which actuator is driven. The plate velocity can be assumed to be proportional
to the applied voltage. In the next sections, we discuss the expression of the solution to the wave
equation, found using numerical and analytical methods. The details of these calculations are
available in appendix E.

3.2.1 Resonant solution

3.2.1.1 Transient behavior

When the piezoelectric plates are driven with a harmonic signal, two acoustic waves are launched
propagating in opposite directions [10]. These waves overlap and interfere while traveling across
the cavity length. If the driving frequency does not respect the resonant condition, the waves
change their relative phase after a cavity round-trip. This situation is shown by the simulations of
Figure 3.2a. As a consequence of the phase mismatch, the amplitude of the resulting mechanical
oscillation varies in time every L/cs. However, the interference is typically destructive. Viscous
dumping produces a progressive decrease of the oscillation amplitude, which ends up being too
low for the beam-shaping applications envisioned in this work.

Instead, the resonant condition is achieved by selecting a frequency such that the wave remains
in phase with itself after each cavity round-trip. In terms of driving frequency and wave number
this condition is written as

Ωm =
πmcs
L

Km =
πm

L
(3.5)

where m is the natural number that indexes the resonance order. In this condition, the two
traveling waves always interfere constructively, thus forming a standing wave whose amplitude
builds up every L/cs. However, as shown in Figure 3.2b, cavity losses prevent the oscillation from
growing indefinitely. In more detail, the amplitude increases in time as 1− exp (−K2

mνt/2), thus

reaching steady-state after a characteristic time τ =
2c2s
νΩ2

d

. Therefore, the lower is the kinematic

viscosity of the medium, the longer is the time required to reach the steady-state, but the higher
is the final amplitude.

3.2.1.2 Steady-state solution
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Figure 3.2: Simulation of the transient behaviour of the acoustic cavity under non-resonant and resonant driving
conditions, obtained by numerically solving the damped wave equation. The normalized viscosity is set to ν/Lcs =
10−4. On the left, Oscillation amplitude at border of the cavity. On the right, space-time propagation of the
acoustic waves. The normalized frequency used is ΩL/cs = 22π for the off resonance case and ΩL/cs = 21π for
the resonant case.

The resonant case is the most interesting one for practical applications, since it enables the
highest acoustic amplitude, capable to induce a significant acousto-optic interaction. Indeed, all
the experiments presented in chapter 4 are performed with a resonant AOF device. However,
the damping induced by the viscosity of the medium limits the maximum amplitude of standing
waves. In liquids, the damping is not uniquely related to the kinematic viscosity, but is also related
to the acoustic frequency also plays a role. As shown in Figure 3.3a, the maximum value and
the width of the resonant peaks decrease with increasing frequency, reducing the quality factor
of the cavity. Thus, a low-viscosity medium is desirable to maximize the efficiency of the device.
In more detail, the acoustic amplitude at the steady-state, with a driving frequency close to the
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Figure 3.3: (a) Numerical simulation of tge frequency response function of the acoustic cavity, showing the
resonant peaks of the standing wave. The inset on the left is centered around the 21st resonance, the inset on the
right is centered around the 40th resonance. The normalized viscosity is set to ν/Lcs = 10−4. (b, c, d) Sketch of
the possible solutions of the acoustic wave equation in the AOF device, depending on the boundary conditions.

nth resonance is

ρm(Ωd) =
2ρ0
L

c2sΩ
4
dνva

c4s + ν2Ω2
d

1

(Ω2
m − Ω2

d)
2 + Ω2

dν
2K4

m

(3.6)

where ρ0 is the density of the fluid at rest. As expected, the amplitude is a decreasing function
of viscosity and frequency. Applying the low-viscosity assumption (ν ≪ c2s/Ωd) and assuming a
perfect resonant condition (Ωd = Ωm), we can finally write the explicit expression the standing
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wave established in the cavity

ρm(x, t) = ξm
2ρ0vac

2
s

νLω2
m

cos(Kmx) cos(Ωmt) (3.7)

where ξm is the parameter that describes the driving condition of the actuators. The three most
interesting cases are the following

ξm =

⎧⎪⎨⎪⎩
1 + (−1)n+1 Anti-symmetric

1 + (−1)n Symmetric

1 Reflecting

(3.8)

These solutions, sketched in Figures 3.3b, 3.3c, and 3.3d, respect the symmetry imposed by
the boundary conditions. Indeed, if the actuators are driven anti-symmetrically, the waves are
generated in counter-phase and only odd resonance orders are allowed. Conversely, if the actuators
are driven anti-symmetrically, the waves are in phase and only even resonance orders are permitted.
Indeed, the second sound source imposes an additional constraint to the resonance condition. In
order for the interference to be constructive, each wave has to be in phase with itself after a
round-trip and with the second wave after a single-trip. Despite these differences, the resonant
amplitude is the same in these two cases. If only one piezoelectric plate is driven and we consider
the second boundary a perfectly reflecting surface, both odd and even resonance orders become
possible. As a side effect, the steady-state amplitude is one-half of that reached with both
actuators turned on, making this condition less convenient for beam-shaping.

3.2.2 Traveling solution

A different solution is found by completely removing the second boundary from the cavity, which
is practically achieved by substituting one actuator with an acoustic absorber. In this case, the
actuator generates a single traveling wave whose expression is

ρ(x, t) =
ρ0csva√︁
c4s + ν2Ω2

exp

(︃
−Ω2ν

2c3s
x

)︃
sin(Kx− Ωt) (3.9)

Since no resonances are involved, this solution fully describes the acoustic wave once it has traveled
for the full length of the cavity. Namely, this solution is valid after τ = L/cs. The numerical
simulations of Figure 3.4 depict the traveling wave solution, showing a viscous damping increasing
with the driving frequency. Interestingly, in these working conditions, any driving frequency can
be used. However, given a driving power, the oscillation amplitude is typically one or two orders
of magnitude than that obtainable in resonant conditions. Thus, a much higher driving voltage is
required to achieve a comparable result, making this case much less appealing from the practical
point of view.
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Figure 3.4: Simulations obtained by numerically solving the damped wave equation of a traveling wave at different
driving frequencies. The normalized viscosity is set to ν/Lcs = 10−4.

3.2.3 From density to refractive index

Local perturbations of the density of a material modify its optical properties. More in detail, we
can relate mechanical waves to variations of the refractive index through a linearized Lorentz-
Lorenz formula [11]

n(x, t) = n0 +∆n(x, t) = n0 +
n4
0 + n2

0 − 2

6n0

ρ(x, t)

ρ0
(3.10)

where n0 is the refractive index of the medium at rest. Thanks to this simple model, we can
regard all the results presented so far to be linearly related to the acoustically-induced optical
properties of the AOF device. As seen in the previous section, the use of a resonant cavity with
both actuators active enables the highest variation of density and – thus – of refractive index,
maximizing the interaction with light. Thus, for the rest of the thesis, we consider the AOF
device to be operating only in this modality.

3.3 Optical model

The mechanical model presented in the previous section enables to directly relate the driving
conditions of the AOF device to a sinusoidal variation of refractive index, both in space and in
time. The goal of the present section is to understand how the acousto-optic diffraction caused
by a standing wave can generate structured light. The variation of the refractive index induced
by the acoustic standing wave is

∆n(x, t) = ξm
2vac

2
s

νLΩ2
m

n4
0 + n2

0 − 2

6n0⏞ ⏟⏟ ⏞
nm

cos (Ωmt) cos (Kmx) (3.11)
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At typical working frequencies (such as those used in chapter 4) the acousto-optic interaction
occurs the Raman-Nath regime, where the AOF device can be simply considered as thin optical
element. In other words, the AOF device acts as a gradient-index optical element, with phase
depth Φ = kl∆n, where k is the wavenumber of light, and l is the depth of the acoustic cavity.
Thus, the refractive index profile of equation 3.11 corresponds to a sinusoidal phase grating. The
action of the device to an incident beam is to apply the following phase transformation

tAOF = exp

[︃
klnm cos (Ωmt) sin

(︃
Kmx+ π

m+ 1

2

)︃]︃
=

=
+∞∑︂

q=−∞

Jq
[︁
κlnm cos(Ωmt)

]︁
exp(iqKmx) exp

(︃
iqπ

m+ 1

2

)︃
(3.12)

Here Jq is the Bessel function of the first kind of order q. for convenience, we centered the
coordinate frame at the center of the AOF device and used the Bessel generating function to
obtain the second identity. Indeed, this step is useful to calculate the analytical expression of the
electric field emerging from the cavity. This latter is obtained simply by taking the product of
the incident field and the above expression. In the following discussion, we present the expression
of the near and far-field diffraction patterns calculated using Fourier optics. Further details are
presented in appendix B and F.

3.3.1 Fresnel Diffraction

The goal of this section is to study the diffraction pattern emerging from the AOF device, focusing
our attention at short distance. We begin considering a collimated Gaussian beam, being the
typical output provided by a laser source. The corresponding field is

U(x, y) = U0 exp

[︃
−(x2 + y2)

w2

]︃
(3.13)

where w is the beam waist. The expression of the beam after interacting with the AOF device at
z = 0 is given by the product of the above expression with the phase transformation of equation
3.12. The diffracted field at a distance z is calculated using the Fresnel propagation method.
The result is

U(x, y, z) =
U0e

ikz

1 + i λz
πw2

+∞∑︂
q=−∞

exp

{︄
− 1

w2 + 4z2

k2w2

[︄(︃
x− q

λ

Λm

z

)︃2

+ y2

]︄}︄
×

×Jq[nm cos(Ωmt)] exp

(︃
−iq

2K2
mz

2k

)︃
exp

[︃
iq

(︃
Kmx+ π

m+ 1

2

)︃]︃
(3.14)

This expression might look complicated at first sight, but it has a quite simple physical interpre-
tation visually described in Figure 3.5a. Indeed, it represents a set of diverging Gaussian beams
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Figure 3.5: Simulation of light propagating after interacting with an AOF device active along the x-axis. The
incident beam is Gaussian with size w = 1 cm at λ = 444 nm. The cavity length is l = 2 cm and the speed of
sound is cs = 1489m/s, namely that of pure water at room temperature. The resonance order used is m = 20,
corresponding to an acoustic frequency of f = 744.5 kHz. The variation of refractive index is nm = 5× 10−6 at
time t = 0 s and the device depth is L = 2 cm. (a) Diffracted beams propagating along the optical axis z. (b)
Diffraction pattern on the xy plane at z = 1m for a single active axis (left) and for both active axes (right). (c)
Far field diffraction pattern obtained with a lens of focal length 20 cm for a single active axis (left) and for both
active axes (right). 36
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deflected by an angle θq = qλ/Λm and amplitude modulated by the term Jq[nm cos(Ωmt)]. Im-
portantly, even though the sum extends to infinity, the value of the Bessel functions approaches
zero with increasing q. Therefore, in a realistic scenario, we can consider the number of diffracted
beams to be finite. In more detail, the exact number of diffraction orders with non negligible
energy depends on the driving parameters, especially the driving voltage (as described in greater
detail in chapter 4). Given the limited size of each beam, they overlap and interfere as long as
the propagation distance is smaller than the ratio between the deflection angle and the beam
waist. For bigger distances, the beams propagate independently, eventually leading to the far-field
diffraction pattern described in the next section. For small propagation distances (θqz ≪ 2w),
we can approximate the field by neglecting the divergence. The result is

U(x, y, z) = U0 exp

[︃
−(x2 + y2)

w2

]︃ +∞∑︂
q=−∞

Jq
[︁
nm cos(Ωmt)

]︁
×

× exp

(︃
−iq

2K2
mz

2k

)︃
exp

[︃
iq

(︃
Kmx+ π

m+ 1

2

)︃]︃
(3.15)

Notably, this expression contains two periodic functions: one oscillates along the optical axis (z),
and the other oscillates along the axis parallel to the acoustic wave (x). The term oscillating along
the z-axis is responsible for a 3D structure of the fringe, being periodic with period zT = 2Λ2

λ
.

Indeed, the fringes on the xy plane suffer from a pi phase shift every half a period, and if the
distance from the AOF device matches an integer multiple of zT , the periodic term has unit value,
and the diffracted field is precisely an image of the input field. This phenomenon, widely known
as Talbot effect, is a consequence of the periodicity of the acoustic phase grating [12]. Notably,
the fringes’ axial periodicity can also be modified by selecting the driving frequency.

The term oscillating along the x-axis generates fringes on the detector plane, due to the
mutual interference of all the diffraction orders. The simulated intensity – calculated as the
squared modulus of equation 3.15 – is shown in Figure 3.5b. If only a single axis is turned on, the
interference fringes are oriented along the same axis. If both axes are active, fringes are formed in
the two directions and overlap in a chessboard-like arrangement where the crossing points exhibit
the highest intensity. Interestingly, the spatial frequency of the fringes is qKm, namely an integer
multiple of the frequency of the acoustic wave. This fact implies that for low q the pattern
approaches a sinusoidal structure, while for high q the fringes are given by the superposition
of multiple spatial frequencies and the complexity of the pattern increases. Therefore, we can
easily tailor the diffraction pattern structure by changing the number of diffraction orders and
the acoustic frequency.

3.3.2 Fraunhofer Diffraction

So far, we analyzed the near-field beam-shaping capabilities of the AOF device. Now, we focus
our attention on the far-field description of the diffraction patterns, either at large distances from
the AOF device or at the focal plane of a lens. In any of these conditions, the diffracted field is
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the Fourier transform of the initial field

U(x, y, z) =
πw2U0

iλz

+∞∑︂
q=−∞

Jq
[︁
klnm cos(Ωmt)

]︁
exp

{︄
−π

2w2

λ2z2

[︄(︃
x− qz

λ

Λm

)︃2

+ y2

]︄}︄
(3.16)

where z is either the propagation distance or the focal length of the lens. Notably, if the diffraction
orders do not overlap, any interference phenomenon can be neglected, and the intensity can be
calculated simply by taking the square modulus of the terms of the series. This enables a simple
interpretation of equation 3.16. It describes an array of Gaussian spots, laterally shifted by
qzλ/Λm and amplitude modulated by Jq

[︁
klnm cos(Ωmt)

]︁
. Therefore, we can select the number

and positions of the spots on the plane with the driving parameters. If a single axis is active, the
spots are aligned to the same axis. If both axes are active, the spots are distributed on a 2D grid
as depicted in Figure 3.5c.

3.3.3 Parallelization of non-conventional beams

The parallelization acted by the AOF device in the far-field can be generalized for any input beam
shape B(x, y). Indeed, the acoustic wave splits the incoming light in multiple beamlets without
distorting the shape of the individual orders. The resulting diffraction pattern in the far-field is

U(x, y, z) =
1

iλz

+∞∑︂
q=−∞

Jq[klnm cos(Ωmt)]B̂

(︃
x

λz
− q

Λm

,
y

λz
− q

Λm

)︃
(3.17)

where B̂ is the Fourier transform of the input beam B. The above expression describes an array
of beamlets, each being the amplitude-modulated and laterally-shifted Fourier transform of the
incident beam. This result is valid for any beam whose shape is approximately constant across the
depth of the AOF device. In Figure 3.6 we show the simulated diffraction pattern for two given
shapes, namely an Annular beam and a Bessel beam. It is well known that the Fourier transform
of one is the other and vice versa [13]. Thus, we see in Figure 3.6a that by feeding an annular
beam to the AOF device, we obtain an array of Bessel beamlets in the far-field. Conversely, if we
use a Bessel beam as the input, the result is an array of annular beamlets, as depicted in Figure
3.6b.

3.4 Conclusion

The mathematical model formulated in this chapter fully explains the working principle of the
AOF device. The developed framework enables the engineering and optimization of new device
implementations and opens the door for non-standard usage, such as diffracting the light with
non-resonant waves or before reaching a steady state. The optical model relates the controlling
parameters of the AOF device – such as the driving voltage, frequency, and phase – to the
structure of the generated light patterns, enables reliable predictions of the capabilities of the
device.
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Figure 3.6: Simulation of diffraction pattern with both axes on at f = 1.5MHz and nm = 0.6. The AOF device
depth is l = 2 cm and the optical wavelength is λ = 520 nm. The obtained patterns are instantaneous at t = 0 s.
(a) The incident light (left) is an annular beam and the diffraction pattern (right) is a 2D array of Bessel beamlets.
(b) The incident light (left) is a Bessel beam and the diffraction pattern (right) is a 2D array of annular beamlets.
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The structure of the emerging light can be arbitrarily complex if the AOF device is combined
with other beam-shaping tools, such as DOEs or SLMs. Notably, non-conventional beams typ-
ically extend for a large region in the Fourier plane of a lens, compared to a Gaussian beam.
Thus, by selecting the proper driving conditions, it is possible to partially overlap the diffracted
beamlets. Their mutual interference can be exploited to further increase the complexity of the
patterns, paving the way to high-speed and high-flexibility beam shaping.

In the next chapter, we show how the extraordinary capabilities of the AOF device dramatically
increase the throughput of a laser-writing system, enabling the processing of complex shapes on
a wide range of materials.
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[1] Alberto Piqué, Raymond C.Y. Auyeung, Heungsoo Kim, Nicholas A. Charipar, and Scott A.
Mathews. Laser 3D micro-manufacturing. Journal of Physics D: Applied Physics, 49(22),
2016.

[2] James Jonkman and Claire M. Brown. Any way you slice it - A comparison of confocal
microscopy techniques. Journal of Biomolecular Techniques, 26(2):54–65, 2015.

[3] S. Surdo and M. Duocastella. Fast Acoustic Light Sculpting for On-demand Maskless
Lithography. Advanced Science, 2019.

[4] Alessandro Zunino, Salvatore Surdo, and Mart́ı Duocastella. Dynamic Multifocus Laser
Writing with Acousto-Optofluidics. Advanced Materials Technologies, 4(12):1–7, 2019.

[5] W. R. Klein and Bill D. Cook. Unified Approach to Ultrasonic Light Diffraction. IEEE
Transactions on Sonics and Ultrasonics, 14(3):123–134, 1967.

[6] Alessandro Zunino, Salvatore Surdo, and Marti Duocastella. Design, implementation, and
characterization of a fast acousto-optofluidic multi-focal laser system. In Ireneusz Grulkowski,
Bogumil B. J. Linde, and Mart́ı Duocastella, editors, Fourteenth School on Acousto-Optics
and Applications, page 23. SPIE, nov 2019.

[7] Salvatore Surdo, Alessandro Zunino, Alberto Diaspro, and Mart́ı Duocastella. Acoustically
shaped laser: A machining tool for Industry 4.0. Acta IMEKO, 9(4):60–66, 2020.

[8] Michel Rieutord. Fluid Dynamics. Springer International Publishing, 2015.

[9] Euan McLeod and Craig B. Arnold. Mechanics and refractive power optimization of tunable
acoustic gradient lenses. Journal of Applied Physics, 102(3):1–9, 2007.

[10] M Duocastella and C B Arnold. Transient response in ultra-high speed liquid lenses. Journal
of Physics D: Applied Physics, 46:075102, 2013.

40



3 AOF Device: Theoretical Model 3.4 Conclusion

[11] Max Born, Emil Wolf, A. B. Bhatia, P. C. Clemmow, D. Gabor, A. R. Stokes, A. M. Taylor,
P. A. Wayman, and W. L. Wilcock. Principles of Optics. Cambridge University Press, oct
1999.

[12] Layton A. Hall, Murat Yessenov, Sergey A. Ponomarenko, and Ayman F. Abouraddy. The
space–time Talbot effect. APL Photonics, 6(5):056105, 2021.

[13] John Goodman. Introduction To Fourier Optics. W.H. Freeman, 4th edition, 2017.

41



4
AOF Device: Characterization and Applications

Controlled delivery of light at targeted positions on a sample is key for precise, direct, and
localized modification of materials using laser-based systems [1, 2]. Typically, laser writing is
performed by focusing a beam into a single spot, which is successively scanned across a region of
interest by either mirrors or translation stages [3, 4]. Even if sub-wavelength control of light can
be achieved by tuning focusing-optics and scanning [5], the sequential nature of this approach
seriously constrains processing throughput. A promising way to address this issue is irradiating
the sample surface with the desired light intensity pattern. With this technique, there is no need
to scan. Indeed, laser modification of an entire region can be performed with a single irradiation
leading to an increased throughput. Light interference is one of the primary enablers maskless
lithography, allowing the direct fabrication of periodic structures over large areas with no need
of masks or molds, even at the sub-wavelength scale [6–10]. This technique is capable of either
additive or subtractive nanofabrication with a larger throughput compared to the conventional
direct-laser writing method. Typical implementations rely on splitting the light in multiple beams
and recombining them with a defined angle, which dictates the spatial periodicity of the fringes.
This is either achieved by fixed optical components – such as with diffractive optical elements
[11], beam splitters [9, 12], Fresnel biprisms [13, 14], phase masks [15, 16], or mirrors [17, 18] – or
with tunable devices – such as spatial light modulators [19, 20]. However, fixed elements lacks in
tunability and active elements are typically limited in speed. This limit has been recently surpassed
by the AOF device, which has been used to produce tailored interference patterns at high speed
[21]. This approach demonstrated promising material processing capabilities. However, in some
applications a point-by-point control of light is still desirable.

An entirely different approach enabling both high throughput and local control of light consin-
sts in splitting a beam into several beamlets, each focused at a different position on the sample.
In this case, the throughput increases linearly with the number of beamlets, only limited by the
available laser power. Successful implementations include the use of passive elements to gener-
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ate fixed multi-focus distributions, such as diffractive optical elements [22], amplitude gratings
[23] or beam splitters [24]. However, the lack of tunability in the selection of focus location or
number heavily limits the flexibility of laser processing. Alternatively, active elements such as
AODs [25, 26], SLMs [27, 28], or DMDs [29, 30] enable dynamic and customized light splitting,
but can suffer from polarization dependence, low damage threshold and, more importantly, long
response time. Thus, beam parallelization suffer from similar speed limitations of interference
pattern generation. Simply put, a tool capable of generating multiple beams at high speed while
preserving a high level of tunability is still not available.

In this chapter, we prove that the AOF device can fill this gap and create dynamic multi-focus
distributions with unprecedented tunability and speed [31]. The first part of this chapter contains
a detailed optical characterization of the system, in perfect agreement with the theoretical model
of the previous chapter. In the second part, we demonstrate tailored micromachining of metals,
ceramics, and polymers at ease and high throughput using either the multi-foci distribution or
the interference patterns.

4.1 Dynamic generation of structured light

Figure 4.1: Schemes of the AOF-enabled laser direct-writing system. (a) The multi-focus distribution is realized
by simply placing the AOF device before the objective lens. The insets show the measured intensity at the sample
plane with the device off and on. (b) The interference patterns are conjugated to the sample plane with a 4f
system composed of a lens and the objective lens. The insets show measured intensity at the sample plane with
one or both axes on.

Our material processing setup consists of a conventional Laser Direct Writing (LDW) system
modified to include the AOF device. When our system is used to generate the interference
patterns, we conjugate the beams diffracted by the AOF device to the sample plane by means
of a 4f system composed of a converging lens and the objective lens, as shown in Figure 4.1a.
However, in the experiments shown in this chapter we used our system to parallelize the beam.
In this case, the AOF device is placed before the focusing lens, as shown in Figure 4.1b.

As described in Chapter 3, driving the AOF device on resonance induces acoustic standing
waves that oscillate in space and in time, modulating the refractive index of the medium and
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enabling controlled diffraction of light. In detail, the periodic modulation of refractive index acts
as a phase grating diffracting a laser beam into multiple beamlets with diffraction efficiency

ηq(t) = J2
q [klnm cos(Ωmt)] (4.1)

and a deflection angle

θq = q
Ωmλ

2πcs
(4.2)

Equations 4.1 and 4.2 describe the fundamental operating principle of our generator of structured
light — by adjusting driving frequency, amplitude voltage, or synchronized laser pulse arrival time,
the number, intensity, or separation of the multiple diffraction orders can be tuned. Notably, the
deflection angle governs the lateral separation of individual diffraction orders in the far-field.
Instead, in the near-field, the angle determines the spatial periodicity of the interference fringes.

4.1.1 Acousto-Optofluidic device implementation

The prototype of the AOF device consists of a hollow metallic cylinder (⌀ = 2.54 cm), a couple
of optically transparent windows (Thorlabs, WG41010), and a plastic scaffold for properly holding
four piezoelectric plates with sizes of 20 mm × 9.5 mm × 1.5 mm (APC international, PZT Navy
type II). We employed a 3D-printer (CubePro, 3D Systems with a resolution of 100 µm) to build
the scaffold using poly-lactic acid (PLA). The piezoelectric plates were soldered on each face
with metallic wires and subsequently assembled together with the scaffold to form a cavity with
square symmetry – each plate corresponds to a face of a rectangular parallelepiped, and the
distance between parallel plates is about 10 mm. Note that each pair of piezoelectric plates can
be independently controlled. The cavity was positioned inside the metallic cylinder, enclosed with
a pair of optically transparent windows, and sealed with an epoxy resin (Loctite, Hysol-9483).
In experiments herein, the cavity was filled with Milli-Q water, and the AOF device was driven
by an arbitrary waveform generator (Agilent 33521A). The choice of pure water as a medium
is particularly convenient, being cheap, easily available, with low kinematic viscosity (less than
1.3 × 10−6 m2/s at room temperature) and a low absorption coefficient (between 0.06 m−1 to
2 m−1) for the wavelengths of our experiments, that is, 400 nm to 800 nm. Therefore, absorption,
heating, or cavitation are negligible for a collimated beam that fills the size of the AOF system.

4.1.2 Stability and performance of the AOF device

The AOF device is essentially an acoustic resonant cavity immersed in a liquid, acting as the
propagation medium for sound waves. In experiments herein, we used deionized water, but any
weakly absorbing liquid could also be used. The choice of water is particularly convenient, being an
isotropic and homogeneous medium. Thus, the AOF device is polarization-insensitive, in contrast
to typical acousto-optic devices usually built with birefringent crystals [32]. However, many fluid
parameters – such as the density, speed of sound, and viscosity – are sensitive to temperature
variations. Consequently, the value of the resonant frequencies is not stable but fluctuates with
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Figure 4.2: (a) Stability measurements of the temperature-controlled AOF device. (Top-left) Temperature os-
cillations over 240 minutes, measured with the temperature control system set at 33 °C. (Top-right) Correlation
of the images of the diffraction patterns calculated over the same interval of time. (Bottom) Correlation values
versus the measured temperature variations. This plot indicates reliable stability over the full temperature range.
(b) Mean values (symbols) and standard deviation (bars) of the step response – from rest (OFF) to steady-state
(ON) – of the AOF system. (c) First resonant peak of the acoustic cavity. The blue dots indicate the experimental
points and the red line indicates the fit to the theoretical model.

changes in the temperature of the medium. This phenomenon can hinder the functionality of the
AOF device when used for a prolonged time or when driven at high voltage. Thus, we implemented
a closed-loop temperature control system. Specifically, we wrapped a flexible heating strip around
the aluminum cylinder and integrated a thermocouple inside the cylinder close to the cavity. In
this way, we can monitor and control the temperature of the liquid during the AOF operation.
The result of our control system can be seen in Figure 4.2a. The temperature setpoint – in this
case 33 °C – is set higher than the room temperature. As a result, the temperature inside the
cavity fluctuates around the setpoint as a consequence of the continuous heat exchanges between
the surrounding environment and the heating strip. In the meanwhile, the AOF device is driven
at Vpp = 40 V and the diffraction pattern is continuously recorded with a CMOS camera. The
images of the diffracted light are correlated in time with the pattern at the beginning of the
operation. Noticeably, thanks to our feedback loop, the temperature variations are always small
(no more than half a degree), enabling high optical stability of the AOF device. Indeed, within
the 4 hours of operation, we did not measure any significant alteration of the diffraction pattern.

Another important parameter to describe the stability of the device is the step response time,
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namely the amount of time required by the acoustic cavity to reach the steady-state after being
switched on. We measured this quantity experimentally, as shown in Figure 4.2b. Notably, the
step response time at f = 1.5 MHz is around 600 µs, which is a value much smaller than that
predicted by the theoretical model. This result indicates the presence of losses in the cavity other
than the dissipation by the fluid viscosity. This hypothesis is corroborated by the result presented
in Figure 4.2c, namely the experimental measure of the first resonant peak of the acoustic cavity.
We performed this measurement by sweeping the driving frequency of an actuator and measuring
the generated acoustic pressure using the second piezoelectric plate as a sensor. We fitted the
peak to our theoretical model, finding an effective viscosity value of νeff = 2.5 × 10−6 m2/s,
namely 2.5 times the viscosity value of water. The most likely cause for additional losses in the
cavity is the non-ideality of the actuators, partially absorbing the acoustic energy of the reflected
waves. Importantly, we have to highlight that, as long as the acoustic waves are strong enough,
larger losses are useful for the functionality of the AOF device. Indeed, they grant shorter response
time and broader resonant peaks, making the device faster and more robust against fabrication
errors or noise sources.

4.1.3 Speed and tunability

The high-speed capabilities of the AOF system originate from the continuous operation at steady-
state – the refractive index is continuously modulated at the same frequency of the acoustic
wave. Thus, we only adjust the synchronization delay, which is solely limited by electronics,
to achieve a sub-microsecond control of light. We investigated this remarkable property by
recording the diffraction spots with a camera placed at the focal plane of a converging lens.
Far-field characterization is convenient because it enables the study of each diffraction order
isolated. More in detail, the optical characterization setup is shown in Figure 4.3a. We used a
converging lens (fL = 400 mm) to generate the far-field diffraction pattern that recorded at the
lens focus with a CMOS camera (ThorLabs, DCC1545M). The light source was a 445 nm laser
(Coherent CUBE 445-40C) that can be operated in either CW or pulsed mode. In the latter
case, the laser was externally triggered, and a pulse delay generator (Stanford Research System,
DG645) was used to control the delay time between laser pulses and the driving signal of the
AOF device. The synchronized laser pulses have a duration (5 ns) much shorter than the AOF
driving period. Thus, the acquired images are snapshots of the light interacting with the sound
wave at a specific phase value. As shown in Figure 4.3b, changing the time delay ∆t between
pulses and the acoustic standing wave results in different distributions of Gaussian spots. Notably,
the individual intensity of various diffraction orders – up to nine in this experiment –– can be
adjusted in a time scale of hundreds of nanoseconds. Such remarkable speed is well above the
limits of most AODs, which use traveling acoustic waves and have a typical response time of
microseconds, mainly limited by clear aperture and speed of sound [33, 34]. Notably, additional
multi-focus distributions are accessible by tuning the frequency or amplitude of the driving signals.
In this case, there is an inherent transition time until the acoustic standing wave reaches a new
steady-state. The measured response time in water is about 600 µs (see Figure 4.2b), which
corresponds to a frequency of approximately 1.7 kHz. This speed it is still significantly higher
than most state-of-the-art active multi-beam generators. Notably, this is also the maximum

46



4 AOF Device: Characterization and Applications 4.1 Dynamic generation of structured light

Figure 4.3: (a) Sketch of the time-resolved characterization setup. (b) Images of multi-focus distributions acquired
with synchronized laser pulses at Vpp = 20V and f = 1.488MHz. The pulse duration was 5 ns while the delay
between consecutive measurements was 10 ns.(c) Corresponding diffraction efficiency (blue dots) over time for
the first four orders. Solid lines are fits to Equation 4.1. (d) Images of multi-focus distributions generated with a
CW laser (λ = 645 nm) for various driving frequencies (left), and corresponding diffraction angles (right).

speed attainable with continuous-wave (CW) lasers or laser pulses longer than the AOF driving
period. Indeed, the loss of any temporal dependency of the instantaneous refractive index – only
an average acousto-optic interaction is detected in these instances – makes driving frequency or
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voltage the only parameters available for modifying the diffraction pattern.
Generating diffraction patterns with the AOF device is not only fast but also predictable.

Figure 4.3c displays the temporal evolution of the diffraction efficiency ηq for a single resonant
frequency and four different values of q. Experimental results are in perfect agreement with the
theoretical behavior described in the previous chapter. Similarly, adjusting the driving frequency
produces multi-focus distributions at predictable spatial coordinates. As shown in Figure 4.3d,
the angular spreading of the diffraction orders is symmetric and increases linearly with frequency.
This behavior is in perfect agreement with Equation 4.2. Therefore, for a given focal length, the
location of the diffraction orders can be precisely selected by tuning resonant frequency. In the
focal plane of a lens with focal length fL, the separation between two adjacent foci is

∆x = fL
Ωmλ

2πcs
(4.3)

However, there is a frequency limit below which the separation between orders is too small to be
resolved. This effect occurs if the lateral separation of diffraction orders is smaller than the beam
width at the focal plane. Still, this scenario could be of interest for generating large spots with
a customized intensity distribution.

The good agreement between experimental results and model allowed us to calculate the
change in refractive index induced in the cavity. We fitted the data of figure 4.3c to equation
4.1, obtaining a value of a = klnm of 3.49 ± 0.06 for Vpp = 20 V and f = 1.488 MHz. Knowing
that k = 1.412 × 107 m−1 (namely the wave number of the blue laser) and l = (16 ± 1)mm
we obtained the maximum variation of refraction index of the liquid in the AOF cavity to be
nm = a

lk
= (1.5 ± 0.1)× 10−5. Using the Lorentz-Lorenz equation we can estimate that the

variation of water density is ρm ≈ 0.04 kg/m3, which can be converted into pressure variation
making use of the equation of state ∆P = c2s∆ρ, thus obtaining ∆P ≈ 90 kPa.

4.1.4 Role of the work parameters

A more in-depth experimental analysis of the different multi-focus distributions accessible when
varying the main parameters, namely driving frequency, amplitude, and delay time is shown in
Figure 4.4. As expected from theory, the separation between diffraction peaks increases with
driving frequency (Figure 4.4a). Interestingly, the driving frequency also controls the diffraction
efficiency of high order modes -– the energy carried by higher modes decreases with this parameter.
This effect can be explained considering the inverse relationship between the changes in refractive
index induced in the liquid and the driving frequency, explained in detail in appendix F. Importantly,
this effect can be compensated by increasing the amplitude V of the driving signal that results
in a larger number of diffraction orders (Figure 4.4b). Note, though, that as more orders are
present, conservation of energy causes the efficiency of every order to decrease. Such a trend can
be broken by using synchronized pulsed illumination, as shown in Figure 4.4c. In this case, the
time delay acts as an additional degree of freedom, and by adjusting this parameter, the efficiency
of user-selected diffraction orders can be tuned.

The role of the different parameters can be properly described by using equation 4.1. Indeed,
all the complex multi-focus distributions experimentally observed can be predicted with a single
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Figure 4.4: Experimental and computational study of the diffraction efficiency as a function of the main driving
parameters: peak-to-peak Voltage Vpp, resonant frequency f and time delay ∆t. (a) Intensity profiles at Vpp =
20V across the peaks of multi-focus distributions obtained at different driving frequencies and using a CW laser
as the illumination source. (b) Intensity profiles at ν = 1.49MHz, using a CW laser, and for different driving
voltage amplitudes. (c) Intensities measured at f = 2.11MHz, Vpp = 20V, in synchronized mode, and at various
time delays. All the experiments were performed using a blue laser (λ = 445 nm) as light source. (d) Simulated
instantaneous diffraction efficiency for various arguments ζ = a cos(ωt) and diffraction orders q. (e) Simulated
averaged diffraction efficiency with fixed a = kLnm (the integral mean of equation 4.1 over a period has been
calculated numerically). In both plots the functions are presented as continuous just to guide the eye, but the
physical relevant case is only when q is an integer.

variable, ζ, defined as the argument of the diffraction efficiency ηq

ζ(V, f, t) = a(V, f) cos(Ωmt) = kLnm cos(Ωmt). (4.4)

Such functional dependency is graphically shown in Figures 4.4d and 4.4e. In all cases, only a
finite number of diffraction orders possess a non-negligible amount of energy. The exact number
depends on the driving voltage amplitude. For synchronized pulsed illumination, the efficiency
of each order can be tailored, enabling higher diffraction orders to carry more energy than lower
ones, even the zeroth. Instead, for CW illumination or when using laser pulses with a duration
longer than the period of the driving oscillation, only an averaged efficiency can be attained.
As a result, the diffraction efficiency decreases with the diffraction order. Interestingly, the spot
distribution is also insensitive to the laser polarization that remains unaltered even after passing
through the resonant cavity.
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Indeed, the acoustic medium is pure water, which is well known to be homogeneous and
isotropic. Therefore, no dependence on the polarization of the input beam is expected. To
ensure this assumption, we performed two experiments. In the first one, we placed a half-wave
plate on a rotatory mount before the AOF device to rotate the polarization angle of the incident
laser. Figure 4.5a shows images of multi-spot distributions at a different angular position of the
half-wave plate. As expected, shape, position, and the intensity of the diffraction pattern are not
affected by the polarization of the incoming light. In the second experiment, we placed the AOF
device between two crossed polarizers. When the AOF device is off, and because water does not
alter the incoming polarization, only residual light is collected. We then switched on the AOF
device and measured the new intensity collected after the polarizers. As shown in Figure 4.5b,
the ratio of the measured intensity (AOF on versus AOF off) is constant for any angle θ of the
polarizers. Therefore, the AOF device does not alter the polarization state of the incident light.

The two experiments confirm that the AOF device is a polarization-insensitive system. Given
the important role that polarization plays in light-matter interactions [35–37], and with the
advent of beam shapes exhibiting advanced polarization states [38] polarization insensitivity is a
key feature of our AOF device.

Figure 4.5: Experimental study of the polarization insensitivity of the AOF device. The diffraction patterns in (a)
have been acquired with a different rotation angle φ of a half-wave plate placed before the AOF device. Note
that the intensity distribution is not affected by the different polarization states of the incoming light. The setup
shown in (b) consists of the AOF device placed between two crossed polarizers so that the detected intensity is at
minimum. Any change in the polarization state of light induced by the AOF device would increase the measured
intensity. However, the experimental results prove that the polarization state is unaltered when the device is
turned on, confirming the polarization insensitivity of the AOF system.
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4.2 Laser Direct Writing with the AOF device

4.2.1 Material processing setup

In order to demonstrate the potentialities of the AOF device, we integrated it into a laser direct-
writing setup. It consists of a Ti:Sapphire amplifier (Coherent Legend, pulse duration = 70 fs,
repetition rate = 1 kHz, λ = 800 nm), optical elements needed to guide the beam to objective
lens (Mitutoyo M Plan Apo SL 50×/0.75 NA), and a fast XYZ stage (Prior Scientific, Inc.).
The AOF device is placed at a conjugate plane of the back focal plane of the objective lens
using a 4f system. We also integrated an upright bright-field microscope into the LDW system
for direct inspection of the material modification. We controlled laser firing and stage motion
by a computer using custom software written in LabView. To perform material processing in
synchronized mode, we used the laser as the master and triggered the AOF device using the
voltage generator in burst mode. In this way, the sound waves were generated after a controllable
delay time, chosen greater than the time required for the cavity to reach the steady-state. Laser
sources with longer pulses could be used in the described setup, but ultrashort pulses reduce
heating effects on the samples and the acoustic cavity itself.

4.2.2 Multi-focus processing of materials

The simple integration of the AOF device in a laser direct-writing workstation enables modification
of materials at high throughput. Figure 4.6a shows different ablated spots on a chromium thin
film obtained by irradiation with the AOF-enabled system. The size, distance, or quantity of the
ablated spots can be easily tuned by adjusting the driving conditions of the AOF device without
the need for any mechanical motion of the sample. This represents a key advantage of our
approach. The throughput of an LDW system can be increased by a factor that scales linearly
with the number of diffracted foci.

Combining the tunability offered by acousto-optofluidics with sample translation enables writ-
ing complex structures. Notably, different processing modes can be distinguished based on the
type of illumination or stage speed. With a pulsed laser and a scanning speed v < Rw (where
R is the laser repetition rate and w is the width of the ablated spot) and v ≪ fw (where f
is the acoustic frequency), continuous lines can be generated (see Figure 4.6b). Because of the
higher efficiency of the low diffraction orders, the lines become progressively thinner away from
the center. Instead, operating with synchronized laser pulses enables generating structures in
which the line width of each diffraction order can be tuned. The structures can be rendered
continuous or discrete by simply adjusting the stage speed relative to the laser repetition rate.
As a proof of concept, we used this patterning mode to locally modify the wetting properties of
a target surface (see Figure 4.6c). We obtained a grid-like pattern on a glass sample by only
selecting the first and second diffraction orders and scanning the multi-focus distribution along
the x and y axis. As expected from Wenzel’s model [39], the patterned surface exhibited an
increase in roughness, and consequently, an enhancement of its wetting behavior —the patterned
glass was transformed into a super-hydrophilic surface.

The capability of the AOF-enabled workstation for generating functionalized structures is
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Figure 4.6: Materials processing with AOF-enabled LDW workstation. (a) Result of multi-focus laser ablation of
chromium for different driving conditions. For each multi-focus distribution, 25 asynchronous laser pulses were
fired. (b) Direct writing of lines on chromium with the AOF device on and the stage continuously moving. The
stage speed was selected so that, at each position, multiple asynchronous laser pulses were shot. (c) Top-left:
ablation of borosilicate glass using the AOF device with synchronized laser pulses. Note that the 0th order is
missing, while the orders ±1 and ±2 generated lines of similar width. Top-right: scanning along the orthogonal
direction resulted in a 2D grid. Bottom: contact angle measurements of water on a glass substrate before (left)
and after laser patterning (right). (d) Wide-field fluorescence image of PDMS-coated glass after irradiation with
the laser operated in brush-like mode and after wetting with an aqueous fluorescein solution. Only the irradiated
parts are hydrophilic and fluorescent. White scale bars 10 µm. Black scale bars 50 µm.

shown in Figure 4.6d. In this case, we used a laser to locally remove a hydrophobic polymeric
coating (polydimethylsiloxane or PDMS) from a glass substrate. As a result, only the laser-
irradiated areas became hydrophilic. The different diffraction orders were merged by driving
the AOF device with a low driving frequency and using a high laser fluence and asynchronous
laser pulses. In other words, the laser beam acted as a brush, which thickness could be tuned
by modulating the driving voltage amplitude. Therefore, laser beam scanning along one axis
combined with sinusoidal or triangular modulation of the signal amplitude allows fabricating
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Figure 4.7: Morphological characterization of the ablated samples. Height maps of the glass (a) and PDMS
substrates (b-c). The enhancement of surface roughness (a) justifies the increase in hydrophilicity of the glass,
as predicted by Wenzel’s model. The depth of the ablated patterns in (b-c) confirms that the thin PDMS layer
is completely removed, leading to hydrophilic regions (glass) surrounded by hydrophobic surfaces.

significantly complex patterns at ease and at high-speed. Note that such a brush-like mode can
lead to virtually any arbitrary pattern, with the only constraint to be symmetrical with respect
to the scanning axis. After dropping a fluorescein-containing aqueous solution on the patterned
surface and waiting for evaporation to occur, the domains exhibiting different wettability can be
distinguished. As expected, only the laser-irradiated areas were fluorescent, proving the feasibility
of AOF systems for writing complex and functional patterns.

To better quantify the quality of the fabricated patterns, we measured the ablation depth
using an optical profiler. In this experiment, we coated the ablated samples with 15 nm of gold
in order to increase the surface reflectivity and better investigate their morphology. Results of
this study are shown in Figure 4.7. The surface modifications explain perfectly the change in the
wettability discussed before.

4.2.3 Parallelized tailored writing

The efficiency of the AOF device is substantially insensitive to several properties of light such
as polarization, wavelength, and incidence angle. This advantage makes the AOF inherently
compatible with a large family of optical elements. In fact, the capabilities of the AOF device
can be further expanded if used in combination with additional beam shaping tools. As a proof
of principle, we used the far-field parallelization capabilities of our system to generate arrays of
unconventional beams, such as Annular and Bessel beams. In Figure 4.8a we report the images
of an asynchronous pattern of 9 × 11 Bessel beams, obtained entering the AOF device with an
Annular beam which can be easily generated with an annular pinhole [2], an axicon [40], or a TAG
lens [41]. Similarly, in Figure 4.8b we show the asynchronous image of a 9 × 13 Annular beams.
We obtained this pattern entering the AOF with a Bessel beam, which can be generated with
the same techniques named before. Interestingly, in the case of Annular beams, the individual
rings partially overlap, enabling the generation of structures possessing a higher level of complexity
than simple rings. In our experiments, we generated the Bessel and annular beams by illuminating
an annular aperture (ThorLabs R1CA1000, external diameter 1 mm, internal diameter 0.85 mm)
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Figure 4.8: Parallelized beam shaping and application. 1D and 2D arrays of Bessel beams (a) and Annular beams
(b) obtained in the far-field by entering the AOF device with an Annular beam and Bessel beam, respectively. (c)
Ablation of Palladium using parallelized Bessel beams at different laser power and number of shots.

with a collimated Gaussian beam. We obtained the Bessel beams by optically conjugating the
annular mask to the entrance of the AOF device with a 4f-system (f1 = 5 cm and f2 = 20 cm,
4× magnification). Instead, we obtained the annular beams by entering the AOF device with
the beam freely propagated (for 109 cm) after the annular aperture. In both cases, we recorded
the far-field patterns at the focal plane of a converging lens (fL = 30 cm) with a CMOS camera
(ThorLabs, DCC1545M).

The combination of the speed and tunability of the AOF device with the capability to generate
tailored light shapes enables writing complex shapes on virtually any substrate. This concept
is demonstrated in Figure 4.8c, where we show the surface of a palladium substrate hosting
complex patterns. Each of them was obtained without stage scanning, but simply structuring a
femtosecond laser beam through a simple annular mask and the AOF device.
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4.2.4 Sample preparation and characterization

We prepared metal surfaces by sputtering 200 nm of chromium on top of a glass substrate.
We coated a glass surface with PDMS using the process known as dip coating. Specifically,
we quickly rinsed a microscope slide into a solution of PDMS in heptane (5% v/v), creating
a polymeric film with a thickness of approximately 500 nm. We measured the morphology of
the ablated surfaces with a bright-field optical microscope (DM2500 M, Leica). In particular,
we used a 10×/0.25 NA and a 50×/0.75 NA microscope objective lenses to acquire the images
of the ablated patterns. We recorded the large field-of-view images of deposited fluorescein
with a wide-field epifluorescence microscope (Nikon eclipse 80i) equipped with a 10×/0.3 NA
objective lens (Plan Fluor, Nikon). The magnified images of the same sample were acquired with
a 40×/0.75 NA microscope objective. We studied the wetting behavior of the laser-irradiated
surfaces with an optical contact angle goniometer (Dataphysics OCA 15EC) by depositing 0.2 µL
of deionized water on top of the sample under test. In order to ensure good reliability, we repeated
each measurement five times.

4.2.5 Considerations over the damage threshold

Possible damage or malfunctioning of the AOF system, due to the incident laser, ultimately
depends on optical absorption, either linear or non-linear absorption. The former might cause
heating of the filling fluid, whereas the latter might induce the generation of cavitation bubbles.
Therefore, it is important to select filling fluids that weakly absorb the laser wavelength of
interest. Water and silicon oil are good examples for operations with visible light. Heating effects
are expected for laser pulses with a duration of ps and above (or fs pulses at MHz repetition
rates). While a uniform temperature increase in the fluid will only cause a drift in the resonant
frequency, something that can be corrected for with a feedback system, non-uniform heating
will induce thermal gradients that can cause lensing effects. Therefore, when using high-power
lasers, it is recommended to use lasers with a beam waist larger or comparable to the width of
the AOF cavity. In these instances, the maximum laser power at which the device can correctly
operate is limited by possible boiling of the liquid. The formation of cavitation bubbles poses
a severe problem. Even if cavitation can occur with ps or ns pulses, this phenomenon is more
likely to occur with ultra-short laser pulses. In these cases, the peak intensity at which the
device can be operated depends on the conditions for cavitation bubble formation, which is about
100 × 1011 W/m2 for 100 fs [42].

4.3 Conclusion

The variations in refractive index induced by ultrasound waves in a liquid-filled resonant cavity
can be used to parallelize laser writing or generate tailored interference patterns for maskless
lithography. Adjusting the sound parameters, namely frequency, amplitude, and phase, results in
user-selectable patterns at high speeds, down to sub-microsecond time scales. This adds to the
collection of degrees of control typically available in laser processing, thus providing, in a single
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setup, an unrivaled combination of throughput, speed, and ease of use.

We anticipate that acousto-optofluidics will help to overcome the intrinsic trade-off between
flexibility and throughput of laser-direct writing systems. As our results demonstrate, driving the
cavity at moderate voltage amplitudes (below 20 V) complex patterns can be rapidly ablated on a
surface. Further customization should also be possible by combining the AOF device with beam
scanning systems, such as galvo mirrors, and driving it with multiple frequencies or off-resonance.
The benefits of our innovation could be similarly extended to laser additive manufacturing, includ-
ing laser induced forward transfer [43], laser sintering [44], or multi-photon polymerization [45].
Outside the manufacturing field, precise and fast light splitting can also have a key role in the
realization of optical traps [46] or in beam multiplexing for fast microscopy [24]. Furthermore,
by using higher driving amplitudes, novel acousto-optic interaction regimes could be explored,
such as chaotic or subharmonic [47], paving the way to shaping the light with unprecedented
spatiotemporal control.
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5
Multiplane Encoded Light-Sheet Microscopy

One of the main goals of optical microscopy is retrieving quantitative and volumetric information
while minimizing sample photodamage. This requires three-dimensional (3D) imaging techniques
with high spatio-temporal resolution and optical sectioning capabilities. Among the existing
techniques, Light-sheet Fluorescence Microscopy (LSFM) has become the tool of choice for
volumetric imaging of large samples [1], offering a unique combination of speed, Field-of-View
(FoV), and spatial resolution [2]. In LSFM, the sample is illuminated with a light-sheet [3] – a thin
(along the z-axis) and wide (in the x-y plane) beam of light – produced by a cylindrical lens or a
rapidly scanning Gaussian, Bessel, or Airy beam [4–6]. An objective lens, mounted orthogonally to
the illumination plane, collects the fluorescent light, and the corresponding image is recorded with
a camera [7]. The combination of a wide-field acquisition scheme with shaped illumination allows
fast optical sectioning over a large FoV, at diffraction-limited resolution while using low light
doses. Unfortunately, traditional architectures are not optimized for fast 3D imaging. Typically,
volumetric imaging in LSFM is performed by acquiring a sequence of 2D images from different
focal planes of the sample, the so-called z-stack. Since the light-sheet and the focal plane of the
detection lens must coincide to avoid blurring or image artifacts, collection of a z-stack is obtained
either by sample translation or synchronized movement of light-sheet and objective lens. In both
cases, a slow mechanical movement is needed, constraining the maximum acquisition rate. In
order to overcome this limitation, various innovative LSFM architectures have been proposed.
For instance, remote focusing detection enables axial scanning at high rates without introducing
significant aberrations [8, 9]. While offering substantial speed advantages, its practical usage
is hindered by the complexity of setup and alignment procedures. The combination of a light
field camera – which exploits an array of micro-lenses to distinguish the axial origin of the light
– with a thick light-sheet can be used to retrieve information of a whole volume from a single
frame [10, 11]. However, the reconstruction algorithm needed for this solution is computationally
demanding, and the resulting images typically have a heavily degraded lateral resolution. Another
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possibility is to acquire fewer frames per stack and reconstruct the volume using a compressed
sensing algorithm, thus reducing the total acquisition time [12]. Still, this strategy offers only a
limited speed improvement and it is likely to generate artifacts when the sample is not sparse.
Alternatively, it is possible to extend the Depth-of-Field (DoF) of the detection objective. With
this approach, all the sample planes appear in focus, and the images can be acquired by only
moving the light-sheet, with no need for mechanical synchronization. Notably, translation of
the light-sheet can be performed in a few milliseconds, greatly increasing imaging speed. Several
techniques exist for generating an Extended Depth-of-Field (EDoF), including the use of spherical
aberrations [13], wavefront coding [14, 15], and varifocal lenses [16–18].

Figure 5.1: Images of 1 µm beads fluorescent beads acquired with a 10×/0.3NA objective lens. From left to
the right the driving voltage of the TAG lens is increasing with a corresponding increase of the DoF, but also a
deterioration of the SNR of the images.

Unfortunately, EDoF techniques can produce a significant loss of photons per plane. We demon-
strate this effect in Figure 5.1, where we increase the driving voltage of the TAG Lens, proportional
to the DoF. As a result, the signal per plane is reduced and the noise level is increased. Thus,
the acquired z-stack exhibits a degraded Signal-to-Noise Ratio (SNR). Other DoF extending
techniques share the same issue [19].

A straightforward solution for this problem is to increase the excitation intensity. While the
high power of current lasers enables this implementation in almost any EDoF light-sheet system,
this approach faces two major drawbacks. First, the fluorophores response is non-linear and, above
their saturation threshold, no additional fluorescence signal is gained from increasing illumination
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levels [20], as depicted in Figure 5.2. Second, and more importantly, the higher the peak intensity,
the greater the risk of photodamaging the sample – an enormous detriment for live microscopy.
To prevent phototoxicity and gain SNR, increasing the exposure time of the images while keeping
the illumination levels low is preferable [21, 22]. However, this irremediably comes at the cost of
sacrificing acquisition speed.

Figure 5.2: (a) Measured fluorescence intensity of fluorescein embedded in agar gel, seen as a function of the
excitation power. Fluorescence tends to saturate at high excitation power. (b) Fluorescence intensity seen as a
function of the exposure time. If the used laser power is low enough to prevent photobleaching, the trend is linear.

An alternative solution is parallelizing the illumination to increase the information captured per
frame. In this case, several planes are simultaneously illuminated, thus the exposure time of indi-
vidual planes can be increased without loss of acquisition speed. Although a common practice in
laser scanning microscopy, such a multiplexing strategy remains difficult to implement in LSFM.
Recent attempts include multibeam interference [23] and arrays of incoherent and frequency-
modulated light-sheets [24], but they can be limited by the speed of spatial light modulators
or require instrument-specific components not commercially available. So far, a light-sheet par-
allelization method that obviates mechanical moving parts and rapidly produces enhanced SNR
volumetric images has not been reported. Here, we propose a novel and straightforward technique
that fills this void and produces images with enhanced signal-to-noise/background ratio in EDoF
Light-Sheet microscopes. It is named Multi-plane Encoded Light-sheet Microscopy (MELM) and
is based on illuminating a sample with encoded sequences of simultaneous multiple light-sheets
[25, 26]. As shown in Figure 5.3a, each sequence contains information from multiple planes. The
sum of the corresponding images is collected in a single camera frame. By acquiring different
frames – as many as sample sections desired to capture – images from individual planes can
be decoded using a computationally inexpensive single-step reconstruction algorithm. Notably,
the decoded images exhibit enhanced SNR depending on the illumination sequence used. Ad-
ditionally, volumetric acquisition can occur at the same rate as in standard EDoF-LSFM, thus
preserving the core advantages of this technique in terms of speed and ease of implementation.
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In this manuscript, we provide a full theoretical framework to describe our method. Supported
by numerical simulations, we demonstrate the feasibility of our instrument, and we quantify the
gain in SNR with imaging experiments using fluorescent beads and biological samples.

5.1 Working principle of MELM

Figure 5.3: (a) Working principle of Multiplane Encoded Light-sheet Microscopy. A set Sij of parallel light-sheets
is shined on the sample, illuminating at the same time multiple planes Pj whose superposed images are collected
as the frame Fi. In order to retrieve the individual images, it is simply needed to calculate the inverse of the
encoding sequence S−1

ij . (b) SNR of the decoded images acquired with the Hadamard encoding (left) and Black
Light-sheet encoding (right), seen as functions of the number of acquired frames. Both plots are normalized by
the SNR of a sequential scan. (c) Background of the decoded images acquired with the Hadamard encoding
(left) and Black Light-sheet encoding (right), seen as functions of the number of acquired frames. Both plots are
normalized by the background level of a sequential scan. (d) Scheme of the acquisition system. All the illuminated
planes are acquired simultaneously thanks to a fast axial scan performed by a TAG lens.

The fundamental hypothesis of MELM is that parallelized illumination using tailored light se-
quences can enhance the SNR in EDoF-LSFM. Mathematically, we can describe such a process
as follows. Let p be the 1 × n array of images composing the full z-stack, and f be the 1 × n
array of acquired camera frames. Then, we can write the acquisition process as

fi =
n∑︂

j=1

Sijpj + ei (5.1)
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where Sij is a coefficient whose value is 1 when the plane pj is illuminated by a light-sheet and
0 when not, and ei is the noise [27]. The above equation can also be represented using the
following matrix form

f = Sp+ e (5.2)

here, S is a n × n matrix whose rows describe the encoding sequences of on/off light-sheets
for each frame. If S is invertible and well-conditioned, we can find an estimate of the images p
directly inverting the previous equation

ˆ︁p = S−1f = p+ S−1e (5.3)

Notably, MELM enables decoding n planes pj from n frames fj, whose noise content is now S−1e
instead of e. To make this transformation advantageous, the signal-independent noise must be
shared among multiple illuminated planes. Consequently, the larger the number of simultaneously
acquired planes, the lesser the noise per plane. However, the decoding step needed to retrieve
information from each plane can return some noise to the images. The amount of added noise
depends on the encoding matrix. Therefore, the choice of S is crucial in determining the SNR of
the decoded images. To illustrate this effect, we used three different illumination patterns, each
one represented by a unique matrix.

1. Sequential scan. This corresponds to the traditional implementation of LSFM, in which
a single light-sheet illuminates a single plane, and it is moved to a different axial position at
each frame. In this case, the encoding matrix is the identity I. Consequently, S−1 = I = S
and the noise content is unchanged. This non-parallelized acquisition scheme is used as a
benchmark for the following multi-plane schemes.

2. Black Light-sheet. As its name indicates, it is based on using n− 1 parallel and identical
light-sheets to simultaneously illuminate a volume divided into n sections. In other words,
all planes within a volume are illuminated except for one. The axial position of the dark
plane is changed after each frame. The corresponding matrix S contains zeros on the main
diagonal and ones everywhere else. The expected gain in SNR for an image in the z-stack
is:

SNRn

SNR0

=

√︄
1 + χ2

1 + (n− 1)χ2

(n− 1)√︁
(n2 − 3n+ 3)

(5.4)

where χ is the ratio of the standard deviation of the photon noise to the standard deviation
of the camera noise of each plane [28], and SNR0 is the SNR of the image acquired using a
sequential scheme with the same exposure time and peak intensity per light-sheet (the full
derivation is available in appendix H). The parameter χ depends on several variables, such
as detector type, brightness of the sample, and exposure time. In fast imaging experiments,
the last variable is expected to be low, resulting in a small number of collected photons
and, correspondingly, a low value of χ.
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3. Hadamard scan. A volume, divided into n planes, is simultaneously illuminated by
(n+ 1) /2 identical light-sheets. At each frame, the axial positions of the light-sheets
are changed accordingly to the rows of the Hadamard matrix S [29]. In this case, the
expected SNR gain is

SNRn

SNR0

=

√︄
1 + χ2

1 + n+1
2
χ2

n+ 1

2
√
n

(5.5)

which also depends on the parameter χ. Note that Hadamard matrices are defined only for
n = 2k − 1, with k > 1 and integer, differently than Black Light-sheet matrices that can
be defined for every natural number n (see appendix H).

Figures 5.3b and shows plots of the SNR enhancement for the Black Light-sheet and Hadamard
encoding strategies as a function of the number of illuminated planes and photon noise. As
expected, when the photon noise is negligible, both cases provide a gain in SNR over the traditional
sequential scan. Such a gain increases with the number of planes for the Hadamard case – it
scales as

√
n
2

. Instead, when using the Black Light-sheet encoding, the SNR is maximized when 3
planes are illuminated and then asymptotically approaches the same value as the sequential scan.
As the photon noise content increases, both cases exhibit a reduction of the SNR advantage.
However, the two methods have a different tolerance to photon noise, with the Hadamard scan
preserving its benefits for higher values of χ than the Black Light-sheet. These observations
are valid assuming the detector is capable of collecting the additional light coming from all
the illuminated planes. In other words, the dynamic range of the camera must be sufficient to
gather all this information. Given that parallelization is useful to improve the SNR of images
when the signal is low, this assumption is valid in the vast majority of practical situations in
fluorescence bioimaging. Microscopy images are not only affected by noise, but they typically
suffer from the presence of background. This latter is originated from various contributions
such as out-of-focus fluorescence (signal-dependent background) or detector dark current and
environmental light (signal-independent background). EDoF-LSFM inherently rejects the first
type of background but can still suffer from the signal-independent contributions that we define
as β. The parallelization of MELM also enables reducing this value, thus increasing the contrast
of the reconstructed images. In particular, the expected background reduction with the Black
Light-sheet encoding is

βn
β0

=
1

n− 1
(5.6)

where β0 is the background of the image acquired using the sequential scan. In the case of
Hadamard scan, such a reduction can be written as

βn
β0

=
2

n+ 1
(5.7)

As shown in Figure 5.3c, both encoding methods enable reducing the background with respect to
the sequential scan. In addition, such a reduction increases with the number of illuminated planes.
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However, the Black Light-sheet approach has a better performance in background suppression.
Therefore, while the Hadamard scan provides the best SNR gain of the strategies analyzed, the
Black Light-sheet can be preferable when a strong background is present. Note that it is always
possible to choose and tune the optimal encoding method that best suits the target application
or sample.

5.2 MELM implementation

MELM can be implemented in any traditional or inverted light-sheet microscope, with two key
modifications depicted in Figure 5.3d. First, incorporating a method for generating an array of
parallel and identical light-sheets that can be individually switched on and off. Second, applying
a technique to extend the DoF of the detection objective lens. In our microscope, presented in
Figure 5.4a, we use a pair of AODs, optically conjugated in a 4f system, to generate multiple
light-sheets. The first AOD – driven with a sinusoid which frequency is modulated by a triangular
function – periodically deflects a Gaussian beam along the y-axis, thus generating a light-sheet
when watched at the frame speed of the camera detector [30]. This approach, compared to the
more traditional cylindrical lens, allows confining the illumination to a region of interest, thus
optimizing the photon budget [31]. We use the second AOD to generate the encoded illumination
sequences. To this end, we drive it with multiple sine waves Vi while collecting the superpositioned
frames fi:

Vi(t) ∝
n∑︂

j=1

Sij sin(Ωijt) (5.8)

The amplitudes Sij are exactly the entries of the encoding matrix S and each acoustic frequency
Ωij diffracts the light to a different axial position [32], thus obtaining a stack of parallel light-
sheets illuminating the planes pj only if Sij = 1. As shown in Figure 5.4b, the illumination
pattern produced with this technique shows good uniformity along the y-axis and the intensity
of each beam is the same. Notably, the good uniformity of the frequency response of the AOD
and the linearity of its control system granted the desired uniformity without the need of any
additional correction. Other light-sheet parallelization techniques have already been proposed
[33, 34], but acousto-optic light sculpting enables the fastest switch between an illumination
pattern and the following one [35], which is key for preserving the speed of LSFM. In particular,
in our current implementation, we can switch between two patterns within 5 ms. This value
does not depend on the number of produced beams, thus in principle, it is possible to reach any
amount of parallelization without sacrificing speed. Importantly, this value could be significantly
decreased by implementing an optimized control system, and thus it does not represent an inherent
limitation of the technique. Indeed, the generation of the light-sheets in principle is limited only
by the access time of the deflectors [35].
MELM can be implemented with any DoF extending method. In our system, we conjugated the
back focal plane of the detection objective lens with a varifocal lens [36]. Specifically, we used a
TAG lens (described in detail in appendix G) that rapidly scans the object plane along the optical
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Figure 5.4: (a) Sketch of the experimental setup. The blue line defines the excitation arm, and the green line
defines the detection arm. (b) Experimental image of light-sheets taken at the focal plane of the scan lens. On
top, the intensity profile along the z-axis shows that the light-sheets have comparable intensity. On the left,
the intensity profile along the y-axis shows a good longitudinal homogeneity. (c) Native PSF of the detection
objective lens (40×/0.8NA) calculated with the Born & Wolf model. The image of the xy plane at z = 0 and
the corresponding intensity profile are in a logarithmic scale. The DoF, defined as the FWHM along the z-axis,
is 1.5 µm (d) Extended PSF, obtained by scanning the native PSF along the z-axis with the TAG lens. In this
example, the DoF extension is about 25 µm, but it can be tuned by applying a different voltage drive to the TAG
lens. The intensity scale is the same as in (c). It can be seen that the lateral width is preserved, but the intensity
per plane is reduced.

axis [37]. If the camera exposure time is greater than the period T = 2π/Ω of the axial scan
(typically in the order of tens of microseconds), a dynamic and tunable EDoF is obtained. The
resulting detection Point Spread Function (PSF) of the microscope is

he(x, y, z) =
1

T

∫︂ T

0

ho(x, y, z −∆z cos (Ωt)) dt (5.9)

where ho is the native detection PSF of the system, and ∆z is half of the scanning range.
Importantly, ∆z can be tailored by changing the driving parameters of the TAG lens, namely the
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Figure 5.5: (a) Scheme of the TAG lens calibration setup. (b) Left: Spatial profile of the phase profile induced by
the TAG lens at the resonant frequency of 69 kHz. The orange dashed line shows the parabolic approximation.
The horizontal axis is normalized to the radius R of the lens. Right: calibration curve of the optical power
versus the driving voltage amplitude. The horizontal axis is normalized to the maximum voltage the driving kit
can provide. (c) Phase profile and calibration curve of the TAG lens at 189 kHz. The corresponding EDoF is
calculated assuming the focal length of the detection objective lens to be 5mm.

frequency and the voltage amplitude as shown in Figure 5.5. The resulting time-averaged PSF,
shown in Figures 5.4c and 5.4d, is elongated along the optical axis while preserving its width
in the xy plane. However, the out-of-focus contributions of the axially scanned PSF produce a
lateral broadening of the tails of the extended PSF, resulting in additional fluorescent background.
In order to restore the diffraction-limited images, a deconvolution step is needed, as it typically
happens with all EDoF techniques. Since the lateral shape of extended PSF does not depend on
the axial coordinate, it is possible to perform a simple 2D plane-by-plane deconvolution. This
advantage significantly lowers the computational cost of the post-processing step compared to
other DoF extending methods. Figure 5.4d also shows how the average intensity of the extended
PSF is lower than the peak intensity of the native PSF. As discussed before, this is an inherent
side effect of any DoF extending methods: the longer the EdoF, the lower the signal of each plane
(see appendix G for a full derivation). With the two modifications in place, image acquisition in
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MELM proceeds by shining the sample with a sequence of multiple light-sheets. The encoding
method, the extension of the DoF, and the planes to be imaged are selected prior to launching
the acquisition by selecting the driving frequencies of both AOD and TAG lens. Once the stack of
encoded frames is collected, we reconstruct the images of the individual planes with a single-step
decoding algorithm (see the materials and methods section and appendix I for further details).

5.2.1 Microscope setup

The light source is a CW laser at 488 nm (Coherent Sapphire), beam-expanded with a 5× afocal
telescope and then directed towards two AODs (IntraAction, ATD-7010CD2) at the Bragg angle.
The deflectors are conjugated via a 4f system, thus generating a doubly diffracted beam which is
then directed to the scan lens (f = 200 mm), while the secondary beams are blocked by an iris.
The beam is then aligned towards the tube lens (f = 200 mm) and the excitation objective lens
(Nikon 10×/0.3 NA, water dipping), finally reaching the sample inside a chamber. The latter
is a cube with transparent windows, filled with pure water, glued to the water dipping detection
objective (Leica 10×/0.3 NA or 40×/0.8 NA, both water dipping), mounted orthogonally to the
excitation line. The back focal plane of the detection objective lens is conjugated through a 4f
system to the TAG lens (TAG Optics Inc.). The TAG lens is typically driven at its first resonant
frequency (70 kHz), while the voltage amplitude depends on the desired extension of the DoF
and the properties of the objective lens. After the TAG Lens, light is directed towards the tube
lens (f = 200 mm), which creates an image of the Illuminated planes on the sensor of an sCMOS
camera (ANDOR Neo 5.5). A notch filter (NF488-15, Thorlabs) rejects excitation light.

5.2.2 Acousto-optic light sculpting

The first AOD (IntraAction, ATD-7010CD2) is used to deflect a Gaussian beam along the y-
axis, thus generating a light-sheet on average. It is driven by a voltage-controlled oscillator
(IntraAction, DE-704M) at the central frequency of 70 MHz with a 20 kHz frequency modulation
using a triangular wave. This waveform guarantees the optimal homogeneity of the light-sheet
intensity along the y-axis. The second AOD (IntraAction, ATD-7010CD2) is driven by multiple
frequencies in order to diffract the incident beam in multiple beamlets at different angles. The scan
lens transforms the angles into unique axial positions, thus creating an array of parallel light-sheets.
This AOD is controlled by a 14-bit arbitrary waveform generator (Signatec, PXDAC4800), whose
output is amplified by a gain block (Mini-circuits, ZHL-1-2WX-S+). The camera acquisition and
the generation of the driving signal for the AOD are synchronized through a digital I/O device
(National Instruments, USB-6501). The complete system is controlled by a custom software
programmed with LabView. In its present form, the light-sculpting system can switch between
two illumination sequences in 5 ms.

5.2.3 TAG Lens calibration

In order to calibrate the DoF extension provided by the TAG Lens as a function of the voltage
applied, we performed the following procedure. We filled the TAG Lens aperture with a Gaussian
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Beam and measured the transmitted wavefront with a Shack-Hartmann sensor (see Figure 5.5a).
We synchronized the emission of a laser pulse to a phase value of the oscillation of the TAG Lens,
thus measuring the instantaneous wavefront. We fitted the measured wavefront ϕ to a parabolic
model

ϕ(x, y, t)

κ
=
α(t)

2

[︁
(x− x0)

2 + (y − y0)
2
]︁
+ β (5.10)

Thus obtaining a measure of the instantaneous optical power α(t). By changing the delay t in
the synchronization line, we measured the optical power at different times and fitted it to the
following sinusoidal model

α(t) = α cos (ωt+ φ) (5.11)

The amplitude α is the optical power at fixed voltage V and frequency ω. Repeating this
measurement for different values of driving voltage, we measured the calibration curve α(V ) for
two different resonant frequencies of the TAG lens. We fitted this latter to a linear model

α(V ) = mV (5.12)

The optical power slope m is higher for higher resonant frequencies. However, the parabolic
region is smaller, thus reducing the available physical aperture. The relationship between the
DoF extension and the optical power is

EDoF = 2f 2
Oα (5.13)

where fO is the focal length of the objective lens.

5.3 Feasibility of MELM

5.3.1 Simulations

Initially, we validated our technique through numerical simulations. In Figure 5.6a, we show on
the left a synthetic image of sub-diffraction beads in presence of a signal-independent background,
readout (Gaussian) noise, and photon (Poisson) noise. The images is extracted from a z-stack
decoded with an increasing number of frames encoded and subsequently decoded using the Black
Light Sheet algorithm. The same image, decoded at n = 3 and n = 7, is shown on the right.
In Figure 5.6b we show the result of a similar simulation, but performed using the Hadamard
method. On the bottom of both simulations, we plot the quantitative analysis of the SNR gain
and background reduction. Strikingly, the result of the simulations perfectly agrees with the
predictions of the theoretical model presented before. Indeed, the quantitative analysis of the
decoded images confirms that the both methods greatly suppress the background, while the
Hadamard method is more successful in reducing the random noise, especially at high n values
and also in presence of photon noise.
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Figure 5.6: On top, Simulated images of sub-diffraction fluorescent beads in presence of photon noise, readout
noise and signal-independent background. In (a) the images are encoded using the Black Light Sheet sequence
at n = 2, 3, 10. In (b) the images are encoded using the Hadamard sequence at n = 1, 7, 31. On bottom,
quantitative analysis of the SNR enhancement and background suppression of the corresponging set of images.
Both quantities are plotted against the number n of acquired frames.
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Figure 5.7: (a) Top: the same image of a single 1 µm fluorescent bead taken with three different encoding methods
(Sequential, Black Light-sheet, and Hadamard scan). Bottom: Intensity profile, averaged over the columns, of the
corresponding images. (b) Quantitative analysis of the normalized SNR gain (green) and background suppression
(red) obtained with the Hadamard encoding. (c) Quantitative analysis of the normalized SNR gain (green) and
background suppression (red) obtained with the Black Light-sheet encoding. The error bar is shown as a shaded
area, when bigger than the line width. The images have been acquired with a 40×/0.8NA objective lens, whose
DoF has been extended from 1 µm to 60 µm with the TAG lens.

5.3.2 Experimental results

In order to experimentally validate our technique, we performed the imaging of fluorescent beads
embedded in agar gel. Figure 5.7a shows the image of the same bead acquired with the sequential,
Black Light-sheet, and Hadamard scan. For a fair comparison, all three cases were obtained using
the same energy per light-sheet and the same camera exposure time. These parameters grant a
comparable level of phototoxicity and the same acquisition speed. The exposure time has been
set to 2 ms, which added to the 5 ms required to switch between two encoding patterns, resulting
in an acquisition rate of about 150 frames/second. As expected from such short exposure, the
image acquired with the sequential scan is noisy and background-dominated. Instead, the Black
Light-sheet scan shows a great suppression of the background, clearly noticeable in the intensity
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profile. However, there is no perceptible improvement in the noise level. With the Hadamard
scan, the background level is not as low as with the previous encoding, but the noise suppression
is significantly greater. Exact noise and background quantification has been performed using a
Fourier-based algorithm, described in detail in the materials and methods section. The results
are shown in Figures 5.7b and 5.7c, where we plot the SNR and contrast gain of both encoding
methods as a function of the number of frames. The Hadamard scan provides an SNR gain
monotonically increasing with n, reaching an improvement of about 50% at n = 15. Instead, the
Black Light-sheet scan provides the maximum gain at n = 3, which then decreases. Eventually,
for high values of n, it loses its SNR advantage but maintains the background suppression. Both
trends are in perfect agreement with the theoretical models discussed before.

5.3.2.1 SPED measurements

A central benefit of MELM is its compatibility with any DoF extending method. To verify
this aspect of the technique, we imaged a pollen grain with an EDoF generated by introducing
spherical aberrations to our system [13]. A widely used strategy given its simplicity, SPherical-
aberration-assisted Extended Depth-of-field (SPED) results in an elongated PSF – however, it
comes at the cost of losing uniformity. Indeed, the shape of the aberrated PSF strongly depends
on the axial coordinate, thus requiring a more computationally expensive 3D deconvolution for
image restoration [13, 38]. In this experiment, we increased spherical aberration by placing a slab
of glass between a 40×/0.8NA objective lens and the sample, resulting in an EDoF of about
30 µm. Note that, in contrast to varifocal lenses for EDoF, this technique is not tunable in real-
time. Figure 5.8 shows images of a pollen grain obtained with the sequential, Black Light-sheet
and Hadamard scans for up to n = 7 frames. The results are in line with those obtained with
the TAG lens and in agreement with theory. Thus, the SNR gain is about 20% and the contrast
gain about 300% using the Hadamard scan at n = 7, and the Black Light-sheet offers the best
background reduction of the three encoding strategies. These results confirm that MELM is a
general and versatile technique, which is not constrained to a specific DoF extending method.

5.3.2.2 Imaging of biological samples

As a proof of concept, we imaged a fluorescently labeled spheroid of human embryonic kid-
ney cells. Given the superior SNR enhancement capabilities of Hadamard scan in the presence
of shot noise, we selected this encoding sequence. Figure 5.9a shows the maximum intensity
projections of a reconstructed volume of 278.5 µm × 278.5 µm × 83.7 µm, with a voxel size of
0.5 µm × 0.5 µm × 5.6 µm (n = 15). The camera exposure time was 100 ms and the volumetric
imaging time was 1.5 s. Under these conditions, and considering the dense labeling of spheroids,
the photon noise is not negligible. Consequently, the enhancement in SNR is lower than that
reported using fluorescent beads. A more in-depth analysis of the noise and background reduction
is presented in Figure 5.9b. At the described experimental conditions the SNR is still increasing
with n, but for n = 3 and n = 7 it is lower than that of the sequential scan. However, for n = 15,
we reached an SNR gain of about 20% and a contrast gain of about 100%. Significantly, such a
gain comes with no cost in terms of 3D imaging speed. Raising the number of frames n could
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Figure 5.8: (a) Top: the same image of a single pollen grain bead taken with three different encoding methods and
depth-of-field extended through spherical aberration. Bottom: Intensity profile, averaged over the columns, of the
corresponding images. (b) Quantitative analysis of the normalized SNR gain (left) and background suppression
(right) obtained with the Hadamard encoding. (c) Quantitative analysis of the normalized SNR gain (left) and
background suppression (right) obtained with the Black Light Sheet encoding.

further increase the SNR gain, which is expected to approximately scale with the square root of
the number of frames. However, practical limitations such as the resolution and the angular range
of the deflector, or the power of the laser source, mitigate the feasibility of this strategy. Also,
some care must be taken when using our parallelization method. When the beams are generated,
one should carefully avoid cross-talks. If beams are overlapping, a region of the sample will be
illuminated by more than a light-sheet, failing the hypothesis of independent planes needed for the
reconstruction. In this case, reconstruction is still possible, but it is likely to generate artifacts.
On a positive note, MELM is an extremely efficient technique when it comes to illumination.
Indeed, all available power of the light source can be used – the higher the power, the higher the
number of planes that can be illuminated. Thus, we can maximize the photon budget and speed
of EDoF-LSM, and still preserve the very low photodamage of LSFM. In addition, even when
the maximum number of illuminated planes is reached, it is still possible to acquire a volume of
any arbitrary depth by performing a hybrid parallelized-sequential scan. It suffices to divide the
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Figure 5.9: (a) Maximum intensity projection of a volumetric image of a spheroid acquired using the Hadamard
encoding. The images have been deconvoluted with the Wiener filter algorithm, using a PSF simulated with
equation 5.9. (b) SNR gain and background suppression versus the number of acquired frames. The images have
been acquired with a 10×/0.3NA objective lens, whose DoF has been extended from 7 µm to 215 µm with the
TAG lens. The 3D image is composed of two interdigitated stacks of 15 frames

imaged volume in m stacks, each one composed of n planes acquired in parallel. The resulting
volume will be composed of m× n images with an improved SNR of about

√
n/2.

5.3.3 Sample preparation

We prepared the beads samples using solutions of yellow-green beads (FluoSpheres, Invitrogen)
with a diameter of 1 µm, diluted in 2% agarose gel at a concentration of 1:500. We prepared
spheroids samples using human embryonic kidney cells (HEK 293), stably transfected with the
plasmid encoding for EGFP-∆ 50 lamin-A (Addgene plasmid 17653). Starting from a dish of
confluent cells, we diluted them to form a suspension of 10000 cells/mL and we seeded them
into a 96-wells microplate (Corning Spheroid Microplate). After three days of growth, we fixed
the spheroids with 4% paraformaldehyde for 30 minutes at room temperature and cleared with
Rapiclear 1.47 for 10 minutes (Sun Jin Lab Co.). Once prepared, we embedded the individual
spheroids in a 2% agarose gel cylinder for imaging.
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Figure 5.10: (a) Scheme of the data analysis pipeline used for the quantification of the noise and background in
the images. (b) Accuracy of the FRC-based algorithm in the estimation of the noise level of the images.

5.4 Image analysis

For each experiment, we acquired a set f of encoded frames. These are decoded, using the
following single-step calculation

p = S−1f (5.14)

where S−1 is the inverse of the encoding matrix. Thus, we obtained the z-stack p of decoded
images. Additionally, we acquired two identical images used to identify the effective resolution of
the images using the Fourier Ring Correlation (FRC) algorithm [39–41]. We used the inverse of
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the resolution as the cut-off spatial frequency qt for the following high-pass filter

S(q) =
1

1 + exp [−(q − qt)/s]
(5.15)

where q is the radial spatial frequency and s is the parameter that defines the steepness of the
sigmoid function. In our work, we set s = 0.02. Applying the high-pass filter to the z-stack of
decoded images we obtained the corresponding noise maps. Since white noise power is frequency-
independent, by calculating the standard deviation of the noise maps we got a quantification of
the noise content of the images [42]. Finally, the SNR gain is calculated as the ratio of the
standard deviation of the noise of the sequential image to the standard deviation of the noise of
the decoded image. In order to validate this method, we run the simulations shown in figure 5.5.
We generated pair of images at different SNRs and calculated the relative error in the estimation
of the noise level. As shown, the discrepancy is always below 10% and decreases at higher SNR,
proving the good reliability of this algorithm.

To identify the background content of the analyzed images, we applied a binarization algo-
rithm to the acquired z-stack, classifying the content of the images in signal or background.
We quantified the amount of background in the images by calculating the mean value of the
background pixels.

Lastly, we deconvolved the z-stack using a simulated PSF. The deconvolution procedure we
used is known as Wiener Filter. We used the Born & Wolf model to estimate the PSF, modified
with equation 5.9 in order to calculate the extended PSF. Thanks to the homogeneity of the PSF
along the z-axis it has been possible to deconvolve the full z-stack simply by a 2D-deconvolution
of each frame. Typical values of the regularization parameter were 0.01.

5.5 Conclusion

The combination of EDoF detection with parallelized illumination enables overcoming the tradeoff
between speed and SNR in LSFM when low photon noise is present. Such a condition is typically
encountered in fast volumetric imaging, where the exposure time is kept low. As our results
demonstrate, illuminating the sample with sequences of multiple light-sheets produces images
with enhanced SNR and contrast. Because no moving optics are being used, the intrinsic high
speed of EDoF-LSFM is preserved. The encoding sequence can be selected to address the imaging
needs of a particular sample or application. Furthermore, the increased SNR also enables smaller
laser peak intensities, further decreasing the risk of photodamage. Thanks to the simplicity and
versatility of MELM, it can be used with any DoF extending technique, making it suitable for any
LSFM system. We expect MELM to become an invaluable tool to investigate dynamic biological
processes at high spatiotemporal resolution in thick objects.
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6
Conclusion

Light is one of the most important tools used in scientific fields as important as laser material
processing and optical imaging. The capability of controlling the spatio-temporal properties of an
optical beam is invaluable, being the enabling technology for high-speed and highly customizable
processes. So far, state-of-the-art devices used to generate structured light offered groundbreaking
opportunities, such as microscopy with spatial resolution beyond the diffraction limit or laser
writing of complex patterns in a single-shot. However, existing devices typically lack of tunability
or speed, leaving real-time customization of the properties of light still an unbeaten challenge.

In this Ph.D. thesis we explored the capabilities of acousto-optics to overcome this trade-
off. As described in chapter 2, the acousto-optic effect exploits ultrasonic waves propagating in
a medium to diffract the light. Ultrasounds are relatively easy to produce and to control – a
piezoelectric actuator and a waveform generator suffice – and the properties of the acoustically-
diffracted beam are directly related to those of sound waves, both in space and in time. Ad-
ditionally, ultrasonic frequencies are typically in the order of MHz or GHz, enabling high-speed
generation of tailored light. These premises led us to design and build the AOF device, presented in
chapter 3. This novel tool contains two orthogonal acoustic resonant cavities immersed in a fluid
(pure water, in the experiments described in this thesis). When driven on resonance, it generates
standing waves which diffract light and generate multiple beamlets. Interestingly, the diffracted
beamlets can be used to build complex intensity patterns in two drastically different ways. In the
far-field, the diffraction orders are typically separated and the device acts as a beam-parallelizer.
In the near-field, the beams overlap and give rise to interference fringes. Notably, the shape
and structure of the diffraction patterns can be tuned by changing the driving parameters at a
timescale as small as the period of the sound wave – typically, below one microsecond. In chapter
3 we presented a detailed theoretical analysis of the mechanics of sound formation within the AOF
device, paving the way for further optimization. Additionally, we provided a reliable predictive
model of the generation of diffraction patterns, enabling light-shape engineering. In chapter 4, we
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6 Conclusion

performed a complete optical characterization of the prototype of an AOF device that we designed
and built. The results show a perfect agreement with the mathematical model, demonstrating the
predictability of its high-speed capabilities even for prolonged usage. The reliability of the device,
when implemented in our custom laser-direct-writing station, enabled high-throughput material
processing . Importantly, our novel device opens the door to a change in the paradigm of laser
processing by obviating the need for slow point-by-point scanning of the sample surface. Indeed,
our approach enables region-by-region processing, allowing the generation of complex shapes in
a single exposure. The consequent drastic reduction of the processing time paves the way for the
large-scale and precise modification of surfaces. In addition, the efficiency of the AOF device is
essentially insensitive to many properties of light – such as wavelength, polarization, and incidence
angle – making it compatible with virtually any optical element. This powerful feature allows to
combine beam-shaping with fast and tunable parallelization, as demonstrated by the generation
of tens of Bessel and annular beams shown in this thesis. This further extends the capabilities of
the AOF device and its range of application. Lastly, in this research work we demonstrated how
acousto-optics can provide breakthroughs also in the field of fluorescence imaging. In chapter
5, we presented the design and implementation of an all-acousto-optic light-sheet microscope
that lacks any mechanical moving parts and is capable of fast imaging with enhanced SNR. This
novel technique is enabled by a TAG lens, namely a cylindrical acoustic resonant cavity, and a
couple of orthogonal AODs. The TAG lens performs a fast axial scan at tens of kHz, extending
the effective depth-of-field of the microscope. The two AODs generate a tailored array of light
sheets. The first AOD – driven with a frequency modulated sine wave – scans a Gaussian beam
vertically. The second one – driven with a superposition of sine waves – parallelizes the scanned
beam and generates an array of parallel light-sheets. Exciting the fluorescence of multiple planes
simultaneously allows the collection of all the illuminated planes on a single camera frame. With
this parallelization strategy, it is possible to obtain information from multiple axial positions at
once. By using a simple inversion algorithm, the images of the individual planes can be retrieved.
As demonstrated by our results, the z-stack of decoded images has an enhanced SNR compared
to traditional single-plane methods. Thus, our technique enables high-speed imaging of large
volumes, paving the way for a gentle investigation of fast dynamics in biological samples.

In conclusion, we believe that the research work presented in this thesis laid another brick
towards the design of strategies for the generation of highly-customizable light shapes at high-
speed. We showed how acousto-optics can be effectively used for that purpose, with important
benefits for the fields of material processing, imaging. We envision that further discoveries could
extend the advantages of acousto-optic light structuring to a even wider range of applications.
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A
Elements of Geometrical Optics

A.1 Rays and ray transfer matrices

In geometrical optics, the light is described by rays. These latter are 2-dimensional vectors

r =

(︃
x
θ

)︃
(A.1)

whose first element is the distance from the optical axis, and the second is the angle between the
ray and the optical axis. The propagation of light through an optical element is calculated with
ray transfer matrices (see table A.1)

M =

(︃
A B
C D

)︃
(A.2)

The new ray vector is calculated as the product between the matrix and the input vector

r1 =M · r0 =
(︃
Ax+Bθ
Cx+Dθ

)︃
(A.3)

The ray transfer matrix of a compound system is calculated as the product of the matrices of
each component

Mtot =Mn . . .M2 ·M1 (A.4)
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Free space Thin lens Flat interface(︃
1 d
0 1

)︃ (︃
1 0
− 1

f
1

)︃ (︃
1 0
0 n1

n2

)︃
Table A.1: Ray transfer matrices of three common optical elements.

A.2 Scanning lens

A lens can be used to convert the angular displacement of a ray into a lateral displacement.
Indeed, consider a ray originating from the optical axis with an angle θ. If its origin is distant f
from a lens with focal length f , we find the following result(︃

1 0
− 1

f
1

)︃(︃
1 f
0 1

)︃(︃
0
θ

)︃
=

(︃
fθ
0

)︃
(A.5)

The exiting ray is laterally displaced by a quantity fθ and propagates with no angle.

A.3 Image formation

With one or more lenses it is possible to generate an image, namely to generate a rescaled copy
of rays of light. In this section, we discuss imaging systems in terms of ray transfer matrices.

A.3.1 Single lens system

Consider a system composed by a single lens. Taking also into account the space before and
after the lens, we find the following matrix(︃

1 z2
0 1

)︃(︃
1 0
− 1

f
1

)︃(︃
1 z1
0 1

)︃
=

(︃
1− z2

f
z1 + z2 − z1z2

f

− 1
f

1− z1
f

)︃
(A.6)

In order to have the formation of an image, the B element of the matrix has to be zero. Thus,
the following condition has to be verified

1

z1
+

1

z2
=

1

f
(A.7)

Consequently, the A element equals − z2
z1

and can be interpreted as the magnification factor.

A.3.2 Two lenses system

Consider a system composed by two lenses separated by a distance d. The corresponding matrix
is
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(︃
1 z2
0 1

)︃(︃
1 0

− 1
f2

1

)︃(︃
1 d
0 1

)︃(︃
1 0

− 1
f1

1

)︃(︃
1 z1
0 1

)︃
=

=
1

f1f2

(︃
f1f2+dz2−f2d−f2z2−f1z2 f1f2d+f1f2z1+f1f2z2−f2z1z2−f1z1z2+dz1z2−f2dz1−f1dz2

−f1−f2+d f2f1+dz1−f1d−f1z1−f2z1

)︃
(A.8)

It is easy to verify that the B element is zero if z1 = f1 and z2 = f2. Moreover, if d = f1+f2 the
C element is also zero, meaning that the system is afocal. In this case, the lateral magnification
is A = −f2/f1 and the angular magnification is D = −f1/f2.
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B
Elements of Fourier Optics

As seen in chapter 1, light propagation is described by six wave equations for all the components
of the electric and magnetic field. If the light is propagating through an homogeneous medium,
the wave equations are identical. Therefore, it is sufficient to solve only one scalar equation.
In this case, the electromagnetic wave is effectively described by a scalar field that we identify
with the symbol U . In the real world, no medium is perfectly homogeneous. Thus, a scalar
description of light can be considered a good approximation only under certain conditions. The
main assumption behind that theory is that the coupling between the differential equations is
small, which is valid as long as the spatial inhomogeneities have a characteristic size much larger
than the optical wavelength λ. Notably, different polarization components of light can still be
described by the scalar theory as long as they can be treated independently.

B.1 Diffraction

Diffraction of scalar fields is described by the Huygens-Fresnel integral

Uz(x) =
z

iλ

∫︂
R2

U0(x0)
exp(ikϱ)

ϱ2
dx0 (B.1)

where the position vector is x = (x, y) – the location on a plane orthogonal to the optical axis
z – and ϱ is the distance between two planes, assumed to be much greater than λ, defined as

ϱ =
√︁
(x− x0)2 + (y − y0)2 + z2 = z

√︄
1 +

(︃
x− x0
z

)︃2

+

(︃
y − y0
z

)︃2

(B.2)
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The diffraction integral can be simplified using the proper approximation. The choice for this
latter depends on the value of

F =
D2

zλ
(B.3)

called the Fresnel number. In this definition, D is the linear size of field at the starting plane.

If F ≳ 1 the diffraction takes place in the near-field region and the propagation is better
described by the Fresnel approximation. If F ≪ 1 the diffraction takes place in the far-field
region. In this case the Fresnel approximation still holds, but it can be further simplified with the
Fraunhofer approximation.

B.1.1 Fresnel diffraction

Under the paraxial approximation, namely the assumption that diffraction angles are small with
respect to the optical axis, we can expand ϱ in series

ϱ ∼ z

[︄
1 +

1

2

(︃
x− x0
z

)︃2

+
1

2

(︃
y − y0
z

)︃2
]︄

(B.4)

and replace it in equation B.1. Keeping only the linear term for the denominator and up to the
quadratic term for the argument of the exponential, we obtain

Uz(x) =
eikz

iλz

∫︂
R2

U0(x0) exp

[︃
ik

2z
(x− x0)

2

]︃
dx0 (B.5)

This equation is known as the Fresnel diffraction integral, which can be seen as the convolution

Uz(x) = [U0(x0) ∗ Fz(x0)] (x) (B.6)

where Fz the Fresnel convolution kernel

Fz(x, y) =
eikz

iλz
exp

[︃
ik

2z

(︁
x2 + y2

)︁]︃
(B.7)

Interestingly, this kernel has a simple Fourier transform which greatly simplifies the analytical and
numerical calculations of the propagation of light in free space

F̂ z(νx, νy) = eikz exp
[︁
−iπλz

(︁
ν2x + ν2y

)︁]︁
(B.8)

where ν = (νx, νy) are the spatial frequencies.
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B.2 Fourier transforming property of the lenses B Elements of Fourier Optics

B.1.2 Fraunhofer diffraction

At very large distances, the diffraction formula can be further simplified. Indeed, if we can neglect
the quadratic terms of the argument of the exponential of equation B.5, we obtain

Uz(x) =
eikze

ik
2z

(x2+y2)

iλz

∫︂
R2

U0(x0) exp

(︃
i
2π

λz
x · x0

)︃
dx0 (B.9)

This result is known as the Fraunhofer diffraction integral. Aside from negligible multiplicative
factors, this integral is the Fourier transform of the field U0 evaluated at spatial frequencies
ν =

(︁
x
λz
, y
λz

)︁
Uz(x) ∝ F{U0(x0)}

(︂ x
λz

)︂
(B.10)

B.2 Fourier transforming property of the lenses

The phase transformation applied by a lens to a field is

tl(x) = exp

(︃
− ik

2f
x2

)︃
(B.11)

Notably, this transmission function has the expression of the Fresnel propagation kernel evaluated
at z = −f , except for multiplicative constants

tl(x) ∝ F−f (x) (B.12)

Now, we calculate what is the effect of a lens with focal length f and a free-space propagation
of the same length on a field U0 originating from a distance z behind the lens. The result U1 is
calculated as follows

U1 = [(U0 ∗ Fz) · F−f ] ∗ Ff (B.13)

The above equation can be rewritten in frequency space exploiting the convolution property of
the Fourier transform

Û1(ν
′) =

(︂[︂
Û0(ν) · F̂ z(ν)

]︂
∗ F̂−f (ν)

)︂
(ν ′) · F̂ f (ν

′) =

=

∫︂
R2

Û0(ν) exp
[︁
−iπλ(z − f)ν2

]︁
exp [−i2πλfν · ν ′] dν (B.14)

Transforming back into real space, we obtain
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B Elements of Fourier Optics B.3 Image Formation

U1(x) =

∫︂
R2

Û0(ν) exp
[︁
−iπλ(z − f)ν2

]︁ ∫︂
R2

exp [−i2πλfν · ν ′] exp [i2πx · ν ′] dν ′⏞ ⏟⏟ ⏞
δ(x−νλf)

dν =

= Û0

(︃
x

λf

)︃
exp

[︃
ik

2f

(︃
1− z

f

)︃
x2

]︃
(B.15)

Interestingly, the field at the focal plane of the lens is the Fourier transform of the input field
evaluated at spatial frequencies ν = ( x

λf
, y
λf
), aside from a phase factor. when the distance

between the input and the lens is matching the focal length, i.e. z = f , the phase factor equals
to 1 and the result is exactly the Fourier transform. In other words, the field at the focal plane
can be calculated as as Fraunhofer diffraction evaluated at z = f .

B.3 Image Formation

We now consider a system composed by two lenses – with focal length f1 and f2 – separated by
a distance d. We consider the starting field at a distance z1 from the first lens and the output
field at a distance z2 from the second lens. The propagation is calculated as follows

U1 = ((((U0 ∗ Fz1) · F−f1) ∗ Fd) · F−f2) ∗ Fz2 (B.16)

The Fourier transform of the above equation is

Û1 =
(︂(︂(︂(︂

Û0 · F̂ z1

)︂
∗ F̂−f1

)︂
· F̂ d

)︂
∗ F̂−f2

)︂
· F̂ z2 (B.17)

Explicitly, it is written as

Û1(ν
′′) =

∫︂
R4

Û0(ν) exp
[︂
−iπλ

(︂
z1ν

2 − f1(ν
′ − ν)2 + dν ′2 − f2(ν

′′ − ν ′)2 + z2ν
′′2
)︂]︂

dν dν ′

(B.18)
Assuming z1 = f1 and z2 = f2, we have

Û1(ν
′′) =

∫︂
R4

Û0(ν)e
−iπλ(d−f1−f2)ν′2e−i2πλf1νν′e−i2πλf2ν′ν′′ dν dν ′ (B.19)

Transforming back to the real space, we obtain
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U1(x) =

∫︂
R4

Û0(ν)e
−iπλ(d−f1−f2)ν′2e−i2πλf1ν·ν′

∫︂
R2

e−i2πλf2ν′·ν′′
ei2πx·ν

′′
dν ′′⏞ ⏟⏟ ⏞

δ(x−ν′λf2)

dν dν ′ =

= e
−iπλ(d−f1−f2)

r2

λ2f22

∫︂
R2

Û0(ν)e
−i2πν·xf1/f2 dν =

= U0

(︃
−f1
f2
x

)︃
e
−iπλ(d−f1−f2)

r2

λ2f22 (B.20)

This result shows that under imaging conditions (i.e. z1 = f1 and z2 = f2) the amplitude of the
output field U1 is a copy of the amplitude of the initial field U0, but inverted and rescaled by the
magnification factor M = f2

f1
. This implies that the light intensity at the two planes is identical,

thus at z2 there is an image of the plane at z1. If the distance between the two lenses is equal
to d = f1 + f2, then the two fields are identical both in amplitude and in phase. In this case the
two planes are said to be optically conjugated.

B.4 Impulse response of an imaging system

We now consider the effect of the finite size of the lenses. The pupil function describes the
limited aperture of a lens and it is defined as follows

P (r) =

{︄
1 if r ≤ R

0 if r > R
(B.21)

where r =
√︁
x2 + y2 and R is the radius of the lens. We now calculate the propagation of a

point-like source U0(x) = δ(x) through a two-lenses imaging system. As shown before, the value
of d has no effect on the intensity at the image plane. Therefore, we choose d = 0 for the sake
of simplicity. The output field is

H = ((δ ∗ Fz1) · P · F−f1 · F−f2) ∗ Fz2 (B.22)

Explicitly

H(x) =

∫︂
R2

P (x′) exp

[︃
ik

2

(︃
1

nz1
− 1

f1
− 1

f2
+

1

z2

)︃
r′2
]︃
exp

[︃
−ik
z2
x · x′

]︃
dx′ (B.23)

Where we neglected pure multiplicative phase factors. The imaging condition implies

1

nz1
+

1

z2
− 1

f1
− 1

f2
= 0 (B.24)

Therefore, we impose z2 = f2 and z1 = f1/n + z. Using a McLaurin expansion, we get 1
nz1

∼
1
f1

(︂
1− n z

f1

)︂
. By substituting these values, we get

H(x) =

∫︂
R2

P (r′) exp

[︃
−ik

2

nzr′2

f 2
1

]︃
exp

[︃
− ik
f2
x · x′

]︃
dx′ (B.25)
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That is the Fourier transform of a circularly symmetric function. Therefore, we can rewrite the
integral as a zero-order Hankel transform

H(r) =

∫︂ R

0

exp

(︃
−ik

2

nzr′2

f 2
1

)︃
J0

(︃
k

f2
rr′
)︃
r′ dr′ (B.26)

Changing the variable r′ with ρ = r′/R and defining the numerical aperture of the first lens as
NA = nR/f1 we finally obtain

H(r, z) =

∫︂ 1

0

exp

(︃
−ik

2

NA2

n
ρ2z

)︃
J0

(︃
kNA

M
ρr

)︃
ρ dρ (B.27)

where we neglected pure multiplicative factors and used the definition of the magnification as
M = nf2/f1.

B.5 Coherence of light

The finite temporal coherence of light can be described by random phase shifts of the electro-
magnetic wave

E1(t) =
+∞∑︂

n=−∞

exp (iωt+ iϕn)Π

(︃
t

T
− n

2

)︃
(B.28)

Now consider the same electric field, time-shifted by τ

E2(t− τ) =
+∞∑︂

m=−∞

exp (iωt− iωτ + iϕm)Π

(︃
t− τ

T
− m

2

)︃
(B.29)

The total intensity of the sum of the two fields is calculated as

|E1 + E2|2 = |E1|2 + |E2|2 + E∗
1E2 + E1E

∗
2 (B.30)

The first two terms are proportional to the intensity of each field, the last two terms describe the
interference between the two fields.

E∗
1E2 = exp (−iωτ)

∑︂
m,n

exp (iϕn − iϕm)Π

(︃
t

T
− n

2

)︃
Π

(︃
t− τ

T
− m

2

)︃
(B.31)

given a fixed τ , the product of the two rectangular functions is either 0 or 1, depending on the
value of n − m. We now consider only the couple (n,m) such as this product is equal to 1.
Therefore, ∑︂

m,n

exp (iϕn − iϕm) ≈ δm,n (B.32)
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Therefore the interference term is not zero only if m = n and

Π

(︃
t

T

)︃
Π

(︃
t− τ

T

)︃
> 0 (B.33)

which implies |τ | < T . Indeed, T is the coherence time and defines the maximum delay beyond
which the interference term can be neglected.

The value τ defines the visibility of the interference. Indeed, the total signal collected in an
ideally infinite amount of time from the interference terms is

∫︂
R
[E∗

1(t)E2(t− τ) + E1(t)E
∗
2(t− τ)] dt = 2 cos(ωτ)

∫︂
R
Π

(︃
t

T

)︃
Π

(︃
t− τ

T

)︃
dt =

= (T − |τ |)2 cos(ωτ) (B.34)

Thus, the visibility of the interference cos(ωt) decreases linearly with |τ |. This linear behaviour
is a consequence of this simplified model which uses rectangular coherence windows. A more
realistic model would still predict a visibility monotonically decreasing with τ , but with a non-
linear trend. For perfectly incoherent light T → 0 and the interference signal can be seen as
δ(τ).

The same reasoning which led to the results of this section can be applied to space to describe
spatial coherence.

B.6 Incoherent imaging

i(x) =

∫︂ T

0

|[O(x′, t− τ(x′)) ∗H(x′)] (x)|2 dt = (B.35)

=

∫︂ T

0

∫︂
R6

O(x′, t− τ(x′))O∗(x′′, t− τ(x′′))H(x− x′)H∗(x− x′′) dx′ dx′′ dt

where τ(x) is the time the light needs to reach the detector starting from the coordinate x of
the object plane. Since H is a sharply peaked function, the product H(x − x′)H∗(x − x′′) is
non zero only for x′ ≈ x′′. Therefore, we can approximate τ(x′) ≈ τ(x′′) and neglect both
time delays. Thus, the time integral is just the correlation function at zero delay. For perfectly
incoherent light it becomes∫︂ T

0

O(x′, t)O∗(x′′, t) dt = T |O(x′)|2δ(x′ − x′′) (B.36)

Therefore, the image formed with incoherent light is

i(x) = T

∫︂
R3

|O(x′)|2|H(x− x′)|2 dx′ ∝ [o ∗ h](x) (B.37)
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where
h(x) = |H(x)|2 (B.38)

is the intensity Point Spred Function (PSF) and

o(x) = |O(x)|2 (B.39)

is the distribution of light-emitters in the object plane.

B.7 Lateral and axial resolution

Using equation B.27 with object plane coordinates, the intensity PSF is

h(r, z) =

⃓⃓⃓⃓∫︂ 1

0

exp

(︃
−ik

2

NA2

n
ρ2z

)︃
J0(kNAρr)ρ dρ

⃓⃓⃓⃓2
(B.40)

In perfect focus condition (z = 0), this equation becomes

h(r, 0) =

⃓⃓⃓⃓∫︂ 1

0

J0(kNArρ)ρ dρ

⃓⃓⃓⃓2
=

⃓⃓⃓⃓∫︂ kNAr

0

J0(x)x

(kNAr)2
dx

⃓⃓⃓⃓2
=

⃓⃓⃓⃓
J1(kNAr)

kNAr

⃓⃓⃓⃓2
(B.41)

where we used the property of Bessel functions d
dx
[Jν(x)x

ν ] = Jν−1(x)x
ν . The first zero of J1(x)

is at x0 ≈ 3.8317. Solving the equation kNAr = x0 for r, we obtain the distance between the
peak of the PSF and its first minimum

rmin = 0.61
λ

NA
(B.42)

This is the minimum lateral distance resolvable by a standard imaging system, according to the
Rayleigh’s criterion.

Along the optical axis (r = 0) the intensity profile is

h(0, z) =

⃓⃓⃓⃓∫︂ 1

0

exp

(︃
−ik

2

NA2

n
ρ2z

)︃
ρ dρ

⃓⃓⃓⃓2
=

⃓⃓⃓⃓
n

NA2kz

[︃
exp

(︃
−ik

2

NA2

n
z

)︃
− 1

]︃⃓⃓⃓⃓2
=

=

(︃
2n

kzNA2

)︃2

sin2

(︃
kzNA2

4n

)︃
(B.43)

The first zero of the cardinal sine function sin(x)
x

is at x0 = π. Solving the equation kzNA2

4n
= x0

for z, we obtain the distance between the peak of the axial PSF and its first minimum

zmin =
2λn

NA2 (B.44)

This is the minimum axial distance resolvable by a standard imaging system, according to the
Rayleigh’s criterion.

95



C
Principles of Acousto-Optics

In this appendix we use Maxwell equations to derive the wave equation in presence of a sinusoidally
varying refractive index. We calculate the solution of this equation in two cases, namely Raman-
Nath and Bragg regimes. The derivation is done for both traveling and standing waves.

C.1 Electromagnetic wave equation in a sound field

Consider the macroscopic Maxwell equations

∇ ·D = ρ (C.1)

∇ ·B = 0 (C.2)

∇×E = −∂B
∂t

(C.3)

∇×H =
∂D

∂t
+ J (C.4)

whereE is the electric field,B is the magnetic field,D = εE is the displacement field,H = B/µ
is the magnetizing field, ρ is the volumetric density of free charges and J is current density of
free charges. ε is the dielectric permittivity, and µ is the magnetic permeability of the medium.
Assuming that this latter is not conductive, we can set ρ = 0 and J = 0.

A sound wave can locally and instantaneously compress and expand the medium, therefore
the dielectric permittivity varies in space and time. In a linear approximation, we have ε(x, t) =
ε0εr+∆ε(x, t) where ∆ε≪ ε0εr and ∆ε is a periodic function with circular frequency Ω = csK.
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C Principles of Acousto-Optics C.1 Electromagnetic wave equation in a sound field

K and cs are, respectively, the wavenumber and the speed of sound. Equation C.4 becomes

∇×B = µ
∂ε

∂t
E + µε

∂E

∂t
(C.5)

assuming E ∝ eikx−iωt and ε ∝ eiKx−iΩt, we have that⃓⃓⃓⃓
∂ε

∂t
E

⃓⃓⃓⃓
= |ΩεE| ≪ |ωεE| =

⃓⃓⃓⃓
µε
∂E

∂t

⃓⃓⃓⃓
(C.6)

if Ω ≪ ω, that is typically true for sound and light waves 1. Therefore, we can neglect the first
term of the right side of equation C.5. Taking the curl of equation C.3 and using equation C.5,
we get

∇(∇ ·E)−∇2E = − ∂

∂t

(︃
µε
∂E

∂t

)︃
(C.7)

Now, consider equation C.1

∇ ·D = ∇ε ·E + ε∇ ·E = 0 (C.8)

once again, we have

|∇ε ·E| = |εK ·E| ≪ |εk ·E| = |ε∇ ·E| (C.9)

therefore, we can consider ∇ · E = 0. Neglecting again the time derivative of ε, equation C.7
becomes

∇2E = µε
∂2E

∂t2
(C.10)

This is the familiar electromagnetic wave equation, except that the refractive index is a function
of space and time. Indeed, µε = n2/c2 where n is the refractive index and c is the speed of light.
Therefore the refractive index is

n = c
√
µε =

√︄
µε0εr + µ∆ε

µ0ε0
=

√
µrεr

√︃
1 +

∆ε

ε0εr
∼ n0 +

1

2

∆ε

ε0εr
(C.11)

where n0 is the static refractive index of the medium. Therefore, the refractive index is a function
of time and space with the same periodicity of the sound wave. In formula

n(x+ Λ, t) = n(x, t) (C.12)

n(x, t+ T ) = n(x, t) (C.13)

1for visible light ω ≈ 1015 Hz, for ultrasounds Ω ≈ 107 Hz.
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C.2 Raman-Nath equations and their solutions C Principles of Acousto-Optics

where T = 2π/Ω and we have assumed x to be the propagation axis of the sound wave. Lastly,
we notice the equation C.10 is identical for each component of the electric field. Therefore, we
can consider only one component, obtaining the scalar wave equation

∇2E(z, x, t) =

[︃
n(x, t)

c

]︃2
∂2E(z, x, t)

∂t2
(C.14)

where we have neglected the y axis for simplicity and assumed z to be the optical axis.

C.2 Raman-Nath equations and their solutions

Now we rewrite equation C.14 for x ↦→ x+ Λ and t ↦→ t+ T

∇2E(z, x+ Λ, t+ T ) =

[︃
n(x, t)

c

]︃2
∂2E(z, x+ Λ, t+ T )

∂t2
(C.15)

this implies that

E(z, x+ Λ, t+ T ) = C(Λ, T ) · E(z, x, t) (C.16)

and we can impose

C(Λ, T ) = exp (βΛ + γT ) (C.17)

where a, b ∈ C. We now define

F (z, x, t) = E(z, x, t) exp (−αz − βx− γt) (C.18)

therefore

F (z, x+ Λ, t+ T ) = E(z, x+ Λ, t+ T ) exp [−αz − β(x+ Λ)− γ(t+ T )] =

= E(z, x, t) exp (βΛ + γT ) exp [−αz − β(x+ Λ)− γ(t+ T )] =

= E(z, x, t) exp (−αz − βx− γt) = F (z, x, t) (C.19)

so, F (z, x, t) is a periodic function in space and time. Using equation C.18 we can write the
electric field as

E(z, x, t) = F (z, x, t) exp (αz + βx+ γt) (C.20)

namely, the solution of equation C.14 is a plane wave times a periodic function, with the same
periodicity of the sound wave.

We now assume that the electric field travels in a vacuum before entering the vibrating
medium. Therefore, we can write it as the standard plane-wave E(z, x, t) = E0 exp(ik · x− iωt).
To be consistent with this assumption, we write the solution as
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E(z, x, t) = F (z, x, t) exp (in0k · x− iωt) =

= F (z, x, t) exp[in0k(z cos θ + x sin θ)− iωt] (C.21)

where θ is the angle of incidence of the light on the vibrating medium.

C.2.1 Traveling wave

Being F (z, x, t) periodic, we can write it as a double Fourier series

F (z, x, t) =
+∞∑︂

j=−∞

+∞∑︂
m=−∞

φjm(z)e
ijΩteimKx (C.22)

In the case of a traveling wave, we have the additional property that

F (z, x+ sΛ, t) = F (z, x, t− sT ) ∀s ∈ Z (C.23)

Expanding both sides of the above equation in Fourier series

F (z, x+ sΛ, t) =
+∞∑︂

j=−∞

+∞∑︂
m=−∞

φjm(z)e
ijΩteimK(x+sΛ) = (C.24)

=
+∞∑︂

j=−∞

+∞∑︂
m=−∞

φjm(z)e
ijΩ(t−sT )eimKx = F (z, x, t− sT ) (C.25)

comparing the two Fourier series, we get the condition m = −j. Therefore, we can rewrite the
electric field in the simpler form

E(z, x, t) = ein0k(z cos θ+x sin θ)−iωt

+∞∑︂
m=−∞

φm(z)e
imKxe−imΩt (C.26)

where we assume that the amplitude of the plane wave is E0 = 1 in the proper units. It is useful
to simplify the next calculations factorizing the terms of the summation from the above equation

E(z, x, t) =
+∞∑︂

m=−∞

φm(z)e
in0k cos θzei(n0k sin θ+mK)xe−i(ω+mΩ)t (C.27)

Now, we can calculate the partial derivatives of the scalar field
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∂2E

∂z2
=

+∞∑︂
m=−∞

ein0k cos θzei(n0k sin θ+mK)xe−i(ω+mΩ)t

(︃
−n2

0k
2 cos2 θφm + 2ikn0 cos θ

∂φm

∂z
+
∂2φm

∂z2

)︃
∂2E

∂x2
=

+∞∑︂
m=−∞

φm(z)e
in0k cos θzei(n0k sin θ+mK)xe−i(ω+mΩ)t

(︁
−n2

0k
2 sin2 θ −m2K2 − 2mn0kK sin θ

)︁
∂2E

∂t2
=

+∞∑︂
m=−∞

φm(z)e
in0k cos θzei(n0k sin θ+mK)xe−i(ω+mΩ)t

(︁
−ω2 −m2Ω2 − 2mωΩ

)︁
(C.28)

we now assume that the behavior of the refractive index is harmonic

n(x, t) = n0 +∆n sin(Kx− Ωt) (C.29)

where ∆n is the maximum refractive index variation relative to the static value n0. Therefore

[︃
n(x, t)

c

]︃2
=
n2
0 + 2n0∆n sin(Kx− Ωt) + (∆n)2 sin2(Kx− Ωt)

c2
∼

∼ n2
0

c2
− in0∆n

c2
(︁
ei(Kx−Ωt) − e−i(Kx−Ωt)

)︁
(C.30)

where we have neglected the second-order term in ∆n, because ∆n≪ n0. We can now rewrite
equation C.14 as

φm

(︃
n2
0

c2
m2Ω2 +

n2
0

c2
2mωΩ−m2K2 − 2mn0kK sin θ

)︃
+
∂φm

∂z
(2ikn0 cos θ) +

∂2φm

∂z2
=

=
in0∆n

c2
[︁(︁
ω2 + (m− 1)2Ω2 + 2(m− 1)ωΩ

)︁
φm−1 −

(︁
ω2 + (m+ 1)2Ω2 + 2(m+ 1)ωΩ

)︁
φm+1

]︁
(C.31)

where we have equated only the Fourier components at the same frequency2. We now make the
further assumption that the amplitude φ(z) is slowly varying, namely⃓⃓⃓⃓

∂φm

∂z

⃓⃓⃓⃓
≪ k|φm(z)| (C.32)

Therefore, we can neglect the second derivative of φm(z). Furthermore, if we use the typical
values of the parameters3, we see that the terms ωΩ/c2 and Ω2/c2 are much smaller with respect

2This is possible by multiplying both sides of the equation with the function exp [is(Kx− ωt)], where s ∈ Z,
and then integrating over a period. The orthogonality property of these functions leaves only the components at
the same frequency.

3For visible light and ultrasounds the typical values are: ω ≈ 1015 Hz, Ω ≈ 107 Hz, c ≈ 3× 108 m/s, cs ≈
103 m/s, θ ≈ λ/Λ ≈ 10−2 rad.
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to the others and they can be neglected and we can approximate cos θ ∼ 1 and sin θ ∼ θ.
Rearranging the differential equation, we finally obtain

∂φm

∂z
+ i

mQ

2L
(m− 2α)φm =

ν

2L
(φm−1 − φm+1) (C.33)

where we have defined the dimensionless parameters

Q =
K2L

kn0

(C.34)

α = −n0k

K
θ (C.35)

ν = ∆nkL (C.36)

where L is the length of the vibrating medium along the optical axis. Equation C.33 describes
a countable set of coupled differential equations and it is know as Raman-Nath equation. The
boundary conditions for equation C.33 are{︄

φm(0) = 1 if m = 0

φm(0) = 0 if m ̸= 0
(C.37)

C.2.1.1 Solutions of the Raman-Nath equation

To understand the role of the parameters Q, α, and ν, we solve the differential equations adding
the additional assumption that only two orders (m = 0 and m = 1) are present. The set of
differential equations become

∂φ0

∂z
= − ν

2L
φ1 (C.38)

∂φ1

∂z
= −i Q

2L
(1− 2α)φ1 +

ν

2L
φ0 (C.39)

To simplify the next calculations, we define β = ν
2L

and γ = Q
2L
(1− 2α). Additionally, wee

rewrite the above set of ODE in matricial form

∂

∂z

(︃
φ0

φ1

)︃
=

(︃
0 −β
β −iγ

)︃(︃
φ0

φ1

)︃
(C.40)

we refer to the coupling matrix as M . In order to decouple the ODEs, we need to diagonalize
M . Its characteristic polynomial is

det(M − λI) = λ2 + iγλ+ β2 (C.41)
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whose roots, and therefore the eigenvalues of M , are

λ1,2 =
i

2

(︂
−γ ±

√︁
γ2 + 4β2

)︂
(C.42)

The corresponding eigenvectos – given by the relation Mv1,2 = λ1,2v1,2 – are

v1,2 =

(︄
i
2β

(︂
γ ±

√︁
γ2 + 4β2

)︂
1

)︄
(C.43)

therefore, the change of basis matrix is

O =

(︄
i
2β

(︂
γ +

√︁
γ2 + 4β2

)︂
i
2β

(︂
γ −

√︁
γ2 + 4β2

)︂
1 1

)︄
(C.44)

therefore, the diagonalized matrix is

O−1MO = J =

⎛⎝ i
2

(︂
−γ +

√︁
γ2 + 4β2

)︂
0

0 − i
2

(︂
γ +

√︁
γ2 + 4β2

)︂⎞⎠ (C.45)

Using the new basis, we can rewrite the differential equation C.40 as

∂

∂z
O−1φ⏞ ⏟⏟ ⏞
ψ

= O−1MO⏞ ⏟⏟ ⏞
J

O−1φ⏞ ⏟⏟ ⏞
ψ

(C.46)

where we have used the fact that OO−1 = I. Therefore, we obtain the uncoupled ODEs

∂ψ0

∂z
=
i

2

(︂
−γ +

√︁
γ2 + 4β2

)︂
ψ0 (C.47)

∂ψ1

∂z
= − i

2

(︂
γ +

√︁
γ2 + 4β2

)︂
ψ1 (C.48)

whose solutions are

ψ0(z) = A exp

[︃
i

2

(︂
−γ +

√︁
γ2 + 4β2

)︂
z

]︃
(C.49)

ψ1(z) = B exp

[︃
− i

2

(︂
γ +

√︁
γ2 + 4β2

)︂
z

]︃
(C.50)

where A,B ∈ C. Using the relation φ = Oψ, we finally obtain

φ0(z) =
iA

2β

(︂
γ +

√︁
γ2 + 4β2

)︂
e

i
2

(︂
−γ+

√
γ2+4β2

)︂
z
+
iB

2β

(︂
γ −

√︁
γ2 + 4β2

)︂
e
− i

2

(︂
γ+
√

γ2+4β2
)︂
z

(C.51)

φ1(z) = Ae
i
2

(︂
−γ+

√
γ2+4β2

)︂
z
+Be

− i
2

(︂
γ+
√

γ2+4β2
)︂
z

(C.52)
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using the boundary conditions from equation C.37, we get

B = −A (C.53)

A =
1

2i

2β√︁
γ2 + 4β2

(C.54)

by substituting A and B in the solutions, we get

φ0(z) =
e−iγz/2√︁
γ2 + 4β2

[︂
iγ sin

(︂√︁
γ2 + 4β2z/2

)︂
+
√︁
γ2 + 4β2 cos

(︂√︁
γ2 + 4β2z/2

)︂]︂
(C.55)

φ1(z) = e−iγz/22β
sin
(︂√︁

γ2 + 4β2z/2
)︂

√︁
γ2 + 4β2

(C.56)

We can easily see that for γ → ∞, |φ0| → 1 and |φ1| → 0. On the contrary, |φ1| is maximum
when γ → 0. This fact implies that we can have non-zero diffraction order only when γm is
small. This can happen only in two situations: either Q = 0 or α = m/2. In the first case all
the diffraction orders can be excited, in the second case only the mth one.

C.2.1.2 Bragg regime

We consider now the case in which Q ≫ 1, but α = m/2. Since only adjacent diffraction
orders are coupled and only the 0th order contains energy at the beginning of the process, we are
constrained to choose m = ±1, therefore α = ±1/2. Using the definition of α (equation C.35)
and solving with respect to θ we find

θB = ∓ λ

2n0Λ
(C.57)

which is exactly the Bragg angle.
In this scenario, our previous assumption of only two diffraction orders (m = 0 and m = ±1)

is justified, therefore we can calculate the diffraction amplitudes is just given by equations C.55
and C.56 in the limit γ → 0.

φ0(z) = cos(νz/2L) (C.58)

φ±1(z) = sin(νz/2L) (C.59)

Therefore, the diffraction efficiency is given by the normalized intensity of the orders, evaluated
at z = L

η0 = |φ0(L)|2 = cos2(ν/2) = cos2(∆nkL/2) (C.60)

η±1 = |φ±1(L)|2 = sin2(ν/2) = sin2(∆nkL/2) (C.61)
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Using equation C.26 we can rewrite the complete electric field coming out from the vibrating
medium as

E(z, x, t) = cos(ν/2) exp [in0k(z cos θ + x sin θ)− iωt]+

+ sin(ν/2) exp [in0k cos θz + (n0k sin θ ±K)x− i(ω ± Ω)t] (C.62)

We can see that the first term is just the undiffracted plane wave with a lower amplitude. However,
the second term describes a second plane wave whose x-component of the wave-vector has been
down or up-shifted by K and frequency-shifted by Ω. Consequently, the 1st diffracted order has
a slightly different wavelength and propagates with a new angle θ1 given by

n0k1 sin θ1 = n0k sin θ ±K (C.63)

where k1 =
ω±Ω
c

. Since ω ≫ Ω, we can approximate k1 ≈ k. Furthermore sin θ ∼ θB = ∓ K
2n0k

.
Solving with respect to θ1 we finally get

sin θ1 ∼ θ1 = ± K

2n0k
(C.64)

namely, the diffraction angle is double the Bragg angle.

C.2.1.3 Raman-Nath regime

In case Q ≪ 1, we can neglect the γ parameter for every diffraction order m. As such, the
two-order assumption is no longer valid: every diffraction order can be excited, and we need to
solve the following set of differential equations

∂φm

∂z
=

ν

2L
(φm−1 − φm+1) (C.65)

We can notice that now, having set γ = 0, the function φm satisfies the same differentiation rule
of the Bessel functions of the first kind

∂Jm(z)

∂z
=

1

2
(Jm−1(z)− Jm+1(z)) (C.66)

Therefore, we find out immediately that the solution of C.65 is

φm(z) = Jm(νz/L) (C.67)

We notice that Bessel functions automatically satisfy boundary conditions C.37. The diffraction
efficiencies are

ηm = |φm(L)|2 = J2
m(ν) = J2

m(∆nkL) (C.68)
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Using equation C.27 we can rewrite the total electric field as

E(z, x, t) = ein0k cos θz

+∞∑︂
m=−∞

Jm(ν)e
i(n0k sin θ+mK)xe−i(ω+mΩ)t (C.69)

Assuming an incidence close to normal (θ ≈ 0), we have that each diffraction order propagates
with an angle θm ∼ tan θm = mK

n0k
and is frequency shifted by mΩ.

Using the Bessel generating function, we can rewrite

+∞∑︂
m=−∞

Jm(ν)e
im(Kx−Ωt) = exp [iν sin(Kx− Ωt)] (C.70)

Therefore, the acoustic wave behaves as a thin phase grating, whose transmittance function is
described by the above equation. Namely, the incoming plane wave is phase-shifted by ϕ(x, t) =
ν sin(Kx− Ωt).

C.2.1.4 About the meaning of the parameter Q

We have just seen that we can describe the vibrating medium as a thin grating in the Raman-Nath
regime. In other words, it can be considered an optical element completely localized in a definite
z-position. In this case, the incoming wave is phase-shifted by

ϕ(x, t) = k

∫︂ L

0

n(x, t) dz = kLn(x, t) = kL∆n sin(Kx− Ωt) (C.71)

For this description to be legit, a ray of light needs to interact with the acoustic wave at a fixed
phase for the whole optical path. This assumption is justified only when the medium is thin
enough to neglect the divergence of the incoming beam and refraction inside the material. These
observations bring us to the most important interpretation of the Klein-Cook parameter: when
Q≪ 1 the sound wave acts as a thin phase grating, while when Q≫ 1 it acts as a thick phase
grating. Therefore, the parameter Q quantifies the effective thickness of the vibrating medium.

C.2.2 Standing wave

In the case of a standing wave, we expand in Fourier series the periodic function F (z, x, t) only
with respect to the x coordinate

F (z, x, t) =
+∞∑︂

m=−∞

φm(z, t)e
imKx (C.72)

Therefore, we can rewrite the electric field as

E(z, x, t) =
+∞∑︂

m=−∞

φm(z, t)e
−iωtein0k cos θzei(n0k sin θ+mK)x (C.73)
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The partial derivatives of the above field are

∂2E

∂z2
=

+∞∑︂
m=−∞

ein0k cos θzei(n0k sin θ+mK)xe−iωt

(︃
−n2

0k
2 cos2 θφm + 2ikn0 cos θ

∂φm

∂z
+
∂2φm

∂z2

)︃
∂2E

∂x2
=

+∞∑︂
m=−∞

φme
in0k cos θzei(n0k sin θ+mK)xe−iωt

(︁
−n2

0k
2 sin2 θ −m2K2 − 2mn0kK sin θ

)︁
∂2E

∂t2
=

+∞∑︂
m=−∞

ein0k cos θzei(n0k sin θ+mK)xe−iωt

(︃
−ω2φm − 2iω

∂φm

∂t
+
∂2φm

∂t2

)︃
(C.74)

Now, we assume that the refractive index is a harmonic standing wave

n(x, t) = n0 +∆n sin(Kx) sin(Ωt) (C.75)

where ∆n is the maximum variation of refractive index with respect to the static value n0.
Therefore

[︃
n(x, t)

c

]︃2
=
n2
0 + 2n0∆n sin(Kx) sin(Ωt) + (∆n)2 sin2(Kx) sin2(Ωt)

c2
∼

∼ n2
0

c2
− in0∆n sin(Ωt)

c2
(︁
eiKx − e−iKx

)︁
(C.76)

where we have neglected the second-order term in ∆n, because ∆n≪ n0. We can now rewrite
equation C.14 as

n2
0

c2
2iω

∂φm

∂t
− n2

0

c2
∂2φm

∂t2
− φm

(︁
m2K2 + 2mn0kK sin θ

)︁
+
∂φm

∂z
(2ikn0 cos θ) +

∂2φm

∂z2
=

=
in0∆n sin(Ωt)

c2

[︃(︃
ω2φm−1 + 2iω

∂φm−1

∂t
− ∂2φm−1

∂t2

)︃
−
(︃
ω2φm+1 + 2iω

∂φm+1

∂t
− ∂2φm+1

∂t2

)︃]︃
(C.77)

where we have equated only the Fourier components at the same frequency. We now assume
that the amplitude φ(z, t) is slowly varying⃓⃓⃓⃓

∂φm

∂z

⃓⃓⃓⃓
≪ k|φm(z, t)|

⃓⃓⃓⃓
∂φm

∂t

⃓⃓⃓⃓
≪ ω|φm(z, t)| (C.78)

Therefore, we can neglect the time derivatives and the second space derivative of φm(z, t). We
can approximate again cos θ ∼ 1 and sin θ ∼ θ. Rearranging the differential equation, we obtain

∂φm

∂z
+ i

mQ

2L
(m− 2α)φm =

ν sin(Ωt)

2L
(φm−1 − φm+1) (C.79)

Where Q, α and ν are defined as in equations C.34, C.35 and C.36. Interestingly, this is the
same equation as C.33, just with the parameter ν replaced with ν sin(Ωt).
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C.2.2.1 Bragg Regime

Using the results already obtained in the case of the traveling wave, we have that if Q≫ 1 and
θ = ∓ λ

2n0Λ
there are only two diffraction orders with a non-zero solution. The corresponding

amplitudes are

φ0(z, t) = cos

(︃
ν sin(Ωt)z

2L

)︃
(C.80)

φ±1(z, t) = sin

(︃
ν sin(Ωt)z

2L

)︃
(C.81)

Therefore, the diffraction efficiencies are

η0(t) = |φ0(L, t)|2 = cos2
(︃
ν sin(Ωt)

2

)︃
(C.82)

η±1(t) = |φ±1(L, t)|2 = sin2

(︃
ν sin(Ωt)

2

)︃
(C.83)

Using the Jacobi–Anger identity, we can expand the amplitudes into Fourier series

φ0(L, t) =
+∞∑︂

m=−∞

J2m(ν/2)e
i2mΩt (C.84)

φ±1(L, t) =
+∞∑︂

m=−∞

J2m+1(ν/2)e
i(2m+1)Ωt (C.85)

Therefore, both diffraction orders have a broad-band spectrum. More in detail, the 0th and 1st

order are frequency-shifted by all even and odd integer multiples of Ω, respectively.

C.2.2.2 Raman-Nath Regime

The solutions of equation C.79 in case Q≪ 1 is

φm(z, t) = Jm

(︃
ν sin(Ωt)z

L

)︃
(C.86)

The corresponding diffraction efficiencies are

ηm(t) = |φm(L, t)|2 = J2
m[ν sin(Ωt)] (C.87)

Using Graf’s addition theorem, we can expand the amplitudes into Fourier series
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φ2m(L, t) =
+∞∑︂
l=0

(−1)lJm−l(ν/2)Jm+l(ν/2)
(︁
ei2lΩt − e−i2lΩt

)︁
(C.88)

φ2m+1(L, t) = −i
+∞∑︂
l=0

(−1)lJm−l(ν/2)Jm+l+1(ν/2)
(︁
ei(2l+1)Ωt − e−i(2l+1)Ωt

)︁
(C.89)

Therefore, even diffraction orders are frequency-shifted by even multiples of Ω, and odd diffraction
orders are frequency-shifted by odd multiples of Ω.
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D
Wave Equation in Liquids

It is well-known that sound propagates as a wave. In this appendix, we prove this fact, deriving
the wave equation in fluids as an approximation of the Navier-Stokes equations. More in detail,
we study the case of Newtonian liquids.

D.1 Conservation of mass

Let ρ =
∫︁
V
m dV be the mass density of a liquid. The corresponding flow current is ρv, where

v is the fluid velocity. Given a volume V , the rate of mass variation inside this volume is

dm

dt
=

d

dt

∫︂
V (t)

ρ dV (D.1)

Using the Reynolds transport theorem, we can rewrite the right-hand side of the above equation
as

d

dt

∫︂
V (t)

ρ dV =

∫︂
V (t)

∂ρ

∂t
dV +

∫︂
∂V (t)

ρv · dS (D.2)

Using the divergence theorem, we get∫︂
∂V (t)

ρv · dS =

∫︂
V (t)

∇ · (ρv) dV (D.3)
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D.2 Conservation of momentum D Wave Equation in Liquids

The conservation of mass requires equation D.1 to be equal to zero. Therefore, we get∫︂
V (t)

∂ρ

∂t
dV +

∫︂
V (t)

∇ · (ρv) dV = 0 (D.4)

Since the volume V (t) is arbitrary, the integrands must be the same. In this way, we get the
continuity equation in differential form.

∂ρ

∂t
+∇ · (ρv) = 0 (D.5)

D.2 Conservation of momentum

The second Newton’s law is

dp

dt
= F (D.6)

where F is the sum of all the external (both body and surface) forces. We can rewrite the above
equation in integral form

d

dt

∫︂
V (t)

ρv dV =

∫︂
V (t)

f dV +

∫︂
∂V (t)

σ · dS (D.7)

where f accounts for body forces and σ accounts for surface forces.
Using the Reynolds transport theorem, we can rewrite the left-hand side of the above equation

as

d

dt

∫︂
V (t)

ρv dV =

∫︂
V (t)

∂(ρv)

∂t
dV +

∫︂
∂V (t)

(ρv)⊗ v · dS (D.8)

Using the divergence theorem and the vector identity ∇ · (ρv ⊗ v) = (v ·∇)(ρv) + (ρv)∇ · v,
we can rewrite the above equation as

d

dt

∫︂
V (t)

ρv dV =

∫︂
V (t)

⎛⎜⎝ρ∂v
∂t

+ v
∂ρ

∂t
+ ρ(v ·∇v) + v(v ·∇ρ) + ρv∇ · v⏞ ⏟⏟ ⏞

=v(∇·ρv)

⎞⎟⎠ dV =

=

∫︂
V (t)

⎛⎜⎜⎝ρ∂v∂t + ρ(v ·∇v) + v
(︃
∂ρ

∂t
+∇ · ρv

)︃
⏞ ⏟⏟ ⏞

=0

⎞⎟⎟⎠ dV =

=

∫︂
V (t)

(︃
ρ
∂v

∂t
+ ρ(v ·∇v)

)︃
dV

(D.9)
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D Wave Equation in Liquids D.2 Conservation of momentum

where we have used the continuity equation. Using the divergence theorem, we can also rewrite
the right-hand term of equation D.7.∫︂

V (t)

f dV +

∫︂
∂V (t)

σ · dS =

∫︂
V (t)

(f +∇ · σ) dV (D.10)

Since the volume V (t) is arbitrary, we can rewrite equation D.7 as

ρ
∂v

∂t
+ ρ(v ·∇v) = f +∇ · σ (D.11)

The force density σ is known as Cauchy stress tensor, and its explicit form is

σ =

⎛⎝σxx τxy τxz
τyx σyy τyz
τzx τzy σzz

⎞⎠ (D.12)

where σii are the normal stresses and τij are the shear stresses. We can define the mechanical
pressure as P = −1

3

∑︁3
i=1 σii and rewrite the Cauchy stress tensor as

σ = −

⎛⎝P 0 0
0 P 0
0 0 P

⎞⎠+

⎛⎝σxx + P τxy τxz
τyx σyy + P τyz
τzx τzy σzz + P

⎞⎠ = −PI + τ (D.13)

where I is the identity matrix and τ is the deviatoric stress tensor.
Using the above identity we can rewrite equation D.11 as

ρ
∂v

∂t
+ ρ(v ·∇v) = −∇P +∇ · τ + f (D.14)

We must now select a particular family of fluids to write the explicit form of τ , namely compress-
ible Newtonian fluids. Indeed, most liquids and gases belong to this family in ordinary conditions.
Therefore, we assume that

(a) ∇ · τ = 0 when the fluid is at rest

(b) τ is a linear function of ∇v

(c) The fluid is isotropic, and the viscosity coefficient is a scalar

Furthermore, from the conservation of momentum it is possible to prove that the Cauchy stress
tensor is symmetric (σij = σji). As a consequence, also τ is symmetric (τij = τji). Therefore,

we can define τ as τij = µ
(︂

∂vi
∂xj

+
∂vj
∂xi

)︂
, where µ is a scalar. From the definition of mechanical

pressure and equation D.13 we know that

P = −1

3

3∑︂
i=1

σii = P − 1

3

3∑︂
i=1

τii = P − 2

3
µ∇ · v (D.15)
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D.4 Linearization of variables D Wave Equation in Liquids

the above equation implies that ∇ · v = 0, but this relation holds only for incompressible fluids.
Therefore, we have to add a term (the compressible term) to the deviatoric stress tensor for
compressible fluids. As a result, we can write

τij = µ

(︃
∂vi
∂xj

+
∂vj
∂xi

)︃
+ δijλ

3∑︂
k=1

∂vk
∂xk

(D.16)

where µ and λ are, respectively, the first and second coefficients of viscosity. For compressible
fluids λ = −2

3
µ (this is known as Stokes’ hypothesis).

Therefore, the conservation of momentum equation becomes

ρ
∂v

∂t
+ ρ(v ·∇v) = −∇P +∇ ·

[︁
µ∇v + µ(∇v)T

]︁
− 2

3
∇ · [µ(∇ · v)I] + f (D.17)

D.3 Equation of state

In the following discussion, we assume the mechanical and thermodynamical pressure to be
identical. The ideal gas law is

PV = nKBT (D.18)

where n is the number of particles that compose the gas, kB is the Boltzmann constant, and
T is the temperature. Experimental evidence shows that for typical acoustic frequencies and
amplitudes, the temperature gradients and the thermal conductivity of the fluid are small enough
that no significant thermal flux occurs. Therefore, we can approximate the acoustic processes to
be adiabatic. In this case, we can rewrite the equation of state as

P

P0

=

(︃
ρ

ρ0

)︃γ

(D.19)

where P0 and ρ0 are, respectively, the rest values of the pressure and the gas density, and γ is
the adiabatic coefficient.

D.4 Linearization of variables

We now assume that the fluctuations in density and fluid velocity in the acoustic processes are
small compared to the unperturbed values.

ρ(x, t) = ρ0 + ρ1(x, t), where ρ1/ρ0 ∼ 0 (D.20)

v(x, t) = 0+ v1(x, t), where v1 ∼ 0 (D.21)

112



D Wave Equation in Liquids D.4 Linearization of variables

We can linearize the equation D.19 with a Taylor expansion:

P = P0 +
∂P

∂ρ

⃓⃓⃓⃓
ρ0

(ρ− ρ0) + o(ρ− ρ0) (D.22)

The adiabatic bulk modulus is B = ρ0
∂P
∂ρ

⃓⃓⃓
ρ0

. The speed of sound is defined as cs =
√︂

B
ρ0

.

Therefore, we obtain the relationship

P − P0 = c2s(ρ− ρ0) Equation of state (D.23)

Using the assumptions of equations D.20–D.21 and neglecting the second-order terms, we can
rewrite the continuity equation. The result is

∂ρ1
∂t

+ ρ0∇ · (v1) = 0 Conservation of mass (D.24)

Following the same procedure and using equation D.23, we can rewrite the equation of the
conservation of momentum as

ρ0
∂v1
∂t

+ c2s∇ρ1 −∇ · τ1 = 0 (D.25)

where we have neglected all body forces f (such as gravity) and τ1 is

τ1ij = µ

(︃
∂v1i
∂xj

+
∂v1j
∂xi

)︃
− δij

2µ

3

3∑︂
k=1

∂v1k
∂xk

=

= µ

(︃
∂v1i
∂xj

+
∂v1j
∂xi

)︃
+ δij

2µ

3ρ0

∂ρ1
∂t

(D.26)

where we used equation D.24. The divergence of τ1 is

3∑︂
i=1

∂τ1ij
∂xi

= µ
3∑︂

i=1

(︃
∂2v1i
∂xi∂xj

+
∂2v1j
∂xi∂xi

)︃
+

2µ

3ρ0

∂2ρ1
∂xj∂t

=

= 2µ
∂

∂xj

3∑︂
i=1

∂v1i
∂xi

+
2µ

3ρ0

∂2ρ1
∂xj∂t

= − 4µ

3ρ0

∂2ρ1
∂xj∂t

(D.27)

where we used equation D.24 and the fact1 that
∑︁3

i=1
∂2v1j
∂xi∂xi

=
∑︁3

i=1
∂2v1i
∂xi∂xj

. Therefore, the

equation for the conservation of momentum becomes

ρ0
∂v1
∂t

+ c2s∇ρ1 + ν∇∂ρ1
∂t

= 0 Conservation of momentum (D.28)

where we have defined the kinematic viscosity ν = 4µ
3ρ0

.

1It follows from ∇× (∇× v) = 0.
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D.5 The damped wave equation D Wave Equation in Liquids

D.5 The damped wave equation

If we calculate the divergence of equation D.28, we get

ρ0
∂

∂t
∇ · v1 + c2s∇2ρ1 + ν∇2∂ρ1

∂t
= 0 (D.29)

where we used the fact that ∇ · ∇ = ∇2. Using, once again, equation D.24, we obtain the
acoustic damped wave equation

∂2ρ1
∂t2

− c2s∇2ρ1 − ν∇2∂ρ1
∂t

= 0 (D.30)
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E
Solution of the Acoustic Wave Equation

In this appendix, we solve the following one-dimensional damped wave equation

∂2ρ

∂t2
− ∂2

∂x2

(︃
c2sρ+ ν

∂ρ

∂t

)︃
= 0 (E.1)

where ρ is the oscillation density relative to the unperturbed case. In addition, we assume the
following initial conditions

ρ(x, t)

⃓⃓⃓⃓
t=0

= 0 (E.2)

∂ρ

∂t

⃓⃓⃓⃓
t=0

= 0 (E.3)

that represent an initial state at rest.

E.1 Actuators in phase

E.1.1 Boundary conditions

v(x, t)

⃓⃓⃓⃓
x=0

= va cos (Ωdt) (E.4)

v(x, t)

⃓⃓⃓⃓
x=L

= va cos (Ωdt) (E.5)
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E.1 Actuators in phase E Solution of the Acoustic Wave Equation

If we assume that v(x, t) = f(x)g(t), we can specialize the conservation of momentum law in
x = 0 and x = L, defining ψ(t) = ∂ρ

∂x

⃓⃓
x=0,L

ρ0
∂v

∂t

⃓⃓⃓⃓
x=0,L⏞ ⏟⏟ ⏞

=−Ωdρ0va sin (Ωdt)

+c2sψ + ν
∂ψ

∂t
= 0 (E.6)

therefore, we get a non-homogeneous first-order ordinary differential equation

ν
∂ψ

∂t
+ c2sψ = Ωdρ0va sin (Ωdt) (E.7)

the solution of this ODE is the sum of the solution of the homogeneous equation and a particular
solution. The characteristic equation associated with the homogeneous ODE is

να + c2s = 0 =⇒ α = −c
2
s

ν
(E.8)

therefore, the homogeneous solution is

ψo(t) = C exp

(︃
−c

2
st

ν

)︃
−−−−→
t→+∞

0 (E.9)

To calculate the particular solution, we can use the Fourier transform method. The Fourier
transform of E.7 is

iνΩψ̃(Ω) + c2sψ̃(Ω) = ρ0Ωdva
1

2i

[︃
δ(Ω− Ωd)− δ(Ω + Ωd)

2π

]︃
ψ̃(Ω) =

ρ0Ωdva
4πi

[︃
δ(Ω− Ωd)− δ(Ω + Ωd)

iνΩ + c2s

]︃ (E.10)

the inverse Fourier transform of ψ̃(Ω) is

ψ(t) =
ρ0Ωdva

2i

[︃
eiΩdt

c2s + iνΩd

− e−iΩdt

c2s − iνΩd

]︃
=

=
ρ0Ωdva
c4s + ν2Ω2

d

c2s(e
iΩdt − e−iΩdt)− iνΩd(e

iΩdt + e−iΩdt)

2i

(E.11)

finally, the particular solution is

ψp(t) =
ρ0Ωdva
c4s + ν2Ω2

d

[︁
c2s sin (Ωdt)− νΩd cos (Ωdt)

]︁
(E.12)
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If we consider only the steady-state solution, we can neglect the exponential decaying part.
Therefore, we can now write the boundary condition in the Neumann form

∂ρ

∂x

⃓⃓⃓⃓
x=0,L

=
ρ0Ωdva
c4s + ν2Ω2

d

[︁
c2s sin (Ωdt)− νΩd cos (Ωdt)

]︁
⏞ ⏟⏟ ⏞

=f(t)

(E.13)

To make these boundary conditions homogeneous, we define a new function u(t) so that

ρ(x, t) = u(x, t) +

∫︂ x

0

f(t) dx = u(x, t) + xf(t) (E.14)

using this substitution in equation E.7 we have

∂ρ

∂x

⃓⃓⃓⃓
x=0,L

=
∂u

∂x

⃓⃓⃓⃓
x=0,L

+ f(t) = f(t) =⇒ ∂u

∂x

⃓⃓⃓⃓
x=0,L

= 0 (E.15)

Using the substitution of equation E.14 in equation E.1, we get

∂2u

∂t2
− ∂2

∂x2

(︃
c2su+ ν

∂u

∂t

)︃
= S(x, t) (E.16)

where the source term S(x, t) is

S(x, t) = −x∂
2f

∂t2
= x

ρ0Ω
3
dva

c4s + ν2Ω2
d

[︁
c2s sin (Ωdt)− νΩd cos (Ωdt)

]︁
(E.17)

E.1.1.1 Homogeneous solution

Assume that the solution can be factorized as u(x, t) = X(x)T (t). The homogeneous equation
associated to E.16 becomes

X
∂2T

∂t2
− c2sT

∂2X

∂x2
− ν

∂2X

∂x2
∂T

∂t
= 0 (E.18)

this equation can be rewritten as

∂2X
∂x2

X
=

∂2T
∂t2

c2sT + ν ∂T
∂t

(E.19)

since the above identity must be valid for every possible value of both x and t, both terms have
to be equal to the same constant r. Therefore, we obtain two ordinary differential equations

∂2X

∂x2
= rx (E.20)

∂2T

∂t2
= r

(︃
c2sT + ν

∂T

∂t

)︃
(E.21)
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the characteristic equation associated to E.20 is

β2 = r =⇒ β = ±
√
r (E.22)

therefore, the solution is

X(x) = ae
√
rx + be−

√
rx (E.23)

we now apply the boundary conditions

∂u

∂x

⃓⃓⃓⃓
x=0,L

= 0 ⇒ T (t)
∂X

∂x

⃓⃓⃓⃓
x=0,L

= 0 ∀t⇒ ∂X

∂x

⃓⃓⃓⃓
x=0,L

= 0 (E.24)

this implies the following system of equations{︄
a = b when x = 0

ae
√
rL − be−

√
rL = 0 when x = L

(E.25)

substituting the first equation into the second one, we get

e
√
rL(1− e−2

√
rL) = 0 ⇒ 2

√
rL = i2πn, with n ∈ Z (E.26)

therefore, we can redefine r such as

√
r = iKn = i

πn

L
(E.27)

therefore, the solution becomes

X(x) = C cos(Knx) (E.28)

Using this result, we can now solve the differential equation E.21

∂2T

∂t2
+K2

nν
∂T

∂t
+K2

nc
2
sT = 0 (E.29)

that is the equation of a damped harmonic oscillator with angular frequency Ωn = Kncs. The
characteristic equation associated is

γ2 +K2
nνγ +K2

nc
2
s = 0 (E.30)

whose solution are

γ = −K
2
nν

2
±
√︁
K4

nν
2 − 4K2

nc
2
s

2
∼

ν→0
−K

2
nν

2
± i

√︁
4K2

nc
2
s −K4

nν
2

2⏞ ⏟⏟ ⏞
=Ω′

n

(E.31)

where we have assumed that the coefficient is small enough to have ν < 2cs
Kn

. Therefore the
solution is

T (t) = exp

(︃
−K

2
nνt

2

)︃
[A sin(Ω′

nt) +B cos(Ω′
nt)] (E.32)
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E.1.1.2 Complete solution

We decompose the functions u(x, t) and S(x, t) over the eigenfunctions E.28 of the homogeneous
differential equation

u(x, t) =
+∞∑︂
n=1

un(t)Xn(x) =
+∞∑︂
n=1

un(t) cos(Knx) (E.33)

S(x, t) =
+∞∑︂
n=1

sn(t)Xn(x) =
+∞∑︂
n=1

sn(t) cos(Knx) (E.34)

where sn(t) is

sn(t) =
2

L

L∫︂
0

S(x, t) cos(Knx) dx =

=
2

L

ρ0Ω
3
dva

c4s + ν2Ω2
d

[︁
c2s sin (Ωdt)− νΩd cos (Ωdt)

]︁ L∫︂
0

x cos(Knx) dx =

=
2

L

ρ0Ω
3
dva

c4s + ν2Ω2
d

[︁
c2s sin (Ωdt)− νΩd cos (Ωdt)

]︁ 1

K2
n

[cos(πn)− 1] =

=
2

L

ρ0Ω
3
dva

c4s + ν2Ω2
d

[︁
c2s sin (Ωdt)− νΩd cos (Ωdt)

]︁ 1

K2
n

[(−1)n − 1]

(E.35)

where we have used the fact that Kn = πn
L

. We can now rewrite equation E.17 as

+∞∑︂
n=1

ün(t) cos(Knx)−
+∞∑︂
n=1

K2
nνu̇n(t) cos(Knx)−

+∞∑︂
n=1

K2
nc

2
sun(t) cos(Knx) =

+∞∑︂
n=1

sn(t) cos(Knx)

(E.36)
where we have identified the dot symbol as the time derivative. We can now exploit the orthog-
onality of the trigonometric functions. If we multiply both the left and right-hand terms of the
above equation with cos(Knx) and integrate them with respect to x on a period, we get

ün(t) +K2
nνu̇n(t) +K2

nc
2
sun(t) = sn(t) (E.37)

this is the differential equation of a driven harmonic oscillator. We already solved the associated
homogeneous equation, whose solution is

uon(t) = exp

(︃
−K

2
nνt

2

)︃
[A0 sin(Ω

′
nt) +B0 cos(Ω

′
nt)] (E.38)
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where the constants A0 and B0 can be calculated using the initial conditions E.2 and E.3. To
obtain the particular solution, we calculate the Fourier transform of equation E.37, that is

−Ω2ũn(Ω) + iΩK2
nνũn(Ω) +K2

nc
2
sun(Ω) = s̃n(Ω) (E.39)

solving with respect to ũn, we have

ũn(Ω) =
s̃n(Ω)

Ω2
n − Ω2 + iΩνK2

n

=

=
(−1)n − 1

2πK2
nL

2ρ0Ω
3
dva

c4s + ν2Ω2
d⏞ ⏟⏟ ⏞

=An/2π

[︃
c2s
2i

δ(Ω− Ωd)− δ(Ω + Ωd)

Ω2
n − Ω2 + iΩνK2

n

− νΩd

2

δ(Ω− Ωd) + δ(Ω + Ωd)

Ω2
n − Ω2 + iΩνK2

n

]︃

(E.40)

calculating the inverse Fourier transform of ũn(Ω) we obtain

upn(t) = An

[︃(︃
c2s
2i

− νΩd

2

)︃
eiΩdt

Ω2
n − Ω2

d + iΩdνK2
n

−
(︃
c2s
2i

+
νΩd

2

)︃
e−iΩdt

Ω2
n − Ω2

d − iΩdνK2
n

]︃
=

= An

[︃(︃
c2s
2i

− νΩd

2

)︃
eiΩdt(Ω2

n − Ω2
d − iΩdνK

2
n)

(Ω2
n − Ω2

d)
2 + Ω2

dν
2K4

n

−
(︃
c2s
2i

+
νΩd

2

)︃
e−iΩdt(Ω2

n − Ω2
d + iΩdνK

2
n)

(Ω2
n − Ω2

d)
2 + Ω2

dν
2K4

n

]︃
=

= An c
2
s

Ω2
n − Ω2

d

(Ω2
n − Ω2

d)
2 + Ω2

dν
2K4

n⏞ ⏟⏟ ⏞
=Bn

eiΩdt − e−iΩdt

2i
+

− An c
2
s

ΩdνK
2
n

(Ω2
n − Ω2

d)
2 + Ω2

dν
2K4

n⏞ ⏟⏟ ⏞
=Cn

eiΩdt + e−iΩdt

2
+

− An νΩd
Ω2

n − Ω2
d

(Ω2
n − Ω2

d)
2 + Ω2

dν
2K4

n⏞ ⏟⏟ ⏞
=Dn

eiΩdt + e−iΩdt

2
+

− An νΩd
ΩdνK

2
n

(Ω2
n − Ω2

d)
2 + Ω2

dν
2K4

n⏞ ⏟⏟ ⏞
=En

eiΩdt − e−iΩdt

2i
=

= An[sin(Ωdt)(Bn − En)− cos(Ωdt)(Cn +Dn)]

(E.41)

Therefore, the complete solution is

ρ(x, t) = xf(t) +
+∞∑︂
n=0

[uon(t) + upn(t)] cos(Knx) (E.42)
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We focus our attention on the resonant (Ωd → Ωn) and low viscosity (ν → 0) case. In this
situation, we have

An ∼ 2ρ0Ω
3
nva

K2
nLc

4
s

[(−1)n − 1] (E.43)

Bn ∼ 0 (E.44)

Cn ∼ c2s
ΩnνK2

n

→ +∞ (E.45)

Dn ∼ 0 (E.46)

En ∼ 1

ΩnK4
n

(E.47)

we see that the coefficient term Cn is dominant. In this case, we can approximate the solution
to ρn(t) ∼ −AnCn cos(Knx) cos(Ωnt). Explicitly

ρn(x, t) = [1− (−1)n]
2ρ0vac

2
s

νLΩ2
n

cos(Knx) cos(Ωnt) (E.48)

where we remind that Kn = πn
L

and Ωn = csKn.

E.2 Actuators in phase opposition

E.2.1 Boundary conditions

v(x, t)

⃓⃓⃓⃓
x=0

= va cos (Ωdt) (E.49)

v(x, t)

⃓⃓⃓⃓
x=L

= −va cos (Ωdt) (E.50)

following the same procedure of the previous case, we obtain the following boundary conditions

∂ρ

∂x

⃓⃓⃓⃓
x=0

= f(t) (E.51)

∂ρ

∂x

⃓⃓⃓⃓
x=L

= −f(t) (E.52)

where f(t) is the same as before. We define a new function u(t) so that

ρ(x, t) = u(x, t) + xf(t)− x2

L
f(t) (E.53)

so
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∂ρ

∂x

⃓⃓⃓⃓
x=0

=
∂u

∂x

⃓⃓⃓⃓
x=0

+ f(t) = f(t) =⇒ ∂u

∂x

⃓⃓⃓⃓
x=0

= 0 (E.54)

∂ρ

∂x

⃓⃓⃓⃓
x=L

=
∂u

∂x

⃓⃓⃓⃓
x=L

+ f(t)− 2L

L
f(t) = −f(t) =⇒ ∂u

∂x

⃓⃓⃓⃓
x=L

= 0 (E.55)

Using the substitution of equation E.53 in equation E.1, we get again

∂2u

∂t2
− ∂2

∂x2

(︃
c2su+ ν

∂u

∂t

)︃
= S(x, t) (E.56)

where in this case the source term S(x, t) is

S(x, t) = −
[︃(︃
x− x2

L

)︃
∂2f

∂t2
+

2ν

L

∂f

∂t
+

2c2s
L
f(t)

]︃
=

= − ρ0Ωdva
c4s + ν2Ω2

d

[︃(︃
x− x2

L

)︃(︁
−Ω2

dc
2
s sin(Ωdt) + νΩ3

d cos(Ωdt)
)︁
+

+
2ν

L

(︁
Ωdc

2
s cos(Ωdt) + νΩ2

d sin(Ωdt)
)︁
+

+
2c2s
L

(︁
c2s sin(Ωdt)− νΩd cos(Ωdt)

)︁]︃
(E.57)

that can be rewritten as

S(x, t) = a(t) + b(t)x+ c(t)x2 (E.58)

with the appropriate choice of the functions a(t), b(t), and c(t).

E.2.2 Complete solution

We have already solved the homogeneous wave equation, and we know the eigenfunctions X(x) =
cos(Knx). Therefore, we can calculate the coefficients sn(t) of the eigenfunction expansion of
the source term

sn(t) =
2

L

L∫︂
0

S(x, t) cos(Knx) dx =

=
2

L
a(t)

L∫︂
0

cos(Knx) dx⏞ ⏟⏟ ⏞
=0

+
2

L
b(t)

L∫︂
0

x cos(Knx) dx⏞ ⏟⏟ ⏞
= 1

K2
n
[(−1)n−1]

+
2

L
c(t)

L∫︂
0

x2 cos(Knx) dx
(E.59)
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where we have used the results of the previous section. The last integral that we have to calculate
is

L∫︂
0

x2 cos(Knx) dx =
1

Kn

[︁
sin(Knx)x

2
]︁L
0
− 1

Kn

L∫︂
0

2x cos(Knx) dx =

=
1

K2
n

[cos(Knx)2x]
L
0 − 1

K2
n

L∫︂
0

2 cos(Knx) dx =

=
2L

K2
n

cos(KnL) =
2L

K2
n

(−1)n

(E.60)

since c(t) = − b(t)
L

, we have that

sn(t) =
2

L
b(t)

1

K2
n

[(−1)n − 1− 2(−1)n] =
2b(t)

LK2
n

[(−1)n+1 − 1] (E.61)

as a result, we get

sn(t) = [(−1)n+1 − 1]
2

LK2
n

ρ0Ω
3
dva

c4s + ν2Ω2
d

(︁
c2s sin(Ωdt)− νΩd cos(Ωdt)

)︁
(E.62)

Therefore, the approximate solution is obtained just substituting [1− (−1)n] ↦→ [1− (−1)n+1] in
the solution of the previous case

ρn(x, t) = [1− (−1)n+1]
2ρ0vac

2
s

νLΩ2
n

cos(Knx) cos(Ωnt) (E.63)

E.3 Reflecting plate

E.3.1 Boundary conditions

v(x, t)

⃓⃓⃓⃓
x=0

= va cos (Ωdt) (E.64)

∂ρ

∂x

⃓⃓⃓⃓
x=L

= 0 (E.65)

following the same procedure of the first case, we obtain the following boundary conditions

∂ρ

∂x

⃓⃓⃓⃓
x=0

= f(t) (E.66)

∂ρ

∂x

⃓⃓⃓⃓
x=L

= 0 (E.67)
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where f(t) is the same as before. We define a new function u(t) so that

ρ(x, t) = u(x, t) + xf(t)− x2

2L
f(t) (E.68)

so the source term S(x, t) is

S(x, t) = −
[︃(︃
x− x2

2L

)︃
∂2f

∂t2
+

2ν

L

∂f

∂t
+

2c2s
L
f(t)

]︃
=

= − ρ0Ωdva
c4s + ν2Ω2

d

[︃(︃
x− x2

2L

)︃(︁
−Ω2

dc
2
s sin(Ωdt) + νΩ3

d cos(Ωdt)
)︁
+

+
2ν

L

(︁
Ωdc

2
s cos(Ωdt) + νΩ2

d sin(Ωdt)
)︁
+

+
2c2s
L

(︁
c2s sin(Ωdt)− νΩd cos(Ωdt)

)︁]︃
(E.69)

that, similarly as before, can be rewritten as

S(x, t) = a(t) + b(t)x+ c(t)x2 (E.70)

with the appropriate choice of the functions a(t), b(t), and c(t).

E.3.2 Complete solution

This case is analogous to the previous one, with the difference that now c(t) = − b(t)
2L

. Therefore,
we have that

sn(t) =
2

L
b(t)

1

K2
n

[(−1)n − 1− (−1)n] = −2b(t)

LK2
n

(E.71)

therefore, now

sn(t) =
2

LK2
n

ρ0Ωdva
c4s + ν2Ω2

d

(︁
νΩ3

d cos(Ωdt)− Ω2
dc

2
s sin(Ωdt)

)︁
(E.72)

Therefore, the approximate solution is obtained just substituting [1− (−1)n] ↦→ 1 in the solution
of the first case

ρn(x, t) =
2ρ0vac

2
s

νLΩ2
n

cos(Knx) cos(Ωnt) (E.73)
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E.4 Traveling wave

E.4.1 Boundary conditions

In this case, we apply a condition only on a single boundary

v(x, t)

⃓⃓⃓⃓
x=0

= va cos (Ωdt) (E.74)

which translates to the following boundary condition

∂ρ

∂x

⃓⃓⃓⃓
x=0

= f(t) (E.75)

where f(t) is the same as before.

E.4.2 Complete solution

In order to find the solution, we use the following ansatz :

ρ(x, t) = A exp (ikx− iΩt) (E.76)

substituting this expression into the wave equation, we obtain

−Ω2 + c2sk
2 − ik2Ων = 0 (E.77)

which leads to the following dispersion relation

k2 = Ω2 c
2
s + iΩν

c4 + Ω2ν2
(E.78)

We now write the wave number explicitly as the sum of the real and imaginary part k = kR+ ikI ,
thus obtaining the following system of equations⎧⎪⎪⎨⎪⎪⎩

kRkI =
Ω3ν

2(c4s + Ω2ν2)

k2R − k2I =
Ω2c2s

c4s + Ω2ν2

(E.79)

whose solution is ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
kI =

√︄
Ω2c2s

2(c4s + Ω2ν2)

(︃√︂
1 +

(︁
Ων
c

)︁2 − 1

)︃
√︄

Ω2c2s
2(c4s + Ω2ν2)

(︃√︂
1 +

(︁
Ων
c

)︁2 − 1

)︃ (E.80)

125



E.4 Traveling wave E Solution of the Acoustic Wave Equation

for small viscosities (ν ≪ c2s/Ω), we can simplify the solution can as follows⎧⎪⎪⎪⎨⎪⎪⎪⎩
kI =

Ω2ν

2c3

kR =
Ω

cs

(E.81)

The generic solution can be found by taking the real part of the ansatz

ρ(x, t) = exp (−kIx)[a cos(kRx− Ωt) + b sin(kRx− Ωt)] (E.82)

The amplitude of the wave can be found using the boundary conditions. The final result is

ρ(x, t) =
ρ0csva√︁
c4s + ν2Ω2

exp (−kIx) sin(kRx− Ωdt) (E.83)

where we neglected a phase shift unimportant for the description of the steady state.
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F
Derivation of the Diffraction Patterns

In this appendix, we use the scalar diffraction theory to model the interaction of light with an
acoustic wave. More in detail, we define the transmittance function of the acoustic cavity, and
we find the diffraction patterns both in the near and in the far-field.

F.1 Acousto-optic interaction regime

To determine the type of diffraction that occurs when the light passes through the acoustic cavity,
we can use the Klein-Cook parameter defined as

Q =
2πλl

n0Λ2
(F.1)

being n0 the static refractive index of the medium, λ the wavelength of the laser beam, l the
length of the actuator (≈ 2 cm), and Λ the wavelength of the acoustic wave. Considering visible
light and a typical driving frequency of 1 MHz (with a corresponding wavelength of the acoustic
wave of about 1.5 mm), we get Q ≈ 0.03. At this condition (Q≪ 1), the acoustic wave acts as
an optically thin grating, legitimizing the use of the scalar diffraction theory.

F.2 Transmittance function

The mth resonant solution of the acoustic wave equation is

∆ρm(x, t) = ρm cos(Kmx) cos(Ωmt) (F.2)
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where the oscillation amplitude is

ρm = [1− (−1)m]
2ρ0d33V c

2
s

νLΩm

, ρm = [1− (−1)m+1]
2ρ0d33V c

2
s

νLΩm

, ρm =
2ρ0d33V c

2
s

νLΩm

(F.3)

depending on the boundary conditions. In the above equations, we assumed that va = Ωmd33V ,
where V is the voltage amplitude applied to the piezoelectric plates and dαβ is the piezoelectric
charge tensor.

To relate density and refractive index, we use the Lorentz-Lorenz equation

n2 − 1

n2 + 2
=

4π

3
N⟨α⟩ = Aρ (F.4)

where we have indicated with N the number of molecules per unit volume and with ⟨α⟩ the mean
polarizability. A is the molar refractivity, that we assume to be independent from the density.
We can rewrite the above equation as

n(ρ) =

√︄
1 + 2Aρ

1− Aρ
(F.5)

Acoustic perturbations are small. Thus, we can linearize this equation performing a Taylor
expansion. The first derivative of the refractive index is

dn

dρ

⃓⃓⃓⃓
ρ0

=
3A

2n0

1

(1− Aρ0)
2 (F.6)

where n0 = n(ρ0) and ρ0 are, respectively, the static refractive index and density of water. We
now use equation F.4 evaluated at ρ0 to substitute for A. The final result is

n(ρ0 +∆ρm) ∼ n0 +
dn

dρ

⃓⃓⃓⃓
ρ0

∆ρm = n0 +
n4
0 + n2

0 − 2

6n0

∆ρm
ρ0

(F.7)

Combining equations F.2 and F.7 it is possible to obtain an analytic expression for the instanta-
neous refractive index in the cavity:

n(x, t) = n0 +

nm⏟ ⏞⏞ ⏟
ρm
ρ0

n4
0 + n2

0 − 2

6n0

cos (Kmx) cos(Ωmt)⏞ ⏟⏟ ⏞
∆n(x,t)

(F.8)

The optical path length traveled by a light beam after passing through an acoustic cavity (with
the beam propagation direction being orthogonal to the sound waves) is δ(x, t) = ln0+l∆n(x, t).
However, the ln0 term generates a constant phase factor, which we can neglect to calculate the
intensity. Therefore, we can describe the optical cavity with the following complex transmittance
function

tA = exp
[︁
ikl∆n(x, y, t)

]︁
(F.9)
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In order to simplify the following calculations, it is helpful to rewrite the transmittance function
tA for a reference frame centered in the middle of the device. The result is

tA = exp

[︃
iklnm cos(Ωmt) sin

(︃
Kmx+

m+ 1

2
π

)︃]︃
. (F.10)

It is advantageous to rewrite this exponential function using the Bessel generating function

exp [(χ/2)(τ − 1/τ)] =
+∞∑︂

q=−∞

Jq(χ)τ
q. (F.11)

Using the following identifications

χ = klnm cos(Ωmt) (F.12a)

τ = exp

(︃
iKmx+ iπ

m+ 1

2

)︃
(F.12b)

we obtain

tA(x) =
+∞∑︂

q=−∞

Jq
[︁
klnm cos(Ωmt)

]︁
exp

(︃
iqπ

m+ 1

2

)︃
exp(iKmqx) (F.13)

In case both axes are driven, the induced density variations are the solutions of two independent
wave equations (one for each axis). Therefore, we can write the total density as the superposition
of the two solutions

ρ(x, y, t) = ρ0 + ρm cos(Kmx) cos(Ωmt) + ρj cos(kjx) cos(ωjt) (F.14)

Repeating the previous calculations with the above expression for the density, we obtain the
following transmittance function

tA(x, y) =
+∞∑︂

q=−∞

Jq
[︁
klnm cos(Ωmt)

]︁
exp

(︃
iqπ

m+ 1

2

)︃
exp(iKmqx)×

×
+∞∑︂

p=−∞

Jp
[︁
klnj cos(ωjt)

]︁
exp

(︃
ipπ

j + 1

2

)︃
exp(ikjpx) (F.15)

F.3 Gaussian beam

In the following sections, we consider the diffraction of a single Gaussian beam traveling along
the z-axis and hitting the center of the acoustic cavity. The complete expression is

U(r, z) = U0
w0

w(z)
exp

[︃
−r2

w2(z)

]︃
exp

[︃
−i
(︃
kz + k

r2

2R(z)
− ψ(z)

)︃]︃
(F.16)

129



F.4 Fraunhofer diffraction F Derivation of the Diffraction Patterns

where w0 is the beam waist, w the beam width, k is the wavenumber, R is the radius of
curvature, and ψ is the Guoy phase. However, in the subsequent discussion, we consider the case
of a collimated beam. Thus, we can neglect the phase contributions from the radius of curvature
and the Guoy phase. The expression of the collimated beam can be approximated to

U(r, 0) = U0 exp

(︃
− r2

w2

)︃
(F.17)

where we neglected phase factors that do not depend on r and grouped together constant
amplitude terms.

F.4 Fraunhofer diffraction

The scalar field emerging from the acoustic cavity is the product of equations F.17 and F.13.
The full expression is

U(x, y, 0) = U0

+∞∑︂
q=−∞

Jq
[︁
nm cos(Ωmt)

]︁
exp

(︃
iqπ

m+ 1

2

)︃
×

× exp(iKmqx) exp

[︃
−(x2 + y2)

w2

]︃ (F.18)

The Fraunhofer diffraction pattern is obtained either in the far-field or in the focal plane of a
converging lens. In the following discussion, we consider the case of a lens with focal length f .
The diffracted field is calculated as the Fourier transform of the initial field ((see appendix B).
Thus, we obtain

Uf (u, v) =
1

iλf
F{U(x, y, 0)}

(︃
u

λf
,
v

λf

)︃
(F.19)

where u and v are, respectively, the horizontal and vertical coordinates of the focal plane. The
terms of the sum in equation F.18 can be written as the product of two functions, whose Fourier
transforms are

F {exp(iKmqx)} = δ

(︃
νx −

qKm

2π

)︃
δ(νy) (F.20a)

F
{︃
exp

[︃
−(x2 + y2)

w2

]︃}︃
= πw2 exp

[︁
− π2w2

(︁
ν2x + ν2y

)︁]︁
(F.20b)

where νx and νy correspond to the horizontal and vertical spatial frequencies. Therefore, the
total Fourier transform is given by the convolution of the two above equations. Performing the
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calculation we get

Uf (νx, νy) =
πw2U0

iλf

+∞∑︂
q=−∞

Jq
[︁
klnm cos(Ωmt)

]︁
exp

(︃
iqπ

m+ 1

2

)︃
×

× exp

{︄
−π2w2

[︄(︃
νx −

qKm

2π

)︃2

+ ν2y

]︄}︄ (F.21)

Identifying (νx, νy) as 1
λf
(u, v), where u and v are the spatial coordinates of the focal plane of

the lens, we finally obtain

Uf (u, v) =
πw2U0

iλf

+∞∑︂
q=−∞

Jq
[︁
klnm cos(Ωmt)

]︁
exp

(︃
iqπ

m+ 1

2

)︃
×

× exp

{︄
−π

2w2

λ2f 2

[︄(︃
u− qf

λ

Λm

)︃2

+ v2

]︄}︄ (F.22)

The above equation corresponds to a weighted sum of Gaussian functions. The corresponding
intensity is calculated as the square modulus of the above equation. Suppose that Ωm is big
enough to prevent the overlap of neighboring Gaussian spots. Under this hypothesis, we can
neglect the cross-product of the terms of the sum and write the intensity function as

I(u, v) = I0

+∞∑︂
q=−∞

J2
q

[︁
klnm cos(Ωmt)

]︁
exp

{︄
−2π2w2

λ2f 2

[︄(︃
u− qf

λ

Λm

)︃2

+ v2

]︄}︄
(F.23)

where I0 is the square modulus of all the constant prefactors divided by the impedance of free
space. The spatial separation between peaks is

∆x =
λ

Λm

f =
Ωm

2πcs
λf (F.24)

and the diffraction efficiency, defined as the peak intensity divided by I0, is

ηq(t) = J2
q

[︁
klnm cos(Ωmt)

]︁
(F.25)

A similar procedure can be repeated with the transmittance function F.15 to obtain the
following two-dimensional diffraction intensity

I(u, v) = I0

+∞∑︂
q=−∞

J2
q

[︁
klnm cos(Ωmt)

]︁
exp

[︄
−2π2w2

λ2f 2

(︃
u− λ

Λm

f

)︃2
]︄
×

×
+∞∑︂

p=−∞

J2
p

[︁
klnm cos(ωjt)

]︁
exp

[︄
−2π2w2

λ2f 2

(︃
u− λ

Λj

f

)︃2
]︄

(F.26)
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In case the Gaussian beam is not collimated, it is enough to substitute w2 with
(︁

1
w2 − ik

2R

)︁−1

in equation F.22. This implies that each argument of the exponentials of equations F.23 and
F.26 has to be divided by 1 + kπ2w4

R
.

F.5 Fresnel diffraction

The scalar field propagated to a distance z from the acoustic cavity is calculated as follows

U(x, y, z) = [U(x′, y′, 0) ∗ Fz(x
′, y′)] (x, y) (F.27)

where U(x′, y′, 0) is given by F.18 and Fz(x
′, y′) is the Fresnel propagation kernel (see appendix

B). To calculate the convolution product, we consider only the terms depending on the variables
x and y. By completing the square, we can rewrite the last two terms of equation F.18 as

exp(iKmqx
′) exp

[︃
−(x′2 + y′2)

w2

]︃
=

= exp

[︃
−q

2K2
mw

2

4

]︃
exp

[︄
−(x′ − iqKmw

2/2)
2

w2

]︄
exp

[︃
−y

′2

w2

]︃ (F.28)

This is the product of a constant with two Gaussian functions. Therefore, we can factorize the
convolution product as follows:

U(x′, y′, 0) ∗ Fz(x
′, y′) =

=

(︄
exp

[︃
−q

2K2
mw

2

4

]︃
exp

[︄
−(x′ − iqKmw

2/2)
2

w2

]︄
∗ exp

[︃
ik

2z
x′2
]︃)︄

×

×
(︃
exp

[︃
−y

′2

w2

]︃
∗ exp

[︃
ik

2z
y′2
]︃)︃ (F.29)

where the first convolution is calculated only with respect to the variable x and the second
one only with respect to the variable y. Both terms of both convolution products can be seen
as Gaussian functions. Therefore, we can easily calculate the result using the fact that the
convolution product of two normalized Gaussian functions is still a normalized Gaussian function
having as mean the sum of the means (µ = µ1 + µ2) and as variance the sum of the variances
(σ2 = σ2

1 + σ2
2). For the first convolution, we perform the following identifications

µ1 = iqKmw
2/2 σ2

1 =
w2

2
(F.30a)

µ2 = 0 σ2
2 = − z

ik
(F.30b)

132



F Derivation of the Diffraction Patterns F.5 Fresnel diffraction

Therefore, we can write the result of the first convolution as

√
2π√︂

2
w2 − ik

z

exp

[︄
−q

2K2
mw

2

4
− ik

(x− iqKmw
2/2)

2

ikw2 − 2z

]︄
⏞ ⏟⏟ ⏞

Φ

(F.31)

where the argument of the above exponential is more conveniently rewritten as

Φ =
−4k2w2x2 + 8qw2kKmzx− 4q2w2K2

mz
2 + i(8kzx2 + 4qKmk − 2q2kK2

mw
4z)

4k2w4 + 16z2
(F.32)

Instead, for the second convolution, we have

µ1 = 0 σ2
1 =

w2

2
(F.33a)

µ2 = 0 σ2
2 = − z

ik
(F.33b)

Therefore, the result is

√
2π√︂

2
w2 − ik

z

exp

[︃
−4k2w2y2 + i8kzy2

4k2w4 + 16z2

]︃
(F.34)

Therefore, equation F.29 can be rewritten as the product of F.31 with F.34. Finally we have

U(x, y, z) =
U0

1 + i λz
πw2

exp

[︄
− (x2 + y2)

w2 + 4z2

k2w2

]︄
+∞∑︂

q=−∞

exp

[︃
8qw2kKmzx− 4q2w2K2

mz
2

4k2w4 + 16z2

]︃
×

×Jq
[︁
nm cos(Ωmt)

]︁
exp

(︃
−iq

2K2
mz

2k

)︃
exp

[︃
iq

(︃
Kmx+ π

m+ 1

2

)︃]︃
(F.35)

Where we have neglected the phase factors exp
(︂

i8kzx2

4k2w4+16z

)︂
, exp

(︂
i8kzy2

4k2w4+16z

)︂
, and exp(ikz)

because they are global (they do not depend on the index q) and do not contribute in the
calculation of the square modulus of the field. After some algebra, we finally have

U(x, y, z) =
U0

1 + i λz
πw2

+∞∑︂
q=−∞

exp

{︄
− 1

w2 + 4z2

k2w2

[︄(︃
x− q

λ

Λm

z

)︃2

+ y2

]︄}︄
×

×Jq
[︁
nm cos(Ωmt)

]︁
exp

(︃
−iq

2K2
mz

2k

)︃
exp

[︃
iq

(︃
Kmx+ π

m+ 1

2

)︃]︃
(F.36)
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The above equation represents many Gaussian beams initially (at z = 0 m) in the same position,
but diverging with an angle θ = λ/Λm and each with a different amplitude and phase shift.
The finite size of each beam implies that for short distances, those beams overlap and interfere,
but for longer distances, the beams get separated. We define z0 as the distance after which the
beams no longer overlap. To find its analytical expression, we require the separation along the
x-axis to be equal to the diameter of the beams

λ

Λm

z0 = 2

√︃
w2 +

4z20
kw2

⇒ z0 =

√︄
4π2Λ2

mw
4

π2w2λ2 − 4λ2Λ2
m

(F.37)

Now we do some numerical considerations. For a realistic case we have that w ≈ 10−2 m,
k ≈ 107 m−1, Km ≈ 103 m−1, and q ≈ 1 (because the diffraction efficiency is not negligible only
for the first diffraction orders). For z ≪ z0 ≈ 102 m, we can consider z ≈ 1 m. Therefore, we
can make the following approximations

w2 +
4z2

k2w2
≈ w2 (F.38a)

qz
λ

Λm

≈ 0 (F.38b)

1

1 + i λz
πw2

≈ 1 (F.38c)

Therefore, the field propagated for a distance z ≪ z0 is

U(x, y, z) = U0 exp

[︃
−(x2 + y2)

w2

]︃ +∞∑︂
q=−∞

Jq
[︁
nm cos(Ωmt)

]︁
×

× exp

(︃
−iq

2K2
mz

2k

)︃
exp

[︃
iq

(︃
Kmx+ π

m+ 1

2

)︃]︃ (F.39)

The intensity is given by the square modulus of the above equation, divided by the impedance of
free space. Notably, every time the distance along the optical axis is

z = p
4πk

k2m
= p

2Λ2

λ
(F.40)

where p ∈ Z and Λ = 2π
Km

, we have that

exp

(︃
−iq

2K2
mz

2k

)︃
= 1 (F.41)

Therefore, the propagated field is equal to those at the exit of the acoustic cavity. In other words,
U(x, y, 0) = U(x, y, p2Λ2

λ
) as long as z ≪ z0. This phenomenon is known as the Talbot effect,

and it is a consequence of the periodicity of the acoustically-induced phase grating.
It is also interesting to notice that in the result of equation F.39, the argument of the sum

is the same that we would have got doing the calculation of the Fresnel diffraction with a plane
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wave instead of a Gaussian beam. In this case, the Gaussian function acts only as an envelope
on the xy plane.

Repeating the above calculations with the two-dimensional transmittance function F.15, we
obtain

U(x, y, z) = U0 exp

[︃
−(x2 + y2)

w2

]︃
×

×
+∞∑︂
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)︃
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×
+∞∑︂

p=−∞
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−
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)︃
exp
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(︃
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j + 1

2

)︃]︃ (F.42)

We now consider the limit z ≫ z0. In this case, we can make the following approximations

w2 +
4z2

k2w2
≈ λ2z2

π2w2
(F.43a)

1

1 + i λz
πw2

≈ πw2

iλz
(F.43b)

that lead to the following field

U(x, y, z) =
πw2U0

iλz

+∞∑︂
q=−∞

Jq
[︁
klnm cos(Ωmt)

]︁
exp
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−π

2w2

λ2z2

[︄(︃
x− qz

λ

Λm

)︃2

+ y2

]︄}︄
(F.44)

where we also dropped the phase factor exp
[︁
iq
(︁
Kmx+ πm+1

2

)︁]︁
because it is useless in the

calculation of the square modulus of the field if the beams are separated. As expected, this result
is equivalent to the Fraunhofer diffraction.
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G
The Tunable Acoustic Gradient Lens

G.1 Cylindrical acoustic wave equation

The TAG lens is a cylindrical acoustic resonant cavity, composed by a piezoelectric hollow tube
filled in low-viscosity silicon oil. The differential equation governing the wave propagation inside
the cylinder is the following damped wave equation

∂2ρ

∂t2
− c2s∇2ρ− ν∇2∂ρ

∂t
= 0 (G.1)

We exploit the circular symmetry of the device to rewrite the above equation in polar coordinates

∂2ρ

∂t2
− 1

r

∂

∂r

[︃
r
∂

∂r

(︃
c2sρ− ν

∂ρ

∂t

)︃]︃
= 0 (G.2)

where we assumed that the solution does not depend on the angle. We couple this differential
equation with the following boundary condition

v(r, t)

⃓⃓⃓⃓
r=R

= va cos (Ωdt) (G.3)

where v is the velocity of the fluid, va is the amplitude of the velocity oscillation, R is the radius
of the piezoelectric tube, and Ωd is the angular frequency of the driving signal. Additionally, we
use the following initial conditions

ρ(r, t)

⃓⃓⃓⃓
t=0

= 0
∂ρ

∂t

⃓⃓⃓⃓
t=0

= 0 (G.4)
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that represent an initial state at rest. Using the law of the conservation of momentum, the
boundary condition can be rewritten as

∂ρ

∂r

⃓⃓⃓⃓
r=R

=
ρ0vAΩdc

2
s

ν2Ω2
d + c4s

sin(Ωdt)−
ρ0vAΩ

2
dν

ν2Ω2
d + c4s

cos(Ωdt)⏞ ⏟⏟ ⏞
f(t)

(G.5)

Thus, we can rewrite a new inhomogeneous differential equation for the function u(r, t) = ρ(r, t)−
rf(t), obtaining

∂2u

∂t2
− 1

r

∂

∂r

[︃
r
∂

∂r

(︃
c2su− ν

∂u

∂t

)︃]︃
= S(r, t) (G.6)

where the source term is defined as

S(r, t) = c2s
f(t)

r
− ν

r

∂f

∂t
− r

∂2f

∂t2
(G.7)

and the new boundary condition is
∂u

∂r

⃓⃓⃓⃓
r=R

= 0 (G.8)

Following a similar procedure to that shown in detail in appendix E, we find the solution of
the homogeneous equation by separating the variables. Plugging u(r, t) = X(r)T (t) in the
homogeneous version of equation G.6, we obtain

X
∂2T

∂t2
−
(︃
∂2X

∂r2
+

1

r

∂X

∂r

)︃(︃
c2sT − ν

∂T

∂t

)︃
= 0 (G.9)

which leads to the following two independent differential equations

r2
∂2X

∂r2
+ r

∂X

∂r
+X(Kr)2 = 0 (G.10)

∂2T

∂t2
+K2

(︃
c2sT + ν

∂T

∂t

)︃
= 0 (G.11)

where K is a constant. We recognize the temporal equation as the differential equation of a
damped harmonic oscillator. Instead, the spatial equation is the Bessel equation or order 0. Thus,
the spatial solution is

X(r) = AJ0(Kr) +BY0(Kr) (G.12)

where J0 and Y0 are, respectively, the Bessel functions of first and second kind of order 0.
However, Bessel functions of second kind are singular at the origin leading to a non-physical
behaviour. Therefore, we have to assume B = 0. Now, we apply the boundary condition, using
the following property of Bessel functions

d

dx
[xqJq(x)] = xqJq−1(x) (G.13)
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evaluated at q = 0. Thus, the boundary condition is

∂u

∂r

⃓⃓⃓⃓
r=R

= AJ−1(KR) = −AJ1(KR) = 0 (G.14)

which leads to a quantization rule. Indeed, the only allowable values of K are those such
Km = xm/R and xm is the mth root of J1(x). Thus, the eigenfunctions of the differential
equation are

Xm(r) = J0(Kmr) (G.15)

This result enables following a procedure similar to the one shown in detail in appendix E,
decomposing the solution of the full wave equation on the basis of the eigenfunctions. This
approach leads to a solution which, in the low-viscosity and resonant case, can be written as

ρ(r, t) = ρmJ0(Kmr) cos(Ωmt) (G.16)

where Ωm = csKm is the angular frequency and ρm is the oscillation amplitude which is propor-
tional to the driving power applied to the piezoelectric tube.

G.2 TAG lens focal length

The Lorentz-Lorenz equation enables to convert the acoustic wave into the following profile of
refractive index

n(r, t) = n0 +∆nJ0(Kr) cos(Ωt) (G.17)

where n0 is the static refractive index of the liquid and ∆n is the maximum variation of refractive
index. If a beam of light hits only the central part of the TAG lens, we can simplify the above
expression with a McLaurin expansion

n(r, t) ∼
r→0

−K
2∆n

2
cos(Ωt)

x2 + y2

2
(G.18)

approximating the central lobe of the Bessel function as a parabola. The transmission function
of the TAG lens is

tA(r, t) = exp [kln(r, t)] = exp

[︃
−kr

2

2

lK2∆n

2
cos(Ωt)

]︃
(G.19)

where κ is the optical wave number and l is the depth of the TAG lens. By comparison with the
transmission function of a lens, we find out that the optical power (i.e. the inverse of the focal
length) of the TAG lens is

1

fT
=
lK2∆n

2⏞ ⏟⏟ ⏞
:=α

cos(Ωt) (G.20)

138



G The Tunable Acoustic Gradient Lens G.3 Time-averaged Point Spread Function

G.2.1 Working distance of the detection system

The complete ray transfer matrix of the detection system, using the thin lens approximation, is

M =

(︃
1 fL
0 1

)︃(︃
1 0

− 1
fL

1

)︃(︃
1 d
0 1

)︃(︃
1 0

− 1
fT

1

)︃(︃
1 fO
0 1

)︃(︃
1 0

− 1
fO

1

)︃
⏞ ⏟⏟ ⏞

EDoF lens

(︃
1 s
0 1

)︃
(G.21)

where s is the working distance, d is an arbitrary distance, and f0, fT , and fL are respectively
the focal length of the objective, TAG, and tube lens. After some algebra, we find that the ray
transfer matrix is

M =

(︄
− fT

fO
−f2

OfT−fOfT fL+fT fLs

fOfT
fT−fL
fOfL

−f2
OfL+fOf2

T−fOfT fL−f2
T s+fT fLs

fOfT fL

)︄
(G.22)

Notably, having placed the TAG lens in the back focal plane of the objective lens, the effective
focal length of the EDoF lens is equal to fO, even if fL is a function of time. Therefore, the
lateral magnification of the system (given by the A element of the ABCD matrix) is constant.

In order to have the formation of an image, we have to impose that the B element is zero.
Therefore, the working distance has to be

s(t) = fO − f 2
O

fL(t)
= fO − f 2

Oα cos(Ωt) (G.23)

The instantaneous position of the imaged plane with respect to the focal plane of the objective
lens is

ζ(t) = fO − s(t) = ∆z cos(Ωt) (G.24)

Therefore, the axial position of the plane in focus varies sinusoidally, with an amplitude ∆z = f 2
Oα

which is half of the scanning range along the z-axis.

G.3 Time-averaged Point Spread Function

Given a native PSF ho(x, y, z) of the imaging system, the instantaneous PSF of the objective
lens conjugated with the TAG lens is simply

ho(x, y, z, t) = ho(x, y, z − ζ(t)) (G.25)

Therefore, the effective PSF seen by a detector whose acquisition time is significantly larger than
the oscillation period T = 2π/Ω is

he(x, y, z) =
1

T

∫︂ +T/2

−T/2

ho(x, y, z − ζ(t)) dt (G.26)
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that is the incoherent superposition of instantaneous PSFs at axial position z − ζ(t), weighted
by the ratio of time spent dt over the total time T . Equivalently, it can also be rewritten as

he(x, y, z) =
1

π

∫︂ +∆z

−∆z

ho(x, y, z − ζ)√︁
∆z2 − ζ2

dζ (G.27)

If h(x, y, z) is quickly vanishing along the z-axis – as typically happens for a PSF of a standard
microscope – and |z| ≪ ∆z, then the integrand gives contribution to the complete integral only
for small values of ζ. Thus, we can approximate ζ ≪ ∆z and have as a result

he(x, y, z) ∼
1

π∆z

∫︂
R
ho(x, y, ζ) dζ if |z| ≪ ∆z (G.28)

Namely, we approximate the central part of the extended PSF as constant along the z-axis. As
expected, the intensity of the extended PSF scales roughly as 1/∆z.

G.3.1 Effect on the MTF

The Optical Transfer Function (OTF) of a microscope is given by the Fourier transform of its PSF.
Its amplitude, called Modulation Transfer Function (MTF), defines the contrast of a feature in an
image as a function of the corresponding spatial frequency. In a diffraction-limited microscope,
the support of the MTF is finite. This implies the existence of a cut-off spatial frequency that
defines the smallest resolvable detail in an image. The inverse of the cut-off frequency is the
optical resolution.

From the discussion of the previous section, it follows that the OTF He of a microscope withe
DoF extended by a TAG lens is

He(kx, ky, z) =
1

T

∫︂ +T/2

−T/2

Ho(kx, ky, z − ζ(t)) dt (G.29)

where Ho is the native OTF of the microscope and kx, ky are, respectively, the horizontal and
vertical spatial frequency. Therefore, the MTF is

|He(kx, ky, z)| =
1

T

⎛⎜⎝ +T/2∫︂
−T/2

+T/2∫︂
−T/2

Ho(kx, ky, z − ζ(t))H∗
o(kx, ky, z − ζ(t′)) dt dt′

⎞⎟⎠
1/2

(G.30)

The native PSF – and the corresponding OTF – has a finite support on the z-axis because of the
limited DoF. Thus, the integrand in the above equation is vanishing except for t ≈ t′. Using this
approximation, we can rewrite the MTF as

|He(kx, ky, z)| ≈
1

T

⎛⎜⎝ +T/2∫︂
−T/2

|Ho(kx, ky, z − ζ(t))|2 dt

⎞⎟⎠
1/2

(G.31)
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Figure G.1: Modulation transfer functions simulations. (a) MTF in focus of a standard unabberated microscope,
simulated using the Born & Wolf model (left). MTF of a microscope with DoF extended by means of the TAG
lens, in focus (right). (b) Unaberrated MTF out of focus (left). MTF of the system with extended DoF out of
focus. On top, the radial profile of the MTFs is reported, accompanied with the value of the spatial frequency at
which the MTF value drops below the 10% of the maximum.

Noticeably, the EDoF-MTF is a weighted root mean square of the native MTFs at all z-position
of the axial scan performed by the TAG lens. Consequently, depending on the magnitude of the
DoF extension, out of focus contributions might play an important role and decrease the values
of the MTF at high frequencies, reducing the effective resolution of the system. In general, the
higher is the DoF extension and the lower is the resolution. However, within the region of the
extended DoF the resolution is approximately constant. This phenomenon is shown in detail by
the numerical simulations reported in Figure G.1. Indeed, Figure G.1a shows the native MTF and
the EDoF-MTF when the emitter is in focus. As expected, the MTF support in the frequency
space is reduced. In Figure G.1b we show the same MTFs but out of focus of 10 times the
native DoF. The native MTF is narrower, but the EDoF-MTF reamains about the same size of
when in focus and is larger than the defocused native MTF. In other words, an imaging system
implementing a TAG lens has a reduced resolution – compared to the diffraction limit – but it is
maintained constant for a longer axial range.
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Let fi be a measurement, performed sampling up to n points pj together. The sequence of
measured points detected in the same measurement can be encoded in the weights wij ∈ {0, 1}.
Therefore

fi =
n∑︂

i=1

wijpj (H.1)

Define W as a square n× n matrix, whose entries are the weights wij ∈ {0, 1}. Therefore, the
whole array of n encoded measurements can be written in matrix form as

f =Wp (H.2)

The individual points can be decoded simply by inverting the above equation

p =W−1f (H.3)

H.1 Noise types

H.1.1 Random noise

Suppose now the presence of random noise e, that we assume to be independent of the signal

f =Wp+ e (H.4)

Furthermore, we make the following assumptions
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• The expected value of the noise is zero

E[ei] = 0 (H.5)

• The noise is uncorrelated and has variance σ2

E[eiej] = σ2δij (H.6)

The reconstruction is done with the inverse matrix M =W−1

p̂ =Mf = p+Me (H.7)

From the previous equation, it is clear that

E[p̂] = p (H.8)

and that the noise in the reconstructed signal is Me. Therefore, the mean square error (i.e. the
variance of p̂) in presence of random noise is

ϵi = E
[︁
(p̂i − pi)

2
]︁
= E

⎡⎣(︄ n∑︂
j=1

mijej

)︄2
⎤⎦ =

=
n∑︂

j=1

n∑︂
k=1

mijmikE[ejek] = σ2

n∑︂
j=1

m2
ij (H.9)

H.1.2 Photon Noise

Suppose now that the measurements f = Wp are random variables following the Poisson
distribution. This implies that

E[fj] = E
[︁
(E[fj]− fj)

2]︁ = Var[fj] (H.10)

Consequently

Var[pi] = E

⎡⎣(︄E[︄ n∑︂
j=1

mijfj

]︄
−

n∑︂
j=1

mijfj

)︄2
⎤⎦ =

=
n∑︂

j=1

m2
ijE
[︁
(E[fj]− fj)

2]︁ = n∑︂
j=1

m2
ijE[fj] =

=
n∑︂

j=1

m2
ij

n∑︂
k=1

wjkE[pk] (H.11)
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where we used the fact that different measures are independent and uncorrelated (i.e. E[fjfk] =
E[fj]E[fk] for any j ̸= k).

Define ν =
∑︁n

k=1wjk, namely the number of entries in the j-th column of W whose value is
equal to one (for a cyclic matrix this number does not depend on the index j). Assume now, for
simplicity, that the signal pk is almost flat, namely E[pk] ≈ ρ2 for every k. This approximation
allows us to write the mean square error due to photon noise as

ϵi = νρ2
n∑︂

j=1

m2
ij (H.12)

Interestingly, this is the same result we would have got adding a noise η to the measurements,
with the following properties

E[ηi] = 0 E[ηiηj] = fjδij (H.13)

Finally, the mean square error due to the presence of both random and photon noise is

ϵi =
(︁
σ2 + νρ2

)︁ n∑︂
j=1

m2
ij (H.14)

H.1.3 Background

Suppose now the presence of a uniform background β, such that βi = βj = β ∀i, j, independent
from the signal.

f = Wp+ β (H.15)

Therefore, the resulting background after the decoding is

β′ =Mβ (H.16)

Explicitly

β′
i =

n∑︂
j=1

mijβj = β
n∑︂

j=1

mij (H.17)

On the other hand, if a background γ that depends on the signal is present

f =W (p+ γ) (H.18)

the expected value of γ is unaltered after the decoding. However, it contributes as a source of
photonic noise, worsening the signal-to-noise ratio.
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H.2 Encoding matrices

H.2.1 Sequential Scan

The encoding matrix is the identity, i.e. wij = δij. The inverse matrix is still the identity, i.e.
mij = δij, and ν = 1. This implies that the mean square error is

ϵi =
(︁
σ2 + ρ2

)︁
(H.19)

This quantity does not depend on the index i, thus we name it ϵ0 and we define the SNR of the
point pi acquired with a sequential scan as

SNR0 =
pi√
ϵ0

=
pi√︁

σ2 + ρ2
(H.20)

H.2.2 Black Light Sheet

The encoding matrix is wij = 1− δij, that is a matrix whose entries are all ones, except on the
main diagonal where the entries are zeros. Defining J as the n× n matrix whose entries are all
ones and I as the n × n identity matrix, we can rewrite W as W = J − I. By construction
W =W T . Therefore

WW T = (n− 2)J + I (H.21)

It follows that the inverse matrix is

W−1 =
J

(n− 1)
− I (H.22)

Therefore

mij =
1

n− 1
− δij (H.23)

and the corresponding mean square error is

ϵi(n) =
(︁
σ2 + νρ2

)︁ n∑︂
j=1

(︃
1− (n− 1)δij

n− 1

)︃2

=
σ2 + νρ2

(n− 1)2
(︁
n− 1 + (2− n)2

)︁
=

=
(︁
σ2 + νρ2

)︁(n2 − 3n+ 3)

(n− 1)2
(H.24)

In this case, ν = n− 1. Therefore, the total mean square error is
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ϵi =
[︁
σ2 + (n− 1)ρ2

]︁(n2 − 3n+ 3)

(n− 1)2
=

= σ2 (n
2 − 3n+ 3)

(n− 1)2
+ ρ2

(n2 − 3n+ 3)

(n− 1)
∼ (H.25)

∼ σ2 + nρ2 (if n→ ∞) (H.26)

Therefore, the SNR of the ith point is pi/
√
ϵi. If the points are acquired at the same experimental

conditions of a sequential scan, the signal pi is unchanged and the SNR gain is

SNRn

SNR0

=

√︃
ϵ0
ϵn

=

√︄
1 + χ2

1 + (n− 1)χ2

n− 1√
n2 − 3n+ 3

(H.27)

Where χ2 = σ2/ρ2 is the ratio of the mean square random noise over the mean square photon
noise. Instead, the background becomes

β′
i = β

n∑︂
j=1

1− (n− 1)δij
n− 1

=
β

n− 1
(H.28)

H.2.3 Hadamard Encoding

A Hadamard matrix Hn of order n is a square matrix whose entries are either +1 or -1 and whose
rows are mutually orthogonal. From this definition, it follows that

HnH
T
n = nI (H.29)

Explicitly, the first two Hadamard matrices are

H1 =
(︁
1
)︁

H2 =

(︃
1 1
1 −1

)︃
(H.30)

Following Sylvester’s construction, higher-order Hadamard matrices can be built as

H2k =H2 ⊗H2k−1 =

(︃
H2k−1 H2k−1

H2k−1 −H2k−1

)︃
(H.31)

where ⊗ is the Kronecker product and k ≥ 2. The encoding matrix is built from a Hadamard
matrix of order n+ 1 through the following steps

• Remove the first row and the first column from Hn+1. The new n× n matrix is called G.

Hn+1 =

(︃
1 1T

1 Gn

)︃
(H.32)
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By construction, any row or column of the matrix Gn contains exactly (n + 1)/2 entries
with value −1 and (n− 1)/2 entries with value 1. As a consequence

GnJn = JnGn = −Jn (H.33)

From equations H.29 and H.32, it follows that

GnG
T
n = (n+ 1)In − Jn (H.34)

Using also equation H.33, we have

G−1
n =

1

n+ 1

(︁
GT

n − Jn

)︁
(H.35)

• Replace all the 1 with 0 and all the −1 with 1 from G. The new n×n matrix is called S.

Sn = (Jn −Gn)/2 (H.36)

By construction, any row or column of the matrix Sn contains exactly (n + 1)/2 entries
with value 1 and (n− 1)/2 entries with value 0. From equation H.36 it follows that

SnS
T
n =

n+ 1

4
(In + Jn) (H.37)

Therefore, the inverse of the matrix S is

S−1
n =

2

n+ 1
(2ST

n − Jn) (H.38)

By defining M = S−1 we have

mij =
2

n+ 1
(2sji − 1) (H.39)

The corresponding mean square error is

ϵi =
(︁
σ2 + νρ2

)︁ 4

(n+ 1)2

n∑︂
j=1

(2sji − 1)2 =
(︁
σ2 + νρ2

)︁ 4n

(n+ 1)2
(H.40)

where we used the fact that (2sji − 1) can only be equal to ±1. In this case, ν = (n + 1)/2.
Therefore, the total mean square error is
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ϵi =

[︃
σ2 +

(n+ 1)

2
ρ2
]︃

4n

(n+ 1)2

= σ2 4n

(n+ 1)2
+ ρ2

2n

(n+ 1)
∼ (H.41)

∼ 4σ2

n
+ 2ρ2 (if n→ ∞) (H.42)

Therefore, the SNR gain is

SNRn

SNR0

=

√︃
ϵ0
ϵn

=

√︄
1 + χ2

1 + n+1
2
χ2

n+ 1

2
√
n

(H.43)

Instead, the background becomes

β′
i = β

n∑︂
j=1

2

n+ 1
(2sji − 1) =

2β

n+ 1
(H.44)
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I
Image Analysis

I.1 Fourier Ring Correlation

The Fourier Ring Correlation (FRC) analysis calculates the Discrete Fourier Transform (DFT)
of two images i1 and i2, identical but acquired in two separate moments. Thus, under the
hypothesis of uncorrelated noise, only the signal contents of the two images correlate. Therefore,
a correlation function in frequency space drops to zero above a certain spatial frequency. The
inverse of this latter is the resolution of the imaging setup at the experimental conditions used
to acquired the images.

In order to reduce the inherent spectral leakage, we apply to the images a 2D Hann window
defined as follows

W (nx, ny) =
1

4

[︃
1− cos

(︃
2πnx

Nx − 1

)︃]︃[︃
1− cos

(︃
2πny

Ny − 1

)︃]︃
(I.1)

where nx,y and Nx,y are, respectively, the pixel index and the pixel size of the image. The FRC is
defined as the normalized cross-correlation function between I1 = DFT(i1) and I2 = DFT(i2).
It is calculated as

FRC (q) =

∑︁
kx,ky∈q

I1 (kx, ky) I
∗
2 (kx, ky)√︃ ∑︁

kx,ky∈q
|I1 (kx, ky)|2

∑︁
kx,ky∈q

|I2 (kx, ky)|2
(I.2)

where kx and ky are, respectively, the horizontal and vertical spatial frequencies, and q =√︁
k2x + k2y is the radial spatial frequency. The resulting curves are denoised using a Locally

Weighted Scatterplot Smoothing (LOWESS) algorithm. Importantly, if the SNR of the images
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is low, correlations from the camera detector may appear at high frequencies. Therefore, we
subtract from the FRC curves an offset calculated as the mean of FRC samples at frequencies
above Abbe’s resolution limit.

In order to measure the effective resolution of the microscope, we calculate the following
variable-threshold function

T (q) =
σ√︁
Nq/2

(I.3)

where Nq is the number of pixels contained in the ring of radius q. In this work, we used
the so-called 3-σ threshold criterion by setting σ = 3. The intersection between the threshold
and FRC curves identifies the spatial frequency qt. Below this latter, correlations between the
two images emerge from the random noise correlations. Thus, we can interpret qt as the highest
spatial periodicity with enough contrast to be distinguishable from noise fluctuations. The optical
resolution of the images is 1/qt.

I.2 Image deconvolution

The Bayes theorem states

P (o | i) = P (i | o)P (o)
P (i)

(I.4)

where

• P (o) is the prior probability, i.e. the probability of the hypothesis i before the data o are
observed.

• P (i) is the marginal likelihood, i.e. the probability model for the data i.

• P (i | o) is the likelihood, i.e. the conditional probability of measuring i, having fixed an
hypothesis o.

• P (o | i) is the posterior probability, i.e. the conditional probability of the probability o,
having measured i.

It is possible to estimate ô as the mode of the posterior probability by maximizing it. If there
is no knowledge on the prior distribution, it is possible to assume it as uniform. In that case,
maximizing the posterior is the same as maximizing the likelihood

ô = argmax
o
P (i | o) (I.5)

In imaging problems, i is the image and o is the object. Those quantities are related by the
law

i = o ∗ h+ ϵ (I.6)

where h is the point spread function of the imaging device and ϵ is the noise.
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I.2.1 Wiener Filter

Under the assumption of Gaussian noise, the likelihood – seen as a function of the object o – is

P (i | o) =
∏︂
x

1√
2πσ

e−
|i−(o∗h)|2

2σ2 (I.7)

finding its maximum is equivalent to finding the minimum of the log-likelihood, which is defined
as

L(o) = − ln [P (i | o)] =
∫︂

ln
(︂√

2πσ
)︂
dx+

1

2σ2

∫︂
|i− (o ∗ h)|2 dx (I.8)

This problem is equivalent to minimizing the following loss function

ℓ(o) =

∫︂
|i− o ∗ h|2 dx⏞ ⏟⏟ ⏞

ℓ1

+λ

∫︂
|o|2 dx⏞ ⏟⏟ ⏞
ℓ2

(I.9)

where we added a regularization term.
Since we want to minimize ℓ(o), we need to impose its functional derivative to be equal to

zero. This latter, is defined from the following relation:

lim
ρ→0

ℓ(o+ ρs)− ℓ(o)

ρ
=

⟨︃
∂ℓ

∂o
, s

⟩︃
(I.10)

where ρ is a constant, s is an arbitrary function, and ⟨·, ·⟩ is the L2 inner product.
We start calculating the derivative of ℓ1(o). We have that

ℓ1(o+ ρs) =

∫︂
|i− o ∗ h− ρs ∗ h|2 dx ∼

∼
∫︂

|i− o ∗ h|2 dx+ 2ρ

∫︂
(s ∗ h)(o ∗ h− i) dx (I.11)

Therefore, the difference quotient is

lim
ρ→0

ℓ1(o+ ρs)− ℓ1(o)

ρ
= 2

∫︂
(s ∗ h)(o ∗ h− i) dx =

= 2⟨o ∗ h, s ∗ h⟩ − 2⟨i, s ∗ h⟩ = 2⟨h∗ ∗ (o ∗ h), s⟩ − 2⟨h∗ ∗ i, s⟩ =

= ⟨2h∗ ∗ [(o ∗ h)− i], s⟩ =
⟨︃
∂ℓ1
∂o

, s

⟩︃
(I.12)

where h∗ is the adjoint function of h, defined as h∗(x) = h(−x). By comparison, we find that
the derivative of ℓ1 is

∂ℓ1
∂o

= 2h∗ ∗ [(o ∗ h)− i] (I.13)
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Repeating the same calculations for the regularization term, we find

ℓ2(o+ ρs) =

∫︂
|o+ ρs|2 dx ∼

∫︂
|o|2 dx+ 2

∫︂
os dx (I.14)

lim
ρ→0

ℓ2(o+ ρs)− ℓ2(o)

ρ
= 2

∫︂
os dx =

⟨︃
∂ℓ2
∂o

, s

⟩︃
(I.15)

Therefore, the derivative of ℓ2 is

∂ℓ2
∂o

= 2o (I.16)

In order to find the minimum, we now want to impose the complete derivative to be equal to
zero

∂ℓ

∂o
=
∂ℓ1
∂o

+ λ
∂ℓ2
∂o

= 0 (I.17)

Therefore

h∗ ∗ [(o ∗ h)− i] + λo = 0 (I.18)

Calculating the Fourier Transform of the above equation, we have

H∗OH + λO = H∗I (I.19)

where the capital letters represent the Fourier transformed functions and H∗ is the complex
transpose of H. In Fourier space this equation has a simple solution, which in real space is

ô = F−1

{︃
H∗I

|H|2 + λ

}︃
(I.20)

I.2.2 Richardson-Lucy

Under the assumption of Poissonian noise, the likelihood is

P (i | o) =
∏︂
x

(h ∗ o)ie−(h∗o)

i!
(I.21)

The corresponding log-likelihood is

L(o) = − ln [P (i | o)] =
∫︂

[(h ∗ o)− i · ln(h ∗ o) + ln(i!)] dx (I.22)

and the functional to be minimized is

ℓ(o) =

∫︂
[h ∗ o− i · ln(h ∗ o)] dx+ λ

∫︂
|o|2 dx (I.23)
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where we added a regularization term.
In order to find the derivative, we calculate

ℓ1(o+ ρs) =

∫︂ (︃
h ∗ o+ ρs ∗ h− i · ln

[︃
(h ∗ o)

(︃
1 +

ρs ∗ h
o ∗ h

)︃]︃)︃
dx ∼ (I.24)

∼
∫︂ [︃

h ∗ o− i · ln(h ∗ o) + (ρs ∗ h)
(︃
1− i

o ∗ h

)︃]︃
dx (I.25)

Therefore,

lim
ρ→0

ℓ1(o+ ρs)− ℓ2(o)

ρ
=

∫︂
(s ∗ h)

(︃
1− i

o ∗ h

)︃
dx = ⟨s ∗ h, 1⟩ −

⟨︃
s ∗ h, i

o ∗ h

⟩︃
= (I.26)

= ⟨s, h∗ ∗ 1⟩ −
⟨︃
s, h∗ ∗ i

o ∗ h

⟩︃
=

⟨︃
h∗ ∗

(︃
1− i

o ∗ h

)︃
, s

⟩︃
= (I.27)

=

⟨︃
∂ℓ1
∂o

, s

⟩︃
(I.28)

So, the derivative is
∂ℓ1
∂o

= h∗ ∗
(︃
1− i

o ∗ h

)︃
(I.29)

Therefore,
∂ℓ

∂o
= h∗ ∗

(︃
1− i

o ∗ h

)︃
+ 2λo = 0 (I.30)

If h is normalized, we have that h∗ ∗ 1 =
∫︁
h dx = 1. Therefore, the above equation is satisfied

when [︃
h∗ ∗

(︃
i

o ∗ h

)︃]︃
1

1 + 2λo
= 1 (I.31)

This equation implies an iterative algorithm. Assuming that at convergence ok+1

ok
→ 1, we can

build the following multiplicative gradient-descent iteration rule:

ok+1 =

[︃
h∗ ∗

(︃
i

ok ∗ h

)︃]︃
ok

1 + 2λok
(I.32)
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