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Catalytic materials based on silica and alumina:  

structural features and generation of surface acidity. 

 

Guido Busca a 

a  Dipartimento di Ingegneria Civile, Chimica e Ambientale (DICCA), Università degli Studi 

di Genova, via all’Opera Pia 15, I-16145  Genova, Italy 

 

Abstract. The structural, surface chemical and catalytic properties of the materials 

belonging to the SiO2-Al2O3 system are reviewed critically. In particular, amorphous silicas, 

transitional aluminas, different silica-aluminas (silica-rich and alumina-rich) and protonic 

zeolites are taken into considerations. The nature of the acid sites, of the Lewis and of the 

Brønsted type, over these surfaces is discussed and rationalized, based on the 

fundamental chemistry and structural chemistry of silicon and aluminum compounds.  

 

1. Introduction. 

The history of catalysts based on mixed oxides of silicon and aluminum is strictly bound to 

the history of hydrocarbon chemistry and, in particular, of the Catalytic Cracking refinery 

process [1]. This process was first developed by the french Eugene Houdry in the twenties 

of the 20th century, and then realized at the industrial level in USA in the thirties [2,3]. 

Since that times, this process is a key for the full exploitation of heavy oils and the 

production of high-octane gasoline. In particular, it had a relevant role in allowing in the 

USA the preparation of high-octane aviation gasoline, thus determining the better 

performances of allied aircrafts than the German ones during second world war.  

Acid-activated bentonite clay catalysts were originally used for this process, starting from 

1937, when it was configured as a fixed-bed process, with several reactors and cyclic 

regeneration of one of them. At the beginning of the forties, moving bed catalytic cracking 

(MBCC) processes, and the first Fluid Catalytic Cracking processes were put into 

operation [4]. Starting from 1942, synthetic “low-alumina” amorphous silica-alumina 

catalysts were applied, with ca 13% Al2O3 wt/wt [5].  “High-alumina” silica-alumina 

catalysts containing up to 30 % Al2O3 wt/wt [6] were introduced starting from 1955. 

Synthetic protonic faujasite zeolites were developed at Union Carbide and Mobil, and 

applied to FCC at Mobil in the early sixties [7,8,9]. This was the beginning of the large use 

of acid zeolites as heterogeneous catalysts in refinery and petrochemistry [10,11,12]. Also 

aluminas [10,13] and  silica-aluminas [10,14,15]  find a number of applications in industrial 

*Manuscript
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chemistry as acid catalysts. On the other hand, silica, alumina, amorphous silica-aluminas 

and zeolites have also a large number of application as supports for sulphide [16], metal 

[17], halide [18] or other oxide catalysts [19]. 

The interest for these materials is not strictly related to the era of fossil fuels, but will be 

further improved in the incoming era of renewable raw materials. In fact, solid acids have a 

very relevant potential role, as catalysts and catalyst supports, e.g.,in the conversion of 

ligneocellulosic biomass [20,21] and wastes [20,22] to useful products, in several steps of 

the new green organic chemistry based on renewables and for a number of environmental 

applications [23].  

In this review the main characteristics and, in particular, the origin of the acid properties of 

materials arising from silica and alumina and their mixtures will be discussed on a 

fundamental chemical ground.  

2. Silicas 

2.1 Basic chemistry of silicas and silicic acids. 

As everybody knows, silicon is a semimetallic element. Tetravalent silicon is soluble in 

strongly basic water solutions as orthosilicate anion, [SiO4]
4-. By decreasing pH, the 

different polyhydrogen orthosilicate anions [HnSiO4]
(4-n)- form progressively up to forming 

orthosilicic acid H4SiO4 which is a weak polyprotic acid with pKa1  9.5 and pKa4  19 [24].  

At slightly basic, neutral and acidic pH, depending also on its concentration, orthosilicic 

acid tends to polymerize to metasilicic acids (H2SiO3)m, finally giving rise to precipitation 

[25] and/or gelation [26] producing amorphous silica, SiO2 (precipitated silica and silica 

gel, respectively). Actually, some crystalline silicic acids have been prepared and 

characterized [27,28,29,30].  

Correspondingly, both crystalline and amorphous silicas start to be dissolved at pH  8.5 

and are dissolved rapidly and completely in basic solutions (pH  10), while they are 

substantially stable at acidic pH, in equilibrium with 2 10-3 M of H4SiO4 [31]. 

The weak acidic nature of silicic acids  is associated to the very low size of the Si4+ formal 

cation (0.26 Å radius [32]), its moderately high charge and the intermediate 

electronegativity of the element, that make the Si-O bond highly covalent, but do not allow 

to produce formal double bonds with oxygen. According to this, delocalization of the 

negative charge of the deprotonated species, like trihydrogen-silicate anions [H3SiO4]
-, is 

not possible, and this is a main reason why orthosilicic acid is not a strong acid.  

Interestingly, it has been reported that acidity of silanols increases with the size of the 

silicate-polymeric species, being polysilicic acids (pKa1  6.5) definitely stronger than 
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pyrosilic (or disilicic) acid (pKa1  9.0) and orthosilicic acid (pKa1  9.5) [33,34]. This can be 

explained by the delocalization of the negative charge of the dissociated species over Si-

O-Si siloxane bonds. In fact, siloxane groups, whose bond angle Si-O-Si is very flexible in 

contrast to the O-Si-O bond angle that is not, have some character of “double bond” which 

is associated to an hyper-conjugation effect, i.e. the nOσ*Si-O(vicinal) interaction, a 

bonding interaction between an oxygen lone pair and the antibonding orbital of the vicinal 

Si-O bond [35,36,37]. These interactions can allow the delocalization of the terminal 

anionic charge of a silicate species (Si-O-) over the siloxane bridges, the more the larger is 

the polysilicate entity.  

Thus, in practice the orthosilicate anion is a quite strong base, whose strength decreases 

by protonation (SiO4
4- > HSiO4

3- > H2SiO4
2- > H3SiO4

- >> H4SiO4) and by oligomerization to 

polysilicate ions (SiO4
4- > Si2O7

6- > Si3O10
8- >…). Conversely, silicic acids are weak 

polyprotic acid whose acidity increases upon oligomerization.  

 

2.2 Preparations of amorphous silicas. 

Most industrial preparations of amorphous silicas use  sodium silicate as a precursor. This 

material is relatively cheap but may be somehow  contaminated by aluminium and iron. 

More expensive but purer alkoxy-silanes represent alternative precursors. Rice husk ash 

(RHA) can also be a cheap raw material for silicas production  [38,39]. The preparation of 

silicas from solutions of silicate species is obtained around neutral conditions or in acidic 

conditions, as said above.  

Precipitated silicas. Although many different recipes have been proposed, precipitated 

silicas are commonly produced [40] by partial neutralization of sodium or potassium 

silicate solutions. Sulphuric acid is mostly used, mixed with sodium silicate in water still 

retaining alkaline pH. Reaction is performed under stirring at 50-90 °C. The precipitate is 

then washed, filtered and dried. During precipitation, progressive particle growth occurs up 

to 4-5 nm clusters, that successively agglomerate to form sponge-like aggregates. Tuning 

preparation procedure parameters (choice of agitation, duration of precipitation, the 

addition rate of reactants, their temperature and concentration, and pH of precipitation, as 

well as drying conditions) allows tuning of final particle size and morphology, thus surface 

area and porosity. Precipitates typically have a broad meso/macroporous morphology. 

Very high surface areas may be obtained with these procedures (up to 750 m2/g), with 

pore volume in the 0.4-1.7 cm3/g range and average pore diameter in the 4-35 nm range. 

Typical impurities of these materials are sodium ions (< 0.8 %) with the likely presence of 
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iron and aluminium ions at the 500-1000 ppm level. Precipitated silicas are commercially 

available such as the Sipernat family from Evonik and the Zeosil-Micropearl materials from 

Rhodia.  

Silica gels. Silica gels are usually produced [41] by dissolving sodium or potassium silicate 

(10-20 % silica)  into an acid, such as  sulphuric acid (pH ~ 0.5-2). If the particles are 

smaller than 100 nm they form silica sols, stabile colloidal dispersions of amorphous 

silicon dioxide particles that can be used e.g. as polishing agent at production of silicon 

surfaces in the electronic industry. A gel is formed when the molecular weight of the 

micelles reaches approximately 6 million, thus the hydrosol viscosity reaches the no-pour 

point. In a second step the liquid is removed leaving a glass-like gel which is broken down 

into granules and then washed, aged, and dried, with 6 % volatiles and 22 Å average pore 

diameter.  

Silica gels have pores with a wide range of diameters, typically between 5 Å and 3000 Å, 

and broad distributions. Silica gels synthesized with surface area as high as 800-900 m2/g, 

an average pore size of about 20Å and effective pore volumes of 0.40 cm3/g, are known 

as narrow pore silica gels,  while wide pore silica gels are characterized by surface area ~ 

400 m2/g, average pore size of about 110Å  and effective pore volumes of 1.20 cm3/g [42].  

Silica aerogels. Aerogels, first prepared in the late 1920s by Samuel Kistler, are  highly 

transparent materials with very high surface area (>1000 m2/g) and high void volume (85-

98 %), prepared by supercritical drying of wet silica gels . Supercritical drying process can 

avoid capillary stress and associated drying shrinkage, which are usually prerequisite of 

obtaining aerogel structure. The conventional academic method of silica aerogel 

preparation is sol-gel process using organic silicon compounds, such as tetramethyl-

orthosilicate (TMOS), tetraethyl-orthosilicate (TEOS) or polyethoxydisiloxane (PEDS) as 

precursors.  Organo silanes are dissolved in a binary solution, typically water-methanol or 

water - ethanol, and hydrolysed in the presence of a catalyst, frequently an acid 

(hydrochloric, hydrofluoric, formic, nitric, sulphuric acid). Additives may be added to modify 

gel porosity during aging. Drying is performed after washing the gel with a solvent and 

then raising temperature and pressure to obtain supercritical conditions for the solvent (T > 

239.5 °C, P > 79.783 atm for methanol, T > 241  °C, P > 60.567 atm for ethanol).  In the 

case of low temperature supercritical drying, CO2 is used as the solvent and this allows 

lower temperature  for supercritical drying (T > 31.13 °C, P > 72.786 atm). Industrial 

preparations likely start from “water glass”, a much cheaper raw material, and may apply 

ambient pressure drying by solvent evaporation after previous silylation and 
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hydrophobization of the surface. In fact, commercial aerogels may be hydrophobized, e.g. 

from aerogels from CABOT, mainly used for insulation and daylighting, as intermetallic 

dielectric materials and acoustic applications. 

Mesoporous silicas. After the work of Kresge et al. [43] at Mobil,  and the even previous 

work of  researchers of Toyota [44], mesoporous silicas containing somehow ordered 

structures of well-defined channels or interconnected cavities with size from few to several 

nm, have been developed.  The preparation of these materials [45,46] commonly starts 

from silicon alkoxides hydrolysis performed in the presence of appropriate concentrations 

of detergent molecules acting as templates or Structure Directing Agents (SDA). With 

opportune reaction conditions, pores having different geometries can be obtained.  

Many different materials, with different mostly mesoporous pore structure, but having 

sometimes also some microporosity, may be obtained by different preparation procedures 

and SDAs. Surface areas up to 1500 m2/g are obtained, with well-defined mesoporosity. 

Such mesopores can be constituted by linear channels or interconnected cages, or even 

wormhole-like channels with hexagonal symmetry [47]. Although sometimes considered 

like very large pore zeolites, these materials are essentially amorphous materials with non-

structural although sometimes ordered mesopores.  

Stöber silica and spherical silica micro/nanomaterials with hierarchical structures. 

Monodisperse non porous spherical silica particles were prepared originally by W. Stöber 

et al. in 1968 [48]  by hydrolysing TEOS in a mixed solution of ammonia, alcohol and water 

followed by condensation of silicic acid in basic conditions and calcination at 600 °C . 

Depending on reaction conditions, such non-porous spherical particles have diameters 

mostly between 50 and 600 nm resulting in surface areas between near 100 and few m2/g 

[49]. In more recent years, silica spheres with multilevel pore structure have been 

obtained. Mesoporous hollow silica spheres may be prepared by different methods such 

as using hard templates (spherical particles of solids like polymers) and surfactants as 

pore structure SDAs, or using different fluids (including gas bubbles) as templating 

molecules [50]. The production of more complex materials such as core-in (hollow porous 

shell) spheres, multiple shell spheres and hierarchically porous spheres, with several 

levels of porosity present together, have also been obtained.  

Fumed or pyrogenic silicas. Fumed silicas are produced by flame hydrolysis of silicon 

tetrachloride, a process invented in 1942 by H. Klöpfer a chemist at Degussa (now 

Evonik). This process consists in the reaction of SiCl4 in a hydrogen-oxygen flame at high 

temperature, reported top be near 1100 °C (Degussa – Evonik) or 1800 °C (Cabot) [51], 
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producing silica and hydrogen chloride. This procedure produces very small non-porous 

amorphous primary particles, with a particle density of 2.20 g/cm3, i.e. only slightly lower 

than that of crystalline silicas. These particles tend to agglomerate in linear and branched 

chain-like structures.  The surface area of these materials is moderately high (100-400 

m2/g) and fully external, essentially depending from the particle size that ranges 5-16 nm. 

The weight loss by drying is quite low, 1-2.5 % depending roughly on the surface area, the 

morphology being stable nearly up to 800 °C, when sintering starts. From the point of view 

of the metal content these materials are very pure. In particular they do not contain alkali 

metal impurities.  Typical impurities of these materials are residual chlorine, and, to a low 

extent, aluminium, titanium and iron. A typical practical characteristic of these materials is 

the very low apparent density (down to 30 g/l) and the volatility of the particles.  

 

Amorphous silicas are mostly characterized by low bulk densities, sometimes as low as 1 

g/cm3, well lower than crystalline silicas. This is in part related to interparticle porosity as 

well as to defect structure.  

These amorphous states are actually very stable, their sintering and crystallization, usually 

to cristobalite [52], being fast phenomena only at temperatures of the order of > 800 °C, 

giving rise to loss of surface area and porosity 

 

2.3  Solid state chemistry of silica: amorphous versus crystalline phases.  

As it is well-known, silica forms many different crystalline structures [53,54]. Except some 

high- pressure polymorphs like the rutile-type polymorph stishovite, which have 

octahedrally coordinated silicon, all crystalline silica structures present tetrahedrally 

coordinated silicon atom. This is a result of the valency four of silicon and the covalency of 

the Si-O bond [55]. At ambient pressure, SiO2 has several major polymorphs. Those 

having thermodynamic stability ranges at ambient pressure are: low temperature trigonal 

α-quartz up to 570 °C,  high temperature hexagonal β-quartz 570-870 °C, hexagonal β-

tridymite  870- 1470 °C and high temperature cubic β-cristobalite 1470-1705 °C. Other 

tetrahedral-based crystalline phases, metastable at ambient pressure, exist like hexagonal 

-tridymite and tetragonal -cristobalite, and coesite, the last being thermodynamically 

stable at moderately high pressures. It seems interesting to remark that crystalline silica 

structures have relatively low density with respect e.g. crystalline aluminas as well as 

aluminum silicates (Table 1). This is largely due to the covalent tetrahedral coordination of 

silicon, corresponding to coordinaton 2 for oxygen, in contrast to the usually predominant 
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coordination 6 of aluminum, with oxygen in coordination 3 and 4. As a result of this, larger 

and more vacant interstices exist in the silica structures, as it will be discussed below.  

Besides the previous structures, a number of silica metastable microporous crystalline 

phases have also been prepared, usually called silicalites [56]. They are fully siliceous 

zeolites, with a much lower density. They are prepared with the typical preparation 

techniques of zeolites (see below), using only a pure silicon source and organic structure 

directing agents (SDAs). Silicalite-1 is largely the better known and most used siliceous 

zeolite. Its crystalline framework is constituted by Si oxide tetrahedral structure, with the 

typical structural microporosity of the MFI structure zeolites. Two types of intersecting 

channels, both formed by 10-membered silicate rings, characterize this material. One 

channel type is straight and has a nearly circular opening (5.3 x 5.6 Å) along [010], while 

the other one is sinusoidal and has an elliptical opening (5.1 x 5.5 Å), along [100].  

When prepared as a “perfect”, non-defective form, its internal surface has an essentially 

covalent and hydrophobic character.  Only the external surface presents hydrophilicity due 

to the presence of silanol groups. Alternatively, silicalite may be prepared in  defective 

forms, where silanol nests substitute for vacant silicon atoms in the framework and in the 

internal cavities, thus generating more hydrophilicity.  Several other fully siliceous zeolites 

have been synthesized in recent times.  

Other purely siliceous zeolite-like materials have been prepared. Silicalite-2 [57] belongs to 

the framework denoted MEL, closely related to MFI, containing a two dimensional 10-ring 

pore structure. Both sets of pores are straight 5.3 x 5.4 Å wide. Purely siliceous zeolite 

BEA has also been prepared, both in the defective and in the non-defective forms [58]. 

BEA structure has a three-dimensional intersecting channel system, two mutually 

perpendicular straight channels each with a cross section of 6.6 - 6.7 Å, and a sinusoidal 

channel with a cross section of 5.6 - 5.6 Å. 

Also other pure silica zeolites, such as ITQ-1, the siliceous form of zeolite MWW (MCM-

22) [59], ITQ-3 [60], ITQ-29, the siliceous analog of zeolite A (LTA) [61], and fully siliceous 

FER [62] and SSZ73 (SAS topology) [63] have been prepared and characterized. 

The tetrahedral-based structures of the silica polymorphs are associated to corner sharing 

tetrahedra producing a quite covalent Si-O-Si bond networks and differ for the relative 

arrangements of the tetrahedra.  

 

2.4. The surface chemistry of silicas: terminal silanols and siloxane bridges. 
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As said, silica is a largely covalent oxide [55,64], in agreement with the high 

electronegativity of Si4+ [65]. Silicon atoms are revealed by the  Si 2p binding energy XPS 

peak at ca. 103.5 eV [66,67] that can be deconvoluted into two peaks representing the Si 

2p 3/2 and Si 2p 1/2 levels. The splitting between signals due to bulk silicon species and 

surface silicon atoms bonded to hydroxy- groups is also usually not detected [68].  

29Si MAS NMR spectra show a main peak denoted as Q4 signal, at 105-115 ppm [69,70], 

which is not influenced by 1H-29Si Cross Polarization experiments, due to bulk silicon 

atoms bonded to other four Si atoms through Si-O-Si bridges. Other signals, definitely 

weaker, denoted as Q3 qnd Q2 are evident, assigned to Si atoms located at the surface 

and bonded to three or two Si atoms through Si-O-Si bridges, as well as to terminal and 

germinal hydroxy- groups, respectively. Thus, the coordination of silicon atoms exposed at 

the surface is completed by hydroxy- groups, producing silanol species. Thus, Lewis 

acidity is absent in normal conditions. In fact, no coordination of basic probes is observed 

during adsorption, only H-bonding.  It has been found that high temperature treatment, 

such as outgassing at > 1100 °C is needed to cause the formation of Lewis acid sites 

where pyridine and ammonia chemisorb by coordination [71]. Thus, the surface of silicas 

is, in usual conditions, essentially constituted by terminal silanols Si-OH (“isolated” or 

germinal, Fig. 1), as well as by Si-O-Si siloxane bridges.  

2.4.1 The terminal silanol groups.  

Indeed “terminal silanol” groups, Si-OH,  essentially dominate the surface chemistry of 

silica in normal conditions [72], as discussed by Zhuravlev and coworkers [73,74] and 

reviewed more recently by Rimola et al. [75]. The presence of silanol sites is detected by 

using IR spectroscopy [76] being these groups responsible for a strong sharp O-H 

stretching band centered at ca 3745-8 cm-1, with a tail or with some definite components at 

lower frequencies due to H-bonded silanol nest species. Isolated silanol groups are 

responsible for a very sharp IR band (O-H stretching) evident near 3740 cm-1 already after 

outgassing in mild conditions. This band sharpens by increasing outgassing temperature, 

the maximum being at the highest treatment temperature located near 3748 cm-1. The 

band of free silanols is clearly asymmetric, having a pronounced tail towards lower 

frequency more evident in the cases of highly porous samples. In practice, it seems quite 

evident that the band of free silanols may actually be composed of different very sharp 

components, one of them being located more or less at 3744 cm-1. This feature, according 

to [77,78], could be due to the geminal silanols, which are hardly distinguished from 

isolated silanols in the IR spectra, whose presence is deduced from 29Si MAS NMR data 
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(see below). In the same range, maybe at   3741 cm-1, also couples of vicinal silanols 

would adsorb [79].    

On the other hand, probing the free surface silanols with adsorbed molecules of different 

sizes [80] indicates that part of the tail is due to silanol groups located in small nanopores 

having molecular size, thus not accessible to large molecules. The slightly lower OH 

frequency (ca 3700 cm-1) show that these components are associated to internal but 

essentially free silanol groups, very slightly perturbed for some kind of weak interaction. 

Gallas et al. [81] showed on precipitated silicas OH groups partially unaccessible to D- 

exchange and to interaction with alcohols, whose accessibility depends inversely on 

alcohol size. Two other broad features are usually present in the IR spectra of silicas, 

recorded after outgassing at mild temperature, at 3530-3520 cm-1 and at 3660-3650 cm-1. 

They have been assigned to clusters of vicinal H-bonded silanols [82] which at least in part 

condense at high temperature giving rise to siloxane bridges. In fact, their condensations 

does not contribute significantly to the increase of the band of free silanols [83]. In the 

case of microporous silica samples, these absorptions are stronger (relative to the band of 

the free silanols) than in the case of non-porous or  less porous powders like fumed silica 

(Fig. 2 [83,84]).  

Free silanol groups are also evident by 1H MAS NMR spectroscopy, because they produce 

a sharp signal centered at 1.7 - 2 ppm [69,85,86,87]. A splitting of this signal may be due    

to external and internal silanol groups (1.8 and 2 ppm, respectively [85]). An additional 

broad signal located near 3 ppm is assigned to H-bonded silanols.  

Terminal silanol groups are also evident being responsible for 1H-29Si Cross Polarization 

MAS NMR signals Q3 (due to Si atoms bonded through oxygen bridges to three other Si 

atoms and to a isolated OH group, at 98-102 ppm). A similar effect is also observed for the 

much weaker signal Q2 (due to Si atoms bonded through oxygen bridges to two other Si 

atoms and to two geminal OH groups, at 90-92.5 ppm) and this is the main evidence of the 

existence of a moderate fraction of germinal silanols Si(OH)2.  

IR and NMR techniques revealed the presence of silanol groups not only on high surface 

area silicas, but also on low surface area crystalline materials such as, e.g quartz dust 

[88,89]. Similarly, they are also present on the surface of silicalites [90,91,92,93], although 

in this case the main maximum is found at slightly lower frequencies, i.e. 3735 cm-1. 

Additionally, the spectra of silicalite may show a broad absorption at  lower frequency 

(3550–3500 cm-1) which is very strong at 3500-3200 cm-1, for “defective” silicalite samples. 
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The shape and position of indicates that it is due to H-bonded silanols, providing evidence 

for silanol nests associated to defects in the crystal zeolitic lattice. 

Silanol groups are very weakly Brønsted acidic, as shown by the adsorption of basic 

molecular probes [94], but represent the active sites in the adsorption [95] of both polar 

molecules such as water, giving rise to Hads ~ – 50 kJ/mol, and of non-polar molecules 

such as hydrocarbons, with which hydrogen bonding of moderate strength may occur (< 

10 kJ/mol). This shows that the protonic activity of silanol groups is definitely weak but 

non-negligible. In fact, adsorption energy of ammonia on silicas may give rise to evolution 

of  150-230 kJ/mol [96]. The density of active silanols in amorphous silica is evaluated to 

be in the range 0.5-8 group /nm2 depending on preparation and pretreatment [97,98,99].  

Recent theoretical investigations [100] concerning the amorphous silica/water interface 

report the existence of two different types of silanols on silicas, with some hydroxy- groups 

(some convex geminals and some type of vicinals) which  are more acidic (pKa  2.1 – 2.9). 

Thus, part of the silica silanols are even more acidic than those of polysicic acids. Instead,  

concave geminals and the isolated groups would have quite a high pKa (8.9 and 10.3, 

respectively), similar to the one of silicic acid in liquid water. This study provides evidence 

of the effect of the local stabilizing mechanisms of the anionic charge of the dissociated 

species in determining the acidity of the silanol groups. Similar values of pKa have been 

calculated for different silanol species on the 100 and 101 faces of quartz [101]. These 

data agree with spectroscopic studies performed at the gas/solid interface showing that 

the silanol groups of silicas are indeed poorly acidic with respect to typical strong Brønsted 

acids (i.e. with pKa < 0). However, most spectroscopic studies performed at the gas/solid 

interface do not provide evidence of different families of silanol groups interacting in 

strongly different ways with the basic probe molecules. Indeed, using very weak basic 

molecular probes such as CO, adsorbed at low temperature (140 K), two different 

interactions were observed. In fact, the adsorption of CO over silica outgassed at medium-

high temperature causes the partial shift of the band of the free silanols (3745 cm-1) to 

lower frequencies. The new component, assigned to silanols interacting with CO through 

the lone pair at the carbon atom, is centered at 3670 cm-1, but a component at 3590 cm-1 

is also evident in the subtraction spectrum. This confirms that in the case of pure silica, in 

spite of the sharpness of the band of  the terminal silanols, some heterogeneity of these 

sites occurs, some of them being more acidic than others (OH  75 cm-1; OH   155 

cm-1). The extent of these shifts are, in any case, in the range of weak Brønsted acidity 

[83]. In the CO stretching region a band at 2155 cm-1 is well shifted above the value of free 
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CO, and this indicates that an electron withdrawing center interacts with the carbon atom. 

This band is due to CO H-bonded to the silanol groups. 

The really moderate or weak protonic acidity of the silanol group is associated  to three 

main reasons: 

i) The silanol species is definitely stable 

ii) The delocalization of the anionic charge, and consequently the stabilization of 

the dissociated from, after dissociation would be quite weak 

iii) The stabilization of the protonated form of the base by the silica surface is alo 

weak, due to its covalency and the wek basicity of siloxane bridges (see below). 

These factors make the proton jump associated to Brønsted equilibrium 

O3SiOH +NH3(g)    O3SiOH…NH3      O3SiO-  NH4
+ 

(Fig. 3) unfavoured thermodynamically. 

The value of the XPS O1s binding energy is near 532.8 eV [66,102] in both crystalline and 

amorphous silica. A splitting of this signal, not always observed, is associated to the 

presence of two different species, the siloxane oxygen (Si-O-Si) and the silanol oxygen 

(Si-OH), the latter being centered at slightly lower energy [68,103]. These high O1s 

binding energies are indication of weak basicity of surface oxygen species [104,105].  

Indeed protonation of silanol group can occur [106] but only with very strong acids [101], 

due to its very weak basicity. The pKa of the SiOH2
+ group was evaluated to be < -2 [101]. 

However, H- bonding interaction of silanol through its own proton with basic species 

strongly enhances the basicity of its own oxygen atom [107,108]. Conversely, increased 

Brønsted acidity of silanol groups was reported in the presence of coadsorbed acidic 

species such as SO2 [109], possibly showing the reaction of the oxygen atom with such 

acidic compounds.  

 

2.4.2 The surface siloxane bridges. 

Siloxane bridges have been considered to be fully hydrophobic and unable to receive 

hydrogen bonding [72]. On the other hand, also siloxane bridges have some basicity [110] 

which is however very low [75]. Recent theoretical data indicate that siloxane bridge can 

be protonated too, its reactivity strongly depending on its strain: while vitreous silica has a 

main Si-O-Si angle of near 150°, bridges with 125-135 ° exist and they can undergo 

protonation [111]. Thus, the more strained the Si-O-Si angle, the more the oxygen 
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basicityThe density of reactive strained siloxane sites is evaluated to be in the range 0.02-

0.004 site/nm2 [112]. 

The possible interaction of empty 3d orbitals of silicon with 2sp3 nonbonding orbitals of 

oxygen was considered to explain this poor basicity. More recently, the already cited 

hyper-conjugation effect, i.e. the nOσ*Si-O(vicinal) interaction, a bonding interaction 

between an oxygen lone pair and the antibonding orbital of the vicinal Si-O bond is 

considered [36,37]. It is likely that this hyper-conjugation increases by increasing the Si-O-

Si angle.  

Evidence for the non-basic nature of the oxygen species at the surface of silica is provided 

by the weak adsorption of CO2, a largely used probe for surface basicity and 

nucleophilicity, which interacts in a molecular way on the hydroxy- groups of porous silicas 

[113] and fully siliceous zeolites [114] without any formation of carbonate or bicarbonate 

species. On the other hand, studies on the adsorption of strong Lewis acids as BF3 reveal 

the reactivity of both siloxane and silanol oxygen species, the former before the latter, 

producing the opening of the siloxane bridge [115] producing SiOBF2 species and, likely F-

Si. On the other hand, Si-O-Si, appear to reveal some reactivity also with less aggressive 

polar molecules at least at high temperature [79,116,117,118].   

In any case, the reactivity of siloxanes is very weak. However these sites can be involved 

in weak but not fully negligible interactions of the van der Waals type,for which 

experimental evidence was provided, the interaction with silanol groups being considered 

to be the main one, with maybe additional weaker van der Waals interactions involving 

mainly siloxane bonds [95,119,120]. 

 

2.4.3. Radical centers on silica. 

It is well known that a number of radical defects can exist on the surface or in the bulk of 

amorphous and crystalline silicas, in particular when the sample is subjected to grinding or 

irradiation with heavy particles or ionizing radiation [121]. Among them, tri-bonded silicon 

radical (E’ or silyl center) Si and oxygen vacancies (E” center) Si  Si [122,123], 

siloxyl centers or non-bridging oxygen hole centers (NBOHC) Si-O [124],  silico-peroxy 

radical Si-O-O [125], and, finally, silicon vacancies (Si-O)4  [126], etc. Some of these 

sites can also exist at the surface and influence the adsorptive and catalytic activity of 

silicas. Indeed, the existence of oxygen vacancy defect (OVD) sites, of the type Si  Si, 

was observed experimentally, whose number was shown to depend on pretreatment 

temperature, with an estimated density of approximately 10-3 sites/nm2 for fused silica 



13 
 

heated to 700 °C in vacuum [127]. Other chemically distinct defect sites may also be 

present on the silica surface, but with a sufficiently low density that their presence is not 

detectable using traditional methods.  

Indeed in most conditions, the existence and the role of these defects sites in adsorption is 

assumed to be negligible. 

 

2.5.Silicas as a catalyst. 

Amorphous silica, which has dozens of industrial applications as an adsorbent and a filler, 

does not seem to have real industrial application as a catalyst, but is very largely used as 

a support for catalysts and as a binder.  

Even if silicas have been usually considered to be quite inert in catalysis, several studies 

report catalytic activity of silicas in oxidation reactions, in particular in the partial oxidation 

of methane(MPO) to formaldehyde [128,129].  

CH4 + 2 O2    CH2O + H2O                        

The activity of such silica catalysts was correlated with both the concentration of strained 

siloxane bridges and density of surface reduced sites stabilized in steady state conditions. 

Silica has also been reported to be active for the gas-phase ammoximation of 

cyclohexanone (by reaction with oxygen and ammonia) to the corresponding oxime 

[130,131], a key intermediate in the production of  -caprolactam, and, finally, Nylon 6.  

Silica gels have some acidity allowing catalysis of reactions such as the liquid-phase 

alkylation of phenols and some heterocyclic aromatic compounds with ter-butyl bromide 

[132], for the condensations of aromatic compounds with sulfenyl chlorides RSCl, 

chloromethyl sulfides RSCH2Cl, sulfur chloride S2Cl2 and thionyl chloride SOCl2 [133], and 

has been recently found to act as a good catalyst for the S → O acetyl migration to 

synthesize thiol compounds under mild conditions, showing the merits of high efficiency, 

high selectivity, long-life recyclability, low cost and scalable availability [134]. A very 

interesting potential new application of silica is in the hydrolysis of cellulose [135]. 

Generally silicas have almost no activity in several gas-phase acid catalyzed reactions 

such as e.g. ethanol dehydration [136]. 
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Defective silicalite has an important industrial application as an acid catalyst in the vapour 

phase Beckmann rearrangment of cyclohexanone oxime to -caprolactam with the 

Sumitomo process [93,137], occurring near 300°C.  

                            

The active sites for this reaction, that is also catalyzed by siliceous beta zeolite [58] and, 

less efficiently, by amorphous silica are thought to be external and/or internal silanol nests.   

2.6. Silicas as support for catalysts.  

Silicas find a large industrial application as the support of catalysts [138,139]. This is due, 

among other reasons, to its good mechanical and thermal stabilities, and ease of 

scalability. Moreover, silicas are relatively surface-inert, thus allowing preserving the active 

phases and stabilizing moderately big metal particles, and providing surface area and 

porosity.  

In Table 2 some relevant applications of silica as a catalyst support at the industrial level 

are reported.   

Although the most common support of metals for hydrogenation of hydrocarbons is 

alumina, silica is used in several cases. Ni and copper catalysts supported on silica are 

largely used for hydrogenation. In most cases, indeed, the amount of silica is very small, 

being thus more a stabilizer than a support.  Among the applications, the hydrogenation of 

nitro-compounds to anilines, benzene hydrogenation to cyclohexane, and nitriles 

hydrogenation to amines, hydrogenation of carbonyls and dehydrogenations of alcohols 

[145].  

Amorphous silica, in particular when modified with alkoxy- or chlorosubstituted silyl 

compounds, can be used to weakly interact with molecular organic in contact with water 

solution, thus providing useful catalytic systems for reactions in water [149]. 

2.6. Silicas as a matrix and a binder for catalysts.  

Some catalysts, such as in particular Fluid Catalytic Cracking (FCC) catalysts, are 

composite powders containing together with “active phases”, active or inert matrices. 

Silicas are used as inactive matrices and binders [150,151,152], favoring the extrusion of 

N

OH

N O

H
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catalyst pellets or spheres, enhancing the mechanical strength of the catalyst, reducing the 

wear of catalyst particles in the reaction, providing optimal porosity for speeding up the 

diffusion of reactants and, at least in the case of FCC catalyst, also acting as a carrier of 

heat from the regenerator to the riser reactor. The application of silica binders to 

hydrocarbon conversion catalysts is also reported to decrease coking, thus increasing 

catalyst cycle length [153]. Silica may also interact with the zeolite active phase of FCC, 

reacting with extraframework alumina-rich material converting itself into silica-alumina 

[154].  

3. Aluminas: solid state chemistry and surface chemistry 

3.1 Solution chemistry of Al3+ cation and the preparation of  aluminum hydroxides.  

As a typical metal element, aluminum is soluble in acidic solutions in its cationic form Al3+ 

forming the aquo [Al(OH2)6]
3+ cation. Al3+ displays a strong Lewis acidic behavior, not only 

coordinating six water molecules forming the hexa-aquo ion, but also coordinating a 

number of basic ligands including, e.g. complexes with several simple molecules such as 

ammonia [155] and pyridine [156,157], as well as with complex ligands [158] giving rise to 

coordination complexes mainly with coordination number four or six, but coordination five 

is also observed [159]. Coordination 3 is rarely observed, due to the excessive Lewis 

acidity of the metal ion [160]. In fact the d0 electronic configuration of the Al3+ ion and its 

highly ionic bond with oxygen do not introduce any constraint to its coordination state. 

In water solution the [Al(OH2)6]
3+ cation displays some acidity (pKa 4.85) thus producing by 

dissociation at higher pH the  [Al(OH2)5(OH)]2+ ion, reported to be predominant at 4.8 < pH 

< 6  [161,162], likely with less tightly bound water molecules in the secondary hydration 

shell. Depending on the conditions, i.e. pH, concentration (hydrolysis ratio) and anions 

present, a number of polynuclear species can also be found in solution such as the dimers 

[Al2(OH)4(H2O)4]
4+, trimers [Al3(OH)4(H2O)9]

5+, the tridecameric (or Al13-mer) ion 

[Al13O4(OH)24(H2O)12]
7+, and the Al30-mer [Al30O8(OH)56(H2O)26]

18+ [163,164]. Aluminum 

hydroxides start to precipitate at pH 5-6.  The minimum solubility of Al hydroxides in water 

is near neutrality, in the range pH = 6-7, because at pH > 8.5 the solubility increases again 

with the formation of [Al(OH)4]
- anion as well as a dimeric species, likely. [(OH)3Al–O–

Al(OH)3]2− [165]. 

In conditions where the solubility is exceeded, “gelatinous” precipitates, XRD amorphous, 

usually first form. Depending primarily on temperature and pH, as well as on aging time, 

on the nature of anions present and on the copresence of organic components [166], 

different crystalline hydroxides or oxyhydroxides form (Table 3 and Fig. 4 [167]. At low 
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temperature in excess water the hydroxides are preferentially formed, bayerite -Al(OH)3 if 

5.8 < pH < 9 or gibbsite -Al(OH)3 for pH < 5.8 and for pH > 9. At temperatures higher than 

about 80 °C, the oxyhydroxides become thermodynamically more stable than the 

trihydroxides and thus tend to form. Boehmite -AlOOH or a low crystallinity form 

pseudoboehmite are most easily formed at atmospheric pressure while the production of 

diaspore -AlOOH usually needs higher pressures.  

The preparation of (pseudo)boehmites is relevant because its decomposition product is  -

Al2O3, the most largely applied transitional alumina for adsorption and catalysis. Indeed, it 

is obtained, even commercially, by different ways, producing materials with different 

crystallinity, morphologies and impurities. Among them, we can cite the following:  

a) acidification of sodium aluminate solutions (e.g. for the preparation of Versal alumina, 

from UOP). 

b) reaction of sodium aluminate with aluminum sulphate (e.g. used by Grace) 

c) neutralization of Al3+ acid solutions 

d) hydrolysis of Al alkoxides produced by reaction of alcohols with Al metal (e.g. the 

modified ALFOL-like process used by  Condea-Sasol)  

e) rehydration of amorphous alumina.  

The precipitation of Bayerite is used for the further preparation of -Al2O3 and of -Al2O3, 

as done by Sasol starting again from alkolates using the modified ALFOL-like process. 

The behavior of Al cations in solution points to the predominant ionicity of the Al3+-O2- 

bond, typical of metal species, in agreement with the moderate electronegativity of Al3+ 

[65], in contrast to the definite covalency of the Si-O bond. In fact, this is justified by the 

larger ionic radius (0.39 Å for tetrahedral coordination, 0.53 Å for octahedral coordination) 

and lower charge of Al3+ with respect to Si4+. However the amphotericity of aluminum 

hydroxides agrees with the borderline position of aluminum between metals and 

semimetals. In fact, the acidity of Al(OH)3 appears to be comparable to that of the Si(OH)4.  

 

3.2 Preparation of catalytic aluminas. 

-, -, - and -Al2O3, are the most used transitional aluminas in the catalysis and 

adsorption fields. They are  produced (Fig. 4)  by calcination of precipitated hydroxides:  -

Al2O3 and -Al2O3 are mainly produced in sequence by calcination of boehmite -AlOOH 

(or its poorly crystallized form denoted as pseudoboehmite), while - Al2O3 is produced by 
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calcination of bayerite -Al(OH)3. -Al2O3 can be produced by calcination of both boehmite 

and bayerite at higher temperature, but usually the preparation for bayerite is preferred.  

However, alternative processes to produce aluminas also exist and are used industrially.  

Degussa-Evonik prepares its Aluminium oxide C, now Aeroxide alumina, -Al2O3 or a 

mixture of - and -Al2O3, by flame hydrolysis of AlCl3 [168]. Spherical -Al2O3 is produced 

by aluminum evaporation and oxidation [169]. 

Although the structure of -Al2O3, -Al2O3 and -Al2O3 are still not fully established, it 

seems quite well supported today [10,170,171]  that they are defective non stoichiometric 

spinels, with different distribution of cations and vacancies and maybe occupancy of non-

spinel sites [172] as well as different distortion of the unit cell. 27Al MAS NMR data 

[173,174] and Rietveld analyses of the XRD and neutron scattering patterns [175] confirm 

that Al ions are present both in octahedral and in tetrahedral coordination in the three 

structures. The presence of small amounts of pentacoordinated Al3+ is usually observed by 

27Al MAS NMR [173,174]. 

The structure of -Al2O3, instead, is well established. This phase is isostructural with beta-

gallia (-Ga2O3), also a spinel-derived structure, where half cations are octahedrally 

coordinated and half tetrahedrally coordinated.  

All alumina and aluminum hydroxides convert at high temperature into -Al2O3, corundum, 

whose structure is hexagonal with all Al ions in octahedral coordination. -Al2O3, 

corundum, is the thermodynamically stable form as the bulk free energy is considered.  

Amorphous alumina can also be prepared by vaopization of Al metal. Its structure is very 

rich in petacoordinated Al3+, as evidenced by 27Al MAS NMR spectra, with minor amounts 

of tetra- and hexa-coordinated aluminum [176]. Amorphous alumina is quite unstable. 

From amorphous alumina, -Al2O3 is mostly formed by calcination, followed by  -Al2O3 and 

-Al2O3 [177]. 

 

3.3 Aluminum coordination in its oxides. 

As already said, the s0, p0,d0 Al3+ cations do not require particular coordination geometries. 

Octahedral coordination is the preferred in oxides and hydroxides, as seen for the stable 

oxide -Al2O3 (corundum), all the four Al(OH)3 polymorphs as well as the two AlOOH oxy-

hydroxide polymorphs, and also for the aluminosilicate oxy-hydroxide clays kaolinite and 

pyrophillite. Octahedral coordination also occurs in a number of aluminate mixed oxides 

such as in corundum-type solid solutions with Fe2O3 and Cr2O3, in perovskites when Al 
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combines with very large trivalent cations (such as LaAlO3 and NdAlO3), in normal spinels 

when Al combines with small bivalent elements (e.g. MgAl2O4), in the kyanite Al silicate, 

etc.  However, tetrahedral coordination is also very common, frequently together with 

octahedral coordination. This occurs in the metastable alumina phases -, -, -, -Al2O3, 

in mullite and sillimanite Al silicates, in inverted spinels such as ZnAl2O4, etc… Tetrahedral 

coordination only also occurs in the form of isolated AlO4 units such as in the AlPO4 

polymorphs, but also in the form of tridimensional frameworks: this essentially occurs in 

the cases of alkali- and alkali-earth aluminates. This is the case of the “crystobalite-like” 

structures of NaAlO2 and KAlO2, the “tridimite-like” structure of CaAl2O4 krotite, and in 

several other calcium and strontium aluminates [178,179]. Aluminates with a zeolite-like 

structure also exist such as the sodalite-like structures of Ca8[Al12O24](MO4)2, with M = W, 

S and Cr [180,181]. 

Pentacoordinated aluminum species are definitely less frequent, but exist in a number of 

compounds: the Al silicate andalusite (see below), in the mineral grandidierite 

Mg0.75Fe2+
0.25Al3(BO4)(SiO4)O [182], in the aluminophosphates AlPO4-21  [183], augelite 

Al2(PO4)(OH)3 and senegalite Al2(PO4)(OH)3•(H2O) [184], in aluminum borates [185], in the 

mixed oxides Al2Ge2O7 and LaAlGe2O7 [186] and Lanthanum – Aluminum gallium borates 

[187], etc. Pentacoordinated Al ions is abundant in amorphous aluminas [176]  and in 

liquid alumina where tetracoordinated Al are predominant but small amounts not only of 6-

coordinated al but also of 3-coordinated Al are observed and in liquid alumina [188]. 

Coordination 3 is expected in gas-phase aluminum oxide clusters [189] but is not found in 

solid oxides usually. However, XRD and neutron diffraction studies of Zhou and Snyder 

[175] suggested that 3-coordinated Al3+ is present in small amount in the structure of -

Al2O3. On the other hand, Al K-edge XANES measurements indicated that 3-coordinated 

Al can exist in defective zeolites [190].  

 

3.4  Lewis acidity and coordination of Al3+ centers.  

According to its valence, Al species can produce compounds with coordination three when 

its bond can be assumed as essentially covalent. However, this is the case only of some 

gas-phase molecules, such as aluminum halides vapours at high temperatures [191]. The 

thermal chemistry of aluminum halides, in particular of aluminum chloride, may be relevant 

to the discussion of Al3+ as a Lewis acid. AlCl3 is also an ionic solid with all Al ions in 

octahedral coordination [192]. However, it melts (or sublimates) at relatively low 

temperatures (192 °C or 182 °C, depending on the source) producing a liquid constituted 
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by the dimeric form Al2Cl6, with tetrahedral coordination for Al3+. The dimeric form 

predominates at low temperature also in the gas, with increasing content of the monomeric 

planar trigonal structure increasing in amount at higher temperatures (e.g. 70% at 673 K). 

Interestingly, even if liquid AlCl3 is dimeric (Al2Cl6), its direct reaction with basic molecules 

B gives easily “monomeric” tetrahedral complexes with the BAlCl3 stoichiometry together 

with “monomeric” complexes bonding more than one basic molecule. In particular, the 

reaction of “dimeric” Al2Cl6 with pyridine is easy and gives rise to “monomeric” complexes 

PyAlCl3, with tetrahedral Al ion, and Py3AlCl3 with octahedral Al ion [193,194]. Also with 

weaker bases, such as e.g.  ethyl benzoate, Al2Cl6 reacts producing monomeric 

tetrahedral complexes, i.e. the colourless crystalline compound AlCl3(C6H5COOC2H5) 
 

[195]. The aluminum atom is tetrahedrally coordinated by three chlorine atoms and by the 

carbonyl oxygen atom of ethyl benzoate.  

Al alkoxides have, most commonly, coordination four (tetrahedral) or six (mostly 

octahedral), although also coordination five is quite frequently observed (mostly planar-

bipyramidal or square pyramidal [196]). On the other hand, it has been reported that, when 

the oxide-ligands are hindered, aluminum alkoxides can take monomolecular form with 

trigonal planar coordination for aluminum, with very strong Lewis acidity [197]. In general, 

the coordination of Al3+ in its complexes depends on the ligands present [198].  

These data suggest that Al3+ can quite readily change its full coordination from three to six 

depending on the availability, strength and size of ligands, as well as from temperature.  

 

3.5.The surface chemistry of catalytic aluminas. 

3.5.1 Nature of the Lewis acid sites of aluminas. 

The surface chemistry of aluminas has been the object of recent reviews [13,170]. The 

catalytic activity of -, -, - and - aluminas is undoubtedly mostly related to the high 

ionicity of the surface Al-O bond and, as a     consequence, to the Lewis acidity of a small 

number of low coordination surface aluminum ions. The alumina’s Lewis acid sites are well 

characterized by adsorption of basic probes such as pyridine, carbon monoxide, and 

several other bases followed by IR [13,170,199], ammonia and amines followed by 

calorimetry [200,201], triphenylphosphine followed by 31P NMR [202], pyridine followed by 

advanced 15N NMR techniques [203] and UV spectroscopy [204]. They are the strongest 

Lewis acids among binary metal oxides. Volumetric, TPD and calorimetric experiments 

allowed also to determine the amount of such very strong Lewis sites present on 

transitional alumina surfaces, which may however depend on the dehydroxylation degree 
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(depending on the activation temperature) and on the peculiar phase and preparation. 

Several studies are performed with very weak bases (such as carbon monoxide) as 

molecular probes, performed after partial dehydroxylation of the surface by outgassing at 

high temperature [205]. However, it has been shown that removal even of adsorbed 

molecular water is not needed to reveal surface Lewis acidity if a base stronger than water 

(such as pyridine) is used as the probe [206]. Recent studies provided some evidence that 

also surface hydroxy- groups (formally formed by dissociative adsorption of water) can be 

displaced from Al3+ ions by molecules whose acidobasicity is similar to water such as 

alcohols [207]. Thus, in this case, also highly hydroxylated surfaces or even wet can act as 

Lewis acidic catalysts, dehydroxylation being not a prerequisite for the appearance of 

Lewis acidity [206,207]. On the other hand, as shown by Soled years ago [208], full 

dehydroxylation of transitional alumina is actually not possible, needing outgassing at so 

high a temperature that phase transformation to corundum occurs. 

Although it is clear that surface Lewis acid sites on alumina are due to coordinatively 

unsaturated Al3+ ions, some debate still concerns the coordination state of such surface 

ions. Several authors agree, mainly based on IR spectroscopy experiments, that at least 

three different types of Lewis acid sites (weak, medium, strong) exist on partly 

dehydroxylated transitional aluminas [203,205,209,210]. Lewis acid sites are certainly 

coordinatively unsaturated Al3+ ions at the surface, which, in principle, may be 

pentacoordinated (i.e., octahedral with one missing oxide ligand and hence a single free 

coordination site), tetracoordinated (octahedral with two free coordination sites or near-

surface “bulk” tetrahedral sites) and trigonal or tricoordinated (octahedral with three free 

coordination sites or tetrahedral with one free coordination site). In several recent 

publications, it has been inferred that pentacoordinated aluminum ions, which are clearly 

visible in 27Al NMR spectra of -Al2O3 would determine most of the surface and bulk 

chemistry of this material. The authors proposed pentacoordinated aluminum ions to act 

as the Lewis acid sites absorbing ethanol and catalyzing its decomposition into ethylene 

[211], acting as structural promoters for phase transitions [212], for anchoring of platinum 

oxide [213], as well as for the sintering of supported platinum metal particles [214].  

Barrow et al. [215] confirmed the observation of surface penta-coordinated Al species on -

Al2O3 using 1H-27Al Cross Polarization MAS NMR. However, it must be  taken into account 

that 27Al NMR  may fail in detecting very distorted low coordination species considered to 

be essentially “silent” in normal experiments [216,217], being probably responsible for very 

broad bands, such as in the case of dehydrated zeolites  where a broad feature at 67 ppm 
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has been assigned to tri-coordinated Al ions [218]. Accordingly, Wischert et al. [219] stated 

that even current high-field NMR experiments are not (yet) able to provide a complete 

picture of the structure of -Al2O3, and much caution should be exercised when interpreting 

27Al NMR spectra.  In practice, in the case of aluminas the signal due to surface low 

coordination Al3+ (both surface tetracoordinated and tricoordinated) may be very weak or 

almost silent, thus being not revealed, taking into account the strong intensity of the signal 

of tetrahedral Al ion which are present and abundant even in the bulk. The signal of 

surface penta-coordinated Al3+ is well evident also because its amount in the bulk is very 

low, if any.  

Indeed, IR studies using both CO [205,206,220] and pyridine as surface “basic” probes, 

reveal a significant heterogeneity of the Lewis adsorbed species, suggesting that different 

Lewis sites, i.e. exposed Al3+ with different overall coordination. Some authors simulated 

the adsorption of pyridine on aluminum oxide clusters and found that the calculated shifts 

of the vibrational modes of pyridine adsorbed on tri-coordinated Al3+ ions (giving a 

tetrahedral complex) agree with those measured experimentally for pyridine adsorbed on 

the strongest Lewis sites [221,222]  (8a mode at 1624 cm-1 and 19b mode at 1456 cm-1). 

Similarly, adsorbed CO species absorbing at 2230 cm-1 is certainly associated to very 

highly uncoordinated species. Theoretical calculations, in agreement with experimental 

data, indicate that  CO interacting with penta-coordinated Al3+ gives rise to species with 

CO   2150-2160 cm-1, while CO interacting with tetra-coordinated Al3+ gives rise to 

species with CO   2210-2180 cm-1 [223,224,225]. Thus, bands above 2210 cm-1 must be 

attributed to CO of carbon monoxide interacting with tri-coordinated Al3+. Similar sites 

were supposed to be the active sites also for methane dissociation and strongest N2 

adsorption [210,226]. 

The behavior we observe upon pyridine adsorption suggests that a contribution to the 

spectra can arise from poly-pyridine species. In fact, the species characterized by the 8a 

mode at 1624 cm-1 and the 19b mode at 1456 cm-1 is initially not observed, but starts to 

form after outgassing at 473 K, when other species (8a at 1615-10 and 1591   cm-1, 19b at 

1447-1441 cm-1) are disappearing. It is possible that part of the lower frequency bands are 

due to di- or tri-pyridine species that decompose by heating into monopyridine one. This 

would parallel the behavior of AlCl3 that can coordinate a single pyridine molecule forming 

the tetrahedral complex PyAlCl3, but also three pyridine molecules forming the octahedral 

complex Cl3AlPy3 [227]. The likely formation at high pyridine vapour pressure of poly-
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pyridine complexes is a further support to the identification of the strongest Lewis sites of 

alumina as tricoordinated Al3+.  

On the other hand, it must be also considered that surface reconstruction of the structure 

can occur depending on the conditions. As for example, surface tricoordinated Al species 

can be formed coming from Al ions in tetrahedral sites exposed on the 110 and 111 

surface of on the 110-100 edge of the spinel-type structure (Fig. 5). In the bulk spinel 

structure, the tetrahedra share a face with an empty octahedron of a non-spinel site (i.e. 

an interstice which is not occupied in the spinel structure). Surface reconstruction certainly 

occurs for dehydroxylated surfaces [228]. Thus, the exposed 3-coordinated Al ion may 

reduce its free energy by slightly shifting down, below the surface, entering this octahedron 

to increase its coordination to four, five or six. This shift can be reversed in the presence of 

gas-phase bases, thus producing tetrahedral Al species bonded to the base. A similar 

hypothesis was proposed by Busco et al [229] to occur on zeolites.  

Thus, trigonal Al ions certainly represent the strong Lewis sites of alumina producing 

tetrahedral species by interacting with bases, even if they may not exist as such but mask 

themselves as tetrahedral or pentacoordinated species or even as a tetrahedron bonded 

to an hydroxy- group.  

 

3.5.2.  Acido-basicity and the character of surface hydroxy- groups of aluminas. 

Together with Lewis acid sites, the ionicity of the Al-O bond also results in the presence of  

surface basic sites. O1s binding energy is relatively high, 531.2 eV [102], but is definitely 

lower with respect to that of silica. Actually, the true particular sites of aluminas for 

adsorption and most catalytic reactions are very likely anion-cation couples which have 

very high activity and work synergistically. The basic counterpart may be oxide anions or 

hydroxy- species. As an example, alcohol adsorption experiments [230,231] allow the 

characterization of such sites where dissociative adsorption occurs. CO2 adsorption 

forming carbonate and bicarbonate species also reveals these sites [232]. The strong 

activity of -Al2O3 for position isomerization of olefins, occurring at low temperature only 

after dehydration of the catalyst [233], is likely associated to the strength of the acido-basic 

couples that allows the formation of surface intermediate allyl species [234]. The strongest 

among these sites may even dissociated methane and hydrogen [219]. 

Many studies have been devoted to the multiplicity of the surface hydroxy groups of 

aluminas. At least five components are usually present in the IR spectrum of the hydroxy 

groups of aluminas, i.e. at ca 3790, 3770, 3740-3720, 3700-3690 and 3580 cm-1, although 



23 
 

in many cases the observed peaks are multiple. A number of different assignments have 

been proposed for these bands. Surface OH groups can also be revealed by 1H MAS 

NMR: also in this case a large number of peaks may be observed 

[215,235,236,237,238,239,240,241]. 

Although most authors attribute to transitional aluminas essentially Lewis acidic properties, 

several studies show that some of their multiple surface hydroxy groups  also have some 

Brønsted acidity. Actually, among the pure ionic oxides, aluminas is one of the strongest 

Brønsted acids. Indeed, protonation of bases at the surface of -Al2O3 has been reported, 

such as that of n-butylamine [242] and piperidine [94], i.e. bases stronger than the most 

used probe, pyridine. The activity of pure -Al2O3 as a good catalyst of skeletal n-butylene 

isomerization to isobutylene has been attributed to its medium-strong Brønsted acidity, 

sufficient to protonate n-butylenes at high temperature, producing carbenium ions, but too 

low to cause much cracking and coking [243].  

The reasons for the really moderate but not always negligible Brønsted acidity of the 

alumina’s OH very likely stay in their stability in the undissociated form, evidenced by the 

practical impossible dihydroxylation of transitional aluminas, as remarked years ago by 

Soled [208]. On the other hand, the ionic framework of allumina cannot stabilize the 

negative charge arising from hydroxyls dissociation, although it could likely stabilize the 

protonated form of the adsorbed base.  

Although the surface chemistry of -Al2O3 is far less investigated than those of transitional 

aluminas, it seems quite established that also on this polymorph surface Lewis acidity and 

basicity are present, but far weaker. This could be due to the higher coordination of both 

species in the bulk that will reduce the number of highly uncoordinated sites at the surface 

and also the extent of uncoordination of the predominant exposed sites.  

 

3.5.3.. Aluminas as catalysts.   

Transition aluminas, mostly denoted as -Al2O3, but actually being sometimes a mixture of  

-Al2O3, -Al2O3 and -Al2O3, or of -Al2O3 and  -Al2O3, have wide application as catalysts. 

Among the most prominent ones, they are used in  the catalytic steps of the Claus 

process, the production of sulphur from H2S in the refineries [244]. 

H2S + 2 SO2   3 S8 + H2O     

Aluminas for this application have large surface area (300-400 m2/g), pore volumes 0.5 

ml/g of which 0.1 ml/g due to macroporosity (> 750 Å, with loss on ignition of 5.5-6.5 % 

wt/wt [245]. They may be promoted by iron to reduce deactivation by sulphation.  
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Aluminas are very active in the dehydration of alcohols to olefins  and to ethers [246], and 

have been used in the sixties for producing ethylene from dehydration of bioethanol at > 

250 °C [247].  

CH3CH2OH   H2C=CH2 + H2O    

They are applied to produce dimethylether from methanol  

CH3OH  CH3OCH3 + H2O                                     

at 250–280 °C and 0.04–0.05 MPa, as a first step in the methanol to olefin (MTO) process 

[248].  To increase the rate of this reaction increasing the density of Lewis acid sites is 

necessary [249]. 

As reported by deKlerk [250] aluminas are and have been used largely in the refining of 

Fischer Tropsh syncrude. In particular thay are used to increase octane number through 

position isomerization of terminal to internal olefins, for the iskeletal isomerization of n-

pentene to isopentene as well as to dehydrate higher alcohols to olefins.  

Aluminas are reported to be used in the production of  chloromethane from methanol and 

hydrogen chloride [251] 

CH3OH + HCl   CH3Cl + H2O    

All these reactions implying alcohols as reactants are mostly activated by chemisorption of 

the alcohol through one of  its oxygen lone pairs to the Lewis sites of alumina. 

Aluminas may be used for the dehydrofluorination of alkylfluorides which are byproducts of 

the HF catalyzed isobutane / butylene alkylation process. Fluoroalkanes react at 170-

220°C, being converted to olefins. HF is adsorbed on the alumina to form aluminum 

fluoride, regeneration being needed every 6 months  [252].  

 

3.5.5 Aluminas as supports of catalysts.  

Aluminas find very large application as supports of catalysts. In particular, they are the 

standard supports for many metal and sulphide catalysts. When applications requiring 

relatively  low reaction  temperature (< 500 °C) are considered, such as for hydrotreating 

with supported sulphides or hydrogenation using platinum, palladium or nickel metals as 

the active phases, high surface area -, - or -Al2O3, can be used. Transitional aluminas 

are also used as supports of partial oxidation reactions occurring at quite low 

temperatures, such as e.g. the oxychlorination of ethylene to ethylene dichloride in the 

process to produce vinyl chloride monomer, performed over alumina supported copper 

chloride at 300 °C. 
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These supports, however, are characterized by high acidity and reactivity, thus not 

applicable when very reactive compunds are present in the reactant mixture. For this 

reason, less reactive and lower surface area  - or  -Al2O3 are used. This is, e.g. the case 

of Pd catalysts for 1,3-butadiene hydrogenation, where the oligomerization of the diene on 

the support has to be avoided. -Al2O3 is also used as the support of silver catalysts for 

ethylene oxidation to ethylene oxide, where also the reactivity of the support must be 

limited. -Al2O3 is a common support for total oxidation of volatile organic compounds 

(VOC), such as those based again on Pt and Pd, where temperatures of the order of 400-

800 °C are produced. Similarly, -Al2O3 seems to be one of the best supports for Rh used 

in methane catalytic partial oxidation (CPO) to syngas, a promising new process to 

produce hydrogen. Stabilized aluminas, such as -, -, - and -Al2O3 containing either 

silica or alkali, alkali earth or rare earth cations, such as K+, Ca2+, La3+, are largely used 

also for applications at medium- high temperature. This is the case for some endothermic 

reactions such as steam reaforming or partial oxidation reactions using nickel platinum  or 

rhodium catalysts. Also wash-coats of car’s catalytic mufflers, based on Pt-Rh or Pd, are 

based on alumina mixed with ceria, zirconia and lanthana.  

 

3.5.6 Other applications of aluminas. Aluminas find also a number of applications in 

adsorption [253], in particular for purification treatments of waters [254]. Transition alumina 

is also applied as a  component of the mixture used as transport bed catalysts in the Fluid 

Catalytic Cracking process. In this case, in fact, the real catalyst component is based on 

Faujasite zeolites, usually Rare Earth –Y or Mg-HY faujasite zeolites. High surface area 

alumina, or their precursors such as boehmites  [255,256], are added to the catalysts to 

have the role of Nickel scavenger.  In fact, the feed to this process usually contain Ni-

porfirin compounds that depose somewhere their Ni ions that, reduced to metal, give rise 

to unwanted dehydrogenating catalytic activity. Ni-porphirins tend to react specifically with 

alumina, where they are partially stabilized in the bivalent state, thus reducing the amount 

of Ni metal produced on the catalyst. 

Aluminas are also reported to act as binders [257,258] and/or active matrices in complex 

catalytic systems, including the same FCC catalysts [259]. Such materials allow to 

optimize acidity and porosity of the catalytic material. Interestingly, aluminum migration to 

the zeolite was observed when Al2O3 was selected as a binder pf zeolite catalysts, 

creating additional Brønsted acid sites in the zeolite framework due to “realumination” [260]. 
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Aluminas are also the precursors for fluorided and chlorided aluminas, which may be 

produced in situ upon halogenation, as well as for silicated aluminas (see below), borated 

aluminas and other “modified aluminas” produced ex situ by chemical treatments 

 

4. Silicated or silica-doped aluminas. 

Some commercial aluminas actually contain small amounts of silica mainly for stabilization 

against the phase transformation to corundum and resistance to coking. Some of these 

materials are prepared by deposing silica over alumina or its hydroxide precursor. This is 

the case in particular of the Siralox family of Sasol (previously Condea), whose preparation 

and characterization has been reported in some detail [261]. Similar materials, denoted as 

silicated aluminas, are prepared by deposition of orthosilicates (like tetraethoxysilane, 

TEOS) at the surface of alumina [262,263,264]. According to Trombetta et al. [265] and to 

Daniell et al. [261] these materials, also denoted as silica-doped aluminas [266] almost 

independtly of the preparation procedures, have the structure of -Al2O3, silica being 

located at least in large part at their surface . This is deduced by the presence of the 

typical IR spectroscopic features of surface silanol group and also by the presence of Si-O 

stretching modes at 1100-1050 cm-1 that are strongly perturbed by adsorption of bases like 

pyridine [83]. 

It is remarkable that the addition of silicate species to alumina (at the surface or in the 

bulk) gives rise to terminal silanols but does not produce bands in the region of bridging 

OHs. No relevant Brønsted acidity is observed on these materials [262,264,265,267] 

although the acidity of the terminal silanol might be slightly enhanced [264,268]. This is 

explained suggesting that Si-OH groups tend to dissociate over the ionic alumina surface. 

Silicate species tend to maximize the interaction with the bulk of alumina by orienting three 

oxygen atoms toward the bulk, while the fourth necessarily stands up, with respect the 

surface. To limit the free energy, the fourth oxygen standing up bonds with a proton. It 

seems obvious that it cannot bend to bridge surface aluminum cations. The resulting 

Brønsted acidity is consequently that of isolated silanols, weak although possibly 

enhanced by the vicinity of Al ions 

The materials rich in alumina reveal the presence of surface Lewis acid sites similar in 

quality  to those of alumina [269]. Some studies, however, indicate that they may be 

decreased in amounts but some of them are maybe slightly increased in strength [264]. 

Similar materials are very active for the diethylether (DME) synthesis from methanol at 300 

°C and atmospheric pressure [270]. The presence of silica would increase acidity and 
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resistence to coking. Similar materials are excellent catalysts for the skeletal isomerization 

of butylenes to isobutylene at 400-450 °C [264,271,272]. A similar catalyst was apparently 

reported for the ARCO tert-butyl alcohol dehydration process to produce pure isobutylene: 

the reaction occurs in the vapor phase a 260-370 °C  at about 14 bar , with a conversion of 

98% [273]. 

 

5. Solid state chemistry of aluminum silicates and aluminosilicates. 

5.1 Layered alumino-silicate “oxyhydroxides”.  

A number of crystalline mixed silicon, aluminum oxides and oxy-hydroxides are known. 

Kaolinite, halloystite, pyrophillite and donbassite are Si,Al hydroxide compounds (alumino-

silicate “oxyhydroxides”). All are layered structures belonging to the phyllosilicate family.  

Kaolinite has layers composed of a phyllosilicate sheet constituted by tetrahedral SiO4 

silicate groups sharing three corners, and a sheet containing octahedral AlO4(OH)2 

complexes (1:1 sheet), giving rise to the overall stoichiometry Al2Si2O5(OH)4 (Si:Al ratio 

=1). Halloysite has essentially the same structure, but the 1:1 unit layers are separated by 

a monolayer of water not present in kaolinite. Anauxite and dickite also have the same 

layer structures of kaolinite. Pyrophillite layer structure has two phyllosilicate sheets 

sandwich an Al-containing octahedral sheet (1:2 sheet), with formula Al2Si4O10(OH)2 (Si:Al 

ratio =2).  In all these cases, silicon is tetrahedral while aluminum is fully octahedral.  

Al for silicon substitution in the phyllosilicate layer gives rise to a charge defect that must 

be compensated by cationic species in the interlayer specieIn the case of micas, like e.g. 

muscovite KAl3Si3O10(OH)2, the charge of the layers is balanced by interlayer hydrated 

potassium ions. In dioctahedral chlorite structures two families of octahedral Al species 

exist together with tetrahedral Al substituting for silicon in the phyllosilicate sheets. An 

example is donbassite, with the empyrical formula [Al2Si4-xAlxO10] [Al2+x/3(OH)8] [274] and a 

typical Si:Al ratio  = 0.56, with both octahedral and tetrahedral Al ions.  

 

5.2. Aluminum silicates 

The above described alumino-silicate “oxyhydroxides” decompose at moderate 

temperatures producing mostly amorphous aluminum-silicon mixed oxides (aluminum 

silicates) and gaseous water. The decomposition of kaolinite produces the so-called 

“metakaolinite”, which is indeed an amorphous silica-alumina with Si:Al atomic ratio  1. 

This material is obviously quite impure of metal elements, as the original kaolinite mineral 

is. Heating of this material produces the progressive crystallization of mullite and usually of 
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cristobalite. In fact, according to thermodynamics (Fig. 6 [275]), between alumina 

(corundum) and silica (quartz, tridimite and cristobalite, depending on the temperature) the 

only intermediate phase that has thermodynamic stability is mullite [276], whose 

composition (AlVI
2AlIV2+2xSi2-2xO10-x) mostly ranges between 3Al2O3.2SiO2 and 2Al2O3.SiO2, 

i.e. with Si/Al a.r.  0.25-0.33).  

Additionally, three crystalline polymorphic forms of aluminum silicates also exist as 

metastable phases, all with formula Al2SiO5 (Si/Al a.r. 0.5) i.e.  kyanite, andalusite and 

sillimanite [277]. Aluminum coordination is octahedral in kyanite and half octahedral and 

half pentacoordinated in andalusite. In both these cases, isolated tetrahedral sites exist 

only occupated by silicon as orthosilicate species. The structure of sillimanite consists of 

chains of edge-sharing AlO6 octahedra crosslinked by double chains of TO4 tetrahedra 

with strict alternation of Si and Al.   

The structure of mullite can be derived from that of sillimanite. The further substitution of 

some Si by Al in the tetrahedral sites, gives rise to O vacancies and the formation of AlO4 

tetrahedra triclusters sharing a common O atom. In the case of high alumina mullite (with 

Si/Al a.r. 0.25), one every 25 oxygen atom is lost, producing two tetrahedra triclusters, 

while in the case of low alumina mullite (with Si/Al a.r. 0.33) one every 40 oxygen atom is 

lost, producing two tetrahedra triclusters.  

According to thermodynamics, no solubility exists between corundum and silica (Fig. 6). 

However, data agree that some solubility exists of silica in metastable spinel-type alumina. 

A spinel-type phase with composition 6 Al2O3 . SiO2, where Si substitutes for Al in 

tetrahedral coordination, i.e. as a isolate orthosilicate species, has been reported as a 

metastable form [278]. A spinel phase with the composition of mullite from 2Al2O3.SiO2 to 

Al2O3.SiO2 is also observed during the crystallization of mullite from amorphous 

precipitates [279,280]  and upon the thermal transformation of kaolinite first to largely 

amorphous metakaolinite and later to mullite + cristobalite [281,282]. According to 

Schneider et al. [283] the SiO2 content of the γ-alumina gradually rises with temperature 

and reaches a maximum amount of ≈ 18 mole% at 1150°C which corresponds to the 

following structure: IV[Si2Al6] 
VI[Al12.67*3.33]O32 where * denotes vacancies. In practice, spinel 

like phases may exist with maximum Si/Al a.r. < 0.5 - 0.2. It seems interesting to remark 

that the four known crystalline Si,Al mixed oxides are all Al-rich, with Si:Al ratio  0.5. 

Materals with Si:Al > 0.5 are essentially amorphous or biphasic. 

 

5.3 Framework aluminosilicates. 



29 
 

Framework alumino-silicate structures (i.e. a silicate salts in which some of the silicon in 

the tetrahedral unit SiO4 has been replaced by aluminum) have the common feature to be 

constituted by a negatively charged [Si1-xAlxO2]
x- (with x  0.5) framework constituted by 

corner sharing tetrahedra, with charge balancing cations located in “extraframework” 

voids. In all cases Si/Al a.r. is  1. 

Feldspar structures. 

Potassium and sodium feldspars, such as orthoclase, microcline, sanidine and albite, are 

framework aluminosilicates with formula MAlSi3O8 (M = Na,K) while calcium feldspar, i.e. 

anorthite, has the formula CaAl2Si2O8. In these cases silicon and aluminum atoms occupy 

the centers of corner sharing tetrahedra forming an intricate, three dimensional, negatively 

charged framework. The alkali or alkali earth cations sit within the voids in this structure. In 

pure anorthite, AlO4 and SiO4 tetrahedra alternate regularly forming a fully ordered 

structure, and calciums are located within an irregular cavity bounded by about 10 

oxygens. In alkali feldspar, ordering of Si and Al tetrahedra occurs in low temperature 

forms. Aluminum locates in one of the two crystallographic positions in microcline while it 

regularly alternates in the two positions in orthoclase. In the case of “high temperature 

forms”, such as sanidine (another KAlSi3O8 polymorph) the tetrahedra are randomly mixed 

but it should occur without production of Al-O-Al bridges [284]. It seems interesting to 

remark that excess Al could be located in extraframework positions in feldspates [285]. 

Feldspathoids and “stuffed silicas”. 

Feldspathoid aluminosilicates have mostly larger Al content than feldspates. Among them, 

stuffed silicas are framework aluminosilicates whose tetrahedral frameworks retain the 

basic geometries of crystalline silica polymorphs [286,287,288,289], with a Si:Al ratio  1. 

As said above, silica structure have low density, associated to the covalence of the bonds. 

Thus, interstices are present in the structure. As for example, quartz structures contain 

spaces that can host ions in tetrahedral or in octahedral coordination (Fig.7) In the case of 

-eucryptite, LiAlSiO4, the basic framework is that of -quartz where, however, half Si 

atoms are substituted by Al, the corresponding charge defect being compensated by 

“extraframework” Li ions. The monovalent Li+ cations are located in tetrahedral interstices 

formed by four oxygen atoms each shared by two tetrahedra, occupied by Al and by Si, 

respectively [290].Thus, Li atom is surrounded by eight different tetrahedra in -eucryptite.  

In Fig. 8, left, the coordination of Mg in a Mg0.5AlSiO4 phase recently described [291] is 

reported. Here the framework structure is that of -quartz, and Mg2+ occupying octahedral 

interstices. In the case of the NaAlSiO4 polymorphs nepheline, a stuffed derivative of 
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tridymite, and carnegierite, a stuffed derivative of cristobalite, Na ions occupy six 

coordinated sites.  

Leucite KAlSi2O6 can also be considered in the frame of feldspathoids and of zeolites: its 

framework, analogous to that of analcime (ANA), consists of singly-connected 4-tetrahedra 

membered rings (4-MR) rings, arranged in chains coiled around tetrad screw axes. Every 

4-MR is a part of three mutually perpendicular chains, each parallel to a crystallographic 

axis. An ordered Si/Al distribution was found [292]. Potassium is coordinated to twelve 

oxygen atoms in the cubic form while coordination number is reduced to six in the low-

temperature tetragonal polymorph.  

Zeolites 

Zeolites differ from other framework aluminosilicates because the cavities hosting charge 

balancing cations are larger, allowing several cations being located in the same cage and 

stay in a highly hydrated form. Cavities are interconnected by channels that give rise to a 

variety of microporous structures which can be penetrated only by sufficiently small 

molecules, so giving rise to the “molecular sieving” effect [293]. The cations are 

exchangeable, so zeolites may also act as cationic exchangers. The Si/Al ratio in natural 

zeolites is quite variable, typically ranging 1- 6, but in synthetic zeolites it can be much 

higher, up to . In fact, pure silica zeolites, usually denoted as silicalites, have also been 

prepared for several zeolite frameworks. Silicalites, obviously, do not contain cations in the 

cavities. 

Cationic zeolites may have Si:Al ratio up to 1, such as is the case of faujasite and A-type 

zeolite. These materials, although being also metastable phases, have significant thermal 

stability.  

 

5.4. Silicon and aluminum in aluminosilicate glasses.  

The structure of aluminosilicate glasses has been the object of a number of studies 

applying vibrational spectroscopies (Ir and Raman), solid state NMR spectroscopy and 

computational techniques. Most of Al ions is in coordination four in glasses with modifier 

oxides equal to or in excess of alumina, e.g., peralkaline compositions with Si/Al > 1 and 

Al/Na < 1, and form an integral part of the rigid silicon-oxygen glass network. However, 

27Al NMR studies have demonstrated that glasses frequently also contain small amounts 

of aluminum species in coordination five even when stoichiometry does not need it [294], 

while minimum amounts of six-coordinated Al ions can also be present. This is likely 

associated to the remarkably higher densities of SiO2-Al2O3 glasses with respect to silica 
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glass [295,296], see Table 1. Pentacoordinated aluminum may be especially important in 

mechanisms of viscous transport in silica-rich melts. 17O NMR, thallium-probe ion 

luminescence spectroscopy and X-ray photoelectron spectroscopy also show the 

existence of non-bridging oxygens (NBO) [297], i.e. oxygen species bonded to a single 

tetrahedral group [298], which may interact with higher coordination aluminum [299]. 

Additionally tetrahedral triclusters (oxygen shared by three tetrahedral [300,301]) can also 

balance NBOs to maintain local charge balance [302]. The interplay of these “defect” 

structures determine several relevant properties of glasses. 

 

5.5. On the Al/Si distribution in aluminosilicates including zeolites. The “Lowenstein rule” 

and the stability of Al-O-Al bonds in zeolites. 

As we have already seen, the silicon to aluminum atomic ratio in crystalline aluminum 

silicates is < 1, and in this case aluminum may have both 4-fold and 6-fold coordination, 

and also in case 5-fold coordination. In contrast, in most aluminosilicates the Si/Al atomic 

ratio is  1 and Al is essentially tetrahedral only. The so-called Löwenstein’s rule of 

“aluminium avoidance” [303] states that the Si and Al location is ordered in 

aluminosilicates, with strict alternance of them in tetrahedral framework when Si/Al a.r. is  

1. Thus, Löwenstein’s rule prohibits –Al–O–Al– linkages from occurring in these materials. 

This rule is substantially obeyed in particular in the case of natural zeolites [304,305] and 

in most Al-rich zeolites such as NaX [306].  Recently, the strict validity of this rule for 

zeolites was questioned using density functional theory (DFT) theoretical calculations for 

protonic zeolites [307]. Previous theoretical calculations mostly agree in showing that 

“Lowenstein” clusters (without Al-O-Al linkage) are more energetically favorable than “non-

Lowenstein” clusters (which contain such bridges) in the gas phase [308]. However, the 

energetic preference for the Löwensteinian model (with strict validity of the Löwestein 

rule), with respect to models where this rule is relaxed, was found to be  sufficiently small 

to be overcome by thermal energies at high temperatures, at least for zeolite A [309]. 

Actually, the existence of Al-O-Al bonds in tetrahedral networks is not impossible, seen the 

existence of several calcium and strontium aluminates with Al-only tetrahedral networks, 

as cited above. In practice these bonds can occur as defects, in particular after low 

temperature preparation preocedures, or be the result of disorder induced by high 

temperature, but may be precursors for framework dealumination [305].  

The situation is different for protonic zeolites. Protonic zeolites with low Si:Al ratio down to 

1, as H-LTA and H-FAU zeolites (the latter denoted as HX faujasite) can be prepared with 
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difficulty and are unstable, suffering very easy dealumination. This behavior provides 

evidence of the stabilizing effect of cations towards Si;Al tetrahedral structure. Acid 

zeolites with Si:Al ratio > 5 have usually better stability, depending from the structure (as 

for e.g. H-FER, H-MOR and H-MFI zeolites) but also dealuminate quite easily, while 

materials with larger Si:Al ratio, like 30-300, such as ultrastable Y Faujasite (USY), have 

usually better stability.   

The “stability” of these structures, however, should not be only evaluated in terms of 

thermodynamics, as mostly done by theoreticians. Taking into account that zeolites are 

thermodynamically unstable structures and tend to convert into mullite and silica, or to 

amorfize, the lack of Al-O-Al bonds can be associated to the “kinetic” tendency of such 

structures to produce dealumination, in particular but not only in the protonated forms. 

Dealumination is a process implying expulsion of Al ions from the tetrahedral framework, 

producing “extraframework” Al (or Si-Al oxide) debris, and occurs in the case of Si-O-Al-

OH-Si structures, but should occur even easier in the case of Si-O-Al-OH-Al-OH-Si (non 

Löwenstein) structures.  

Zeolite materials with Si/Al a.r. well above 1 exist naturally in cationic forms and/or can be 

prepared in both cationic and protonic forms. In this case, it becomes relevant to 

determine the distribution of Al in the tetrahedral framework. In the case of natural zeolites, 

ordered structures and disordered structures exist [304,305,310]. According to the so-

called Dempsey’s rule [311], there is a tendency to ordering to maximize the distance 

between each aluminum atom is in order to stabilize the frameworks. In case of protonic 

zeolites, this point may be very relevant for explaining details of catalytic activity. Taking 

into account that these materials are prepared by low temperature procedure, the 

distribution apparently depends on kinetics and on the particular structure, and may vary 

with several different procedure details. To define the Al distribution in this case advanced 

techniques have been developed recently [312].  

 

6.Protonic zeolites: surface chemistry and catalysis.  

Protonic zeolites, i.e. those zeolites where the framework charge is balanced, formally, by 

protons, find industrial applications as acid catalysts in a large number of hydrocarbon 

conversion reactions in refinery and petrochemistry (Table 4). The application of these 

materials is due to three main properties:   
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i) the strong Brønsted acidity of bridging Si-(OH)-Al sites generated by the 

presence of aluminium inside the silicate framework and the balancing proton 

[313,314];  

ii) the shape selectivity [315,316] and other confinement effects [317] due to the 

molecular sieving properties associated to the well-defined crystal pore sizes, 

where the catalytic active sites are located;  

iii) their environmental friendliness, well superior to that of alternative acid catalysts.  

 

6.1 Preparation of protonic zeolites. 

The original method for preparing zeolites [318] was based on hydrothermal crystallization 

of reactive alkali metal aluminosilicate gels at high pH and, typically 100 ° C and ambient 

pressure. With this method, where alkali cations play the role of directing the formation of 

the zeolite structure, materials with low to intermediate Si/Al ratios (1 – 5) are produced in 

the cationic form. Exchange with ammonium ions allows the production of the ammonium 

forms of zeolites that can be converted into protonic forms by calcination with resulting 

decomposition of ammonium  ions.  

After the pioneering work of Barrer [319], new techniques for the preparation of zeolites 

have been developed, mainly involving the use of “templates” or “organic structure 

directing agents” (OSDAs) [320,321]. Protonic zeolites are thus prepared at 100-200 °C, 

using cationic templates that are later decomposed, burnt off or washed off, leaving 

protons as the only balancing cationic species. With these techniques, the preparation of a 

number of new protonic zeolites with many different structures has also been obtained. 

With this method high silica zeolites and, in the absence of aluminum species, a number of 

purely siliceous zeolites have been prepared. From protonic zeolites, cationic zeolites are 

produced by cationic exchange.  

The addition of fluoride to the reactive gel led to more perfect and larger crystals of known 

molecular sieve structures as well as new structures and compositions. The fluoride ion 

also is reported to serve as a template (or SDA) in some cases. Fluoride addition extends 

the synthesis regime into the acidic pH region.  

The cheapest source of silicon is waterglass, i.e. an acqueous sodium silicate solution with 

small contamination of aluminum. Consequently, it cannot be used to prepare pure silica 

zeolites. To produce purely siliceous zeolites colloidal silica sols, fumed silicas, 

precipitated silicas as well as alkoxy-silanes  can be used as the Si source. They are more 
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expensive, and, at least for alkoxy silanes, toxicity concerns appear. As for the source of 

aluminum, Al salts or sodium aluminates are used. 

 

 

6.2. The bridging hydroxy- group.  

The strongly acidic hydroxy groups of zeolites  are well characterised by the presence, in 

the IR spectrum, of moderately sharp and strong bands in the region between 3650 and 

3500 cm-1  (Fig. 8) as well as by evident 1H MAS NMR peaks in the region 3.6 – 8.0 ppm  

[86]. With both techniques, it is possible to reveal the acidity of these groups [76]. In fact 

these spectroscopic signals disappear upon contact with bases like ammonia, pyridines, 

amines and phosphines, in parallel with the appearance of the features of the 

corresponding protonated bases. In the presence of weak basic probes (CO, nitriles) a 

significant perturbation of the spectral characteristics of these groups is evident too.  

Both IR and 1H MAS NMR spectra of zeolites distinguish very well from those of silicas 

(Figs. 2 and 8) and silica aluminas. This is shown, as an example, for the zeolite ferrierite 

H-FER as compared to the spectrum of a mesoporous silica-alumina (Al-MCM41) in Fig. 9 

[322].  

The position of the  IR band due to bridging OH’s is somehow dependent on the size of the 

zeolite cavities, OH being generally (but not really always) the lower the smaller the 

cavity. In particular, the OH stretching band position and width can be influenced by weak 

H-bondings through the cavities [323]. In the case of zeolites with more than one type of 

quite different cavities, splitting of the band of the bridging hydroxy groups can be 

observed. Some authors suggested that a correlation exists between OH stretching 

frequency and the Si-O(H)-Al bond angle [324]. As for  1H MAS NMR peaks of protonic 

zeolites, the trend among different studies is for increased chemical shift  corresponding to 

an increase in the intrinsic acid strength [325], i.e., protons are more de-shielded in 

zeolites perceived to be more acidic. On the other hand, the peak position is also sensitive 

to location: peaks at  3.6–4.3 ppm are due to bridging OH groups in large cages and 

channels; peaks at 4.6–5.2 ppm to bridging OH groups in small cages of zeolites, while 

those at 5.2–8.0 ppm are associated to disturbed bridging OH groups interacting with 

framework oxygen [86]. Parallel 1H NMR and IR studies show that the IR extintion 

coefficient of the zeolite’s bridging OH’s is far higher than for silanol groups, and this 

allowed  Kazansky et al. [326]  to propose to use the intensity of the IR band to determine 

the surface acid strength. 
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Interestingly, bridging OH’s are only detected in the interior of the zeolitic cavities, being 

the corresponding spectroscopic features (both IR and NMR) absent in any non zeolitic 

material based on silica and alumina [83,327,328] and also on the external surfaces of 

different zeolites.  Thus, the existence of the bridging hydroxy groups Al–(OH)–Si  should 

imply the existence of the cavity. In other words, the cavities (or the microporous zeolitic 

framework) are possibly involved in the generation and/or stabilization of the bridging OH 

sites, as well as  in the strengthening of their acidity [83,329].  

Besides “zeolitic” bridging OH’s, additional OH groups are or may be observed in the case 

of H-zeolites. Terminal silanols similar to those of silica (OH at 37453 cm-1, 1H NMR 

signal at 1.2-2.2 ppm) have been found to be located at the external surface, while 

additional features (OH at ca. 3780 and 3675 cm-1, 1H NMR signal at 2.4–3.6 ppm) are 

usually attributed to OH’s on extra-framework (EF) alumina or silica-alumina matter. 

Finally, broad absorptions are also frequently detectable in Al-rich zeolites at lower 

frequencies (3500-3200 cm-1), likely due to strongly H-bonded OH’s in small cavities, such 

as Al-rich H-FER [330] and H-CHA with Si/Al atomic ratio of 2 [331], but also H-MFI and H-

MWW [10,80] in agreement with the theoretical work of Yan Li et al. [332].    

 

6.3. On the poor stability and strong Brønsted acidity of protonic sites of H-zeolites. 

All data confirm that the Brønsted acidity of protonic zeolites is due to the bridging OH 

groups. The spectroscopic data agree suggesting that such acidic protons are actually 

linked (in the dry zeolite) through an essentially covalent bond to oxygen atoms bridging 

between a silicon and an aluminum atom. These sites can thus be considered as 

“perturbed silanol groups”, where an oxygen lone pair interacts with the nearest Al cation 

through a Lewis base acid bond. This Lewis acid-base interaction is certainly “favored” 

thermodynamically and “exothermic”. However, all available data indicate that the basicity 

of the silanol group, i.e. the availability of the electron lone pairs at oxygen, is extremely 

weak. Thus this interaction is weak, and definitely weaker as compared to the interaction 

of the dissociated silanol with Al3+ as it occurs in aluminosilicates.  

The poor stability of bridging OH’s in alumina-rich environments is also somehow 

demonstrated by the easy de-alumination of Al-rich zeolites in the protonic form, such as 

e.g. H-X and H-LTA, in contrast to the strong stability of both Al-rich alkali-zeolites (like Na-

X and Na-LTA) and of the highly siliceous protonic zeolites, as USY, and silicalites too. It 

can be supposed that the stabilization of the bridging OH’s is associated to the existence 

of the quite rigid and highly covalent silica-based zeolite crystalline framework, the more, 
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the more silica-rich the framework is. In contrast, the Al coordination in aluminates is 

flexible and variable, where coordination 6, 5 and 4 and, to some extent, even 3, are 

allowed, easily obtained and well characterized. Some weak interactions of the proton of 

bridging OH’s with the other oxygen atoms exposed on the zeolite cavities might also give 

a stabilizing contribution. Recently Otsuga et al. [333] reported on a temperature-

dependent behavior of acidic OH groups on zeolites: gradual shifts in the peak-top position 

to lower frequencies and decreases in integrated intensity  were observed by infrared 

spectroscopy, more pronounced in the order CHA < MFI < MOR. This behavior was 

attributed to the dissociation of OH groups to form IR inactive species at high 

temperatures, with proton migration in other positions.  

The substantial instability (poor stability) or the bridging silanol is certainly a factor favoring 

its intrinsic strong Brønsted acidity. Another reason for high acidity of protonic centers in 

zeolites is associated to the stabilization of the framework when the proton is lost and the 

silanol converts into a silicate species. The ionic interaction of silicate, a quite strong base, 

with the strongly Lewis acidic Al3+ ion, is quite strong, like it occurs in all aluminsilicates. 

On the other hand, the negative charge formally formed on the silicate’s oxygen upon 

proton jump may be somehow “delocalized” on the four nearly equivalent oxygen atoms 

surrounding the Al cation, as well as over the other siloxane’s oxygens by the already cited 

hyperconjugaton effect.  

A fourth powerful effect is related to the stabilization of the protonated base by the 

“tridimensional solvation” occurring in the zeolite cages by multiple Van der Waals 

interactions with the walls of the cavities, i.e. with the exposed siloxane bridges (Fig. 10). 

This differentiates microporous materials from normal porous or mesoporous surfaces, 

where these solvation effects are certainly less and, overall, weaker.  

Several papers report on the slightly stronger Brønsted acidity of silica-rich protonic 

zeolites with respect to alumina-rich protonic zeolites [334]. This can be explained by the 

delocalization of the negative charge of the dissociated species over Si-O-Si siloxane 

bonds due to the hyper-conjugation effect discussed above. This effect is more efficient 

the more polymerized the silicate species is. Thus, it can explain the slightly stronger 

acidity of low Al-content zeolites with respect to zeolites richer in Al, due to the larger 

“polysilicate” fragments existing in the former than in the latter.  This phenomenon, with the 

delocalization of the negative charge on the siloxane oxygens of the cavities, could also 

further strengthen the interactions of the cavity walls with the protonated base. 
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On the other hand, it must also be considered that the molecular traffic may be more 

hindered on zeolites richer in protons with respect to zeolites with less protons, due to the 

strong interaction of molecules with more adsorbing sites. This might result in lower 

catalytic activity even if the acidity is not weaker [335]. Additional effects due to the cavity 

shapes and sizes (with respect to the base molecular shape and size) may also play a role 

when the acidities and catalytic activities of different zeolites are compared, as discussed 

below. 

 

6.4. On the Lewis acidity of protonic zeolites 

Lewis acidity in protonic zeolite is due to available coordinatively unsaturated Al3+ ions, as 

shown by the adsorption of molecular probes. Studies using hindered probe molecules 

demonstrated that Lewis acid sites may occur at the external surface of  zeolites, where 

the “zeolitic” structure in some way vanishes [80,327]. Additionally, Lewis acidity frequently 

comes from “extraframework” matter, composed by alumina-like or silica-alumina-like 

debris. In fact, protonic zeolite catalysts may contain, as a result of the preparation, or of 

an intentional pretreatment, significant amounts of species external to the framework. 

Several zeolites are actually applied after treatments tending to increase their stability and 

also, in case, to further enhance surface acidity and shape selectivity effects. These 

treatments, like steam dealumination, can cause the decrease of the framework Al content 

and the release from the framework of aluminum-containing species [336] that may 

contribute in stabilizing the framework, but can also contain additional catalytically active 

acid sites. These particles can also narrow the size of the zeolite channels or of their 

mouths, thus improving the shape selectivity effects. Extraframework material is composed 

by very small particles mostly containing Al cations complexed by oxide ions and/or OH’s 

but sometimes also involving silicate species, being similar to silica-alumina debris [336], 

likely interacting with the framework walls, located in the cavities or on the external 

surface. As said, the presence of EF gives rise to the presence of strong additional bands 

in the IR OH stretching, usually above 3750 cm-1 and in the region  3730-3650 cm-1. These 

species are also responsible for 1H NMR peaks at -0.5- + 0.7  and 1.7-2.7 ppm  [86] and 

reveal medium-strong Brønsted acidity. Similarly, the detection of octahedral Al ions in 27Al 

NMR techniques is evidence of EF. EF species usually contain exposed Al ions acting as 

strong Lewis acid sites. 

Recently, it has been pointed out  the possible activity of framework Al ions as Lewis acid 

sites [337]. It seems likely that Al ions can behave as other cations do, in framework 
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positions in zeolites. This is the case e.g. of Ti4+ in Ti silicalite TS-1 [91] as well as of Sn4+ 

and other cations, that behave as Lewis acids when in substitutional positions in silicalites 

[338]. It is normally supposed that the access of basic molecules to the framework Al3+ 

ions does not occur mainly because it is hindered by, or competes with, the interaction of 

the base with the near proton.  Nevertheless, in complex pore zeolites it is possible that Al 

ions can interact with basic molecules when the proton is in position internal to another 

cavity. This is the case, e.g., of USY faujasite (Figs. 11 and 12), where it has been 

proposed [337] that framework Al ions can be active in adsorbing bases from the 

supercage when they are associated to protons located in the sodalite cavity or in the 

hexagonal prism. Tetrahedral framework Al ions can enlarge their coordination to five, 

without any dehydration, by reacting with a base from the other side with respect that 

where the acidic OH lays. This point has also been discussed on theoretical grounds by 

Busco et al. some years ago [339]. 

The data and our interpretations suggest that also extraframework material-free (or nearly 

free) high silica zeolites may display Lewis acidity and could act as Lewis acid catalysts, 

due to the activity of framework Al atoms. It has been reported, in particular, that the 

sample USY (30), an ultra-stable dealuminated Y faujasite, is an excellent catalyst for 

some fine chemistry reactions most typically catalyzed by homogenous Lewis acids [340].  

 

6.5. Cavity effects in catalysis on protonic zeolites. 

The relations between structural parameters and acid strength of hydroxy- groups of 

zeolites have been object of many discussions. Sastre, Niwa and coworkers concluded 

that a complex mixture of short- and long-range factors is at play [341].  Its seems quite 

established today that protonic zeolites have similar Brønsted acid strengths, with a 

relevant role of local geometric factors differentiating their behavior [342]. Experimental, as 

well as theoretical, data show that, besides the interactions of the functional groups of the 

reactive molecules with the zeolites Brønsted sites, the van der Waals interactions of other 

unreactive groups of atoms with the zeolite cavity walls may be very relevant and stabilize 

the intermediates. These interactions may vary significantly as a function of the type of the 

zeolite, the dimension and shape of the cavities as well as the Al and proton content and 

the presence of EF. Also, they depend on the size and shape of the molecule. These 

“confinement effects”  make the cavities of the single zeolite structures unique solvation 

and reactivity environments and play  relevant role in the catalysis by zeolites [343]. 

Different catalytic activities would predominantly reflect differences in the size and 
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solvating properties (confinement effect) of their cavities, rather than differences in acid 

strength [344,345]. As it is well known, shape selectivity is a key phenomenon making 

forbidden (or strongly inhibited) reactions involving transition states, intermediates and/or 

products whose size exceeds that of the catalyst cavities [346,347], thus somehow 

favouring competitive reactions. In contrast, confinement effects can directly favour 

reactions whose transition states match the cavity size and are stabilized by the cavity 

[335,348].  

An example of “positive” confinement effects is the easy formation of aromatics, such as 

benzene, toluene and styrene, and the relatively low coking rate occurring on medium-

pore zeolites such as H-MFI and LTL, from a number of reactants such as light paraffins 

and olefins, methanol, ethanol, vegetable oils, etc. This behaviour, differentiating medium 

pore zeolites from small pore zeolites and large pore zeolites, could be associated to the 

optimal size of the cavity for cyclization reactions but too small for extensive coking.  

 

7. Silica-aluminas. 

7.1. Preparations and applications of silica-alumina catalysts. 

Silica-alumina catalysts have been developed in the thirties, forties and fifties of the 20th 

century. A number of different preparations have been reported and are used, even 

industrially, to prepare “silica-alumina” materials. Most of them give rise to fully amorphous 

solids usually denoted as “amorphous silica-aluminas”, or ASAs, although in some cases 

(mainly when they are relatively Al-rich) they are not fully amorphous but contain some 

low-crystallinity -alumina phase. Among the many preparations [349,350] we can cite the 

following:  

1. Cogelling. It is basically performed by treating solutions containing both tetravalent 

silicon and trivalent aluminum at acidic pH (1-3) first (to produce a silica sol) and by 

adding a base to enhance pH to near 5-9, washing and drying [351]. These 

materials are characterized by a bulk density near 02-0.6 g/cm3. 

2. In recent years, a number of materials belonging to this system with relevant 

mesoporosity have been prepared and developed at the industrial level, using 

structure directing agents to develop porosity [352]. These materials are essentially 

amorphous SA with non-structural although sometimes ordered mesopores. The 

surface chemistry of these materials appears to be closely similar to that of 

amorphous microporous SAs. Among the best known, Al-MCM41 [353,354] and Al-

SBA [355,356]. 
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3. Coprecipitation. It is performed by treating solutions containing both tetravalent 

silicon and trivalent aluminum near neutral pH, washing and drying [357]. 

4. By the “oil drop method”, mixing an alumina sol and a silica sol and feeding the 

mixture on top of a forming tower filled with circulating hot oil. This method is 

reported to be used by UOP to produce spherical silica alumina supports for 

hydrocracking catalysts [358] 

5. Impregnation or grafting of silica gel by an aluminum precursor, drying and calcining 

[83,359,360,361].  

6. Grafting of silica precursors in sufficiently large amounts on alumina or boehmite,  

drying and calcining [362]. This is the case in particular of the Siralox family of 

Sasol (previously Condea), whose preparation and characterization has been 

reported in some detail [261].  

7. Flame hydrolysis of mixed chlorides. This is the procedure to produce catalyst 

carriers with small aluminum content, Aerosil MOX 80 and 170, produced by Evonik 

[363]. A similar procedure has been described by Huang et al. [364] and by  Gun’ko 

[365] to produce a set of acidic catalysts. 

8. As mixed aerogels, using hydrolysis and supercritical drying of mixed alkoxide 

solutions, followed by calcination [265,366].  

 

The most typical composition of early silica-alumina cracking catalysts is with a SiO2/Al2O3 

molar ratio 10–12 corresponding to a Si/Al ratio of 5-6, and an alumina content of 12–15 

wt.% [367,368]. This kind of materials is still commercialized today (as the Aldrich silica-

alumina catalyst support, grade 135 [369,370] and Grace silica-alumina Davicat catalyst 

[371]) and is applied, e.g. for treating Fischer Tropsch products [372]. According to several 

authors this composition leads to maximum acidity [373] in particular of the Brønsted type 

[374]. On the other hand, high alumina silica-alumina, with  near 30 %wt alumina have 

also been developed and used as cracking catalysts. Authors report that in this range 

maximum total acidity and cracking activity occur [375]. Both high-silica and high alumina 

catalysts are applied, depending on feed and reaction  conditions as supports for 

hydrocracking catalysts [376]: near 50% alumina silica-alumina are reported to be the  

best for NiMo sulphide catalysts [377,378], although also lower alumina content is reported 

(e.g. 14% Al2O3 the support of a NiW sulphide catalyst) [379]. Silica alumina seems to be 

also the choice supports of catalyst for mild hydrocracking of Fischer Tropsch waxes. In 

this case, the feed being sulphur-free, both supported noble metal catalysts (such as 
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Pt/Silica-alumina applied by Shell [380]) and sulphides (either NiMo or CoMo [381]) are 

applied. 

Silica-aluminas represent also useful supports for many other industrial catalysts. We can 

cite, e.g., Cr-based Phyllips-type olefin oligomerization catalysts [382], unreduced Ni-

based catalysts for olefin dimerization (NiO 50% by weight, Si:Al 20 6) [383,384], Pd 

catalysts the slurry catalytic hydrogenation of ethylanthraquinone in the manufacture of 

hydrogen peroxide [385], Ni-based catalysts for the front-end hydrogenation of C2 and C3 

acetylenics in steam cracked cuts [386,387],  Rh-based metathesis catalysts [388], etc.  

Amorphous silica aluminas, essentially Al-poor, find an important application as active 

matrices and binder in Fluid Catalytic Cracking Catalysts [151,389,390]. These materials 

provide porosity for improving diffusion of heavy molecules, additionally have sufficient 

catalytic activity to crack large molecules that cannot access zeolite cavities.  

 

7.2. On the structure of low Al content silica-aluminas. 

Low Al content silica-aluminas (alumina content of 12–15 wt.% corresponding to  a Si/Al 

ratio of 5-4) are generally fully amorphous. Thus, the XRD technique does not give any 

structural information. 27Al MAS NMR technique is largely applied to investigate their 

structure. This technique reveals the presence of tetrahedral Al ions (peak at 50–60 ppm), 

in these cases, with a virtual absence or a very small amount of octahedral Al ions (peaks 

in the range -10 - +5 ppm [364,391,392,393,394,395,396,397]), usually without significant 

detection of pentacoordinated Al, that become apparent at relatively high Al contents. 

Working with catalysts relatively rich in aluminum, Wang et al. [398] proposed recently that 

pentacoordinated aluminum can have a role in the generation of Brønsted acidity in ASAs. 

As discussed above for aluminas’ characterization, we must take into account that such a 

technique may fail in detecting very distorted low coordination species considered to be 

almost “silent” [216,217] in particular for amorphous aluminosilicates [396], being probably 

responsible for extremely broad bands. 

The 29Si MAS NMR spectra of low alumina ASAs show a main peak centered at −110/-100  

ppm similar to that found on silicas, denoted as Q4 (i.e. due to a Silicate tetrahedra 

bonded to four other silicate tetrahedra), that tends to shift to higher (less negative) ppm 

positions by increasing aluminum content. At very high Al content a peak appears at -80 

ppm attributed to tetrahedral Si surrounded by alumina [395,399]. XPS studies confirm the 

presence of two different Al species: in particular the Al2p signal was found split at 74.4 eV 

and 76.8 eV [400].  
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These data are usually interpreted as due to the substitution of Al3+ for Si4+ in the 

tetrahedral framework of amorphous silica. However, this substitution necessarily leads to 

a charge umbalance of this framework that must be compensated.  

We may mention that, in the case of protonic zeolites with similar composition, the 

presence of protons as compensating ions is well evident being associated to strong OH 

stretching bands in IR and also strong 1H MAS NMR signals due to the bridging silanol 

group (see  above). As already said, IR spectra show, in the case of some high-Al content 

zeolites, additional broad absorptions in the 3400-3300 cm-1 region, assumed to be 

associated to H-bonded H-bonded OH’s [80], whose protons may be not available for acid 

catalysis but that would also contribute in balancing the framework anionic charge. In the 

case of ASAs, neither IR (Fig. 13) nor 1H MAS NMR techniques not show evidence of 

compensating protons. 

 

7.3. Surface chemistry of low-Al-content ASAs. 

Starting from the very beginning [401], the catalytic activity for cracking reaction of silica-

aluminas was attributed to their acidity. In particular, it was found that both Lewis and 

Brønsted type acid sites are present on the surface [402,403,404,405].  

The presence of remarkable Brønsted acidity of SAs is deduced by the observed 

protonation of ammonia [406], pyridine [336,407,408,409], amines [410] and phosphines 

[411] also by the strong H-bonding which nitriles [412,413] and with CO [83,336] detected 

using IR spectroscopy [83,206,336,405,414,415], MAS NMR techniques [416], TPD [417] 

and calorimetric measurements [408], by the amine titration method [418] as well as 

deduced by its catalytic activity. This was originally taken with some surprise, because of 

the absence of Brønsted acidity apparent in the two pure compounds silica and alumina.  

The IR spectra of ASAs activated in vacuum always present a very sharp IR band near 

3747 cm-1 certainly due terminal silanols, spectroscopically very similar to those of pure 

silicas and of any silica-containing material. A tail towards lower frequencies is likely due 

(as on pure silica too) to H-bonded and geminal silanols. Several papers reported on the 

characterization of the acidity of terminal silanols and the complete absence of bands 

assignable to bridging OH’s [76,83,269,271,336,355,419,420,421]. 1H MAS NMR studies 

of silica-aluminas prepared with different techniques [392,421,422,423,424,425] usually 

show a single peak at  1.7 - 1.8 ppm assigned to terminal silanols as observed on pure 

siloicas, with a broader component located at variable positions between 2.5 and 3.8 ppm, 
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attributed to Al-OH’s. In contrast the typical bridging OH of zeolites resonates sharp above 

3.8 ppm, as cited above.  

Some papers emphasized the additional presence of very small bands near 3600 cm-1 in 

the spectra of mesoporous SAs [426-429], supposed to be due to bridging zeolite-type 

sites. Also theoretical works at least up to the end of nineties, modeled the active site for 

zeolites and SA in the same way, as Al-(OH)-Si bridging hydroxy groups. Accordingly, it 

was supposed that the active site for SA and protonic zeolites is the same (i.e. it is 

constituted by the bridging hydroxy groups bonded to a silicon and an aluminum atom) 

[430].  On the other hand, Busca [94] previously reported that the Brønsted acidic sites in 

ASA absorb at 3741 cm-1, while the sites which do not protonate pyridine absorb both at 

higher and lower frequencies (3746 and 3735 cm-1), all being necessarily terminal. 

Trombetta et al. [271,353] proposed that nearby Al ions can increase the Brønsted acidity 

of terminal silanols by bridging their dissociated form thus stabilizing it. Poduval et al. [431] 

reported data suggesting that bands typical of bridging OD’s might be evident in the 

spectra of deuterated silica alumina, but are masked on those of undeuterated samples.  

Garrone et al. [432] reported that small amounts of water adsorbed on mesoporous silica-

alumina produce a weak band at 3611 cm-1 together with another at 3697 cm-1 (symmetric 

and asymmetric OH stretchings) and that adsorbed water adsorbs CO showing significant 

protonic acidity. Blanchard et al. [371] more recently confirmed that the presence of some 

water in the line give rise to stronger adsorption of CO on silica-alumina. Sanchez 

Escribano et al [206] however, showed that water does not modifies the Brønsted acidity 

of ASA with respect to pyridine protonation, being thus an intrinsic property of this material. 

On the other hand, water vapour is reported to act as a poison for silica-alumina acid 

catalysts. Cairon [433] confirmed the previous data showing very strongly acidic terminal 

silanols on amorphous SA but emphasized the complexity of the corresponding 

absorptions.  

Bevilacqua et al [83] investigated the surface hydroxy groups and the surface acidity of 

silica, silicalite, mesoporous and microporous SAs, silicated aluminas, aluminated silicas 

and silicalite, and of some zeolites, by IR spectroscopy. CO, pyridine and lutidine have 

been used as molecular basic probes. The data suggest that bridging hydroxy group Si – 

OH – Al are fully stable structures only in the cavities of zeolites, where they produce the 

strong bands at 3630-3500 cm-1 well correlated with the framework Al content. Extremely 

small bands near 3610 cm-1 may be found on some SA samples only (mostly prepared in 

organic media) and on aluminated silicas after activation by outgassing, thus being not due 
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to adsorbed water. These bands certainly correspond to very few OH groups, and 

impurities (like bicarbonates) might contribute to their formation. It has been suggested 

that, in disordered mesoporous or microporous amorphous materials, zeolite-like pores 

may accidentally form and host zeolite-like bridging hydroxy- groups. The conclusion [83] 

was  that terminal silanols whose acidity is enhanced by nearby Al3+ Lewis acid sites 

represent the predominant Brønsted acid sites in non-zeolitic materials based on 

combinations of silica and alumina. Part of these sites may be located in the internal cavity 

of small pores, even having molecular (or zeolitic) size but, due to the flexibility of the 

amorphous structure, this does not change significantly their structure and acidity.  

This approach was considered and developed by Chizallet et al. [434,435] on the basis of 

theory and experiment. These authors confirmed the possible existence and strong acidity 

of pseudobridging OH’s formed by the interaction of a silanol groups with the fifth 

coordinative valency of tetrahedrally coordinated Al or Si atoms.  

Data from Hensen et al. [436] confirmed the existence of a small number (< 10 mol/g) of 

very strong Brønsted acid sites on silica-aluminas together with a second family of weaker 

Brønsted acid sites (50-250 mol/g), suggesting that they might arise from the interaction 

of silanol groups with strong Lewis acid sites. Huang et al. [364] observed the formation of 

very strong Brønsted sites on flame derived silica-alumina and concluded that they may be 

associated to silanols interacting with one tetracoordinated Al ion and a second 

pentacoordinated Al ion. More recently the same group reported evidence of 

pentacoordinate aluminum being involved in the Brønsted sites in ASA’s [398]. 

As observed since many years, strong Lewis acid sites also exist at the surface of low 

aluminum content ASAs. The spectrum of adsorbed pyridine is simpler on ASAs with 

respect to that observed on -Al2O3: In practice, one only strongly adsorbed species is 

found whose typical absorptions are similar but at little lower frequencies than those 

observed on aluminas. The 8a mode is found at 1622 cm-1 with respect to 1624 cm-1 

found on -Al2O3. The position of these bands is almost identical to those observed on 

zeolites and attributed to pyridine interacting with framework Al3+ [337]. According to these 

data, it seems likely that Lewis acidity of ASAs is essentially associated to similar Alions, 

which are already tetrahedral bonded in the silica framework and can expand their 

coordination to five by bonding a base.   

Studies show that ASAs do not display any relevant surface basicity and/or nucleophilicity. 

In particular, CO2 adsorption does not produce any carbonate or bicarbonate species, 
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occurring only through molecular adsorption on surface OH’s and on Lewis acid sites 

[206]. 

7.4.  On the structure of low-Al-content ASAs: the Al-stuffed silica model. 

It is clear that the fundamental structure of ASAs is a disordered tetrahedral network very 

similar to that of amorphous silica. In this framework, aluminum for silicon substitution 

occurs to a moderate extent. Charge compensation for the resulting negative charge does 

not come from protons. Thus, charge compensation can either be obtained by loss of 

oxide ions, producing e.g. tetrahedra triclusters as proposed to occur for glasses 

[300,301], or by additional presence of extra-framework aluminum cations.  

As discussed above, silica frameworks leave interstitial sites that can be occupied by 

balancing cations. This occurs with alkali and alkali hearth cations in the structures of the 

so-called “stuffed silicas”, where such ions occupy tetrahedral or octahedral sites in the 

structure of crystalline silica polymorphs (quartz, cristobalite, tridimite). Amorphous silicas 

are slightly less dense than crystalline polymorphs, thus their disordered structures 

certainly also contain similar interstices likely in higher amounts. On the other hand, the 

Al3+ ion is smaller in size than alkali and alkali earth ions. Thus, Al3+ ions can be located in 

similar interstices, either tetrahedral or octahedral, or even with coordination five. When 

located in tertrahedral interstices, these interstitial “extraframework” Al3+ ions are nearly 

indistinguishable from substitutional tetrahedral Al3+ ions. When in tetraherdral interstices, 

Al3+ will be located near five to eight framework tetrahedra, three of which can be 

occupied by Al3+ ions, the others by silicon. In practice, this would create some clusters of 

AlO4 tetrahedra in a framework that is mainly formed by SiO4 tetrahedra. Clustering of Al 

tetrahedra may justify the inhomogeneity of Al distribution in silica-aluminas observed by 

Sarbu and Delmon [437]. A typical composition of such low-alumina ASAs is Al2O3 15 

%wt, which corresponds to a Si/Al at. ratio near 4. A possible ideal composition is then 

Si16(AlF)3(AlEF)O38, where AF and AEF indicate framework tetrahedral Al3+ and 

“extraframework” compensating Al3+, respectively. This means that one “extraframework” 

compensating Al3+ ion is present every 19 tetrahedra at most, with respect to one 

monovalent alkali ion per two tetrahedra as it occurs in stuffed silica aluminosilicates. 

This model can justify an all-tetrahedral coordination for aluminum (when tetrahdedral 

interstices are occupied by Al3+), but also justifies the presence of aluminum ions in 

coordination 5 and 6 when it occupies larger interstices. This probably depends on 

preparation procedure and on the Si/Al ratio. The model proposed here also justifies the 
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possible preparation of acid catalyst by simple deposition of aluminum compounds over 

amorphous silica, producing materials that can be denoted as “aluminated silicas”. 

With this “stuffed amorphous silica” model for ASA, no alumina-like oxygen atoms exist, 

i.e. do not exist Al-O-Al groups in an alumina-like environment. This explains the lack of 

nucleophilic and/or basic sites on low alumina ASA, as found by CO2 adsorption [206], in 

contrast to the nucleophilicity of alumina’s surface hydroxyls and oxide species, and the 

acidobasicity of alumina catalysts. The Lewis acidity of ASAs is probably mostly due to 

framework Al ions, as proposed above, being the extraframework interstitial Al ions less in 

number and probably mostly not exposed at the surface. Nevertheless, it seems likely that 

interstitial Al ions can be located just below the surface and can accidentally be nearby a 

silanol group. The interaction of such Al3+ ion with the silanol group is weak, just because 

the basicity of the silanol’s oxygen is very weak and the structure is flexible, not forcing this 

interaction. However, when a base is available, the silanol’s proton can jump to protonate 

it and the nearby interstitial Al3+ can enlarge its coordination sphere to bridge the silanol 

anionic form (Fig. 14). This process can certainly strongly stabilize the system, allowing 

proton jump.  

This explains why ASAs show terminal silanols able to protonate pyridine, are more active 

than aluminas as Brønsted acid catalysts, but are less active than aluminas as Lewis 

acidic and/or acidobasic catalysts.  

 

7.5. Alumina-rich silica-alumina materials: solid state and surface chemistry. 

In agreement with these data, the “coprecipitation” and cogelling of significant amounts 

alumina (> 20%) with silica gives rise to materials quite refractory to crystallization with a 

large amount of pentacoordinated Al found by 27Al MAS NMR [392,438]. A similar situation 

occurs when aluminas are modified with large amounts of silicas, as in the preparation of 

the materials of the Siralox family. These materials tend to crystallize partially to spinel 

type alumina (-Al2O3 and -Al2O3 [439]). These materials are essentially biphasic being 

roughly constituted by mixtures of an amorphous phase (essentially an ASA phase) 

together with asilica-covered alumina phase. The balance of Lewis to Brønsted acid is 

shifted further towards Lewis acidity, due to the contribution of alumina Lewis acidity. 

However, the total acidity amount increases by increasing the alumina amount.   

 

8.Conclusions and future perspectives 
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The data reported above and the proposed interpretations allow us to give a somehow 

comprehensive picture of the surface and bulk chemistry of the materials belonging to the 

SiO2-Al2O3 system. The main key points are the covalency and rigidity of the SiO4 

tetrahedra and the ionicity the Al-O bonds and resulting elasticity of the coordination 

spheres around Al3+.  The Lewis acidity in the system is associated to the small size and 

moderately high charge of the Al3+ ion, resulting in its ability to modify its coordination and 

to strongly bond n-bases. On alumina, tri-coordinated Al3+ ions can form by dehydration 

although then can mask themselves upon surface reconstruction, enlarging their 

coordination sphere. These sites form tetrahedrally coordinated surface complexes when 

reacting with n-bases.   Similar tetrahedral complexes can form by substitution of surface 

OH’s. Forming these surface complexes Al3+ ions act as very strong Lewis sites. On silica-

aluminas as well as on zeolites both tetrahedral Al3+ ions substitutional for silicon in the 

silica-like framework, as well as “extraframework” and interstitial Al3+ ions contribute to 

Lewis acidity.  The Brønsted acidity in the system arises from the moderate acidity of the 

silanol group that may be strongly enhanced by the vicinity of Al3+ ions, mainly due to the 

stabilization by the Al3+ ions of the dissociated form of silanol (silicate anion). The rigidity of 

the silica-rich zeolite frameworks contribute to the formation of the bridging silanols (that 

are essentially an instable structure) thus generating very strong Brønsted acidity. In the 

more elastic amorphous surface of silica-aluminas these sites do not form, but bridging 

occurs only after deprotonation of terminal silanol groups in favorable positions near Al3+ 

ions. 

In any case, as it is evident from the above discussion, a number of points concerning 

materials based on silica and alumina in the catalysis and adsorption field still deserve 

deeper investigation. Among the points which provide room for better comprehension, we 

can cite the details of structural features and the location of active acid sites in amorphous 

materials as well as in aluminas and silica-alumina composites. In particular, defect sites 

located in edges and corners of the crystal surface or at surface vacancies should be 

modeled, more than sites located at surface planes. Cluster models should be more 

appropriate than periodic models. Also the nature of confinements effects in zeolite 

cavities should be better assessed.  

The development of more performant techniques is also desirable for investigating surface 

structural details in particular in real operating conditions (e.g. operando spectroscopies). 

The development of new zeolite materials, with very large pore or even with small pores is 

also under study, to tune zeolite structures for a number of particular applications. The 
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development and optimization of micro-meso-macro porosity as well as of complex poly-

modal porosity is also under development in recent years, to optimize catalysts and 

adsorbents from the point of view of diffusional effects.  

Concerning the application of the materials under study, it is evident that the optimization 

of catalytic materials for biomass and renewable matter conversion is strictly needed to 

develop, improve and optimize green and renewable chemical processes, to substitute 

processes based on fossil raw materials. Materials based on silica and alumina applicable 

to water-containing systems certainly have a great perspective e.g. in the field of 

depolymerization of natural polymeric species such as lignin and polysaccharides, as well 

as in the conversion of the resulting monomers into chemical intermediates and final 

products.  
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Table 1. Densities (specific gravity) of phases in the SiO2-Al2O3 system. 

Phase        Density g/cm3 

 

Corundum     -Al2O3   3.98 

-Al2O3        3.65 

Kyanite    Al2SiO5   3.61 

Sillimanite    Al2SiO5   3.24 

Mullite     Al4+2xSi2-2xO10-x  3.11-3.26 

Andalusite     Al2SiO5   3.15 

Low-quartz     SiO2    2.65 

(SiO2)1-x-(Al2O3)x glasses (x  25-60)    2.43-2.81 

High-quartz (> 573°C)   SiO2    2.53 

Low-cristobalite (< 200 - 270°C)  SiO2    2.32 

Low-tridymite    SiO2    2.26-2.27 

High-tridymite (> 200 - 450°C)  SiO2    2.22-2.26 

High-cristobalite (> 200 - 270°C)  SiO2    2.20 

Silica glass    SiO2    2.21 

Fumed amorphous silica  SiO2    2.20 

Precipitated silica   SiO2    1.9-2.1 

Stöber silica    SiO2    2.04-2.10 

Silicalite-1    SiO2    1.80 

Silica gel    SiO2    1.80-2.20 

Mesoporous silica   SiO2    1.60-2.20 
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Table 2. Some relevant industrial applications of amorphous silica as catalyst support. 

 

Reaction     Catalyst composition      Reaction conditions 

SO2 oxidation to SO3      5-10 % V2O5 / 10-25 % M2SO4 (M= K, Cs) /SiO2  380-500°C, 1-2 bar  [140] 

Propene ammoxidation to acrylonitrile  Bi, Fe, Cr, Ni, Co, Mg molybdates supported on silica  450°C, 1.5 bar [141] 

Hydrogenation of vegetable oils 

to margarine     22% Ni, 4% SiO2 dispersed in hydrogenated edible fats  180-230 °C, 2-6 bar [142] 

Acetylene hydrogenation reaction  

in VCM process      < 1% Pd/SiO2                                                                  25-100 °C,  20-35 bar [143] 

Various hydrogenations   Cu/SiO2, Ni/SiO2         [144, 145] 

Olefin oligomerization    50 % H3PO4/SiO2 (Kieselguhr)     50-200°C, 10-40 bar [144] 

Olefin metathesis     8% WO3/SiO2       250-400°C, 30 bar [147] 

Olefin sterospecific polymerization 1% CrII / SiO2 Phillips process     100 °C, 25 bar [148]
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Table 3. Crystal data of aluminum hydroxides, oxy-hydroxides and oxides.  

 

 

 

 

 

 

 

 

 

 

*Alternative models have been proposed 

Mineral 
name 

Formula  Space Group  Z  

Bayerite -Al(OH)3 P21/n 8 

Gibbsite -Al(OH)3 P21/n 8 

Nostrandite Al(OH)3 P1 4 

Doyleite Al(OH)3 P1or P1 2 

Diaspore -AlOOH Pbnm 4 

Boehmite -AlOOH P21/c or Cmc21 4 

Tohdite 5Al2O3 .H2O doubtful   

 -Al2O3 Fd3m * 10.66 

 -Al2O3 P4m2 * 16 

 -Al2O3 C2/m 4 

 -Al2O3 Fd3m 10.66 

 -Al2O3 Pna21  8 

 -Al2O3 doubtful  

Corundum -Al2O3 R3c 6 
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Table. 4 . industrial application of some acidic zeolites. 

 

 

 

  

Zeolite 
usual 
name 

IZA 
code 

Main cavities Reaction Phase Temp.  
Pressure 

 

Ferrierite H-FER 10 MR 4.2x5.4 
8 MR   3.5x4.8 
intersecting 

olefins 
isomerisation 
 

G 350 °C Lyondell – 
 CDTech 

ZSM-5 H-MFI 10 MR  5.3x5.6  
10 MR 5.1x5.5  
intersecting 

benzene alkylation 
to ethylbenzene 

G 390-450 °C  
15-20 bar. 

Mobil-
Badger  

toluene 
disproportionation 

G 420-480 °C,  
20-40 bar, 

 Mobil  

olefins 
oligomerization 

G 200-350 °C 
10-50 bar 

Mobil  
Lurgi 

beta H-BEA 12 MR 7.6x6.4 
12 MR 5.5x5.5 
intersecting 

benzene alkylation 
to cumene 

L 150-200 °C 
10-40 bar. 

UOP  
Polimeri 
Europa-
ENI  

mordenite H-MOR 12 MR 6.5x7.0 
8 MR  3.4x4.8 
side pokets 
 

benzene alkylation 
to cumene 

L 150-200 °C 
10-40 bar. 

Dow-
Kellogg  

C8 aromatics 
isomerizaton 

G 370-430°C 
7-15 bar 

 

alkane 
isomerization 

G 200 °C. 
15-30 bar 

Sud 
Chemie 
 

MCM-22 H-
MWW 

12 MR   
7.1 capped 
10 MR elliptical 

benzene alkylation 
to cumene and 
ethylbenzene 

L 150-200 °C 
10-40 bar. 

Mobil 
 

Faujasite H-FAU 
(HY) 

12 MR 7.4x7.4 
intersecting 

fluid catalytic 
cracking 

G 500-750 °C 
2 bar 

Grace, 
BASF 

isobutene alkylation L 40-90°C Akzo 
Nobel, 
Lurgi 
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Figure captions.  

Figure 1. Models for surface species in amorphous siolicas. 

Figure 2. FT-IR spectra of silica gel (A) and fumed silica (B) after outgassing at 300 K (a), 

473 K (b), 673 K (c), 873 K (d). In the inset: the two samples outgassed at 873 K, 

enlarged. 

Figure 3. Model for ammonia adsorption on silica. 

Figure 4. Most common evolution paths for phase transformations of aluminum hydroxides 

and oxides upon heat treatment in the preparation of catalytic materials 

Figure 5.Model for strongest Lewis acid sites on gamma-alumina. A: cutting of the spinel-

type structure along 111 plane. B: model for surface reconstruction. C: Top view of the 

site.  

Figure 6. Phase diagram for the SiO2-Al2O3 system, reprinted with permission from Ref. 

[275]. 

Figure 7. Coordination of interstitial ions in stuffed silica compounds: Mg2+ -quartz 

framework of Mg0.5AlSiO4 and Li+ in the ß-quartz framework of  LiAlSiO4 (-eucryptite). 

reprinted with permission from Ref.[291]. 

Figure 8. IR spectra of the surface hydroxy- groups of protonic zeolites and other materials 

belonging to the SiO2-Al2O3 system 

Figure 9.  IR spectra and 1H MAS NMR spectra of H-FER zeolite and Al-containing MCM-

41 mesoporous silica-alumina. NMR spectra are reprinted with  perfmission from Ref. 

[322]. 

Figure 10. Model for pyridine adsorption on protonic zeolites. 

Figure 11. Structure of faujasite with location of the different tetrahedral crystallographic 

positions.  

Figure 12. Model for pyridine adsorption on Brønsted sites of H-USY when the proton is 

located in the small cavities (sodalite cage or hexagonal prism) and pyridine adsorbs from 

the supercage (left), or when both proton and pyridine are located in the supercage (in the 

middle).  

Figure 13. Skeletal IR spectra of silica, amorphous silica-alumina and gamma alumina. 

Figure 14. Model for ammonia protonation on silica-alumina.  
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