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Abstract

This work discusses and empirically investigates the relationship between labor

regulation and robotization. In particular, the empirical analysis focuses on the

relationship between the discipline of workers’ dismissal and the adoption of indus-

trial robots in nineteen Western countries over the 2006–2016 period. We find that

high levels of statutory employment protection have been negatively associated with

robot adoption, suggesting that labor-friendly national legislations, by increasing

adjustment costs (such as firing costs), and thus making investment riskier, provide

less favorable environments for firms to invest in industrial robots. We also find,

however, that the correlation is positively mediated by the sectoral levels of capital

intensity, a hint that firms do resort to industrial robots as potential substitutes for

workers to reduce employees’ bargaining power and to limit their hold-up opportu-

nities, which tend to be larger in sectors characterized by high levels of operating

leverage.
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1 Introduction

Even though the presence of industrial robots in production lines dates back at least forty

years, the increase in their rate of adoption observed in recent years is unprecedented.

In fact, according to the International Federation of Robotics (IFR), while the stock of

industrial robots operating worldwide roughly doubled between 1993 and 2011, it took

less than seven years to double again and, since 2014, it has registered an impressive

two-digit annual growth. Such an increase in the pace of robotization, combined with the

concurrent and equally rapid diffusion of other automation technologies, has contributed

to a resurfacing of the long-standing debate on technological unemployment and, along

with it, the concerns regarding the disruptive social consequences associated with labor

displacement (Autor and Dorn, 2013; Brynjolfsson and McAfee, 2014; Baldwin, 2019).1

In particular, after a seminal study by Frey and Osborne (2017) dismally concluded

that a substantial share of the jobs currently available in the US are at risk of being

automated within the next few decades (a projection that has been partially toned down

by an ensuing analysis by Nedelkoska and Quintini, 2018), several works have studied

how automation affects labor market dynamics, producing mixed findings (Graetz and

Michaels, 2018; Acemoglu and Restrepo, 2020; Guo, 2022; McGuinness et al., 2022).2

By mainly focusing on the consequences of robotization and automation, however, most

of the economic research conducted so far has paid little attention to the drivers and

determinants of robot adoption, which could contribute to explaining the great amount

of heterogeneity concealed behind the aggregate figures (e.g., Figure 1 visually shows the

apparent lack of correlation between robot adoption and economic growth). Indeed, while

technological progress has been central to the rise of robots, a limited understanding of

the factors that determine why countries and industries follow trajectories that are so

remarkably different in terms of robot adoption remains an important gap in the literature

and, more importantly, poses substantial limitations to the policy debate about the most

appropriate strategies to address the challenges and seize the opportunities associated

with the ongoing automation revolution (Brynjolfsson and McAfee, 2014; Baldwin, 2019;

1Since David Ricardo’s chapter “On Machinery” (Ricardo, 1891), there has been a lively discussion
among economists about the potential displacement of labor by machines. On the one hand, according
to Say’s law, technological unemployment is not permanent because, if technological progress reduces the
prices of commodities, it will also increase their demand. This, in turn, will translate into an increase
in labor demand (cf. Neisser, 1942). On the other hand, others have been arguing that there is no
rigid association between consumer’s demand and employment because “Demand for commodities is
not demand for labor” (Mill, 1870, vol. 1, p. 5, para. 9). The different micro–macro effects of the
relationship between technological change and labor market equilibria have been described by Autor and
Salomons (2018).

2A comprehensive overview of the main empirical evidence on the relationship between robot adoption
and employment, in terms of number of employees, required tasks and inequality has been provided by
Barbieri et al. (2020) and, within a meta-analytical setting, by Mondolo (2022).
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Naudé, 2021). Recently, attention has been paid to the firm level determinants of robot

adoption, either looking at the relationship with past performance and available skills

(Koch et al., 2021), or considering the pattern of labor-saving robotic patents (Montobbio

et al., 2020). Still, with a few exceptions (e.g., Cséfalvay and Gkotsis, 2020), less attention

was given to the observed high country heterogeneity

In this paper, we attempt to shed some light on the determinants of robot adoption

by studying and discussing the relationship between robotization and labor market in-

stitutions from a cross-country/cross-industry perspective. More precisely, focusing on

nineteen high- and middle-income countries over the 2006–2016 period, we study whether

and to what extent the interplay between legal labor protections and the idiosyncratic

characteristics of different industries can explain the substantial cross-country and cross-

industry variability observed in the patterns of robot adoption. In doing so, we pay

particular attention to dismissal laws, which represent the single most important piece of

legislation affecting labor flexibility and whose effects have been extensively studied and

discussed in the literature (e.g., Lazear, 1990; Autor et al., 2006; Bird and Knopf, 2009;

Acharya et al., 2014; Alesina et al., 2018). Moreover, we also explore the relationship

between robotization and other dimensions of labor regulation, such as the discipline of

fixed-term contracts and industrial action that, as suggested by a consolidated litera-

ture, could influence the labor market structure and have a meaningful impact on several

economic outcomes (e.g., Botero et al., 2004; Kahn, 2007; Acharya et al., 2013).

From a theoretical perspective, labor market regulations can influence robot adoption

via two main channels. The first one is related to the overall effect of labor laws on firms’

propensity to invest, while the second one hinges on the actual degree of substitutability

between robots and labor. As for the first channel, high levels of statutory employment

protection increase adjustment costs and make firms more vulnerable to negative shocks,

thus eroding the incentives to invest and to adopt innovative technologies (Parente and

Prescott, 1994; Banker et al., 2013; Bartelsman et al., 2016; Serfling, 2016; Calcagnini

et al., 2018). Therefore, and especially where the rule of law is effective (Caballero

et al., 2013), labor-friendly regulations can contribute to delay robot adoption. As for

the second, to the extent that robots can in fact substitute flexible human labor, laws

that guarantee a high degree of employment protection may provide an incentive for

investing in robots, since this would represent a viable strategy for a firm to cope with a

rigid labor market environment. This can be particularly relevant in the case of capital-

intensive industries, since a high level of investment in traditional capital goods increases

— ceteris paribus — workers’ hold-up opportunities and bargaining power (Card et al.,

2014), whereas the gains from substituting labor are lower in a flexible labor market. It

is not obvious, however, how much the current robot technology is able to provide worthy
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replacements for human workers.3

Other factors, however, can play a role. First, high levels of labor protection can

spur both employees and employers to make complementary investments in human and

physical capital, potentially resulting in technological lock-ins that can increase the costs

of adopting robots (Milgrom and Roberts, 1990; Aoki, 2001; Antonelli, 2012). Second,

to complicate things further, unions can push for robot adoption to increase the safety

of the working environment and to ease the physical effort on the part of employees (for

the case of blue-collar workers, see Gihleb et al., 2020; Belloc et al., 2020; Caselli et al.,

2021b;a). However, if robots displace unskilled and routinary occupations, the increased

productivity gap between skilled and unskilled workers may undermine their coalition,

reduce the level of unionization, and increase the costs of coordination of workers’ action

(Iversen and Soskice, 2020). In such cases, unions may end up opposing robot adoption.

It follows that, as thoroughly discussed in the ensuing sections of the paper, the likely

presence of contrasting dynamics makes it difficult to predict the sign of the relationship

between labor regulation and robot adoption.

The results of our analysis indicate that labor regulation significantly correlates with

the dynamics of robot adoption. In particular, we find that dismissal laws providing a high

degree of protection to employees are overall negatively correlated with robot adoption.

We also find, however, that they positively and significantly interact with the sectoral

level of capital intensity. In other words, all else being equal, robotization has been more

pronounced in the capital-intensive sectors of countries characterized by a labor-friendly

legislation on dismissal. Hence, while not conclusive, our results are consistent with the

idea that, by increasing hold-up opportunities for workers, labor regulations that provide

high levels of employment protection produce two effects. On the one hand, by raising

adjustment costs, high levels of statutory protection make firms more vulnerable to ad-

verse economic shocks and therefore disincentivize overall investment. On the other hand,

to the extent that robots do not behave opportunistically and can substitute labor in an

increasing number of tasks, tight labor regulations foster robotization in capital-intensive

sectors, that is where the risk of hold-up is higher. As thoroughly discussed in the paper,

these two seemingly opposite effects of labor laws highlight the dual nature of robots,

which are both physical capital, and therefore negatively affected by adjustment costs

(such as firing costs), and substitutes for labor, and so positively influenced by protective

labor legislations. Importantly, our interpretation is reinforced by the fact that, after dis-

3Tesla’s recent story is a real-world instructive example. After months of unsuccessful attempts to
scale up production of the Tesla Model 3 through automation, Elon Musk tweeted: “Yes, excessive
automation at Tesla was a mistake. To be precise, my mistake. Humans are underrated.” Installing and
adapting robots to the various tasks turned out to be harder than expected, pushing the company to
meet its demand backlog by hiring thousands of workers (Korosec, 2018, from Fortune).
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aggregating legislation on workers’ dismissal on the basis of its different dimensions, we

find that the results hold only if we consider regulations that pose “substantive” rather

than simply “procedural” constraints to dismissal.

The remainder of the paper is organized as follows. In Section 2, we further discuss

the mechanisms through which labor regulation may affect robot adoption and outline

the hypotheses on which the empirical investigation relies. In Section 3, we illustrate the

data and the empirical strategy, while the results are presented and discussed in Section

4. Section 5 concludes.

2 Labor Regulation and Determinants of Robot Adoption

Our work mainly relates to three strands of the literature. First, it directly contributes

to the still limited literature on the drivers and determinants of robot adoption and,

in particular, to those studies that look at the topic from an institutional perspective.

Conditions affecting robot adoption have been examined at different levels: firm, indus-

try and country. At the firm level, Koch et al. (2021) have shown that firms that are

better performing, less skill intensive and exporters are more likely to adopt robots. At

the industry level, Montobbio et al. (2020) have examined the patterns of patenting in

labour saving automation and robotics. They showed that patenting is driven by the

position of the sector of origin in the vertical chain and that downstream segments, like

the shipping and delivery industry, originate a large share of labour saving automation

patents, together with medical and health activities. In a paper that challenged some

popular beliefs regarding the disruptive nature of the current wave of robotization in the

manufacturing sector, Fernández-Maćıas et al. (2021) highlighted that robot adoption

seems to be driven by technological regimes and the routine intensity of different sectors.

Finally, the institutional perspective focuses on country level heterogeneity. For example,

Fornino and Manera (2021) showed that, under the assumptions of perfect factor substi-

tutability and that hiring and dismissing workers is quicker and less costly than buying

and selling robots, labor and robots can coexist only to the extent in which labor regula-

tions do not excessively reduce the flexibility of labor. In fact, according to the authors,

occupational flexibility represents a key comparative advantage of labor over robots. In

another paper, Belloc et al. (2020) used cross-country firm-level data from the European

Company Survey to study the relationship between the presence of employee representa-

tion and the adoption of automation technologies, finding a positive association between

the two. According to their interpretation, the presence of workers’ representative bod-

ies favours the introduction of technologies that are complementary to labor and whose

adoption requires a “skill-improving” redesign of the job. The effect of labour regulation
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on technology adoption has been extensively examined by (Alesina et al., 2018, p.41),

who showed that “labor regulation biases technology towards low skill sectors, while la-

bor deregulation biases technology towards high skill sectors”. Apart from labour market

regulation, other country effects may be relevant. Countries can differ in their education

systems (Arntz et al., 2016; Nedelkoska and Quintini, 2018). In a recent paper, Ace-

moglu and Restrepo (2022) employed cross-country and US labor markets data to show

that demographic changes associated with the ageing of the workforce are likely to be

a relevant determinant of robot adoption. In particular, they argued that, among other

reasons, firms adopt industrial robots to make up for the relative scarcity of middle-aged

workers.

Second, we draw on the literature on the hold-up problem (Williamson, 1985; Hart,

1995), which has provided contrasting insights on how the risks of opportunistic behav-

iors by either workers or firms may influence robot adoption. Indeed, depending on the

perspective from which one looks at robots, the risk of hold-up could either foster or

hinder investment in automation and robots. On the one hand, if robots are simply

considered to be another form of capital investment, the literature seems to suggest a

negative relationship between high levels of statutory employment protection, which in-

creases firms’ exposure to employees’ hold-up risk, and robot adoption. In fact, given

the unknown unknowns that characterize new investments, the difficulties in describing

innovative activities ex ante make contracts susceptible to ex post renegotiation (Aghion

and Tirole, 1994). Under incomplete contracting, employers’ quasi-rents are vulnerable

to capture by workers in the form of higher wages and better conditions of employment,

thereby reducing incentives to invest. For example, Grout (1984) showed that in a setting

in which firms make their investment decisions before wage negotiations take place, a pos-

itive shock on workers’ bargaining power increases the quasi-rents they receive without

paying any capital cost. Anticipating this, firms decide to invest less. Similarly, Van der

Ploeg (1987) showed that workers have an incentive to announce the intention of ask-

ing for low wages in the future, because this encourages present investment in capital.

However, once the “machines” are installed – namely, once the firm has committed itself

to specific investments – workers have an incentive to shirk their commitments. Hence,

in the absence of complete contracts that can eliminate hold-up risks, firms will reduce

investment in capital. As a result, labor-friendly regulations will negatively influence the

desired capital stock, and hence the rate of investment. On the other hand, robots can

substitute human labor in a widening range of tasks, whose accomplishment would not

anymore be subject to the opportunistic behaviour of humans. Tight labor laws will

then provide incentives for firms to invest in robots to substitute labor, thus mitigating

hold-up risks.
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Third, our analysis intersects the vast literature that investigates how labor regula-

tions affect economic outcomes. For example, by studying the economic consequences of

wrongful-discharge laws over a two-decade span, Autor (2003) and Autor et al. (2006)

concluded that these have reduced local employment by up to 1.7 percentage points and

significantly contributed to the outsourcing of US jobs. On the other hand, Acharya et al.

(2013; 2014) theoretically discussed and empirically investigated whether stringent labor

laws create ex-ante incentives for firms and workers to undertake risky but long-term

rewarding activities that spur innovation. In particular, the underlying idea is that, in

the presence of high levels of employment protection, firms will reduce the penalties for

workers’ short-term failures and employees will be more committed to pursue innovation

because they perceive a lower risk of firms’ hold-up. A previous study by Autor et al.

(2007) highlighted that while economic theory predicts that dismissal protection will re-

duce overall allocative efficiency, it is inconclusive about its effects on technical efficiency.

By using US firm-level data and exploiting changes in labor regulation at the state-level,

they found suggestive evidence of a decline in total factor productivity. They also found,

however, that the protection guaranteed by dismissal laws is positively correlated with

capital deepening.

Beside the aforementioned literature, other arguments have been advanced to support

either a positive or negative relationship between robot adoption and the institutions

that regulate the labor market. As a first example, robots can contribute to making

the workplace safer and reducing the physical effort of workers (Gihleb et al., 2020)

and, therefore, there may be circumstances in which employees use their bargaining

power — which is influenced by labor laws — to push for robot adoption (Belloc et al.,

2020). In this regard, Acemoglu and Restrepo (2022) found that higher unionization is

associated with higher robot adoption. Conversely, unions may obstruct the introduction

of robots if they perceive that the machines can undermine workers’ coalition.4 A second

argument relates to the complementary investments in human and physical capital made

by workers and firms, which tend to be incentivized by the presence of stringent labor

regulations and may increase the switching costs associated with the introduction of

robots in the production process. In fact, as studied for the general case of games with

strategic complementarities, moving to a different equilibrium requires changes (Aoki,

2001) that “are not a matter of small adjustments made independently at each of several

margins, but rather have involved substantial and closely co-ordinated changes in a whole

4By widening the gap between different groups of workers (e.g., unskilled and routinary vs. skilled
and non-routinary), robots may increase coordination costs among workers of unionized sectors (Iversen
and Soskice, 2019). More generally, unions and workers will be more likely to oppose robotization when
the introduction of robots displaces labor without producing an appreciable impact on productivity (as
in the case of the “so-so technologies” discussed by Acemoglu and Restrepo, 2019).
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range of firm activities. Even though these changes are implemented over time, perhaps

beginning with ‘islands of automation’ the full benefits are achieved only by an ultimately

radical restructuring” (Milgrom and Roberts, 1990, p.513). If strong labor regulation

and representative bodies favored complementary investments by firms and employees

in the past, this would drive to path-dependent and localized technological change that

locks firms into inferior technologies, relenting the establishment of the mind-and-machine

combinations that, according to McAfee and Brynjolfsson (2017), characterize the new

assembly line.

From the previous discussion, it clearly emerges how statutory employment protection

can produce ambiguous effects on firms’ incentives. In fact, among the several contrast-

ing effects envisaged in the literature, it is hard to predict which ones (if any) are going

to prevail. As a consequence, we approached the empirical investigation without hav-

ing a strong prior regarding the overall relationship between labor regulation and robot

adoption. However, despite the uncertainty regarding the overall direction of the relation-

ship, the theory clearly predicts that, ceteris paribus, hold-up risks will always provide

incentives to firms for substituting labour with flexible machines. Therefore, under the

assumption that, all other things being equal, the risk of hold-up is higher in capital

intensive industries, we derive the following testable hypothesis:

• H1: The interaction between the level of protection guaranteed by labor regulation

and the level sectoral capital intensity positively predicts robot adoption.

Anticipating the results, we find evidence that are consistent with this hypothesis. At the

same time, however, we also find that the overall relationship between tight regulations

and robot adoption tends to be negative, suggesting that the intention of overcoming

labor market rigidities has not been – so far, at least – the main driver of robot adoption.

3 Empirical Strategy

3.1 Data

The empirical analysis is based on a multi-level longitudinal dataset that integrates in-

formation from various sources, which are presented in this section. Overall, the dataset

combines country-level information on different dimensions of labor regulation and coun-

try macroeconomic characteristics (e.g., GDP, population, etc.) with information, at the

country–industry level, on the stock of robots, employment, and other variables related

to the sectoral business structure (e.g., the overall stock of capital, amount of sales and

wages, etc.). The final dataset includes nineteen countries (eighteen European countries
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and the United States) and eight non-service sectors, even though the information is

missing for some country–industry pairs.5

Country-level information on labor regulation has been retrieved from the Labor Reg-

ulation Index database (LRI), which is made available by the Centre for Business Research

of the University of Cambridge (Deakin et al., 2007; Adams et al., 2016). The LRI dataset

provides information on labor laws for more than one hundred countries over the span

of almost five decades. In particular, the database provides forty different time-varying

scores for different dimensions of labor regulation that encompass five broad areas: (a)

laws that define employment relationships and different forms of employment, (b) laws

that regulate working time, (c) laws that regulate workers’ dismissal, (d) laws on em-

ployee representation, and (e) laws regulating collective action. Each score takes a value

between 0 and 1, with high values indicating that labor laws guarantee workers a high

degree of protection on the particular dimension associated with the score. For example,

referring to the year 2006, the score associated with the dimension “C20 - Law imposes

substantive constraints on dismissal” takes a value of 1 for France, a value of 0.5 for the

United Kingdom, and a value of 0 for the United States. In the period considered by the

analysis, the scores present a substantial level of between-country variability but a very

low level of within variability (i.e., about 3% of the total variance).

The LRI dataset comprehensively captures all country-level changes in labor laws over

a long span of time and offers two main advantages. First, the distinction of labor laws’

provisions into different subject areas allows us to assess the relationship between robot

adoption and different dimensions of employment protection. Second, the index takes

into account not only formal laws (including court judgments) but also self-regulatory

mechanisms, which makes it particularly comprehensive with respect to the range of rules

analyzed. For example, in certain legal systems, collective bargaining agreements, which

do not constitute formal law, play a role that is functionally similar to formally enacted

laws.6

5The countries included in the analysis are: Austria, Belgium, Bulgaria, the Czech Republic, Den-
mark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Portugal, Romania, the Slovak
Republic, Spain, Sweden, the United Kingdom, the United States. The ISIC rev.4 sectors included in
the analysis are: Agriculture, forestry and fishing (1–3), and Mining and quarrying (5–9); Manufac-
ture of food products, beverages, and tobacco products (10–12); Manufacture of textiles, apparel, and
leather products (13–15); Manufacture of wood products (ex. furniture), paper, and the printing and
reproduction of recorded media (16–18); Manufacture of coke and refined petroleum products, chemi-
cals, pharmaceuticals, rubber and plastic products, and other non-metallic mineral products (19–23);
Manufacture of basic metals, and metal products (24–28); Manufacture of motor vehicles, trailers, and
transport equipment (29–30); Water supply, sewerage, waste management, and remediation activities
(36–39).

6Among other measures and benchmarks of labor regulation, the OECD Indicators of Employment
Protection (IEP) is one of the most widely used. The OECD’s methodology, however, has changed over
time, moving from a reliance on surveys completed by governments to using firm-level surveys supple-
mented by secondary sources. In particular, an increased use of primary sources (including collective
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Data on industrial robots have been purchased from the International Federation

of Robotics (IFR), which provides information on the stock and shipment of industrial

robots for more than 70 countries going back to 1993. Stock and shipment of robots are

expressed in quantities (number of robots) rather than values, and they can be disag-

gregated up to the three-digit level of the ISIC rev.4 industry classification. For most of

the countries, however, two-digit industry-level data have only been consistently reported

since 2004/05, after the IFR undertook a revision of its classification procedures to im-

prove the quality and the international comparability of the data. Omitting pre-2006 data

(or pre-2005, as in de Vries et al., 2020) is a practice common also to studies aimed at

gathering evidence on the effects of automation on employment, which is justified by the

increased number of applications of robots that followed the integration of automation

with Artificial Intelligence that is commonly dated from the second half of the decade

2000 (Barbieri et al., 2020).

Country–industry data on employment and capital stocks have been retrieved from

EU KLEMS (release 2019). The EU KLEMS database, which is managed by the Vienna

Institute for International Economic Studies, provides measures of economic growth, pro-

ductivity, employment, capital formation, and technological change at up to the two-digit

ISIC rev.4 industry level for the 27 countries of the European Union, as well as for Japan,

the United Kingdom, and the United States.

Finally, other country-level control variables, such as GDP, share of the labor force

with advanced education, share of the workers employed in the manufacturing sector, and

total fertility rate, have been retrieved from World Bank’s World Development Indicators

(WDI).

3.2 Econometric Model

We study the relationship between robot adoption and labor regulation by estimating

different variants of an empirical model in which the ten-year change in robot density at

the country–industry level is a function of the interaction between the level of protection

guaranteed by countries’ labor laws and sectoral capital intensity. In order to reduce

the concerns associated with their endogeneity, capital intensity and labor protection

are both measured at the beginning of the period. Besides the baseline specification,

we also estimate augmented versions of the model, which include country-level lagged

agreements) – that we believe is crucial for the purposes of the present analysis – started with relatively
recent IEP Version 4, that is available only from 2013 onwards (for an overview of changes and limits
of the OECD index, see Adams and Deakin, 2015). Moreover, the IEP scores captures only four dimen-
sions (against the forty dimensions of the LRI) and would not allow to make a distinction, for instance,
between substantive and procedural constraints to dismissal. Finally, the sample of countries in the IEP
is smaller and does not contain data for Bulgaria and Romania.
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controls that are likely to influence the pattern of robot adoption, and two series of

fixed effects meant to control for the heterogeneity stemming from trends associated with

specific industries and/or to factors related to countries’ formal institutions, which we

proxy using the legal origin of their judicial systems. For example, since advancements in

robotics are unlikely to be homogeneous across robot applications, it is possible that the

differences in the pace of robot adoption between industries that make use of different

types of robots can be fully explained on the basis of exogenous technological dynamics.

The inclusion of industry fixed effects is meant to mitigate this potential source of bias.

On the other hand, as discussed for example by La Porta et al. (2008), legal origins

correlate with a number of formal judicial institutions that, in turn, tend to be associated

with different economic outcomes, including level of investment and responsiveness to

growth opportunities. Hence, the inclusion of legal origin fixed effects can help identify

the relationship between robot adoption and labor regulation by isolating it from other

confounding factors associated with countries’ overall judicial institutions.7

We measure robot adoption, our dependent variable, as the ten-year change in the

country–industry level of robot density, which is the number of robots per worker (RpW)

calculated on the basis of the sectoral employment levels of year 2006. A ten-year interval,

in fact, seems a reasonable span of time to study the relationship between labor regulation

and robot adoption, in particular after considering the level of resolution allowed by

the available data, the longitudinal persistence of the level of employment protection

guaranteed by national labor laws, and the length of the time intervals used in the

reference literature.8 However, as further discussed in Section 4.3, we also explore the

relationship between labor regulation and robot adoption using two five-years intervals.

In formal terms, robot adoption is defined by the formula

∆RpW c,i =
Rc,s,2016 −Rc,s,2006

Lc,s,2006

(1)

in which Rc,s,2006 and Rc,s,2016 are the IFR stock of robots operating in the industry i

of country c in years 2006 and 2016, while Lc,s,2006 represents the number of workers

employed in the same country–industry pair in year 2006. We use sectoral employment

at the beginning of the period because it needs to be exogenous with respect to the

installation of new robots.

The full specification of the empirical model, therefore, is described by the following

7Following La Porta et al. (2008), we group countries according to five different legal origins: English
(United Kingdom, United States), French (Belgium, France, Greece, Italy, Netherlands, Portugal, Spain),
German (Austria, Germany), Scandinavian (Denmark, Finland, Sweden), and Socialist (Bulgaria, Czech
Republic, Hungary, Romania, Slovakia).

8For example, Acemoglu and Restrepo (2022) focus their analysis on a twenty-year period.
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equation

∆RpWc,s = α+β1LRIc,t0+β2KIntc,s,t0+β3 (LRIc,t0 ·KIntc,s,t0)+γxc,t0+δσs+ζλc+εc,s
(2)

in which LRIc,t0 represents an index of labor regulation in country c and KIntc,s,t0 is a

measure of capital intensity in the (c, s) country–industry pair, both of which are mea-

sured at the beginning of the period (i.e., in 2006). With regard to the other covariates,

xc,t0 represents a set of country-level controls that includes the log of GDP per capita,

the share of workers employed in the manufacturing sector, the share of labor force with

advanced education, and the age-dependency ratio,9 all measured at the beginning of the

period, while σs is a set of industry fixed effects, λc a set of legal origin fixed effects, and

εc,s an idiosyncratic error term.

According to the model, the relationship between labor regulation and robot adoption

is defined as β1 + β3KIntc,s,t0 , meaning that it is a function of capital intensity. As

discussed at the end of Section 2, we do not have a strong prior on the sign of β1, which

is the direct effect of the level of employment protection on robot adoption. On the

one hand, in fact, if the primary reason for robot adoption is to overcome labor market

rigidities and reduce the scope for workers’ strategic behavior associated with a high

level of employment protection by replacing them with robots, we should expect β1 to

be positive. On the other hand, labor regulation raises adjustment costs, that negatively

affect investment, and tight laws on dismissal can prevent firms from substituting workers,

thus slowing down robotization.

However, as anticipated in the outline of hypothesis H1, we expect a positive sign for

β3, which is the effect of labor regulation on robot adoption that is mediated by capital

intensity. Indeed, higher levels of capital intensity are always associated with greater

hold-up opportunities for workers, and therefore, since it provides an additional incentive

to substitute workers, we expect the coefficient to be positive and significant.

Finally, in regard to the direct effect of capital intensity on robot adoption, we are

somehow inclined to expect a negative sign for β2. In fact, robots represent a particular

form of capital that, for a certain number of applications, can crowd out human labor and

therefore, even though investment is more conspicuous in capital-intensive industries, the

opportunities to use robots are more frequent in labor-intensive industries.

Since EU KLEMS data are reported in current local currency units (LCUs), we could

9We include the fertility rate as a proxy for the age structure of the labor force, which, as discussed in
Acemoglu and Restrepo (2022), can influence the patterns of robot adoption. While we include a control
for level of the age-dependency ratio at the beginning of the period, our results hold also if we control
for the ageing of the labor force in a similar fashion of Acemoglu and Restrepo.
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not measure capital intensity using the stock of capital per worker. Hence, we proxy

capital intensity with the ratio between the sectoral stock of capital and sectoral sales,

both provided in current LCUs. A clear advantage of this metric over a measure of

capital per worker expressed in a common currency is that it helps circumvent the issues

associated with the presence of cross-county differentials in price levels. As a robustness

check, we also repeat the analysis using another proxy of capital intensity, which is

the ratio between the sectoral stock of capital and the sectoral total compensation of

employees. In general, both measures turn out to be, after controlling for country and

year fixed effects, highly correlated with the capital per worker measured in LCUs.10

Importantly, in order to reduce the influence of short-term factors (e.g., dynamics

related to the business cycle, which can be particularly relevant for our proxies of capital

intensity) on the results of the analysis, the value of the variables measured at the begin-

ning and end of the period has been computed using a three-year average. Thus, values

referring to 2006 are in fact the 2005-2007 average and, similarly, the values referring

to 2016 are computed as the 2015-2017 average. In the same fashion, also the values

referring to year 2011 (that we use in Section 4.3), are the average of years 2010-2012.

The summary statistics for the main variables used in the empirical analysis are

reported in Table 1. In ten years, the average robot density, that is measured at the

country–industry level, almost doubled. In particular, it increased by roughly six units,

from about 6.7 robots per worker in 2006 to 12.7 robots per worker in 2016. Despite the

clear positive trend, however, ∆RpWc,s exhibits a substantial variability, and it decreases

in about one out of six cases. Also the LRI indexes, which are measured at the country

level, and the proxies of capital intensity, taken at the country–industry level, exhibit

a fairly high variability that can be conveniently used for the purposes of the empirical

analysis.

4 Empirical Results

4.1 Main Results

The relationship between dismissal laws and robot adoption represents the main focus

of the present study. The LRI database contains nine entries related to the level of

protection offered by dismissal laws, which are reported in Table 2. As discussed in

Section 3.1, each entry represents a different dimension of employment protection, and

it is associated with a score ranging between 0 (no protection/no legal provisions on the

10For the capital-sales ratio, the correlation is significant at the 0.1% level (t-stat = 5.0) and the
R-squared of the model is 64.2%. For the capital-compensation of employees ratio, the correlation is
significant at the 0.1% level (t-stat = 4.3) and the R-squared of the model is 58.0%.
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topic) and 1 (maximum protection). In order to capture the level of statutory protection

against dismissal resulting from the combined provisions of a country’s labor laws, we

calculate the unweighted arithmetic average over the nine dimensions, and we use it as

a labor regulation index in the empirical model. The OLS estimates of the relationship

between the statutory protection against dismissal and robot adoption are reported in

Table 3.

All the five models find a negative and significant direct effect of the average level

of protection guaranteed by dismissal laws at the beginning of the period (i.e., in year

2006) and the pattern of robot adoption in the ensuing ten years. At the same time,

the models consistently find that the mediated effect of protection against dismissal is

positive and significant. In other words, and in line with our expectations (cf. hypothesis

H1 and Section 3.2), capital intensity mediates the effect of labor regulation so that, all

other things being equal, higher levels of protection against dismissal are associated with

greater robotization in capital-intensive industries.

The overall sign and significance of the relationship between statutory protection

against dismissal and robot adoption in correspondence to three different values of capital

intensity are reported in Table 4, indicating that, at high levels of capital intensity, the

mediated and direct effects of employment protection offset each other. This is graphically

represented in Figure 2, which, based on the predictions of the full specification of the

empirical model (i.e., model (5) of Table 3) reports how ̂∆RpWc,s changes along with

protection from dismissal at the 10th and the 90th percentiles of capital intensity. In

particular, it shows that the negative relationship between robot adoption and dismissal

laws is weaker in capital-intensive industries.

The results presented so far suggest two conclusions. On the one hand, between 2006

and 2016, statutory protection against dismissal was negatively associated with robot

adoption. This, in turn, hints that the need to overcome labor market rigidities by sub-

stituting workers with robots is not the main story behind robot adoption. Indeed, since

robotization has been more pronounced in the presence of less stringent labor regulations,

it seems to be likely that business-friendly regulatory contexts (relating to labor laws, at

least) that minimize adjustment costs can provide more favorable environments for firms

to invest in industrial robots. On the other hand, even though it does not seem to have

been the main driver of robot adoption, the results do provide empirical support for the

idea that firms resort to industrial robots to reduce workers’ bargaining power and to limit

the scope of their hold-up opportunities, which tend to be larger in sectors characterized

by high levels of operating leverage. In particular, the positive and significant coefficient

of the interaction term between the level of statutory protection against dismissal and the

level of capital intensity is consistent with this second conclusion. In fact, at any given
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level labor protection, robot adoption has been faster in capital-intensive industries; that

is, where workers have greater bargaining power and opportunities for doing hold-ups.

As previously discussed, the index of statutory protection against dismissal used for

the estimates reported in Table 3 is calculated as a simple arithmetic average of the

individual indices associated with the nine dimensions of dismissal laws identified by

Deakin et al. (2007) and Adams et al. (2016) in the LRI. Not all these dimensions,

however, affect firms’ ability to discharge workers in the same way. In particular, some

of them impose substantive constraints to workers’ dismissal, while others pose only

procedural constraints. Therefore, if our interpretation of the results is correct, we expect

to observe that only the labor regulation provisions that pose substantive constraints are

significant in explaining robot adoption. Hence, we repeat the analysis using two separate

indices of statutory protection from dismissal, each calculated as an arithmetic average

of the two subgroups (cf. Table 2). In line with our expectations, the estimates (reported

in Tables 5 and 6) show that only the legal provisions that pose substantive constraints

on dismissal are significantly correlated with robot adoption.

4.2 Robustness

In order to check the overall robustness of the results, we perform four checks. First, we

repeat the analysis using another proxy of capital intensity, that is the ratio between the

total stock of capital and the aggregate compensation of employees, both measured in

current LCUs at the country–industry level. The correlation between the two measures

is high (ρ = 0.88), but they capture slightly different characteristics of the industry. On

the one hand, the capital–sales ratio indicates how many units of capital are needed to

produce one unit of sales, and therefore it can be considered as a technical relationship

that reflects the operating leverage of a sector. On the other hand, the capital/wages ratio

relates capital and compensation of employees, and therefore is more directly associated

with the balance of power between capital and labor within each country and industry.

The estimates obtained using the capital/wages ratio, reported in Table 7, turn out to

be qualitatively consistent with those of the main regression, even though the size of the

coefficients associated with capital intensity and the interaction term are significantly

smaller, a result that is largely due to the difference in size of the two measures (the

average value taken by the capital–sales ratio is about seven times larger).

As a second robustness check, in order to be sure that the results are not driven

by small industries in small countries, we re-estimate all the main models resorting to

regressions weighted on the basis of the number of the persons employed at the level

of country–sector. The estimates of the weighted regressions are reported in Table 8

and appear largely consistent with those of the main analysis. In particular, both the
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magnitude and statistical significance of the coefficients estimated with the weighted

regressions are close to those reported in Table 3.

As a third check, we partition the observations in two groups performing a k-medians

cluster analysis and re-estimate the full model augmented by dummy variables indicating

to which cluster each country belongs. Working as fixed effects, these dummies are meant

to further control for the presence of time-invariant heterogeneity that is common to all

the countries belonging to a same cluster and may lead the groups to follow different

trajectories. The first two clusters (CL1, CL2) are identified on the basis of the 2006 LRI

scores, while the third one (CL2) on the 2006 level of GDP per capita. More specifically,

CL1 has been identified on the basis of all the nine dimensions associated with the

discipline of dismissal (cf. Table 2), while CL2 on the basis of all the forty dimensions of

labor regulation included in the LRI database. The dummies take value one to indicate

that an observation belongs to the cluster of countries that guarantee, on average, the

higher level of protection or, for the fourth cluster, that are characterized by a higher

level of income per capita. The estimates, reported in Table 9, are in line with the

main results. On the one hand, the lack of statistical significance of the dummies of

model (2) and (3) suggests that the controls and the sets of fixed effects included in the

specification of the full model are able to absorb a large amount of heterogeneity. On

the other hand, the fact that the only significant dummy is the one associated with the

level of statutory protection against dismissal highlights the particular relevance of this

area of labor regulation. In particular, the negative sign indicate that, ceteris paribus,

robot adoption has been slower the group of countries characterized by more stringent

provisions against workers’ dismissal.

Finally, as a fourth check, we also run a series of regressions with country fixed effects.

While country fixed effects were not included in the main specifications (because they

would have absorbed β̂1), they can nevertheless be used to further check the robustness of

the estimates of the coefficients associated with capital intensity and with the interaction

term to the presence of country-level time-invariant unobserved heterogeneity. The results

of this exercise are reported in Table 10. Specifically, the first two columns report the

results of two country fixed effects models (with and without industry fixed effects) for

the relationship between robot adoption and overall protection against dismissal, while

the models in columns (3)-(4) and (5)-(6) employ the level of substantive protection and

procedural protection respectively. Overall, even though we observe a rise in the p-value

of β̂3 in the first two models (which, however, remains below the 10% threshold), the

results are reasonably consistent with those of Tables 3, 5, and 6, therefore contributing

to mitigate the concerns that the results of the analysis are driven by country-level time-

invariant unobserved heterogeneity that the control variables and the sets of fixed effects
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included in the main specifications are not able to fully capture.

4.3 Five-year intervals and advancements in robot technology

Considering the level of resolution allowed by a cross-country cross-industry analysis

and the longitudinal stability of the LRI scores, the correlation patterns between labor

regulation and the pace of robot adoption can be only observed over a sufficiently long

span of time. Hence, we have so far reported the estimates from ten-year differences

specifications, focusing on the country-sectoral change in robots per worker between 2006

and 2016. This approach, however, does not allow to study the longitudinal stability of

the coefficients. To do so, we re-estimate the baseline model for the sub-periods 2006-2011

and 2011-2016 and for the stacked-differences specifications (with a period fixed effect).

The first three columns of Table 11 report the estimates of the stacked-differences

specifications which, in terms of sign and statistical significance, turn out to be consis-

tent with the main results reported in Table 3. Unsurprisingly, the fixed effect associated

with the second period turns out to be positive and significant, indicating that, con-

sistently with the rapid progress and increased availability of automation technologies,

robot adoption has accelerated after 2011.

The results of the estimates for each sub-period are reported in columns (4)-(9) of

Table 11. On the one hand, the estimated coefficients maintain the sign and the sig-

nificance of the main results and are therefore consistent with the proposed narrative

about the dual nature of industrial robots. On the other hand, it is worth noticing that

the estimates of the coefficient associated with the interaction term are systematically

larger for the second period. Considering that – according to the proposed interpretation

– the effect of labor regulation on robot adoption mediated by capital intensity, β3, is

correlated to the degree at which robots can effectively substitute flexible human labor,

the result is suggestive of an increasing elasticity of firms’ investment in robot due the

sophistication of robot technology occurred during that decade. In other words, a pos-

sible explanation is that, because of the progress in automation technology, the robots

built in the 2011-2016 period were more capable of replacing workers than those of the

previous five-year period and therefore firms were more likely to invest in this technology

in contexts characterized by strict regulations and high hold-up risks. It follows that, to

the extent that this interpretation is correct and that the advancements in robot tech-

nology will continue to erode the ‘flexibility advantage’ of human labor, we can expect

a change in the relationship between labor regulation and robot adoption in the future,

with the former becoming a more straightforward predictor of the latter.
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4.4 Other results

To further explore the relationship between robotization and labor regulation, we also test

whether the discipline of fixed-term contracts and of workers’ industrial action correlates

with the adoption of industrial robots. In fact, as in the case of dismissal, these two

areas of labor law can substantially affect, through different channels, the rigidity of a

country’s labor market and, therefore, directly and indirectly influence firms’ incentives

and ability to adopt industrial robots.

The relationship between robot adoption and the discipline of fixed-term contracts

is reported in Table 12, while that between robot adoption and the discipline of work-

ers’ industrial action is in Table 13. Overall, the insights provided by these additional

results confirm that the picture of the main analysis is consistent with the interpreta-

tion discussed in the previous sections. At the same time, however, they tend to be

less robust than those obtained using the protection against dismissal, thus suggesting a

less straightforward relationship between robotization and these alternative dimensions

of labor regulation.

4.5 Limitations

While the results of the analysis have proven robust through a number of robustness and

sensitivity checks, the empirical analysis has two important limitations. A first limitation

is associated with the availability of data. On the one hand, there are few available cross-

country, cross-industry datasets that consistently provide, for each country–industry pair,

enough data to estimate the sectoral level of capital intensity. For example, even the

EU KLEMS dataset fails to provide two-digit disaggregated data on sales, employment,

and stock of capital for all the countries included in the sample. On the other hand,

despite being an invaluable asset for the growing literature on the effects and determinants

of robotization, industry-level IFR data have some limitations. These limitations are

particularly relevant for the years before 2004/2005, in which, with the exception of a

few countries, a relatively large share of the robots is not allocated to any specific industry

but are relegated in residual, unspecified categories. While it is possible to estimate the

missing values by retrospectively projecting the industry-level robot shares observed in

the following years, the appropriateness of this procedure appears questionable for the

present kind of analysis. As a result, in order to perform a consistent match between IFR

and EU KLEMS data and obtain a homogeneous dataset to work with, we could not use

two-digit data.

The second limitation is related to the setting of the analysis. Being an observational

study, we are very cautious about making causal claims. While the full model includes
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industry and legal origin fixed effects, and the all regressors pre-date robot adoption, we

cannot rule out that the provisions of labor laws at the beginning of the period had been

influenced by anticipations regarding the future trajectories of the technological progress.

5 Concluding remarks

In this paper, we investigate the relation between labor regulation and robotization.

The empirical analysis indicates that – at least in the period under analysis and for the

nineteen countries of the sample – high levels of statutory employment protection have

been negatively correlated with the adoption of industrial robots. A possible explanation

for the result is that the presence of labor market rigidities has somehow discouraged

investment and the adoption of robot technologies. Indeed, high levels of employment

protection translate into higher adjustment costs, which make investment riskier. Hence,

in this respect, industrial robots exhibit a behavior that is typical of any form of physical

capital: in the presence of tight regulations, firms tend to invest less.

Robots, however, differ from classical physical capital in a crucial respect: they can,

at least partially, substitute flexible human labor. The presence of tight labor regulations

can therefore represent an incentive for firms to pursue robotization in order to reduce the

hold-up risk by industrial workers, a risk that, all other things being equal, tends to be

higher in capital-intensive sectors. Indeed, if labor regulation poses substantial limits to

the circumstances in which firms are allowed to dismiss workers, a relatively small number

of workers can threaten to interrupt the production flow of an expensive plant while

discounting a low risk of being laid off, thus enjoying high negotiation power. In this case,

to the extent that robots can effectively replace workers, firms will have a strong incentive

to automatize the processes on which the production flow depends upon, from relatively

standard operations typically performed by ware-housemen, such as the palletizing and

the handling of materials, to more industry-specific activities. By interacting country-

level measures of statutory protection against dismissal and country–industry measures

of capital intensity, we find empirical evidence that is consistent with this hypothesis, as

the effect employment protection mediated by capital intensity turns out to be positive

and significant. However, while this result is indicative that the willingness of firms to

replace labor does represent a driver for the adoption of industrial robots in non-service

sectors, the overall results of the empirical analysis suggest that it has not been – so

far, at least – the most important one. In fact, except in the context of highly capital

intensive industries, our estimates indicate that, in the 2006-2016 period, it has been

outweighted by the opposing dynamics captured by the direct effect of labor regulation.

These two contrasting dynamics, that in our empirical setting are captured by the

19



coefficients associated with the level of workers’ protection and with its interaction with

capital intensity, highlight the dual nature of industrial robots, which to some degree

behave as physical capital (in its common sense) but, at the same time and up to a certain

extent, are also substitutes for flexible labour. In the former case, investment in robots

may be inhibited by high levels of employment protection that increase adjustment costs

to negative and unpredictable shocks, creating a less favourable business environment. It

the latter case, the higher is the legal employment protection and the amount of capital

invested in the firm, the more credible is the threat of hold-up by workers, the higher

is the incentive to invest in robots, as it would represent a viable strategy to minimize

opportunistic behaviours of the employees.

While this paper provides a key to interpreting the relationship between labor reg-

ulation and robot adoption, it does not allow to draw clear and unambiguous policy

prescriptions. Conversely, by highlighting the dual nature of robots, our interpretation

emphasizes the complexity of the implications of labor laws. It is possible, however, to

make some speculation. On the one hand, since the overall results indicate that strict

employment protection regimes are associated with a lesser increase in the number of

robots per worker, the goal of maintaining a labor-friendly regulation may interfere with

the policy target of fostering robot adoption. On the other hand, considering that the

results are sensitive to the sectoral level of capital intensity, the tenet may not apply in

certain contexts (i.e., in some capital-intensive industries). Furthermore, advancements

in automation technology that increase the substitutability between robots and human

workers and/or a significant reduction in the costs associated to robotization may alter,

in the future, the overall sign of the relationship.

These conclusions, however, are likely to miss part of the story. Indeed, in the attempt

to explain the patterns of robot adoption, we discuss two possible drivers. The first one

hinges on firms’ willingness to invest in contexts characterized by flexible labor markets,

while the second one is related to firms’ incentives to reduce hold-up risks by replacing

workers with robots. As a consequence, such a divergence in the rationale behind robot

adoption may favour different paths of automation which, in turn, may have different

consequences in terms of employment. In fact, as pointed out by Acemoglu and Restrepo

(2019), the effect of automation on aggregate labor demand depends on the relative mag-

nitude of the productivity effect and the displacement effect, and it seems plausible that

the productivity gains will be lower when robots are adopted with the primary aim of

defusing employees’ bargaining power rather than on the basis of technical considerations

on the efficiency of the production process. In this regard, beside the recent anecdotal

evidence of Tesla (Korosec, 2018), the history of automotive industry provide some in-

teresting examples: during the 1980s, some large Western car manufacturers (such as
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General Motors in the United States and FIAT in Italy) invested heavily in the automa-

tion of the production processes with the aim of weakening the control of shop stewards,

but ended up in an excess of automation (Camuffo and Volpato, 1996; Roberts, 2004).

Hence, while these mechanisms deserve further investigation, the regulatory effort of the

policy makers should be aimed at taking into proper account the hold-up problem and al-

lowing firms to readily adjust to market dynamics. At the same time, policy efforts should

be aimed at promoting labour policies that favor employment reallocation and universal

insurance against the risk of unemployment. Even though these prescriptions are any-

thing but original, they may gain new relevance in the light of the recent advancements

in robot technology, which allow to automatize an increasing number of tasks but that

do not always guarantee significant productivity gains. In this way, policy makers may

contribute to create a more favourable environment for the adoption of labor-friendly and

‘appropriate’ technologies (Rodrik, 2022). For the same reasons, doubts can be raised to-

wards now-days (post Covid-19) popular industrial policies favouring investments in new

technologies and automation irrespective of motivations and impact of their introduction

(Korinek and Stiglitz, 2021).
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Figures and Tables

Figure 1: Robot adoption and economic growth (2000-2018)

Notes. The figure illustrates the relationship between robot adoption (log diff in number of robots per
industrial worker, X-axis) and the level of economic growth (log diff in GDP per capita, Y-axis) in the
2000–2018 period.
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Figure 2: Predicted robot adoption at different levels of capital intensity

Notes. The figure reports the relationship between predicted robot adoption (i.e., predicted change in
robots per worker) and the level of overall statutory protection against dismissal at two different levels
of capital intensity in year 2006 (10th and 90th percentiles). The predictions have been estimated on
the basis of the full empirical model, that is model (5) of Table 3, with all the other covariates centered
at their means. The average value of overall statutory protection against dismissal observed in the data
is equal to 0.56.

Table 1: Summary statistics

Variable Mean Std. Dev. p10 p50 p90

∆RpWc,s 6.05 15.26 -0.29 1.54 16.26

LRIc,t0 Dismissal (overall) 0.56 0.16 0.34 0.56 0.76
LRIc,t0 Dismissal (substantive) 0.52 0.25 0.22 0.50 0.83
LRIc,t0 Dismissal (procedural) 0.60 0.14 0.42 0.60 0.78
LRIc,t0 Fixed-Term 0.67 0.22 0.42 0.67 0.93
LRIc,t0 Industrial action 0.66 0.26 0.25 0.75 1.00

K/Salesc,s,t0 0.77 0.88 0.23 0.54 1.54
K/Wagesc,s,t0 5.59 7.12 1.28 3.32 15.07

Notes. The table reports the summary statistics of the main variables used in
the empirical analysis. The subscript c stands for country, s for sector and t0
for 2006; the change in the number of robot per workers is registered over ten
years.
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Table 2: The dimensions of labor regulation: procedural and substantive constraints to
dismissal

Procedural Substantive

Legally mandated notice period X
Legally mandated redundancy compensation X
Minimum qualifying period of service for normal case of unjust dismissal X
Law imposes procedural constraints on dismissal X
Law imposes substantive constraints on dismissal X
Reinstatement normal remedy for unfair dismissal X
Notification of dismissal X
Redundancy selection X
Priority in re-employment X

Notes. The table summarizes the nine dimensions of dismissal laws reported in Adams et al. (2016).
The distinction between dimension posing procedural and substantive constraints has been drawn by the
authors of the present study.

Table 3: Robot adoption and statutory protection against dismissal

Dep. var: ∆RpW (1) (2) (3) (4) (5)

LRI Dismissal (overall) -21.42** -23.13** -32.01** -22.54** -33.49**
(8.96) (10.79) (13.18) (9.55) (12.12)

K/Sales -7.09** -8.23** -9.26** -6.55*** -7.53***
(2.48) (2.89) (3.44) (2.14) (2.40)

LRI Dismissal (overall) * K/Sales 8.57** 11.05** 12.68** 10.80*** 12.40***
(3.90) (4.59) (5.36) (3.50) (3.81)

Log GDP p.c. 5.60* 17.04*** 5.19* 14.49**
(2.85) (5.72) (2.64) (5.07)

Industrial Employment (%) 0.18 0.19 -0.01 0.05
(0.56) (0.52) (0.49) (0.46)

Age-dependency ratio -1.42* -0.68 -1.35* -0.74
(0.80) (0.60) (0.71) (0.55)

Labor force with advanced education (%) -0.03 0.61 -0.13 0.46
(0.33) (0.44) (0.28) (0.36)

Legal origins fixed effects X X
Industry fixed effects X X

Observations 109 109 109 109 109
R-squared 0.05 0.13 0.16 0.40 0.43

Notes. The table reports the OLS estimates of the relationship between robot adoption and overall
statutory protection from dismissal. All the explanatory variables refer to the beginning of the pe-
riod (i.e., year 2006). Clustered standard errors (at the country level) are reported in parentheses.
*** p<0.01, ** p<0.05, * p<0.1.
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Table 4: Marginal effect of statutory protection against dismissal on robot adoption at
different levels of capital intensity

K/Sales (1) (2) (3) (4) (5)

10th percentile -19.7** -20.9* -29.5** -20.4** -31.0**
(8.4) (10.2) (12.6) (9.0) (11.6)

Median -17.1** -17.6* -25.7** -17.1* -27.3**
(7.6) (9.3) (11.9) (8.2) (10.9)

90th percentile -8.6 -6.6 -13.0 -6.3 -14.9
(6.1) (7.7) (10.9) (6.1) (9.0)

Notes. The table reports the estimated marginal effect of statutory
protection from dismissal (overall) on robot adoption at different
levels of sectoral capital intensity, namely at the 10th, 50th and
90th percentiles (measured in 2006). Each column corresponds to
the effect estimated using the empirical models of Table 3. Clus-
tered standard errors (at the country level) are reported in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1.

Table 5: Robot adoption and statutory protection against dismissal (only substantive
constraints)

Dep. var: ∆RpW (1) (2) (3) (4) (5)

LRI Dismissal (substantive) -19.60*** -16.53** -18.02** -15.26** -17.64**
(5.06) (6.91) (7.03) (6.23) (6.31)

K/Sales -5.86*** -6.93*** -7.34*** -4.20** -4.54**
(1.45) (1.30) (1.56) (1.57) (1.75)

LRI Dismissal (substantive) * K/Sales 6.91*** 8.69*** 9.04*** 7.05*** 7.43***
(2.22) (1.76) (2.25) (1.42) (1.80)

Log GDP p.c. 5.82* 16.37** 5.12* 13.52**
(2.95) (5.77) (2.55) (4.88)

Industrial Employment (%) 0.11 0.01 -0.08 -0.14
(0.51) (0.47) (0.44) (0.39)

Age-dependency ratio -1.32 -0.67 -1.23 -0.70
(0.87) (0.68) (0.77) (0.62)

Labor force with advanced education (%) -0.02 0.50 -0.13 0.32
(0.30) (0.42) (0.26) (0.33)

Legal origins fixed effects X X
Industry fixed effects X X

Observations 109 109 109 109 109
R-squared 0.08 0.13 0.16 0.40 0.43

Notes. The table reports the OLS estimates of the relationship between robot adoption and statu-
tory protection from dismissal calculated only on LRI dimensions that are associated with substantive
constraints to workers’ dismissal (see Table 2). All the explanatory variables refer to the beginning
of the period (i.e., year 2006). Clustered standard errors (at the country level) are reported in paren-
theses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 6: Robot adoption and statutory protection against dismissal (only procedural
constraints)

Dep. var: ∆RpW (1) (2) (3) (4) (5)

LRI Dismissal (procedural) -2.39 -15.15 -34.69 -17.21 -37.02*
(13.39) (18.33) (21.61) (16.64) (20.92)

K/Sales -3.03 -2.81 -2.90 -3.51 -4.37
(3.56) (3.69) (5.36) (3.97) (4.59)

LRI Dismissal (procedural) * K/Sales 1.46 0.68 0.44 6.83 6.50
(5.94) (6.95) (10.13) (7.30) (7.65)

Log GDP p.c. 3.09 19.88*** 2.34 17.23**
(3.58) (6.90) (3.71) (6.63)

Industrial Employment (%) 1.07 0.99 0.70 0.72
(0.86) (0.92) (0.78) (0.82)

Age-dependency ratio 4.65 8.81 2.56 6.17
(8.34) (14.38) (7.49) (13.47)

Labor force with advanced education (%) 0.10 0.99 -0.00 0.79
(0.44) (0.69) (0.39) (0.65)

Legal origins fixed effects X X
Industry fixed effects X X

Observations 109 109 109 109 109
R-squared 0.02 0.05 0.13 0.33 0.39

Notes. The table reports the OLS estimates of the relationship between robot adoption and
statutory protection from dismissal calculated only on LRI dimensions that are associated with
procedural constraints to workers’ dismissal (see Table 2). All the explanatory variables refer
to the beginning of the period (i.e., year 2006). Clustered standard errors (at the country level)
are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 7: Robot adoption and statutory protection against dismissal (alternative measure
of capital intensity)

Dep. var: ∆RpW (1) (2) (3) (4) (5)

LRI Dismissal (overall) -20.94** -20.84* -30.87** -21.95** -32.67**
(7.88) (11.29) (14.21) (9.98) (12.96)

K/W -0.69** -0.72** -0.82** -0.58* -0.69**
(0.28) (0.27) (0.30) (0.30) (0.30)

LRI Dismissal (overall) * K/W 1.10 1.09 1.19* 1.49* 1.53**
(0.69) (0.65) (0.65) (0.85) (0.76)

Log GDP p.c. 4.84 16.53*** 3.74 13.00**
(2.81) (5.73) (2.77) (4.92)

Industrial Employment (%) 0.11 0.16 -0.06 0.03
(0.54) (0.51) (0.44) (0.43)

Age-dependency ratio -1.48* -0.74 -1.21* -0.66
(0.79) (0.60) (0.68) (0.53)

Labor force with advanced education (%) -0.08 0.55 -0.16 0.40
(0.35) (0.45) (0.26) (0.34)

Legal origins fixed effects X X
Industry fixed effects X X

Observations 109 109 109 109 109
R-squared 0.03 0.12 0.16 0.40 0.43

Notes. The table reports the OLS estimates of the relationship between robot adoption and overall
statutory protection from dismissal. The measure of capital intensity, K/W, is the ratio between the
stock of capital and aggregate compensations to employee, both measured at the country–industry
level. All the explanatory variables refer to the beginning of the period (i.e., year 2006). Clustered
standard errors (at the country level) are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 8: Robot adoption and statutory protection against dismissal (weighted regres-
sions)

Dep. var: ∆RpW (1) (2) (3) (4) (5)

LRI Dismissal (overall) -23.28*** -23.87** -33.16** -22.84** -35.13***
(6.64) (8.77) (12.17) (8.09) (11.13)

K/Sales -6.90*** -7.53*** -8.59*** -6.55*** -7.71***
(1.89) (2.27) (2.90) (1.63) (1.94)

LRI Dismissal (overall) * K/Sales 8.63*** 10.03*** 11.78** 10.50*** 12.37***
(2.86) (3.46) (4.35) (2.62) (3.22)

Log GDP p.c. 4.85* 15.58*** 4.97** 13.94***
(2.48) (4.83) (2.32) (4.40)

Industrial Employment (%) 0.14 0.15 -0.02 0.05
(0.48) (0.45) (0.45) (0.42)

Age-dependency ratio -1.24* -0.60 -1.23* -0.67
(0.69) (0.49) (0.64) (0.46)

Labor force with advanced education (%) -0.11 0.44 -0.17 0.37
(0.28) (0.38) (0.25) (0.31)

Legal origins fixed effects X X
Industry fixed effects X X

Observations 109 109 109 109 109
R-squared 0.06 0.13 0.17 0.37 0.40

Notes. The table reports the weighted OLS estimates of the relationship between robot adoption and
overall statutory protection from dismissal. Regressions are weighted according to the logarithm of
country–sectoral employment at the beginning of the period. Additional controls, which are measured
at the country level at the beginning of the period, include GDP per capita, share of workers employed
in the manufacturing sector, share of labor force with advanced education, and total fertility rate. Clus-
tered standard errors (at the country level) are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 9: Robot adoption and statutory protection against dismissal - Cluster dummies

Dep. var: ∆RpW (1) (2) (3)

LRI Dismissal (overall) -86.30*** -38.08** -31.90**
(16.13) (13.57) (14.28)

K/W -6.64** -8.24*** -7.37***
(2.53) (2.18) (2.39)

LRI Dismissal (overall) * K/W 11.06*** 13.84*** 12.06***
(3.79) (3.70) (3.88)

CL1: LRI dismissal (overall) -18.29***
(5.02)

CL2: LRI all dimensions 3.65
(5.81)

CL3: GDP p.c. -1.36
(7.19)

Legal origins fixed effects X X X
Industry fixed effects X X X
Additional controls X X X

Observations 109 109 109
R-squared 0.45 0.43 0.43

The table reports the OLS estimates of the relationship between robot
adoption and overall statutory protection from dismissal. The full
model is augmented by the inclusion of dummies obtained by cluster-
ing countries according to the labor regulatory regimes and average
income. CL1 has been identified according has been identified on the
basis of all the nine dimensions associated to the discipline of dis-
missal, CL2 on all the forty dimensions of labor regulation of the LRI
database, CL3 on the 2006 level of GDP per capita. The dummies
indicate the belonging to the cluster of countries that guarantee, on
average, the higher level of protection or, in the case of CL3, that are
characterized by a higher level of income per capita. Clustered stan-
dard errors (at the country level) are reported in parentheses. ***
p<0.01, ** p<0.05, * p<0.1.
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Table 10: Robot adoption and statutory protection against dismissal (country fixed
effects)

Dep. var: ∆RpW (1) (2) (3) (4) (5) (6)

K/Sales -7.75** -6.82** -6.89*** -5.07*** 0.32 -3.93
(3.26) (2.61) (1.67) (1.69) (6.32) (4.29)

LRI Dismissal (overall) * K/Sales 9.66* 8.84*
(5.03) (4.71)

LRI Dismissal (substantive) * K/Sales 7.77*** 5.55**
(2.31) (2.57)

LRI Dismissal (procedural) * K/Sales -4.52 3.74
(12.42) (9.24)

Country fixed effects X X X X X X
Industry fixed effects X X X

Observations 109 109 109 109 109 109
R-squared 0.25 0.50 0.26 0.50 0.25 0.50

The table reports the OLS estimates of the relationship between robot adoption and overall statutory
protection from dismissal. Clustered standard errors (at the country level) are reported in parenthe-
ses. *** p<0.01, ** p<0.05, * p<0.1.

35



T
a
b
le

1
1
:

R
ob

ot
ad

op
ti

on
an

d
st

at
u
to

ry
p
ro

te
ct

io
n

ag
ai

n
st

d
is

m
is

sa
l

(fi
ve

-y
ea

r
p

er
io

d
s)

2
0
0
6
-2

0
1
6

2
0
0
6
-2

0
1
1

2
0
1
1
-2

0
1
6

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

L
R

I
D

is
m

is
sa

l
(o

ve
ra

ll
)

-1
6.

11
*
*
*

-9
.9

7
*
*

-1
6
.6

8
*
*
*

-1
3
.7

4
*
*
*

-8
.6

1
*
*
*

-1
3
.9

7
*
*
*

-2
3
.5

2
*
*

-1
1
.4

0
-2

3
.5

9
*
*

(4
.3

0
)

(3
.6

8
)

(3
.8

8
)

(4
.6

5
)

(2
.8

0
)

(4
.1

0
)

(8
.5

4
)

(7
.4

3
)

(8
.4

1
)

K
/S

al
es

-3
.8

9*
*
*

-3
.4

2
*
*
*

-3
.4

1
*
*
*

-3
.1

0
*

-2
.2

1
*
*
*

-2
.4

3
*
*

-5
.1

3
*
*

-4
.8

5
*
*
*

-4
.9

4
*
*
*

(1
.2

2
)

(0
.8

1
)

(0
.8

5
)

(1
.5

0
)

(0
.6

4
)

(0
.8

6
)

(2
.0

2
)

(1
.5

9
)

(1
.5

2
)

L
R

I
D

is
m

is
sa

l
(o

ve
ra

ll
)

*
K

/S
al

es
4.

95
*
*

4
.6

3
*
*
*

4
.8

2
*
*
*

4
.1

0
*

3
.5

0
*
*

3
.9

9
*
*

6
.4

3
*

5
.9

1
*
*

6
.2

3
*
*

(1
.9

4
)

(1
.3

4
)

(1
.3

8
)

(2
.3

0
)

(1
.2

6
)

(1
.6

0
)

(3
.2

2
)

(2
.4

8
)

(2
.4

4
)

L
og

G
D

P
p

.c
.

8.
92

**
*

3
.9

8
*
*
*

7
.8

5
*
*
*

5
.7

6
*
*
*

2
.1

2
*
*

4
.9

8
*
*
*

1
2
.6

1
*
*
*

5
.7

9
*
*
*

1
1
.0

5
*
*
*

(2
.0

9
)

(0
.8

9
)

(1
.8

4
)

(1
.9

1
)

(0
.7

7
)

(1
.6

0
)

(3
.4

5
)

(1
.4

5
)

(3
.3

8
)

In
d

u
st

ri
al

E
m

p
lo

y
m

en
t

(%
)

0.
17

0
.0

4
0
.1

0
0
.1

2
0
.0

2
0
.0

7
0
.4

8
0
.1

2
0
.3

5
(0

.1
9
)

(0
.1

8
)

(0
.1

7
)

(0
.1

6
)

(0
.1

4
)

(0
.1

3
)

(0
.3

9
)

(0
.3

4
)

(0
.3

7
)

A
ge

-d
ep

en
d

en
cy

ra
ti

o
-0

.5
2*

-0
.8

0
*
*
*

-0
.5

3
*
*

-0
.1

5
-0

.3
7
*

-0
.1

7
-0

.7
8

-1
.1

5
*
*

-0
.7

7
(0

.2
6
)

(0
.2

7
)

(0
.2

5
)

(0
.1

6
)

(0
.2

1
)

(0
.1

4
)

(0
.4

7
)

(0
.4

1
)

(0
.4

6
)

L
ab

or
fo

rc
e

w
it

h
ad

va
n

ce
d

ed
u

ca
ti

on
(%

)
0.

23
-0

.0
8

0
.1

6
0
.1

7
-0

.0
9

0
.1

2
0
.5

9
*

0
.0

2
0
.4

4
(0

.1
4
)

(0
.1

1
)

(0
.1

1
)

(0
.1

6
)

(0
.1

1
)

(0
.1

3
)

(0
.3

2
)

(0
.3

0
)

(0
.3

1
)

T
im

e
fi

x
ed

eff
ec

t
(2

01
1-

16
d

u
m

m
y
)

3.
01

**
*

2
.5

3
*
*

2
.6

9
*
*
*

(1
.0

7
)

(0
.9

9
)

(0
.9

6
)

L
eg

al
or

ig
in

s
fi

x
ed

eff
ec

ts
X

X
X

X
X

X
In

d
u

st
ry

fi
x
ed

eff
ec

ts
X

X
X

X
X

X

O
b

se
rv

at
io

n
s

21
8

2
1
8

2
1
8

1
0
9

1
0
9

1
0
9

1
0
9

1
0
9

1
0
9

R
-s

q
u

ar
ed

0.
17

0
.3

7
0
.3

9
0
.1

7
0
.3

9
0
.4

2
0
.1

9
0
.4

3
0
.4

4

T
h

e
ta

b
le

re
p

or
ts

th
e

O
L

S
es

ti
m

at
es

of
th

e
re

la
ti

on
sh

ip
b

et
w

ee
n

ro
b

o
t

a
d

o
p

ti
o
n

a
n

d
ov

er
a
ll

st
a
tu

to
ry

p
ro

te
ct

io
n

fr
o
m

d
is

m
is

sa
l.

T
h

e
re

fe
re

n
ce

ti
m

e
p

e-
ri

o
d

is
fi

ve
ye

ar
s.

A
ll

th
e

ex
p

la
n

at
or

y
va

ri
ab

le
s

re
fe

r
to

th
e

b
eg

in
n

in
g

o
f

th
e

fi
v
e-

ye
a
r

p
er

io
d

(i
.e

.,
ye

a
r

2
0
0
6

a
n

d
2
0
1
1
).

C
lu

st
er

ed
st

a
n

d
a
rd

er
ro

rs
(a

t
th

e
co

u
n
tr

y
-y

ea
r

le
ve

l
fo

r
m

o
d

el
s

(1
)-

(3
)

an
d

at
th

e
co

u
n
tr

y
le

v
el

fo
r

m
o
d

el
s

(4
)-

(9
))

a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

.
*
*
*
p
<

0
.0

1
,

*
*
p
<

0
.0

5
,

*
p
<

0
.1

.

36



Table 12: Robot adoption and statutory limitations to fixed-term contracts

Dep. var: ∆RpW (1) (2) (3) (4) (5)

LRI Fixed-Term -26.14*** -27.56*** -37.17*** -23.51*** -32.86***
(6.90) (5.73) (8.90) (5.68) (8.62)

K/Sales -9.24*** -9.79*** -13.61*** -4.91* -9.30***
(2.25) (2.08) (3.23) (2.44) (2.51)

LRI Fixed-Term * K/Sales 9.47*** 10.50*** 15.20*** 6.68** 11.09***
(2.48) (2.24) (3.88) (2.53) (3.27)

Log GDP p.c. 0.33 5.42 -0.09 4.05
(2.88) (4.93) (2.95) (4.92)

Industrial Employment (%) 0.47 0.47 0.18 0.22
(0.59) (0.49) (0.48) (0.41)

Age-dependency ratio -0.74 15.19* -2.28 11.53
(6.31) (8.35) (5.52) (7.78)

Labor force with advanced education (%) 0.26 1.52*** 0.12 1.22**
(0.34) (0.46) (0.29) (0.44)

Legal origins fixed effects X X
Industry fixed effects X X

Observations 109 109 109 109 109
R-squared 0.11 0.13 0.20 0.39 0.44

Notes. The table reports the weighted OLS estimates of the relationship between robot adoption and
statutory limitations to the use of fixed-term contracts, which is calculated as the average of the LRI
scores associated with “Fixed-term contracts are allowed only for work of limited duration”, “Fixed-term
workers have the right to equal treatment with permanent workers” and “Maximum duration of fixed-term
contracts”. All the explanatory variables refer to the beginning of the period (i.e., year 2006). Clustered
standard errors (at the country level) are reported in parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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Table 13: Robot adoption and statutory protection for workers’ industrial action

Dep. var: ∆RpW (1) (2) (3) (4) (5)

LRI Industrial action -9.96 -15.82* -15.80 -12.65 -13.45
(6.50) (8.83) (10.51) (8.84) (10.43)

K/Sales -7.27*** -8.16*** -8.43*** -3.90 -4.61
(1.86) (2.47) (2.60) (3.22) (3.41)

LRI Industrial action * K/Sales 7.36** 8.96** 9.12** 6.58* 6.75
(2.57) (3.49) (3.88) (3.74) (4.05)

Log GDP p.c. 0.70 15.21* 0.53 13.06*
(3.49) (7.41) (3.60) (6.87)

Industrial Employment (%) 0.66 0.15 0.37 -0.06
(0.75) (0.66) (0.66) (0.57)

Age-dependency ratio -1.14 -1.04 -2.03 -3.06
(8.71) (14.30) (8.31) (13.60)

Labor force with advanced education (%) 0.21 0.79 0.06 0.54
(0.46) (0.67) (0.41) (0.63)

Legal origins fixed effects X X
Industry fixed effects X X

Observations 109 109 109 109 109
R-squared 0.03 0.06 0.13 0.34 0.38

Notes. The table reports the weighted OLS estimates of the relationship between robot adoption
and statutory protection for workers’ industrial action, which is calculated as the average of the
LRI scores associated with “Right to unionization”, “Right to collective bargaining”, “Duty to
bargain” and “Right to industrial action”. All the explanatory variables refer to the beginning
of the period (i.e., year 2006).. Clustered standard errors (at the country level) are reported in
parentheses. *** p<0.01, ** p<0.05, * p<0.1.
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