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Abstract
Do brain circuits become fatigued due to intensive neural activity or plasticity? Is sleep necessary for recovery? Well-rested 
subjects trained extensively in a visuo-motor rotation learning task (ROT) or a visuo-motor task without rotation learning (MOT), 
followed by sleep or quiet wake. High-density electroencephalography showed that ROT training led to broad increases in EEG 
power over a frontal cluster of electrodes, with peaks in the theta (mean ± SE: 24% ± 6%, p = 0.0013) and beta ranges (10% ± 3%, 
p = 0.01). These traces persisted in the spontaneous EEG (sEEG) between sessions (theta: 42% ± 8%, p = 0.0001; beta: 35% ± 7%, 
p = 0.002) and were accompanied by increased errors in a motor test with kinematic characteristics and neural substrates similar 
to ROT (81.8% ± 0.8% vs. 68.2% ± 2.3%; two-tailed paired t-test: p = 0.00001; Cohen’s d = 1.58), as well as by score increases of 
subjective task-specific fatigue (4.00 ± 0.39 vs. 5.36 ± 0.39; p = 0.0007; Cohen’s d = 0.60). Intensive practice with MOT did not affect 
theta sEEG or the motor test. A nap, but not quiet wake, induced a local sEEG decrease of theta power by 33% (SE: 8%, p = 0.02), 
renormalized test performance (70.9% ± 2.9% vs 79.1% ± 2.7%, p = 0.018, Cohen’s d = 0.85), and improved learning ability in ROT 
(adaptation rate: 71.2 ± 1.2 vs. 73.4 ± 0.9, p = 0.024; Cohen’s d = 0.60). Thus, sleep is necessary to restore plasticity-induced fatigue 
and performance.
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Statement of Significance
Intensive motor learning in well-rested subjects induces brain fatigue evidenced by an increase in EEG activity in the 
theta range recorded during rest and localized over brain areas previously involved in learning. Moreover, after learning 
performance, error rate increases in a test that uses those same brain areas. Intensive practice without learning does not 
produce these effects. A nap, but not quiet wake, renormalized brain activity and test performance while consolidating 
learning. Thus, brain circuits become fatigued due to plasticity and learning. Sleep is necessary for recovery.
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Introduction

Can the intensive activation of neural circuits lead to neural fa-
tigue under physiological conditions, as indexed by persistent 
alterations in neural activity and negative consequences on per-
formance? If so, is fatigue mostly due to activity or plasticity? 
And can the brain be restored by quiet wakefulness (rest) or only 
by sleep? Surprisingly, we still do not know the answer to these 
basic questions.

We know, however, that staying awake too long leads to per-
sistent changes in neural activity and performance impairments 
that can only be restored by sleep. Recent studies in animals 
have shown that impaired performance after extended wake is 
associated with the occurrence of “local sleep”—bursts of low-
frequency activity and neuronal OFF periods similar to those 
of sleep [1]. Presumably, the occurrence of OFF periods leads to 
performance impairment because it interferes with the proper 
activation of neural circuits. Human subjects kept awake for 
more than 20 h and engaged in intensive task performance also 
show a local, task-specific increase in slow frequencies (5–9 Hz) 
in the spontaneous EEG (sEEG), which is accompanied by a de-
terioration of test performance [2, 3]. Intracranial recordings in 
sleep-deprived humans also found that performance lapses are 
associated with local activity in the low frequencies (2–10 Hz) 
during wake and with delayed, attenuated spiking responses of 
individual cortical neurons [4]. These and other studies of pro-
longed sleep deprivation [5–7] show that extended wake leads 
to performance errors associated with increased EEG power in 
low frequencies.

In this study, we asked whether neural fatigue is triggered 
in well-rested brains without sleep deprivation. We did so by 
requesting subjects to engage in three sessions of an intensive 
visuomotor rotation learning task (ROT) during the morning 
hours. Fatigue was assessed both subjectively and through re-
cordings of local changes in EEG activity and indexed by the per-
formance of a motor test employing neural circuits similar to 
ROT [8–11]. We further asked whether intensive neural activity 
alone is sufficient to trigger neural fatigue, or whether learning 
and plasticity are necessary. We did so by comparing the effects 
of ROT on EEG activity and performance to those of a kinemat-
ically equivalent visuomotor task that did not involve rota-
tion learning (MOT). Finally, we asked whether periods of quiet 
wakefulness are sufficient to restore neuronal activity and per-
formance, or whether sleep is necessary. We did so by requiring 
subjects to either sleep or rest quietly for an hour upon the com-
pletion of ROT, after which their EEG activity and performance 
were assessed again.

Methods

Subjects

A total of 49 healthy subjects completed the study (age range: 
20–35 years, mean ± SD = 24.0 ± 4.0 years, 26 women). All partici-
pants were right-handed, without a history of sleep or medical 
disorders and color vision impairment; they reported sleeping 
an average of 7–8 h/night for at least a week before the experi-
ment, with consistent bed and rise times, as verified by sleep 
diaries. The study was approved by the local Institutional Review 
Board (IRB). Each participant signed an IRB-approved informed 
consent form.

Experimental design

Subjects arrived in the lab around 8:00 am and were fitted with a 
hd-EEG cap, to start the data collection by 9:00 am. Alcohol and 
caffeine-containing beverages were not allowed starting the night 
before and throughout each experiment. As described in Figure 1, 
during the morning, 36 subjects (age range: 20–33 years, mean ± 
SD = 23.6 ± 3.5 years, 19 women) performed a baseline consisting 
of 2-min eyes open sEEG, followed by mov, a reaching test (see 
below and Figure 1, C) and mem, a working memory and atten-
tional test (see below and Figure 1, C). After the baseline, partici-
pants underwent three 45-min blocks of ROT, a motor adaptation 
task (see below and Figure 1, A and B); each ROT block was followed 
by a 2-min recording of sEEG with eyes open, mem and mov tests. 
At the end of the three blocks, subjects had lunch and afterward, 
20 subjects were asked to take a 90-min nap (nap group), while 
16 subjects (quiet wake group) were asked to stay awake and to 
rest quietly for 90 min lying down with their eyes closed, listening 
to audiobooks, and performing guided meditation. To minimize 
the influence of sleep inertia on cognitive functions, two 2-min 
eyes open sEEG recordings were performed about 30 min from the 
end of the 90-min quiet wake or nap interval. Experimenters took 
turns to enforce as much as possible adherence to the protocol 
throughout the entire experiment. In particular, during all tasks 
and EEG recordings, the experimenters alerted participants when 
signs of drowsiness were detected. For 11 participants (3 subjects 
in the awake group and 8 subjects in the nap group) EEG data 
was not available due to technical problems during collection and 
storage. The behavioral data of these participants were still used 
in the analysis of task performance. Therefore, EEG data were 
analyzed in 25 subjects (13 in the awake group and 12 in the nap 
group), while performance data were analyzed in 36 subjects (16 
in the awake group and 20 in the nap group). The sample size 
was determined based on the behavioral results of pilot data in 
nine subjects (specifically, performance in ROT and mov). We con-
cluded that at least 12 participants per group were required to 
have power of at least 0.9 to identify effects similar to those ob-
served in the pilot study (Cohen’s d = 1.066 for ROT and d = 1.13 for 
mov) at the α = 0.05 significance level.

For the control experiment, we recruited 13 subjects (7 
women) whose age matched that of the ROT group (range: 
20–35 years, mean ± SD  = 25.3 ± 5.3 years, two-tailed unequal 
variance t-test: t = −0.22; p = 0.830). As for the ROT session, after 
a baseline, subjects performed three 1-h blocks of MOT, a simple 
reaching movement task (see below), each followed by two 
2-min recordings of sEEG with eyes open and by mem and mov 
tests (Figure 1, A). Since this control experiment was performed 
to ascertain whether local theta power increases over the frontal 
area were specific to learning in ROT, the MOT session included 
only the three morning blocks.

ROT

In this motor adaptation task (Figure  1, B), a circular array of 
eight targets (4 cm from a central starting point) was presented 
on a screen together with a cursor indicating the hand position. 
Targets lighted up in a random, unpredictable order, one every 
1.5  s; they were presented in 21 sets of 56 with 30-s inter-set 
intervals. Subjects were asked to make out-and-back movements 
with their right hand by moving a cursor on a digitizing tablet 
and reaching the highlighted target “as soon as possible” and 
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“as fast and as accurately as possible,” thus minimizing reaction 
and movement time, but avoiding anticipation. Unbeknownst to 
subjects, the direction of the cursor on the screen was rotated 
relative to the direction of the hand on the tablet in incremental 
steps of 10°, 20°, or 30° each, either clockwise or counterclockwise, 
starting from 0° (no rotation of the cursor) up to a maximum of 
60°. For each rotation step, subjects performed two sets of move-
ments (112 movements). The first and the last sets were per-
formed without any rotation imposed. The rotation steps for the 
sets were: Block 1: 10°, 20°, 30°, 40°, 50°, 60°, 50°, 40°, 30°, 20°, 10°; 
Block 2: 20°, 30°, 10°, 30°, 40°, 20°, 10°, −10°, −30°, −20°, 10°; Block 3: 
−10°, 10°, −20°, 0°, −20°, −30°, −10°, 10°, 20°, 0°, −10°; Block 4: −10°, 
−20°, −30°, −40°, −50°, −60°, −50°, −40°, −30°, −20°, −10°. Importantly, 
all the ROT blocks ended with three sets of movements without 
rotations to avoid interference with performance in the mov test 
(see below). Mean directional errors at the end of each block 
in the last set were similar to those of the first set (two-tailed 
paired t-test: N = 36, t < 0.22; p > 0.9 for each block), suggesting 
that subjects’ performance at the end of the ROT blocks was back 
to baseline levels and thus, there was no interference of rotation 
adaptation in the subsequent mov tests (see below).

MOT

In this control motor reaching task, target array and presenta-
tions were the same as in ROT. Subjects were asked to make 
out-and-back movements with the same instructions as for ROT. 

However, no cursor rotations were imposed. Subjects performed 
a total of 20 sets of 56 movements in every block. A total of three 
blocks were performed (Figure 1, A and B).

mov

This motor test shares characteristics of ROT without the ro-
tation adaptation component (Figure  1, C). Targets at three 
different distances (4, 7, and 10  cm) and eight directions (45° 
separation) appeared on a screen in non-repeating, unpredict-
able order at 3-s interval. Instructions were as for ROT and MOT, 
and subjects reached the target with out-and-back movements 
on a digitizing tablet. The total testing time for mov was approxi-
mately 5–6 min (96 targets).

mem

This learning test involves encoding visual sequences without 
any motor components (Figure 1, C). After three warning flashes, 
five or six out of eight targets successively lightened up on a 
screen for 250 ms at a 1-s time interval; subjects were asked to 
memorize the target sequence, to hold it in memory for 10 s, to 
verbalize it and be ready for the next sequence. For sequence 
verbalization, a color-coded target array was presented and 
subjects reported the order by mentioning the corresponding 
color. Subjects were tested before the session for proper color 
recognition. The experimenter wrote on a printed form the color 
order, while responses were also audio recorded. The correctness 
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Figure 1. Experimental design, tasks and tests. (A) Experimental design of the ROT session. The MOT session (grey bar) encompassed only a baseline and three blocks. 

(B) ROT and MOT tasks. (1) In both tasks, the target was presented on the screen (left) and the movement trajectory was displayed (center). In the inset (right), an ex-

ample of adaptation to an imposed visuo-motor adaptation in ROT. (2 and 3) Measures of each movement. (2) Temporal profile of velocity with the asterisk representing 

peak velocity of the outgoing movement. Reaction time is the time difference between target appearance and movement onset. (3) Directional error at peak velocity 

and normalized hand path area are represented for a movement. (C) mov (1) and mem (2) tests. (1) Target array used for mov. Instructions and movements are the same 

of MOT and ROT. (2) In mem, a sequence of targets was presented and after an interval, subjects reported the order of target appearance.
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of the written records was checked by listening to the audio 
recording and then scored. Sixteen different sequences were 
presented in each block for an overall duration of about 8 min. 
Declarative scores were from 0 (no order recognized) to 100% 
(correct sequence order). Trials with a score of less than 100% 
were considered “failed”.

Kinematic analyses

Kinematic data were collected with custom-designed software 
by E.T.T.  s.r.l. (MotorTaskManager Genoa, Italy). The analysis 
was performed on single movements, as previously described 
[8, 11–14]. For each movement, we computed, among other 
parameters: directional error at peak velocity, hand-path area 
(area included in the trajectory normalized by path length, a 
measure of interjoint coordination and thus of trajectory ac-
curacy), reaction time, movement time, peak, and mean velocity. 
For each step (which included two sets), we computed the adap-
tation reached in the last eight movements in percentage as: 
%Adaptation = (1 − [average DirErr/imposed rotation]) * 100. The 
mean adaptation rate of a block was measured as the average 
of all steps in that block. This index of adaptation rate is based 
on the changes of directional errors normalized by each step of 
rotation and their starting point [12]. For mov, we also computed 
the number of correct movements, defined as movements with 
values of reaction time, normalized movement area or direc-
tional errors within 1.5 standard deviation of the mean of the 
baseline mov0.

EEG recording and analyses

High-density EEG (256 electrodes; Electrical Geodesic Inc., 
Hydrocel net, Eugene, OR) was recorded for the entire duration of 
the sessions with a sampling rate of 250 Hz, using the Net Amp 
300 amplifier and Net Station 5.0 software (Electrical Geodesic 
Inc.). Impedances were maintained below 50 kΩ throughout the 
whole session. During the recording, the signal was referenced 
to the vertex (Cz). As mentioned above, sEEG recordings were 
analyzed in 11 subjects out of 20 in the nap group, and in 13 
subjects out of 16 in the quiet wake group.

Preprocessing

Data were preprocessed using the public Matlab toolbox EEGLAB 
version 14.1.1 [15]; the continuous signal was filtered between 
1 and 80 Hz (two-way least-squares FIR) with the addition of a 
notch filter centered at 60 Hz. The EEG signal was segmented into 
4-s epochs. Data were then visually inspected to remove epochs 
and channels containing artifacts, defined as evident abnormal-
ities of the signal. On average we removed 66.24 ± 27.79 (mean 
± SD) out of 150 4-s epochs in the sEEG ROT session and 51.89 ± 
27.19 epochs in the MOT experiment. These values are in agree-
ment with previous studies [16]. Also, in the two conditions, 
we removed 54.2 ± 20.4 and 50.0 ± 25.2 out of 256 channels, re-
spectively. In the ROT task, we removed 158.9 ± 82.4 out of 1,176 
epochs and 43.7 ± 27.1 channels. MOT task recording had 135.8 ± 
83.0 epochs rejected and 31.3  ± 18.7 channels. Channels were 
then replaced with spherical spline interpolation. Stereotypical 
artifacts, such as blinks, eye movements and motion-related sig-
nals were removed using the independent component analysis 
(ICA) with principal component analysis (PCA)-based dimension 

reduction. During sEEG data preprocessing, 74.5% of the compo-
nents for ROT and 73.5% for MOT were removed. During tasks data 
preprocessing, 75.7% and 76.6% of the components for ROT and 
MOT were removed, respectively. These values are in the range of 
those reported in previous publications [10, 11, 16]. Electrodes lo-
cated on the cheeks and neck were removed from the subsequent 
analysis, resulting in 180 electrodes. After the preprocessing and 
cleaning steps, the signal was average-referenced.

sEEG analysis

The power spectrum for each block was computed via the fast-
Fourier transform function of Fieldtrip (FFT Hanning window) 
[17] in 0.5 Hz bins. For each subject, the power at each channel 
was normalized by the baseline, that is, the first sEEG recorded 
at the beginning of the day, within the following frequency 
ranges: broad-band (1–55 Hz), theta (4.5–8 Hz), and beta (13–25 
Hz), according to the following equation: (sEEGn − sEEG0)/sEEG0.

Differences in the EEG activity between the first and the 
last morning sessions were assessed using cluster-based 
non-parametric permutation testing. The same approach was 
used to ascertain the effect on the sEEG of the 90-min interval 
of both nap and quiet wake. This non-parametric statistical ap-
proach directly addresses the “multiple comparison” problem 
by incorporating biophysically motivated constraints. In add-
ition, such an approach permits to formulate the null hypoth-
esis (identical probability distribution at different time points) 
and to control for false alarm rate under the null hypothesis 
[18]. Specifically, for cluster-based nonparametric permutation 
testing, nearest neighbor channels were determined via triangu-
lation with three as the minimum number of significant chan-
nels for inclusion in a cluster. The reference distribution was 
created using the Monte Carlo method with 10,000 random iter-
ations and critical alpha of 0.025 at the cluster level [18].

ROT and MOT EEG analysis

After preprocessing, epochs associated with invalid move-
ments, that is, movements whose parameters exceeded two 
standard deviations of the mean, were rejected. First, we 
aligned each valid trial (i.e. trials that were not discarded from 
either EEG or kinematic preprocessing) to the time of move-
ment onset; then, the recordings of the last set of movements 
of either ROT1 or MOT1 were normalized and compared to the 
first set to define the effects of practice. Frequency representa-
tions were computed for the 1–55 Hz range as well as for theta 
(4.5–8 Hz) and beta (13–25 Hz) ranges using Complex Morlet 
Wavelets at linearly spaced frequencies (0.5 Hz bins) and a con-
stant time window (1.5 s). The number of wavelets cycles and 
length were increased as a function of frequency (cycles 3–10; 
length 2.5–0.17  s). This approach was used to allow for time-
frequency analyses. Finally, cluster-based permutation testing 
was performed to define significant ROIs for the three ranges.

Analysis of the nap/quiet wake period

EEG recorded during the nap and the quiet wake period was 
scored for sleep stages using an open-source, Matlab based 
toolbox [19]. Both nap and quiet wake periods were scored by 
trained experimenters and confirmed by an experienced sleep 
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scorer using standard guidelines [20]. Recordings were scored 
in 30-s epochs as follows: wakefulness (W), NREM sleep stage 
1 (N1), NREM sleep stage 2 (N2), and NREM sleep stage 3 (N3). 
REM sleep (R) was not present in either group. For scoring pur-
poses, the contralateral mastoid reference was used and stages 
were primarily determined from classical derivations from the 
10 to 20 montage (F4, F3, C4, C3, P3, P4, O1, O2). The disappear-
ance of the rhythms associated with wakefulness such as pos-
terior alpha oscillations (8–10 Hz) and the occurrence of slow 
rolling eye movements were indicative of the transition to N1. 
K complexes and sleep spindles marked the transition to N2. 
The transition to and the maintenance of N3 were determined 
by the occurrence of >75 µV slow waves for more than 20% of 
the epoch.

Statistics

Two-tailed t-tests for paired comparisons were used to com-
pare differences in task performance between the first and the 
last training block of either ROT (ROT1 vs. ROT3) or MOT (MOT1 
vs. MOT3) on the following indices: degree of adaptation (for 
ROT only), movement time, peak velocity, reaction time, and 
hand-path area. This approach was also used to verify the 
within-group effects of a nap and quiet wake (ROT3 vs. ROT4) 
on task measures of adaptation, reaction time, and hand-path 
area; to compare test performance at baseline to that at the 
end of the morning in mov (number of correct movements, 
mov3 vs. mov0) and mem (number of correct sequences, mem3 
vs. mem4); and to compare test performance after a nap and 
after mov (number of correct movements). The distribution 
of all these indices was normal, as tested with both Shapiro–
Wilks tests and Kolmogorov–Smirnov tests (all p > 0.05). The 
only exception was the number of correct sequences in mem 
(both tests p < 0.05) and therefore the Mann–Whitney U-test 
was used for the within-group comparisons for mem. Paired 
t-tests with Bonferroni correction for multiple comparisons 
was also used to find spectral differences between sEEG0 and 
sEEG3 after both ROT and MOT and for EEG changes during 
the two tasks. Significant increases were found in the 5–30 Hz 
range. Two-tailed unequal variance t-tests were used to com-
pare sEEG3 theta power changes between the ROT and MOT 
sessions. For all significant results with t-tests, we also com-
puted effect sizes with Cohen’s d. Pearson coefficients with 
Bonferroni corrections (when appropriate) were used to ex-
plore significant correlations between performance meas-
ures and sEEG changes; sEEG and ROT1 EEG practice-related 
changes; sEEG power changes after a nap and sleep param-
eters; local power changes occurring during both ROT1 and 
sEEG; performance changes and sleep parameters.

Results
A group of well-rested subjects performed three morning 
sessions of intensive training in a reaching task that requires 
adaptation to a visually rotated display (ROT, Figure 1). Another 
group of well-rested subjects performed a reaching task (MOT) 
that is kinematically equivalent to ROT but does not require 
motor adaptation [8, 11]. MOT mainly involves the activity of 
sensorimotor areas similarly to ROT, but not of frontal areas [8, 

11]. The effects of the tasks on brain networks were assessed 
using two performance tests: (1) mov (reaching for random tar-
gets), a test with kinematic features and involvement of sen-
sorimotor areas similar to ROT and MOT and (2) mem, a test 
that involves attention/spatial working memory but not motor 
 activity. In what follows, tasks are always upper case whereas 
tests are always lower case.

Of note, the ROT training was designed to induce a per-
sistent state of learning across all sessions, without allowing the 
subjects to learn fully a specific rotation, a goal achieved with fre-
quent and small rotation changes (see Methods section). Thus, 
subjects’ performance remained in early phases of adaptation, 
a situation associated with activation of the sensorimotor areas 
and pre-supplementary motor area [9]. This approach differs 
from the one used in previous works where subjects reached vir-
tually complete and firm adaptation of a specific rotation, which 
was associated with activation of right parietal areas [8–10, 21].

Intensive training in ROT is accompanied by 
learning and EEG changes

During the ROT blocks, subjects adapted their movements to 
the rotated display by decreasing their directional error, without 
awareness of the imposed rotations. Handpath area, an index 
of trajectory accuracy reflecting inter-joint coordination [22, 23], 
decreased in the last block compared to the first, suggesting that 
subjects improved their skills across ROT blocks (Table 1). There 
was also a significant change in reaction time, but no change in 
the degree of adaptation to the rotated display, peak and mean 
velocity as well as movement time from the first to last blocks 
(Table 1).

We then asked whether any EEG changes accompanied ro-
tation adaptation in the ROT1 block. As shown in Figure  2, A, 
the broad-band EEG (1–55 Hz) recorded during rotation adapta-
tion compared to the EEG recorded during baseline task without 
adaptation showed a significant power increase in a cluster 
of electrodes over a frontal area (mean ± SE: 13% ± 2%; cluster 
t  =  47.96, p  =  0.0086). A  bin-by-bin analysis showed that the 
power increase in this cluster was significant in the range from 
5 to 30 Hz, with two peaks centered around the theta and beta 
bands (Figure 2, B). Both peaks involved a frontal cluster of elec-
trodes, more prominently on the left side (theta cluster: mean ± 
SE: 24% ± 6%; cluster t = 164.96, p = 0.0013; beta cluster: 10% ± 3%; 
cluster t = 71.6, p = 0.010; Figure 2, C).

Next, we asked whether rotation adaptation would re-
sult in persistent changes that could be detected by recording 
the spontaneous EEG during the rest periods after ROT blocks 
(sEEG). As shown in Figure  2, D, comparing the resting state 
broad-band EEG recorded after the last ROT block (sEEG3) with 
that recorded at baseline before ROT1 (sEEG0) revealed a power 
increase over a left frontocentral cluster of electrodes (mean ± 
SE: 31% ± 8%; cluster t = 224.12, p = 0.0001). A bin-by-bin ana-
lysis showed that the power increase in this cluster was again 
significant in a range centered around the theta band (4.5–8 Hz) 
and the beta band (13–28 Hz; Figure 2, E). Both peaks involved 
a frontal cluster of electrodes, predominantly on the left side, 
which overlapped with the larger frontal cluster in both theta 
(42% ± 8%; cluster t  =  147.14; p  =  0.0001) and beta (35% ± 7%; 
cluster t = 217.07; p = 0.002) ranges revealed by recordings during 
ROT1 (Figure 2, F). These results indicate that rotation learning 
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leaves a persistent trace in the sEEG power over a frontal re-
gion involved in rotation learning. Indeed, the local increases 
in sEEG3 power were positively correlated with the local power 

increases in both the theta range (r = 0.61, p = 0.001, 95% confi-
dence interval for r [0.28, 0.81]; Supplementary Figure 1, A) and 
the beta range (r = 0.50, p = 0.01, 95% confidence interval for r 

Figure 2. Changes during the ROT task (A–C) and during resting state after three blocks of ROT (sEEG3, D–F). In the T-maps (A, C, D, F), significant clusters of electrodes 

are highlighted with black dots. (A) T-map of the difference between the average of the sets during ROT1 adaptation and the initial sets where no rotation was imposed 

in a broad band from 1 to 55 Hz. (B) Power spectrum (mean, thick solid line, ± standard errors, thin light lines) of the cluster shown in 1 Hz bins. Frequency bins with 

significant increases between the first and the last set of movements in ROT1 (paired t-tests, p Bonferroni corrected for multiple comparisons) are shown as black bars. 

Significant increases were found in the 5–30 Hz range. (C) T-maps for the theta (left) and beta (right) ranges. (D) T-map during sEEG3 compared to the baseline sEEG0 in 

the 1–55 Hz range. (E) Power spectrum and frequency bins with significant increases compared to the sEEG0 as per (B). Significant increases were found in two bands, 

5–8 Hz (theta) and 15–28 Hz (beta). (F) T-maps for the theta (left) and beta (right) ranges.

Table 1. Mean ± SE of performance and subjective indices of ROT1 and ROT3

ROT1 ROT3

 Mean ± SE Mean ± SE 95% CI df t P Cohen’s d

N = 36        
 Adaptation rate 71.1 ± 0.7 71.2 ± 0.7 1.46, 1.68 35 0.07 0.94  
 Peak velocity 38.0 ± 1.1 37.1 ± 0.9 −1.72, 0.06 35 1.94 0.06  
 Mean velocity 22.4 ± 0.7 21.9 ± 0.6 −0.96, 0.14 35 1.53 0.14  
 Movement time 229.3 ± 5.7 232.5 ± 5.4 −1.46, 8.18 35 1.33 0.19  
 Reaction time 252.4 ± 3.2 247.4 ± 2.8 −8.75, −0.78 35 2.63 0.013 0.29
 Handpath area 0.059 ± 0.002 0.050 ± 0.002 −0.011, −0.003 35 3.66 0.001 0.75
 Tiredness 4.22 ± 0.31 5.58 ± 0.33 0.87, 1.85 35 5.68 0.00002 0.72
 Boredom 5.19 ± 0.34 5.69 ± 0.32 −0.12, 1.12 35 1.64 0.11  
 Sleepiness 5.28 ± 0.38 5.44 ± 0.31 −0.44, 0.77 35 0.55 0.58  
N = 25
 Adaptation rate 71.4 ± 0.8 71.8 ± 0.8 −1.55, 2.31 24 0.16 0.87  
 Peak velocity 38.6 ± 1.2 37.7 ± 1.0 −1.89, 0.05 24 1.96 0.06  
 Mean velocity 23.0 ± 0.8 22.3 ± 0.7 −1.38, 0.04 24 1.98 0.059  
 Movement time 224.8 ± 5.7 230.1 ± 5.8 −0.33, 10.81 24 1.94 0.064  
 Reaction time 252.9 ± 3.9 248.1 ± 3.2 −9.17, −0.29 24 2.20 0.038 0.24
 Handpath area 0.062 ± 0.002 0.052 ± 0.002 −0.015, −0.005 24 4.04 0.0005 0.83
 Tiredness 4.00 ± 0.39 5.36 ± 0.39 0.77, 1.95 24 4.82 0.0007 0.60
 Boredom 5.16 ± 0.41 5.44 ± 0.36 −0.44, 1.00 24 0.80 0.43  
 Sleepiness 5.16 ± 0.45 5.12 ± 0.37 −0.65, 0.73 24 0.12 0.91  

Results of t-tests comparing the two tasks with corresponding 95% confidence intervals for the difference of means. Significant p-values are in bold; effect sizes 

(Cohen’s d) were computed for p < 0.05. The first part of the table concerns the entire sample of subjects tested (N = 36); the second part is about the subgroup of 

subjects with EEG recordings (N = 25). Values of adaptation rate are expressed as a percentage; peak and mean velocities in cm/s; movement and reaction times in 

ms.
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[0.13, 0.75]; Supplementary Figure 1, B) during ROT1, a session 
where learning was least contaminated by interference and 
consolidation, processes that likely were more prominent in 
later sessions.

The local increase in sEEG3 power in the theta range was 
positively correlated with the improvement in trajectory ac-
curacy (r  =  0.58, p  =  0.002, 95% confidence interval for r [0.25, 
0.80]; Supplementary Figure  1, C), indicating that it might re-
sult from persistent changes associated with plasticity and 
learning. On the other hand, a persistent increase in sEEG 
power at low frequencies may also indicate a spontaneous oc-
currence of neuronal OFF periods, which would lead to signs of 
fatigue involving the neural circuits involved in ROT [1]. If so, 
we would expect a deterioration of performance after intensive 
ROT training in a test, such as mov, that shares similar neural 
circuits. Indeed, as shown in Figure 3, A, the number of correct 
movements in mov decreased after the last block (mov3) com-
pared to baseline (mov0; two-tailed paired t-test: t(35)  =  −5.46, 
p < 0.00001; 36 subjects; 95% confidence interval [−18.3%, −8.7%]; 
Cohen’s d = 0.95). Similar results were obtained in the subset of 
25 subjects in which the EEG was analyzed (mean ± SE, mov0: 
81.8% ± 0.8% vs. mov3: 68.2% ± 2.3%; two-tailed paired t-test: 
t(24) = −5.52, p = 0.00001, 95% confidence interval [−18.5%, −8.8%]; 
Cohen’s d  =  1.16). This deterioration of performance was spe-
cific, as it did not occur with mem, a test that involves atten-
tion/spatial working memory rather than motor performance 
(mem3 vs. mem0; Mann–Whitney U-test; U  =  538.5, z  =  1.228, 
p = 0.22; Figure 3, B). Similar results were obtained in the subset 

of 25 subjects in which the EEG analysis was performed (mem0: 
12.28 ± 0.45 vs. mem3: 11.56 ± 0.55; U = 250.5, z = 1.15, p = 0.25).

Altogether, these results suggest that intensive training 
leaves a trace that is confined to areas involved in the learning 
process, is correlated with the amount of learning, and is as-
sociated with performance deterioration in a homologous test 
but not in a test involving other brain areas. Of note, intensive 
training also led to an increase in subjective scores of tiredness 
across blocks, but not of boredom and sleepiness (Table 1).

Intensive motor performance in MOT does not affect 
either performance indices or frontal EEG activity

Next, we determined whether the local EEG changes caused by 
ROT training were specific to learning occurring during visuo-
motor adaptation or they could also be induced by practicing a 
simple motor reaching task without the adaptation component 
[8, 11]. Following the same design of ROT (Figure 1, A), we tested 
13 subjects with three blocks of MOT during the morning. We 
found no significant changes in handpath area, suggesting that 
no major learning occurred across blocks (Table 2). Additional 
analysis of reaction time, movement time, peak and mean vel-
ocity, and the subjective scores of tiredness, boredom, sleepi-
ness revealed no practice-related changes (Table 2).

During MOT1, we did not find any significant increase in the 
broad-band EEG power (1–55 Hz; Figure 4, A), even when the ana-
lysis was performed with less conservative criteria (i.e. critical 
alpha of 0.1 and 0.05 at the cluster level instead of 0.025). As a 

Figure 3. Performance changes in the two tests after ROT (left) or MOT (right) training. (A) In mov, percentages of correct movements decreased during mov3, after three 

ROT blocks, compared to baseline in mov0 (two-tailed paired t-test: t(35) = −5.46, p < 0.00001; 95% confidence interval: [−18.3%, −8.3%]; Cohen’s d = 0.95) in 36 subjects. 

(B) The numbers of correct sequences during mem were similar at baseline (mem0) and after three ROT blocks in 36 subjects (Mann–Whitney U-test, mem3; U = 538.5, 

z = 1.228, p = 0.22). (C) The percentages of correct movements increased during mov3 after three MOT blocks compared to baseline in mov0 (two-tailed paired t-test: 

t(12) = 2.65, p = 0.020; 95% confidence interval: [1.3%, 9.0%]; Cohen’s d = 0.82). (D) The numbers of correct sequences during mem were similar at baseline (mem0) and 

after three MOT blocks (mem3) did not change (N = 13, Mann–Whitney U = 79.5, z = −0.23, p = 0.82).
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complement to these results, a direct comparison confirmed that 
the EEG power increase was higher during ROT1 than during MOT1 
over the frontal clusters of electrodes previously identified in ROT1 
both in the 1–55 Hz range (13% ± 2% vs. 5% ± 3%; independent 
samples two-tailed test unequal variance: t(27.6) = 2.11, p = 0.044; 
95% confidence interval: [1%, 15%]; Cohen’s d = 0.77) as well as in 
the theta range (24% ± 6% vs. 5% ± 6%; t (29.9) = 2.06, p = 0.048; 95% 
confidence interval: [1%, 38%]; Cohen’s d = 0.73), but not in the beta 
range (10% ± 3% vs 16% ± 3%; t (28.3) = 1.27 p = 0.21, 95% confidence 
interval: [−4%, 15%]; Figure 2). These results are further supported 
by separate cluster t analyses for the theta and beta bands. The 
results showed a significant cluster of increased power with elec-
trodes overlapping with those of the significant cluster found for 
ROT only for beta (Figure 4, C) but not for theta range (Figure 4, B).

Also, after the three MOT blocks, we found no increase in 
broad-band power (1–55 Hz) when comparing sEEG3 to sEEG0 
(Figure 4, D), even using analyses with less conservative criteria 
(i.e. critical alpha values of 0.1 and 0.05 at the cluster level in-
stead of 0.025). Again, a direct comparison showed that resting 
state EEG power over the frontal cluster was higher in sEEG3 
after ROT in the theta range (ROT: 42% ± 8% vs. MOT: 20% ± 9%, 
two-tailed unequal variance t-test: t(31.1) = 2.63, p = 0.038; 95% 
confidence interval: [16%, 28%]; Cohen’s d  =  0.60) but not in 
the beta range (ROT: 22% ± 7% vs. MOT: 15% ± 8%, t(25.3) = 1.78, 
p  =  0.088; 95% confidence interval: [−4%, 48%]). No significant 
clusters were found with separate cluster t analyses for both 
theta and beta bands (Figure 4, E and F).

Finally, after MOT, performance in the mov test did not de-
teriorate but improved slightly (Figure 3, C). The performance of 
mem was not affected (Figure 3, D).

Altogether, these findings suggest that the increase in EEG 
power over a frontal cluster of electrodes, especially in the theta 
range, both during the task and persisting during the resting 
state EEG, is due to the intensive visuomotor learning occurring 
in ROT but not in MOT. Therefore, it is likely that these EEG traces 
reflect neural plasticity rather than neural activity without sub-
stantial new learning.

An afternoon nap but not an equivalent period of 
quiet wake renormalizes local EEG changes induced 
by intensive training

We hypothesized that, if the increase over the frontal cluster 
in sEEG theta power is due to the cellular consequences of in-
tensive plasticity, only a nap could renormalize sEEG power. 

If instead the local theta power increase were due to a tran-
sient depletion of energy resources, an equivalent period of 
quiet wake without sleep would be sufficient to restore the 
sEEG. To distinguish between these two possibilities, after 
ROT3 a group of subjects took a nap while another group 
rested quietly but without sleeping. In the nap group, the 
mean sleep time was over 60 min with most of sleep spent 
in NREM stages N2 and N3, indicating that sleep was con-
solidated and deep. Despite the instructions to stay awake, a 
minority of subjects of the quiet wake group briefly reached 
N2 (Tables 3 and 4).

As predicted, in the nap group spontaneous EEG power de-
creased in the theta range (sEEG4 after the nap compared to 
sEEG3 before the nap, mean ± SE: −33% ± 8% cluster t = 58.22, 
p  =  0.02; Figure  5, A) over a left frontal cluster that involved 
electrodes where theta power increased in sEEG3 (Figure 2). In 
fact, theta power in sEEG4 returned to baseline levels at sEEG0 
(no difference between sEEG4 and sEEG0, two-tailed paired 
t-test: t(10) = −0.1, p = 0.92). The theta decrease correlated with 
slow wave activity (SWA, 0.5–4 Hz) during the nap: the higher 
the level of SWA during the nap, the greater the theta power 
decrease in sEEG4 (N = 12, r = −0.80; p = 0.002, 95% confidence 
interval [−0.42, −0.94]; Supplementary Figure 2, A). In the quiet 
wake group, theta power did not decrease from sEEG3 to sEEG4 
(Figure 5, B) and remained higher than the baseline at sEEG0 
(t(11)  =  2.964, p  =  0.013; 95% confidence interval: [12%, 55%]; 
Cohen’s d  =  0.74). A  comparison between the nap and quiet 
wake groups further evidenced a group difference for sEEG4 
theta power of the frontal cluster (two-tailed unequal variance 
t-test: t(17.5)  =  2.46, p  =  0.025; 95% confidence interval: [5%, 
76%]; Cohen’s d = 0.91).

Conversely, beta power decreased in a more posterior cluster, 
over the left centro-parietal area in both the nap group (−30% 
± 9%, cluster t = 67.04, p = 0.02; Figure 5, C) and the quiet wake 
group (−28% ± 5%, cluster t = 35.05, p = 0.01; Figure 5, D) in elec-
trodes where beta power increased in sEEG3 (see Figure  2), 
without group differences (t(14.2) = 0.154; p = 0.88). Beta power in 
the sEEG4 cluster reached sEEG0 baseline values in both groups 
(sEEG4 vs. sEEG0: two-tailed t-tests: nap: t(10) = 1.8, p = 0.11; quiet 
wake: t(11) = −0.195, p = 0.85).

In summary, these results show that the frontal increase 
in EEG theta power induced by intensive training may be re-
versed by a nap but not by an equivalent period of quiet wake. 
Conversely, beta power over the left centro-parietal area de-
creased both after a nap and after quiet wake.

Table 2. Mean ± SE of performance and subjective indices of MOT1 and MOT3

MOT1 MOT3  

N = 13 Mean ± SE Mean ± SE 95% CI df t P

Peak velocity 36.0 ± 1.7 37.3 ± 2.0 −2.12, 4.68 12 0.82 0.429
Mean velocity 21.2 ± 0.9 20.8 ± 0.9 −1.86, 1.18 12 0.49 0.632
Movement time 236.0 ± 7.9 231.8 ± 9.4 −19.30, 10.73 12 0.62 0.546
Reaction time 252.9 ± 6.7 249.5 ± 6.4 −9.35, 2.62 12 1.23 0.244
Handpath area 0.039 ± 0.002 0.038 ± 0.002 −0.0021, 0.0017 12 0.24 0.811
Tiredness 4.61 ± 0.55 4.85 ± 0.54 −1.10, 1.56 12 0.38 0.712
Boredom 5.46 ± 0.62 5.15 ± 0.63 −1.89, 1.28 12 0.42 0.680
Sleepiness 5.84 ± 0.56 6.00 ± 0.59 −0.94, 1.25 12 0.30 0.766

Results of t-tests comparing the two tasks and corresponding 95% confidence intervals for the difference of means. Values of peak and mean velocities are expressed 

in cm/s; movement and reaction times in ms.
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A nap but not quiet wake renormalizes performance 
and the ability to learn

In the entire nap group (N = 20), correct movements increased 
in mov4 compared to mov3 (Figure 6, A), restoring performance 
to the levels observed in mov0 (t(19) = −1.01, p = 0.286). By con-
trast, in the entire quiet wake group (N  =  16), there was no 
restoration of performance (t(15) = −0.64, p = 0.534; Figure 6, 
B). Similar results were obtained for the subset of subjects (12 
nap and 13 quiet wake) where the EEG was analyzed (mean ± 
SE; nap: 70.9% ± 2.9% vs. 79.1% ± 2.7%; two-tailed paired t-test: 
t(11)  =  2.78, p  =  0.018, 95% confidence interval [1.5%, 15.3%]; 
Cohen’s d  = 1.25; quiet wake: 65.7% ± 3.6% vs. 64.3% ± 4.3%; 
t(12) = −0.57, p = 0.58, 95% confidence interval: [−6.6%, 3.8%]). 
Performance in mem did not change in either group (Mann–
Whitney U-test, U = 170.5, z = 0.78, p = 0.43; quiet wake: U = 97, 
z  =  1.15, p  =  0.25; Figure  6, C  and  D) and again the results 
were similar when considering the subgroups for which EEG 

analysis was performed (nap: 11.9 ± 0.7 vs. 12.9 ± 0.7; U = 57, 
z = 0.83, p = 0.40; quiet wake: 11.3 ± 0.9 vs. 12.5 ± 0.7; U = 63, 
z = 1.08, p = 0.28).

The restorative effect of the nap was not confined to test per-
formance but extended to learning ability. In a further learning 

Figure 4. T-maps during the MOT task (A, B, C) and during resting state after three blocks of MOT (sEEG3) (D, E, F). Significant clusters of electrodes are highlighted 

with black dots. The empty white circles represent the electrodes where significant increases in ROT were found (cf. Figure 2). (A–C) T-maps during the performance of 

MOT1 in a broad band from 1 to 55 Hz (A), in the theta (B) and beta range (C). A significant cluster was found only for the beta range (cluster t = 406.32, p = 0.0001) with 

electrodes overlapping with those of the significant cluster found for ROT1. (D–F) T-map during sEEG3 compared to the baseline sEEG0 in the 1–55 Hz band (D), as well 

as in the theta (E) and beta range (F). No significant clusters were found.

Table 3. Sleep stages duration (percentage of total duration)

Sleep state Nap (mean ± SE) Quiet wake (mean ± SE)

TST 63.46 ± 5.91 (12/12) 18.23 ± 4.00 (13/13)
N1 15.96 ± 4.82 (12/12) 8.62 ± 1.39 (13/13)
N2 27.67 ± 3.98 (12/12) 9.62 ± 3.21 (4/13)
N3 19.83 ± 5.05 (10/12) 0 ± 0.00 (0/13)
SOL 9.29 ± 1.95 –
N2 + N3 47.50 ± 3.25 9.62 ± 3.21

SE, standard error of the mean; TST, total sleep time; N1–N3, NREM stages 1,2,3; 

SOL, sleep onset latency (first occurrence of N1); N2 + N3 NREM, stages 2 and 3 

combined.

Table 4. Sleep characteristics

Global power 
(mean ± SE)

Frontal ROI 
(mean ± SE)

Normalized N2
 Delta 2.78 ± 0.28 3.03 ± 0.54
 Theta 1.76 ± 0.23 1.69 ± 0.17
 Alpha 1.59 ± 0.14 1.82 ± 0.23
 Spindle (12-16 Hz) 2.02 ± 0.14 2.20 ± 0.20
 Beta 1.13 ± 0.06 1.16 ± 0.09
Normalized N3
 Delta 6.90 ± 0.87 8.36 ± 1.86
 Theta 2.28 ± 0.23 2.55 ± 0.39
 Alpha 1.53 ± 0.17 1.97 ± 0.39
 Spindle 1.67 ± 0.18 1.80 ± 0.27
 Beta 0.70 ± 0.04 0.70 ± 0.05
Normalized NREM
 Delta 4.37 ± 0.66 5.12 ± 1.18
 Theta 1.96 ± 0.23 1.97 ± 0.18
 Alpha 1.55 ± 0.14 1.83 ± 0.23
 Spindle 1.87 ± 0.15 2.06 ± 0.22
 Beta 0.99 ± 0.07 1.03 ± 0.11
 Normalized SWE 2.23 ± 0.44 2.66 ± 0.75

Global mean spectra for each frequency band during artifact-free EEG 

normalized by N1 power for the given band. NREM is the mean power during 

N2 and N3 sleep. Slow wave energy (SWE) is the mean normalized SWA of N2 

and N3 multiplied by their respective durations.
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block performed immediately after the tests (ROT4), adaptation 
rate, trajectory accuracy (i.e. handpath area), and reaction time 
improved compared to ROT3 in the nap group, but not in the 
quiet wake group (Tables 5 and 6).

Finally, we found that SWA during the nap N3 stage was 
correlated with the improvement in performance: the higher 
the level of SWA during the nap, the greater the increase of cor-
rect movements from mov3 to mov4 (N = 10, r = 0.82, p = 0.003, 
95% confidence interval: [0.40, 0.96]; Supplementary Figure 
2, B). SWA during the nap was also correlated with the im-
provement in ROT4 learning compared to ROT3: the higher 
SWA during the nap, the greater the decrease in hand-path 
area and thus the improvement of trajectory accuracy (N = 12, 
r  =  −0.74, p  =  0.0059, 95% confidence interval: [−0.30, −0.92]; 
Supplementary Figure 2, C).

Thus, a nap after intensive learning renormalizes not only 
the EEG but also performance and the ability to learn, whereas 
an equivalent period of quiet wake fails to do so. Moreover, the 
renormalization of the spontaneous EEG, performance, and the 
ability to learn are correlated with the amount of SWA during 
the nap.

Discussion
We investigated whether intensive training can induce signs 
of task-specific neural fatigue in well-rested subjects. Subjects 
performed three sessions of a visuomotor rotation learning task 
(ROT) during the morning hours, after a full night of sleep. We 
found that the circuits involved in the learning task displayed 
changes in the theta and beta ranges that appeared during the 

task and persisted in the rest EEG at the end of the training. 
These persistent EEG traces can be characterized as a form of 
neural fatigue. The results also suggest that the changes in the 
theta range reflect neural fatigue specifically linked to the oc-
currence of plastic changes and learning, because they correl-
ated with performance changes and subsided only if subjects 
were allowed to sleep after training. By contrast, the changes in 
the beta range may result from an increased neuronal activity 
even in the absence of synaptic plasticity.

Periods of sustained waking of at least 20 h are associated 
with a significant increase in theta power that correlates with 
performance decrements (e.g. [2, 3, 6]). Even within the first 
16  h of waking, several studies have found a small increase 
in theta power that is modulated by the circadian time [6, 24, 
25]. In our experimental conditions, however, we have several 
reasons to think that changes in the theta range reflect neural 
fatigue due to learning rather than simply time spent awake. 
First, hd-EEG recorded during task performance revealed an in-
crease in theta power at the end of the third training session, 
which was localized to frontal areas engaged in learning the 
task. The location of task-induced theta frequencies was spe-
cific to ROT, as it did not occur in a group of subjects trained in-
tensively in MOT, a simple motor task without rotation learning. 
This is in agreement with imaging studies showing that, differ-
ently from simple motor performance, the state of continuous 
adaptation in ROT is specifically associated with activation of 
frontal regions, in particular of the pre-supplementary motor 
area [9, 10]. Second, after the last training session an increase 
in frontal theta frequencies was observed not just during task 
performance, but in the spontaneous hd-EEG recorded during 
periods of inactivity. This finding indicates a persistent change 

Figure 5. T-maps of the differences between sEEG4 and sEEG3 after nap and quiet wake. T-maps are shown for the nap (A, C) and quiet wake groups (B, D) for theta 

(left column) and beta power ranges (right column).
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in neural activity that outlasted the task for as long as the EEG 
was recorded. Third, the persistent increase in theta frequen-
cies in the EEG over learning-related areas was associated with 
deteriorated performance specific to the task. Thus, subjects 
were impaired in a visuomotor test (mov) that engages similar 
circuits as ROT. On the other hand, they were not impaired in a 
test that probed memory for visual sequences. Fourth, subjects 
reported a feeling of task-specific fatigue but no increase in 
sleepiness. Fifth, as we will discuss below, EEG slow frequen-
cies and performance impairments could only be reversed by 

a period of sleep and not by the mere passage of time awake. 
Together, these observations suggest that the increase in theta 
power reflects the fact that the neural circuits involved in in-
tensive task learning became functionally fatigued because of 
increased plasticity. In other words, the theta trace reflects “the 
cost of plasticity”.

Usually, although not always [26], plastic changes are coupled 
with increased neural activity. In rodents, for instance, motor 
skill learning leads to increased firing of task-related neurons 
in the primary motor cortex, long-term potentiation-like 

Figure 6. Effect of nap (left) and quiet wake (right) on test performance. (A) and (B) Percentage of correct movements in mov3 and mov4. (C) and (D) Number of correct 

sequences in mem3 and mem4. Comparisons were performed with paired t-tests. Only after the nap, correct movements in mov increased significantly (two-tailed 

paired t-test: nap: t(19) = −3.57, p = 0.002; 95% confidence interval: [3.3%, 11.8%]; Cohen’s d = 0.76; quiet wake: t(15) = −0.64; p = 0.534; 95% confidence interval: [−5.5%, 

2.8%]). In mem, no changes were found in either group (Mann–Whitney U-test, nap: N = 20; U = 170.5, z = 0.78, p = 0.43; quiet wake: N = 16; U = 97, z = 1.15, p = 0.25).

Table 5. Comparison of ROT3 and ROT4 performance in the nap group

ROT3 ROT4  

 Mean ± SE Mean ± SE 95% CI df t P Cohen’s d

N = 20
 Adaptation rate 71.2 ± 0.8 72.7 ± 0.8 0.24, 3.09 19 2.46 0.024 0.55
 Reaction time 248.0 ± 2.9 242.6 ± 3.0 −9.85, −1.21 19 2.97 0.008 0.41
 Handpath area 0.049 ± 0.002 0.046 ± 0.002 −0.005, −0.001 19 2.21 0.040 0.34
N = 12
 Adaptation rate 71.5 ± 1.2 73.7 ± 0.9 0.28, 4.08 11 2.47 0.028 0.73
 Reaction time 248.6 ± 5.2 242.3 ± 5.3 −10.27, −2.33 11 3.49 0.005 0.35
 Handpath area 0.0526 ± 0.002 0.0494 ± 0.002 −0.004, −0.002 11 2.32 0.041 0.47

Mean ± SE and results of two-tailed paired t-tests with corresponding 95% confidence intervals for the difference in means. Effect sizes (Cohen’s d) were computed 

for p < 0.05. The first part of the table concerns the entire nap group tested (N = 20); the second part is about the subgroup with EEG recordings (N = 12). Adaptation 

rate values are expressed in percentage, values of reaction times in ms.
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strengthening of cortical connections, and formation and en-
largement of spines [27–32]. In our subjects, we assume that in-
tensive training also resulted in both increased neural activity 
and plasticity. Conceivably, at the cellular level, fatigue might 
be triggered by increased neural activity even without the oc-
currence of plastic changes, due to depletion of metabolic re-
sources or persistent changes in ionic concentrations. If so, why 
do we suggest that the theta trace reflects plasticity rather than 
simply activity? It is because subjects trained intensively on 
a visuomotor task that had the same kinematic requirements 
as ROT, but did not require rotation learning (MOT), did not 
show signs of fatigue as indexed by an increase in theta power. 
Specifically, they did not show an increase in theta frequen-
cies either during task performance or in the spontaneous EEG 
during inactivity after the third session; they were unimpaired 
when performing the motor test (mov); and they did not re-
port task-specific fatigue. Thus, the theta trace seems to reflect 
neural fatigue mostly triggered by the requirements of inten-
sive learning and associated neural plasticity, rather than by the 
requirements of task execution and associated neural activity.

This conclusion is strengthened by the finding that the signs 
of fatigue as indexed by an increase in theta power could only be 
reduced by a nap, but not by an equivalent period of quiet wake, 
consistent with previous evidence showing that naps can pro-
vide at least some of the benefits of sleep in terms of memory 
consolidation and restoration of the ability to learn [21, 33–38]. 
Specifically, we found that a nap after intensive learning signifi-
cantly reduced the EEG theta frequencies and restored test per-
formance. The restoration of spontaneous EEG and performance 
were correlated with the amount of slow-wave activity (SWA, 
0.5–4 Hz) during the nap. If fatigue had been caused by excessive 
neural activity, an hour of inactive wake should have sufficed 
to restore the task-related neurons, because the firing of most 
of these cells increases during motor skill learning and returns 
to low levels as soon as the task is completed [28, 39]. Thus, 
recovery from the fatigue caused by task-related high firing 
should be afforded by any condition with low firing (no task), 
including quiet waking. By contrast, if learning-induced fatigue 
had been caused by the growth of stronger connections among 
task-related neurons, those connections would still be strong 
after the task, requiring more energy, synaptic receptors, mem-
brane lipids, and other supplies, to be maintained. In this case, 
there is substantial evidence—at the molecular, electrophysio-
logical, and ultrastructural level—that sleep is required to re-
normalize increases in synaptic strength observed during wake 

as a consequence of learning [40, 41]. Work in animal models 
has also shown that sleep SWA is enhanced locally by learning 
and the induction of synaptic plasticity, rather than by neuronal 
firing per se [42–45].

In addition to restoring EEG and performance, the nap after 
intensive learning enhanced the subjects’ ability to further 
improve in ROT during a subsequent training session. Again, 
the enhancement of further learning was correlated with the 
amount of SWA during the nap. This result is in line with pre-
vious work showing that sleep can lead to improved perform-
ance and ability to learn, phenomena that are mediated, at least 
in part, through SWA, synaptic renormalization, and increased 
signal-to-noise ratio [39, 46, 47].

Rotation learning also resulted in a local increase in beta 
power during the task, as well as in the spontaneous EEG after 
training. Contrary to the increase in theta power, however, the 
increase in beta power was not correlated with changes in per-
formance and, following training, it subsided to the same extent 
after both a nap and a period of quiet waking. For these two 
reasons, we suggest that the beta trace may more closely reflect 
activity-dependent fatigue than plasticity-related fatigue. In line 
with this hypothesis, in a previous study, a local, frontal increase 
in beta power was also observed at rest after motor training 
without rotation learning (MOT) [48]. In the current study, we 
found no changes in beta power after MOT training (sEEG3 vs. 
sEEG0). However, when EEG changes at rest were compared dir-
ectly after ROT and after MOT, ROT changes were significantly 
higher than MOT changes in the theta range but not in the beta 
range, implying a small (not significant) increase in beta power 
at rest also after MOT practice. In another study [49], an increase 
in beta power at rest was found after transcranial magnetic 
stimulation only in the subjects that showed the expected de-
crease in cortical excitability after the stimulation, again con-
sistent with the idea that beta power at rest may reflect fatigue 
due to intense neural activity.

A limitation of the study is that the order in which the tests 
were presented was fixed, with mov always preceding mem. We 
cannot rule out that this design may have contributed to the 
lack of effect on mem performance, and further studies are war-
ranted to confirm this finding. However, we think this is unlikely 
because the performance in mov shared many aspects with the 
performance in the last sets of ROT blocks. Hence this specific 
design, if anything, should have increased the probability of 
finding a worsening in mem performance, which we did not find. 
Another limitation is the lack of nap and quiet wake conditions 

Table 6. Comparison of ROT3 and ROT4 performance in the quiet wake group

ROT3 ROT4  

 Mean Mean 95% CI df t P

N = 16
 Adaptation rate 71.4 ± 1.2 71.3 ± 1.1 −0.95, 0.82 15 0.02 0.983
 Reaction time 246.8 ± 3.9 245.3 ± 3.8 −5.72, 2.46 15 0.85 0.409
 Handpath area 0.051 ± 0.003 0.053 ± 0.002 −0.002, 0.006 15 0.8 0.439
N = 13
 Adaptation rate 72.1 ± 1.1 71.6 ± 1.3 −1.94, 0.97 12 0.72 0.483
 Reaction time 247.7 ± 4.1 244.1 ± 3.0 −7.40, 0.15 12 1.65 0.125
 Handpath area 0.0523 ± 0.004 0.0503 ± 0.003 −0.008, 0.003 12 0.84 0.419

Mean ± SE, and results of two-tailed paired t-tests with 95% confidence intervals for the difference in means. The first part of the table concerns the entire quiet 

wake group tested (N = 16); the second part is about the subgroup with EEG recordings (N = 13). Adaptation rate values are expressed in percentage, values of reaction 

times in ms.
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after MOT. However, the MOT experiment was mainly used to 
determine whether the theta changes observed after ROT were 
related to plasticity-linked fatigue and as expected, MOT did not 
result in any visuomotor learning, nor did it cause broad-band 
changes in the EEG.

In conclusion, while practice may “make perfect,” intensive 
learning may also progressively fatigue local neuronal circuits 
through increased activity and the accumulation of plastic 
changes. Even in well-rested subjects, trained in the morning 
hours and not exposed to sleep deprivation, restoring neural fa-
tigue requires sleep and not just rest. While the mechanisms 
underlying learning-induced fatigue are currently unknown, 
animal studies may clarify whether they involve primarily 
the synaptic compartment, the surrounding glial cells, or the 
neuropil as a whole.

Supplementary material
Supplementary material is available at SLEEP online.
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