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Abstract
The relation between the increase in the frequency and the effects of extreme events with climate change has been widely

demonstrated and the related consequences are a global concern. In this framework, the strong correlation between

significant lightning occurrence and intense precipitation events has been also documented. Consequently, the possibility of

having a short-term forecasting tool of the lightning activity may help in identifying and monitoring the evolution of severe

weather events on very short time ranges. The present paper proposes an application of Random Forest (RF), a popular

Machine Learning (ML) algorithm, to perform a nowcasting of Cloud-to-Ground (CG) lightning occurrence over the

Italian territory and the surrounding seas during the months of August, September, and October from 2017 to 2019. Results

obtained with three different spatial resolutions have been compared, suggesting that, to enhance the skills of the model in

identifying the presence or absence of strokes, all the data selected as input should be commonly gridded on the finest

available spatial resolution. Moreover, the features’ importance analysis performed confirms that meteorological features

describing the state of the atmosphere, especially at higher altitudes, have a stronger impact on the final result than

topology data, such as Latitude or Digital Elevation Model (DEM).
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1 Introduction

In the last decades, the relation between the increasing

impact of extreme events and climate change has been

widely studied and demonstrated (Intergovernmental Panel

on Climate Change (IPCC) 2021). The increase in extreme

weather events occurrence with the related impact in terms

of loss of life, environmental and economic damages are a

global concern. Indeed, since 2015, all United Nations

Member States defined the 17 Sustainable Development

Goals (SDGs), which are an urgent call to action for

tackling climate change (Sachs et al. 2021). The scientific

community has recently multiplied its efforts to identify

short-term forecasting tools for such extreme events with

the aim of reducing their impact on the society. In this

framework, the strong correlation between lightning and

extreme events has largely been discussed (Price and Rind

1994; Romps et al. 2014; Banerjee et al. 2014; Clark et al.

2017). Many authors agree in considering a positive cor-

relation between increasing surface temperatures and
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lightning activity (Romps et al. 2014; Banerjee et al. 2014;

Clark et al. 2017), but such correlation does not find gen-

eral agreement (Finney et al. 2018). Nevertheless, the

strong connection between lightning and natural events,

such as hail, tornadoes, and heavy rainfalls has been widely

documented (Tapia et al. 1998; Adamo et al. 2009; Schultz

et al. 2015, 2017; Lagasio et al. 2017; Lynn 2017) as well

as the dangerous effects that Cloud-to-Ground (CG)

lightning may have on infrastructures (such as wind tur-

bines and transmission/distribution lines and buried

cables), human lives and as leading phenomenon for forest

fires (Cooper and Holle 2019). The complexity driving to

the lightning phenomenon and its possible correlation with

severe weather events is the driver for researchers in dee-

pen the analyses in the field of short-term forecasting tool

based on the lightning activity as early indicator for

extreme events. Since lightning is an electric discharge

characterizing both mesoscale and microscale events that

exhibit sudden evolution and complex interaction with the

surrounding atmosphere, the possibility of having reliable

information on the location of future intense lightning

activity has many fields of application. Indeed, a short-term

forecasting tool may help identifying and monitoring the

evolution of extreme events in near-real time. In particular,

a timely forecast may support early warning systems by

detecting unexpected changes in the lightning activity,

identifying the possibility of increment in severity of the

event in the following hours and giving decision makers

updated information to take the necessary safety measures.

However, nowcasting activities related to lightning

events are still a great challenge and, considering the

complicated interaction between in-cloud and many

atmospheric processes driving to the lightning phe-

nomenon, a wide range of approaches is available for such

purposes. Many studies have implemented lightning fore-

casting models based either on the electrification in-cloud

processes causing lightning or on atmospheric variables

linked with the lightning phenomenon, such as Convective

Available Potential Energy (CAPE) and precipitation rate

(McCaul Jr et al. 2009, 2020; Lynn et al. 2012; Fierro et al.

2014; Tippett and Koshak 2018). Early approaches to

lightning forecasting were based on analytical studies

relating storm lightning rates to convective cloud top

height (Price and Rind 1992). Later, other researchers

based forecast methods on the statistical use of lightning

climatologies (Bothwell 2005), i.e., an approach incorpo-

rating lightning climatology (e.g., thunderstorm activity,

peaks in diurnal CG lightning activity, etc.) and predictor

fields from Numerical Weather Prediction (NWP) models.

Other researchers used methods based on measures of

predicted buoyant instability aloft, as derived from

numerical simulations (Bright et al. 2005), i.e., methods

helping in delineating potential thunderstorm areas by

determining if instability and appropriate thermodynamics

for charge separation are coincident in observations and

model forecasts. Moreover, in recent decades, elaborated

full electrification schemes were developed for inclusion in

explicit-convection numerical forecast models, e.g.,

(Mansell et al. 2002; Fierro et al. 2007; Lynn 2017). These

latter methods allow a detailed insight into storm electrical

behavior and provide forecasts of the Flash Rate Density

(FRD) and flash locations, considering the whole CG and

intra-cloud (IC) activity. However, even after simplifica-

tion of the complex lightning discharge process, most full

electrification schemes remain computationally intensive

and are still subject to errors in their quantitative forecasts

of lightning event flash rates, owing to the intrinsic low

predictability of deep convection in the parent explicit-

convection model (McCaul Jr et al. 2020). Consequently,

the accuracy of FRD results obtained up to now varies on a

day-to-day basis, owing to the limitations of model phys-

ical parameterizations, input data and procedures, and

model numerics. All of these factors produce inherent

uncertainty in the model forecasts (McCaul Jr et al. 2020).

The increasing computational capability in the last ten

years have supported researchers to investigate the sensi-

tivity of NWP models to horizontal grid spacing variability,

evaluating how to properly calibrate and interpret ensemble

output and to optimize trade-offs between model resolution

and other computationally constrained parameters (Kain

et al. 2008; Fiori et al. 2010; Bryan and Morrison 2012;

VandenBerg et al. 2014; Potvin and Flora 2015).

In this framework, in recent decades, Machine Learning

(ML) helped improving the prediction skills of multi-data

weather related phenomena thanks to the integration of its

strengths with atmospheric science. The ability of ML

algorithms of modelling highly nonlinear functions is

fundamental for its application in the analysis of the spatial

and temporal variability of geo-environmental data

(Kanevski et al. 2009), sometimes allowing uncertainty

estimation (James et al. 2013; Guignard et al. 2021).

Moreover, ML tools can take advantage of large datasets

and of the use of numerous input variables, or features

(James et al. 2013). Therefore, they can solve regression

and classification problems in high-dimensional (geo)input

spaces, generally constituted by the geographical space and

a set of spatially, temporally, or spatio-temporally refer-

enced features. Different ML algorithms have been suc-

cessfully applied to model phenomena such as, among the

others, water pollution (Leuenberger and Kanevski 2015),

landslides (Taalab et al. 2018) and forest fires (Tonini et al.

2020), susceptibility, air temperature (Amato et al. 2020),

wind speed (Veronesi et al. 2016). In recent years, some

ML algorithms have been developed also in the domain of

lightning occurrence forecasting. Mostajabi et al. (2019)

used XGBoost to perform 30 min ahead forecasting of
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lightning occurrence based on a set of single-site obser-

vations of meteorological parameters. (Blouin et al. 2016)

used a tree-based classification algorithm to predict 6-h and

24-h CG lightning. A 1-h nowcasting model is proposed in

(Mecikalski et al. 2015), showing that lightning forecast

are made 45 min before rainfall occurs. Differently, (Zhou

et al. 2020) developed a 0–1-h nowcasting model based on

data from geostationary meteorological satellites as input

for a Deep Learning (DL) algorithm. Since satellite data

have the advantage of monitoring and detecting the initial

stages of convective clouds, they can be used for convec-

tive initiation (CI) monitoring and early warnings, when

the detection over one spot is available.

As well known, when dealing with ML algorithms, one

of the most important issues is the preprocessing phase to

be performed on the dataset to be used as input for the

procedure. In meteorological application, normally, dif-

ferent data (either observed or outputs of numerical mod-

els) could be available at different spatial scales (e.g.,

punctual, like lightning occurrence, or on the nodes of a

grid in case of outputs of NWP models). However, to feed

a ML algorithm, all data used must be referred to a com-

mon spatial grid. Since literature on specific applications of

ML techniques to the nowcasting of lightning is quite

limited, a study investigating the effects of such grid

spacing on the final ability of the tool to nowcast lightning

is still missing. The main goal of this study is to fill in this

gap, providing a preliminary study of a more general

research that aims at assessing the ability of ML techniques

to nowcast lightning activity. To this final goal, a com-

parison among results obtained using three different hori-

zontal grids for data interpolation is presented, to test the

sensitivity of a ML algorithm in detecting the processes

driving to the development of CG lightning. Specifically, a

1-h ahead forecasting is performed over the Area Of

Interest (AOI), here covering the Italian territory and the

surrounding seas, by classifying each pixel of the study

area with the presence or absence of CG strokes. The

classification is performed with Random Forest (RF). The

comparison is performed over 3 months of 3 years (i.e.,

August, September, and October from 2017 to 2019).

The paper is organized as follows: Sect. 2 presents the

methodology used, discussing input data, the horizontal

spatial resolutions compared, and the classification algo-

rithm utilized, Sect. 3 shows results and proposes a related

discussion, Sect. 4 provides the conclusion of the paper.

2 Methodology

2.1 Input data

Aiming at enhancing results obtained in (La Fata et al.

2021), the models proposed in this study are trained with

meteorological data covering the period from August to

October of 2017, 2018 and tested with data related to the

same months in 2019. This choice is due to the particularly

high lightning activity over the Italian peninsula and the

surrounding seas during August-October 2018, as shown in

(Nicora et al. 2021) and (Paliaga et al. 2019). At the intense

lightning activity occurred in this period corresponded also

a significant amount of precipitation, as shown in Nicora

et al. (2021) and the fact that, at European scale, August

2018 was the fourth warmest from 1880 after 2016, 2017,

2015 (Paliaga et al. 2019). The AOI has been chosen to

have a reasonably comparable number of pixels over land

and sea, as shown in Fig. 1. Pixels over which the AOI has

been analyzed include a sea area of Asea = 448 9 734 km2

and a land area of Aland = 301 9 38 km2, thus Asea is *
1.5 times Aland. Data have been interpolated on 3 different

spatial grids covering the AOI. All features of each pixel

are organized in a Data Frame (DF) and only pixels con-

taining all data are considered to train the models, i.e., if

one feature is missing in a pixel, the pixel is excluded from

the DF. Considering that the final goal of the work is to

create an operative tool working in near real time, in this

study the selection of the input variables is performed

considering their availability, the spatio-temporal

Fig. 1 AOI for algorithm application
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resolution and the easiness in the retrieve and process

phases, i.e., the timings needed to receive, download, and

process the data. Hence, all data to be used in the DF (from

either observations/direct measurements or radar/satellites

measurements) must be available sufficiently in advance,

allowing analysts to pre-process them and run the fore-

casting algorithm.

The features chosen to train the model range from

spatio-temporal information to observations or forecasted

data produced by NWP, i.e.,

• Latitude and Longitude: coordinates belong to the

spatial matrix on which all the features are gridded.

Outcomes of the 10 years analyses in (Nicora et al.

2021) show a significant difference in the lightning

activity along the Italian peninsula. Moreover, the

correlation between lightning activity and the latitude is

also exposed in (Underwood 2006; Rakov 2013; Enno

et al. 2020).

• Digital Elevation Model (DEM [m ASL]): analyses

performed in (Paliaga et al. 2019) suggest that the

orographic effect may be considered as possible

influencing factor enhancing the seasonal difference

between the lightning activity over sea and land.

Moreover, in (Underwood 2006; Mazarakis et al.

2008; Vogt and Hodanish 2014) the relative flash

density was found to be correlated with the terrain

elevation and also (Poelman 2014) associates the CG

lightning peak currents with the terrain elevation.

Nevertheless (Kotroni and Lagouvardos 2008) states

that a positive correlation between lightning activity

and terrain elevation is evident during spring and

summer but not in autumn and winter. Consequently,

aiming at creating a generalized ML algorithm, the

terrain elevation is added as input feature.

• Temperature: a positive correlation between lightning

and Sea Surface Temperature (SST) in autumn is shown

in (Kotroni and Lagouvardos 2016), where it is

suggested that the reason may lie in the fact that higher

SST destabilizes the lower tropospheric layers, thus

enhancing convection and therefore lightning. Analyses

in (Kotroni and Lagouvardos 2016) also suggest that

this finding could be used to forecast the intensity of

lightning activity. Similar considerations can be found

in (Nicora et al. 2021), in which, during autumn, a

strong lightning and precipitation activity is detected

and linked with the strong interaction between a

warmer SST and a significant amount of instable moist

air. Moreover, the lightning activity has been linked

with the solar heating cycle in (Enno et al. 2020);

indeed, a summer peak in the lightning activity was

observed at mid-latitudes whereas the Mediterranean

experienced an autumn maximum. Most of the

lightning occurred over land from March to August,

whereas from September to February it was concen-

trated over the Mediterranean. Consequently, the

Infrared brightness temperature [K] measured by

Meteosat Second Generation in the infrared channel

(10.8 MHz) is used as input parameter for the creation

of the ML algorithm. The refresh time is 15 min. Since

all other features in the input space have a temporal

resolution of 1 h, the hourly temperature mean value

and hourly standard deviation are computed.

• Zonal u (or x-coordinate) and meridional v (or y-

coordinate) components of horizontal wind vector

[ms-1]: The microphysical and kinematic characteris-

tics of the relationship between lightning and convec-

tive processes have been extensively studied.

Particularly, because lightning needs an electric field

region to be initiated, flash initiations tend to cluster in

the vicinity of updraft cores, where either sedimentation

alone or sedimentation combined with wind shear or

turbulence produces gradients in the charged particles,

creating the electric fields needed to initiate lightning

(Calhoun et al. 2013). Consequently, both zonal and

meridional wind components are used in the DF at 4

pressure levels (1000, 850, 700, 500 hPa) to consider

the wind shear effect. The components are provided by

the daily forecast of the COnsortium for Small-scale

Modeling (COSMO)-I5 model over the period under

investigation. COSMO-I5 (Steppeler et al. 2003) is the

limited-area, non-hydrostatic model used by the

COSMO consortium with 2 daily run (00UTC-

12UTC) and 72 h of forecast over the Mediterranean

basin.

• Vorticity: many studies demonstrate that deep atmo-

spheric convective processes are characterized by

intense vertical velocities, able to reach the zone of

the atmosphere where lightning phenomena occurs

(Petersen et al. 1999; Deierling and Petersen 2008;

Wang et al. 2015; Huang 2021). Findings in (Mazarakis

et al. 2008) confirm such idea. The data availability for

this analysis included only the zonal and meridional

components of the horizontal wind vector, thus, the

vertical component of vorticity, xz, has been calculated

at 1000 hPa to support the ML algorithm in identifying

the most intense convection zones at lower level of the

atmosphere, i.e., (Holton 1992)

x~z ¼
ov

ox
� ou

oy

� �
ð1Þ

where the spatial derivative has been approximated

with first order Finite Difference.

• Precipitation: Many studies (Adamo et al. 2009; Tapia

et al. 1998; Soula and Chauzy 2001; Adamo et al. 2009;

Lagasio et al. 2017; Soula and Chauzy 2001) have
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revealed the strong intercorrelation between the light-

ning phenomena and severe rainfall process evolution

in thunderstorms, confirming the hypothesis that light-

ning activity may be useful to track the convective

cores’ motion associated with severe rainfall processes.

Consequently, measured precipitation data are included

as input feature in the DF to train the models. From the

observational point of view, the 1-h precipitation

accumulation from the Integrated Multi-satellitE

Retrievals for GPM (IMERG) is used. Moreover, to

validate data retrieved from COSMO-I5 model, the

precipitation forecasted by COSMO-I5 is compared

with precipitation values detected by the Italian radar

network, obtained with the Modified Conditional

Merging (MCM) technique. Precipitation data com-

puted by COSMO-I5 model are considered to be

validated if:

rrmeasured � rrCOSMOj j � T ð2Þ

where rrmeasured is the precipitation from radar, rrCOSMO

represents the precipitation modelled by COSMO-I5

and T is a threshold, defined for 4 different hourly

cumulated rainfall levels, as shown in Table 1.

• Distance Sea/land: analyses in (Nicora et al. 2021;

Paliaga et al. 2019; Enno et al. 2020) found that the

lightning activity may differ over sea and land areas.

Moreover results in (La Fata et al. 2021) suggest that

longitude may have a relevant importance when trying

to perform a classification of pixels with or without CG

strokes. Consequently, the distance from each land

pixel from the sea has been added as feature in the input

space.

All the above-mentioned input data have different

spatial and temporal resolution; thus, interpolation is

needed to create a DF to train and test the ML

algorithm. Ideally, to introduce the fewest approxima-

tion, the influence of interpolation errors needs to be as

reduced as possible. Considering the data availability,

their different temporal and horizontal spatial resolution

and since it is unknown a priori what’s the best

resolution on which interpolate all the data, the

accuracy in the forecasts obtained with the 3 spatial

grids available are compared:

Horizontal grid of Temperature data (HT):

0.05� 9 0.0611�,
Horizontal grid of Wind components data (HW):

average pixel dimension of 0.045� 9 0.0681�,
Horizontal grid of Precipitation data (HP):

0.1� 9 0.1�.

The temporal resolution is set to 1 h for all input data.

The output of each model created is a Boolean variable

indicating the presence or absence of CG strokes in a

specific spatial location in the following hour. For all the

three spatial resolutions over which input data have been

gridded, two models have been created, one aiming at

forecasting pixels in which positive strokes are detected,

one aiming at forecasting pixels in which negative strokes

are detected. The reason of the creation of differentiated

models for positive and negative strokes lays in the dif-

ferent numerosity and creation mechanism. (Diendorfer

et al. 2009) and (Cooray and Arevalo 2017) say that neg-

ative lightning flashes account for about 90% or more of

global CG lightning, and that 10% or less of CG discharges

transport positive charge to Earth. Moreover (Rakov 2013)

and (Diendorfer et al. 2009) state that positive lightning

can be the dominant type of CG lightning during the cold

season, during the dissipating stage of a thunderstorm, and

in some other situations including severe storms and

thunderclouds formed over forest fires or contaminated by

smoke. Differences in the scenarios leading to positive and

negative lightning can be found in (Nag and Rakov 2012)

and (Cooray and Arevalo 2017). (Nag and Rakov 2012)

also states that several properties of positive lightning (e.g.,

number of strokes per flash, occurrence of continuing

current, leader propagation mode, and branching) appear to

be distinctly different from those of negative lightning.

As stated before, the pattern recognition models created

seek the presence or absence of CG strokes in a specific

pixel in the following hour. The source of CG strokes data

is the Ground Stroke Density (GSD) available thanks to

CESI-SIRF Lightning Location System (LLS), now prop-

erty of Meteorage SAS. Sensors of CESI-SIRF LLS were

installed in 1994 and consist today of VAISALA LS7002

sensors over the Italian territory. SIRF is a founding

member of the EUCLID (EUropean Cooperation for

LIghtning Detection) network, a pan European union

aiming at sharing LLSs’ data. All sensors of EUCLID

operate in the same frequency range. The sensors’ redun-

dancy of the EUCLID network allows the Italian territory

to be covered by theoretically 150 sensors; actually at least

by the 15 sensors closest to the national borders. Strokes

data have been processed defining a Boolean matrix whose

entries are 1 in correspondence of pixels in which at least

one stroke is detected (class 1) and 0 elsewhere (class 0).

The DF over the AOI, for each hour, is composed of pixels

Table 1 Thresholds used to validate the COSMO I5 model

Measured precipitation (mm) Threshold T (mm)

0 B rrmeasuredB 15 10

15\ rrmeasured B 35 20

35\ rrmeasured B 55 25

rrmeasured[ 55 30
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including the 16 abovementioned features and the 17th

dimension representing the target, i.e., the presence/ab-

sence of strokes. The resulting DF is extremely unbal-

anced, e.g., 75% of pixels have less than 2 strokes and,

excluding pixels containing no strokes, 75% of pixels of

the reduced DF includes less than 5 strokes. Sub-Sect. 2.2

will introduce the balancing methodology applied to face

this issue.

2.2 Classification algorithm

The problem of determining the presence or absence of

strokes in a specific spatial location during the next hour

has been formulated in terms of classification of each pixel

of the AOI. The classification has been performed using

RF. The choice is due to the demonstrated potential and

benefits in the prediction ability of the RF technique for

nowcasting problems strictly correlated with the lightning

phenomenon, such as the prediction of small-scale storm

initiation, diagnosis of turbulence, mesoscale convective

system initiation and lightning activity, respectively shown

in (Breiman 2001; Williams 2014; Blouin et al. 2016;

Ahijevych et al. 2016). RF is an ensemble method based on

Classification and Regression Decision Trees, originally

introduced in (Breiman 2001). A classification tree is an

algorithm in which the input space is divided into L non-

overlapping regions R1, R2, …, RL. A recursive binary

splitting starting from the top of the tree is used to for-

mulate the RL regions: on the top of the tree all the

observations are still included in one single region and,

successively, each region of the predictor space is split into

two new ones. Specifically, calling s the cut point and for

any l 2 L, the pair of half-plains produced at each step is

defined as:

R1 l; sð Þ ¼ X Xl\sg and R2 l; sð Þ ¼ fXj jXl � sf g ð3Þ

where fXjXlg is the conditional probability related to X

given Xl, i.e., a measure of the probability of occurrence of

the event X given that another event (Xl) has already

occurred. Once the RL regions are defined, predictions are

simply computed by assigning to each sample the label of

the most commonly occurring class of training observation

in its same region. At each step of the binary splitting, the

values of s and l are obtained by minimizing the Gini index

G, computed as:

G ¼
XK
k¼1

p̂mk 1� p̂mkð Þ ð4Þ

where bpmk is the proportion of the training observations in

the mth region belonging to the kth class. RF is built with

the ensemble of several trees generated from bootstrapped

training samples. However, to ensure a proper

decorrelation among the trees, only a subset m of the p

features is chosen as split candidate for each single tree. An

advantage of this approach is the possibility to study the

importance of each feature, hence improving the under-

standing of the phenomenon analysed. Specifically, it is

possible to average the reduction of the Gini index due to

splits over a given predictor and averaged for all the trees.

Therefore, high values of this metric will correspond to

more important predictors.

To apply RF over the AOI for the creation of the ML

algorithms to nowcast lightning, data have been split into a

train and a test set and organized as follows: pixels con-

taining at least 1 stroke (class1) are counted; pixels con-

taining 0 strokes (class 0) are randomly selected among

pixels of the DF where the precipitation forecasted by

COSMO-I5 model is validated, as indicated Table 1, so

that class 0 and class 1 are balanced (i.e. contain the same

number of pixels). The balancing procedure has been

performed for a DF containing only locations of positive

strokes and for a DF containing only locations of negative

strokes. The resulting DF is composed of balanced 0–1

pixels related to August–September and October 2017 and

2018 as train set and pixels related to August–September

and October 2019 as test set. Although the approach

adopted to split the data considers neither the spatial nor

the temporal dependencies among data, these are explicitly

taken into account by the addition into the input space of

the geographical coordinates (latitude and longitude). Once

normalized the input features in the interval [0,1], a five-

fold Cross-Validation (CV) has been performed to train RF

and determine optimal values for the parameters.

2.3 Model evaluation metrics

Even in high activity regions, CG lightning strikes are rare

events (Mostajabi et al. 2019). It is important for the

nowcasting tool to correctly predict both lightning and non-

lightning events, being the latter numerically dominant

among lightning events. However, while a low false alarm

rate is desirable, it is not indicative of good predictive skills

of the algorithm. In other words, in imbalanced databases,

as it is the case of the study presented, the overall accuracy

may not be sufficient to correctly evaluate the significance

by which the prediction scheme performs better than

chance. To fill the gap, in the lightning field, the literature

suggests some evaluation metrics. For the purposes of the

study, the evaluation results are compared by means of

three common indices in forecasting rare events: Proba-

bility of Detection (POD), False Alarm Rate (FAR) and

Accuracy. The elements to compute such parameters are

obtained by means of the Confusion Matrices (CMs) of the

models created. CMs are composed of 4 elements: True

Negatives (TN, i.e., pixels belonging to class 0 correctly
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labelled as class 0), True Positives (TP, i.e., pixels

belonging to class 1 correctly labelled as class 1), False

Positives (FP, i.e., pixels belonging to class 0 wrongly

labelled as class 1) and False Negatives (FN, i.e., pixels

belonging to class 1 wrongly labelled as class 0). POD is

calculated as

POD ¼ TP

TPþ FN
; ð5Þ

FAR is calculated as

FAR ¼ FP

TPþ FP
; ð6Þ

and the Accuracy is calculated as

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN
: ð7Þ

3 Results and discussion

3.1 Results

The CMs of the best models obtained with the RF tech-

nique with data gridded over 3 different horizontal spatial

resolutions have been calculated for all data selected for

August–October 2019. The predicted probability threshold

is set to 0.5, i.e., a pixel is labelled as belonging to class 1 if

the probability associated to such pixel calculated by the

model is C 0.5. To compare results obtained using HT,

HW and HP resolutions, typical parameters related to

lightning detection are computed: the POD, calculated as

defined by (5), the False FAR, calculated as shown in (6),

and the Accuracy, as defined by (7). Results are summa-

rized in Tables 2 and 3 and shown in Fig. 2. Considering

POD, FAR and Accuracy, the best performing model is the

one for which input data have been re-gridded using HW

resolution, confirming the results showing that higher res-

olutions of data allow to create more reliable and better

performing models (Kain et al. 2008) (VandenBerg et al.

2014) (Potvin and Flora 2015). Consequently, the features’

importance resulting from the best RF models obtained

with data re-gridded using HW is shown in Fig. 3. For data

gridded with HW resolution, for both positive and negative

strokes, precipitation resulted to be the highest impacting

feature, highlighting the ability of the model to link the

lightning phenomenon and the meteorological variables

driving to the creation of cumulonimbus and precipitation,

in agreement also with outcomes of (Paliaga et al. 2019)

(Enno et al. 2020) (Nicora et al. 2021). Longitude resulted

to be the second most important feature. Nevertheless, the

variable representing the distance from land to sea surface

is the lowest impacting for positive strokes and the second

lowest impacting for negative strokes. The importance

related to wind components varies with pressure levels: for

both positive and negative strokes the importance of wind

components decreases as pressure level increases, i.e.,

zonal and meridional wind components at 500 hPa is the

highest impacting feature among such data. The impor-

tance of temperature data is located between wind com-

ponents at lower pressure levels. This may be since

temperature values are available thanks to infrared satellite

measurements. Since the source of lightning is usually a

cumulonimbus (thundercloud) (Rakov 2013), it is reason-

able to think that temperature values over a cloud area are

linked with wind components at lower pressure levels (i.e.,

500–700 hPa). The low importance related to Latitude and

DEM show how the impact of meteorological features

describing the atmosphere at higher altitudes is more rel-

evant than the impact related to topology data.

3.2 Discussion

Accuracy values, reaching values higher than 57% and the

FAR values lower than 37%, for both positive and negative

strokes, highlight the ability of the models to deal with

forecasts with all the three different horizontal spatial

resolutions. Nevertheless, a reliable nowcasting tool should

reach higher Accuracies. Thus, in the following paragraph,

possible solutions are explored and further data to be added

in the input space are discussed.

Results of Accuracy obtained with HP and HT resolu-

tions are approximately similar for both positive and neg-

ative strokes, while they are differentiated when

Table 2 Percentage values of POD, FAR and Accuracy for Positive

strokes

Positive strokes

Resolution POD (%) FAR (%) Accuracy (%)

HP 44,11 37,03 59,08

HW 54,11 18,20 71,84

HT 36,37 32,77 59,32

Table 3 Percentage values of POD, FAR and Accuracy for Negative

strokes

Negative strokes

Resolution POD (%) FAR (%) Accuracy (%)

HP 39,04 37,10 58,00

HW 44,51 19,07 67,01

HT 24,93 29,69 57,20
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calculating POD and FAR. Despite, for negative strokes,

FAR for data gridded on HT resolution is lower than FAR

for data gridded on HP resolution, POD for data gridded on

HP resolution is higher. At an overall look, for both posi-

tive and negative strokes, the best performing algorithm is

the one with data gridded using COSMO resolution, i.e.,

HW. Figure 2 shows how the models with data gridded

over HW reaches the highest POD and Accuracy and the

lowest FAR. This result may be attributed to the fact that

half of the features used to train the models are available on

COSMO resolution, i.e., all zonal and meridional wind

components. Thus, training the model re-gridding all data

using COSMO resolution introduce interpolation errors on

less than half among the variables (the vertical vorticity of

wind at 1000 hPa is computed starting from wind data).

Differences in the performances reached by models trained

with data gridded using HW resolution support literature

results indicating better results when using high spatial

resolution. Distinction in the results obtained for positive

and negative strokes may be also attributed to the differ-

ences in the creation mechanisms (Nag and Rakov 2012)

and (Cooray and Arevalo 2017).

Results reached confirm the yet high POD and low FAR

obtained in (Blouin et al. 2016), in which a lower spatial

resolution was used, and in (Mostajabi et al. 2019), in

which the best results were obtained with an XGBoost

algorithm to perform 30 min ahead forecasting of lightning

occurrence based on a set of single-site observations of

Fig. 2 Histograms of the percentage values of POD, FAR and

Accuracy on the Test set obtained with the resulting best RF models

for positive (left) and negative (right) strokes. Orange bars refer to the

model created re-gridding all data of the DF over the HP resolution.

Yellow bars refer to the model created re-gridding all data of the DF

over the HW resolution. Green bars refer to the model created re-

gridding all data of the DF over the HT resolution

Fig. 3 Features’ importance of the resulting best RF model obtained

for data gridded with HW resolution, for positive (left) and negative

(right) strokes. Wind vorticity is labelled as

‘‘vertical_vorticity_wind_1000’’, zonal (meridional) components of

horizontal wind are labelled as wind_u (wind_v) followed by the

pressure level (e.g., ‘‘wind_u_1000’’)
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meteorological parameters. Differently, results in (Zhou

et al. 2020), obtained using data from geostationary

meteorological satellites as input to create a DL algorithm,

reach higher performances with respect to the presented

model when dealing with hours characterized by high

intense lightning activity. Consequently, future enhance-

ment of the models here presented may consider the

introduction of satellite and radar data as input parameters,

with a sufficient resolution (Weisman et al. 1997) (Ska-

marock 2004) (Kain et al. 2006) able to detect and capture

CI and its evolution.

The results presented in this paper must be intended as

part of an ongoing research, and many relevant questions

still must be investigated. Future studies will deal with the

optimization of the spatio-temporal correlation among

data. Indeed, for all the presented models, the spatial

structure of the data was considered by explicitly adding

the geographical coordinates in the input space. Never-

theless, the effect of neighbouring observation in both

space and time was not considered in the proposed models.

Embedding strategies may be investigated to better con-

sider the spatio-temporal nature of the investigated phe-

nomena. The use of DL algorithms may also ensure a better

modelling of the spatio-temporal dependences typical of

environmental data because of their capability to auto-

matically extract features in both spatial and temporal

domains. Finally, this manuscript analysed the forecasting

problem in terms of binary classification of the presence/

absence of strokes, only considering CG lightning. Further

variables allowing to distinguish the creation mechanisms

for positive and negative lightning should be added in the

input space in future studies. Consequently, future

improvements of the work presented in this paper will

include investigations related to embedding strategies and

the definition of a further classification or regression

analysis:

• one option could be the definition of a threshold related

to the typical values of the GSD, as reported in (Nicora

et al. 2021) and (Paliaga et al. 2019) and references

therein: the classification problem gives an indication in

case such threshold is overcome.

• the problem could be analysed in terms of regression,

having as output feature the GSD.

4 Conclusion

A timely forecast of the lightning activity may support

early warning systems giving decision makers updated

information to take the necessary safety measures during

severe weather events. However, the complexity of atmo-

spheric processes that lead to lightning activity makes the

creation of such forecast still a difficult task. The present

paper investigated the possibility of using ML techniques

to develop an effective timely forecast of the lightning

activity. Specifically, an application of RF has been pre-

sented to perform spatially explicit 1-h ahead nowcasting

of lightning occurrence over the Italian national territory,

including its surrounding seas. Since the best resolution on

which to interpolate all the data used in the DF is a priori

unknown, three models have been created, based on the

three different horizontal spatial grids of the data used to

train the model. The obtained results have been compared

via typical evaluation metrics for extreme events, sug-

gesting that the finest spatial resolution available increases

the effectiveness of the model. Moreover, a comparative

analysis on the available features has revealed the low

importance of Latitude and DEM data with respect to

meteorological ones describing the atmosphere, especially

at higher altitudes. The encouraging results obtained in

terms of forecasting Accuracy suggest how, after proper

improvements, ML-based algorithms could find their place

in wider early-warning systems to support disaster risk

management procedures. For this reason, future work will

involve the possibility of including further meteorological

variables in the feature set, as well as moving from clas-

sification to regression algorithms to properly estimate the

GSD over the AOI. This way, the present paper represents

the preliminary study of a medium-term research whose

final goal is the creation of an operative tool working in

near real time to recognize and monitor unexpected and

alarming changes in the lightning activity and thus, iden-

tifying the possibility of an extreme event in the following

hours.
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