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ABSTRACT

Tree bark has proven to be a reliable tool for biomonitoring deposition of metals from the
atmosphere. The aim of the present study was to test if bark magnetic properties can be used as a
proxy of the overall metal loads of a tree bark, meaning that this approach can be used to
discriminate different effects of pollution on different types of urban site. In this study, the
concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, P, Pb, V and Zn were measured by ICP-OES in bark
samples of Jacaranda mimosifolia, collected along roads and in urban green spaces in the city of
Lisbon (Portugal). Magnetic analyses were also performed on the same bark samples, measuring

Isothermal Remanent Magnetization (IRM), Saturation Isothermal Remanent Magnetization
: 1
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(SIRM) and Magnetic Susceptibility (x). The results confirmed that magnetic analyses can be used
as a proxy of the overall load of trace elements in tree bark, and could be used to distinguish
different types of urban sites regarding atmospheric pollution. Together with trace element analyses,
magnetic analyses could thus be used as a tool to provide high-resolution data on urban air quality
and to follow up the success of mitigation actions aiming at decreasing the pollutant load in urban

environments.

KEYWORDS: Air quality; Atmospheric pollutants; Jacaranda mimosifolia; Metals; Trace

elements.

1. Introduction

Air quality is a crucial factor for human health (Kelly and Fussell, 2015; WHO, 2013); air
pollutants (e.g. particulate matter, trace elements, nitrogen oxides, sulphur oxides) have been
associated to an increased risk of lung cancer mortality (Chen et al., 2016b; Pope et al., 2002;
Raaschou-Nielsen et al., 2016), to the outbreak of cardiovascular and pulmonary diseases (Chen et
al., 2016a) and to several other pathologies (Davidson et al., 2005; Jung et al., 2015; Ribeiro et al.,
2014). Thus, an effective air quality monitoring process is a key point to be aware of the spatial and
temporal patterns of contaminants. This can allow relating the concentrations of pollutants with the
possible effects on human health, with the aim of planning and implementing regulatory policies to
reduce emissions, as well as tracking the emission decrease (Nowak et al, 2015; WHO, 2017).

In the past decades, many studies on pollutants (Jarup, 2003; Nriagu, 1979; Pacyna and Pacyna,
2001; Schwarze et al., 2006) have been focused on trace elements which may represent a serious
health threat even at low concentrations (Terseth et al., 2012). However, despite the relevance of
the European policy for air pollution reduction, only few monitoring stations are currently
monitoring metals throughout the continent (EEA, 2016). This lack of monitoring data affects the

reliability of high-resolution models of air pollution, which are needed both to define the real
2
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population exposed and to plan mitigation strategies. Additionally, urban areas are not
homogeneous and may considerably differ from sites where air quality monitoring stations are
located. Factors such as microclimatic conditions (e.g. local winds), the presence or absence of
green spaces and particular situations such as a stop light in uphill roads might interfere with the air
quality in small distances (Llop et al., 2012). Therefore, in order to obtain information with high
spatial resolution, other tools to monitor atmospheric pollutants are needed. Biomonitors of air
pollution (e.g. lichens, tree bark and leaves) are reliable tools for assessing the effects of pollution
on the biotic componént of ecosystems, providing complementary information with respect to
traditional chemical-physical monitoring (Nimis et al., 2002) and have the potential to deliver data
with high spatial resolution.

Among indicators, tree bark has been extensively used to assess air pollution (Cucu-Man and
Steinnes, 2013; Drava et al., 2016; El-Hasan et al., 2002; Minganti et al., 2016) because of its
ability to accumulate atmospheric trace elements during many years, both through wet and dry
deposition. Although the mechanisms of metal accumulation in the bark are not yet fully
understood, the uptake of pollutants from the roots can be considered negligible (Catinon et al.,
2008, 2011). Consequently, tree bark reflects the concentration of pollutants in the atmosphere,
even though it does not allow relating the accumulation of trace elements to a defined period of
time (Drava et al., 2017).

Depending on physical and chemical processes acting in the atmosphere, metals emitted from
pollution sources may be accumulated under different forms that may influence the magnetic
fingerprint of living organisms. This characteristic has led to an increasing application of different
magnetic techniques, i.e. Isothermal Remanent Magnetization (IRM), Saturation Isothermal
Remanent Magnetization (SIRM), Magnetic Susceptibility (x), for biomonitoring purposes.
Magnetic measurements are usually applied to leaves (Hofman et al., 2014; Kardel et al., 2012;
Mabher et al., 2008; Matzka and Maher, 1999; Szonyi et al., 2008), dust (Qiao et al., 2013; Sipos et

al., 2014; Zhang et al., 2012), soil samples (Lourenco et al., 2012; Lu and Bai, 2006) or mosses and
3
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lichens (Salo et al., 2012; Salo and Makinen, 2014; Vukovic et al., 2015), but there are very few
data in the literature about the application of these techniques to tree bark samples (Kletetschka et
al., 2003) and they do not relate the data with measured metal concentrations.

As a novel approach, in this study we compared the element concentrations in tree bark with the
results obtained by magnetic techniques. The aims of this study were: i) to test whether magnetic
intensity in tree bark is a good proxy of the overall metal loads of the bark; ii) to test whether the
two methods can discriminate among the trees located in different types of urban site (green spaces,
small roads and large roads).

For achieving these goals the concentrations of selected trace elements (As, Cd, Co, Cu, Fe, Mn, Ni,
P, Pb, V and Zn) were measured in bark samples of Jacaranda mimosifolia collected from trees in
different areas of the city of Lisbon (Portugal). The choice of the trace elements was made
according to: i) the possible impact on human health; ii) the sensitivity of the analytical method and
iii) the possibility to have good reproducibility and accuracy. On the same samples SIRM, IRM and
x were performed to characterize their magnetic properties. The choice of the sampling sites took

into consideration the absence of industrial activities directly influencing the central area of the city.

2. Materials and methods

2.1.  Sampling

Sampling was carried out in Lisbon, the capital city of Portugal. Lisbon metropolitan area has a
population of 2.8 million people and is located in the estuary of river Tagus. It has a typical
Subtropical-Mediterranean climate according to Koppen climate classification, with hot dry season
and a mild wet season. The annual average temperature is 17.4 °C and the total annual precipitation
705.8 mm (averages from 1981 to 2010, IPMA).

Bark samples were collected in January and February 2016 from trees of Jacaranda mimosifolia in

34 sites. The tree species was chosen according to: i) the widespread presence in the urban area; ii)
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the roughness of the trunk, assuming that more rugose trunk can trap more dust/pollutants than
smooth bark surface.

After a preliminary investigation of the distribution of Jacaranda trees in the survey area, a number
of sites were selected where the species occurred and, among these, 34 sites were chosen on the
basis of a stratified random sampling. Lacking information from an adequate number of monitoring
stations or from other possible descriptors of atmospheric pollution, a proxy variable for traffic
intensity was used. Therefore, sites were categorized according to their land-use (Llop et al., 2017)
into: i) large roads (two or more lanes); ii) small roads (one lane); and iii) green spaces (presence of
green areas/urban parks even if very small). For each site, the closest 3 trees were selected (except
for two sites, where only two trees were available).

A small portion of tree bark (approximately 30 cm?”) was removed at a height between 1.5 and 2.0
meters all around the tree circumference, using a stainless-steel knife. The bark samples collected
were put in a plastic bag and taken to the laboratory, where they were freeze-dried and

homogenized in 25 mL Teflon grinding jars using a MM 400 Mixer Mill (Retsch, Germany).

2.2.  Trace element analysis

About 0.10-0.15 g of the samples were mineralized using 5 mL of 65% (m/m) nitric acid (for trace
metal analysis from Scharlau, Spain) in closed Teflon PFA vessels heated in a microwave digestion
system MDS 2000 (CEM Corporation, U.S.A.). After cooling, the solutions were transferred into 25
mL volumetric flasks and diluted to volume using ultra-pure (>18 MOhm cm) water (Elgastat
UHQ, Elga Ltd., U.K.). All glassware used was washed with 3 M nitric acid and rinsed with ultra-
pure water.

The concentrations of As, Cd, Co, Cu, Fe, Mn, Ni, P, Pb, V and Zn were measured by atomic
emission spectrometry with an inductively coupled plasma source (ICP-OES) using an iCAP™
7000 Series (Thermo Scientific, U.K.). Axial plasma view was used for a better sensitivity. All

concentrations are reported on a dry weight (d.w.) basis.
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Calibration was carried out with aqueous standard solutions in 3 M nitric acid, using Be at 1 pg mL’
! as an internal standard. For each run (10 samples), two blanks were analyzed in order to control
any possible contamination.

The accuracy was assessed by analyzing a certified reference material (CRM), the CRM 482
(Lichen), certified by the European Commission — Joint Research Centre — Institute for Reference
Materials and Measurements (IRMM). The results of the quality control process are reported in

Table 1.

2.3, Magnetic Analyses

On the same bark samples used for trace element determination, magnetic analyses were also
carried out. About 0.85-0.9 g d.w. of the powder obtained from the milling process was wrapped in
a layer of cling film; to avoid any influence on the magnetic analysis, the same amount of cling film
was taken for the wrapping process of each sample. The samples were then put in a 10 cm’
sampling pot and analyzed for Magnetic Susceptibility (x), both at low frequency (yLr) and at high
frequency (yur), Isothermal Remanent Magnetization (IRM at 0.05T and 0.2T) and Saturation
Isothermal Remanent Magnetization (SIRM at 1T). All the values obtained from magnetic analyses
were normalized for sampling pot volume and for sample dry mass.

Magnetic Susceptibility was measured using a MS2 Magnetic Susceptibility System (Bartington
Instruments Ltd., U.K.) with a MS2B type dual frequency sensor, with a resolution of 2 x 10 SI.
The frequencies used by the MS2B sensor were 0.465 kHz (yir) and 4.65 kHz (yur) * 1%. Before
measuring the samples, the instrument was calibrated for both frequencies with a sample containing
a small ferrite bead. Considering that the values for the samples were under the critical value for
discriminating weak samples from strong ones, the correction for air drift fluctuations was applied

to all the measurements and calculations in order to remove the background drift (Dearing, 1994).

The Frequency Dependence Susceptibility was then calculated as:
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xd = [Qeer — xmr)/ xee] x 100
For the IRM and SIRM measurements, each sample was magnetized using a Pulsemag DS4
magnetizer (Molspin Ltd., U.K.) at the selected intensities (0.05T, 0.2T and 1T) and immediately
read in a triple-shielded, annular fluxgate, Minispin magnetometer (Molspin Ltd, U.K.). The
instrument was calibrated for each intensity with a rock specimen provided with the instrument;
each sample was measured twice and, to avoid errors, the instrument was recalibrated every ten

measurements.

2.4.  Statistical analysis

The data of trace element concentrations and magnetic intensities for the 98 samples were
correlated using Pearson correlation, applying the Bonferroni correction to the calculation of p
values; on the same data-set, hierarchical cluster analysis (Pearson correlation coefficient as
dissimilarity measure, single linkage as clustering algorithm) was used to visualize the groups of
correlated variables.

Principal Component Analysis (PCA) was performed on the median values of trace element
concentrations and magnetic intensities for the 34 sites. Furthermore, on the scores of the PCA,
ANOVA analysis was run to study the possibility of a significant distinction in land use (large
roads, small roads and green spaces). The software Systat for Windows Version 13 (Systat Software

Inc., U.S.A.) was used for statistical analyses and graphs.

3. Results

Descriptive statistics of the data of trace element concentrations and magnetic intensities per land-
use are reported in Table 2. The Pearson correlation analysis between chemical and magnetic
variables showed that Co, Cu, Fe and Zn were highly correlated with all the magnetic variables (r >
0.7, p < 0.001); As, Cd, Mn, Ni, P were less correlated (0.68>r>0.48, p < 0.001); only Pb and V

showed low correlation with all the magnetic parameters (r<0.48); furthermore, V showed non-
7
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significant correlation with magnetic susceptibility measurement. Among magnetic variables, ¥z
showed no significant correlation with element concentrations.

The results obtained from cluster analysis showed the magnetic parameters grouped together and
highly correlated (Figure 1); a good similarity was also found between the group of the magnetic

variables and the cluster including Cu, Fe and Cd.

3.1.  Magnetic Analysis

Figure 2 shows the SIRM profile for the median values of the selected intensities according to land
use. Large roads have a higher SIRM profile if compared to small roads and green spaces. Instead,
small roads showed a slightly lower profile than green spaces; thus, it is possible to distinguish
between different types of urban land use. Magnetic susceptibility follows a similar pattern, with the
values for large roads clearly higher than small roads and green spaces; while for small roads were
obtained lower values if compared to green spaces. On the other hand, sz showed lower percentage

values for large and small roads if compared to green spaces.

3.2. Principal Component Analysis

The median data of elemental concentrations and magnetic intensities for 34 sites were submitted to
PCA. The first two components explained 78.6% of the total variance (Figure 3). The first
component (66.1% of the total variance) was associated with a gradient of increasing elemental
concentrations and increasing magnetic intensities. Only yq was not correlated with the trace
element concentrations and the magnetic intensities. The second component (12.5% of the total
variance) seemed to be associated to an inverse relationship between the concentration of some

elements and the magnetic intensities.

3.3.  ANOVA
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The scores of PC1 and PC2 were submitted to ANOVA analysis to test whether the two
components of the PCA were able to discriminate between trees located in different types of urban
sites. Figure 4 shows the results of the ANOVA analysis: significant differences (p=0.004) were
obtained only for PC1. To formally test the results obtained, a post-hoc test (Tukey test) was
performed. Considering PC1, a significant difference was found between green spaces and large

roads (p=0.039) and between small roads and large roads (p=0.006).

4. Discussion

4.1.  Magnetic analyses in tree bark as a proxy of metal loads in urban areas

The analysis of tree bark samples can provide useful information on the concentrations of trace
elements in the atmosphere (Cucu-Man and Steinnes, 2013). In our study a good correlation
between the magnetic parameters and trace element concentrations was obtained, thus it is possible
to hypothesize the existence of a causal relation between magnetic particles and trace elements.
Except for Fe, which is directly related to magnetic properties, several authors (El Baghdadi et al.,
2012; Lu and Bai, 2006) reported that the causal relation could be due to trace element
incorporation onto the surface or in the lattice structure of pre-present magnetic particles. In
agreement with this assumption, in the present study, the major traffic-related elements (e.g. Cu, Fe,
Ni, and Zn) were significantly correlated with magnetic parameters. This finding is in line with the
results obtained by Lu et al. (2005) in the magnetic analyses of automobile particulate emission.
Lead, no more emitted by vehicles exhaust since 2001, showed a low correlation with all the
magnetic variables, in contrast with what found by Lu and Bai (2006) and by Maher et al. (2008).
This low correlation could be due to the different structure of the sampling area, to a reduced
resuspension from roads and/or to a low grade of incorporation in the structure of magnetic
particles.

Apart from the main traffic related elements, the other trace elements (As, Cd, Co, Mn and P) were

positively correlated with the magnetic parameters, probably due to their good correlation with Fe,
9
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and between each other, suggesting a common emission source, related to traffic or domestic
emissions. Arsenic is usually associated with coke production (Drava et al., 2016), but this activity
is not present in the sampled area. However, the concentrations observed were comparable to those
found near an industrial site (Drava et al., 2016); in that case, data were measured on a different tree
species, but having similar bark texture characteristics.

Cadmium has been associated to diesel engines and the wearing of the brake (Tanner et al., 2008)
while several other authors founded a correlation between Cd and traffic levels (Khan et al., 2011;
McKenzie et al., 2009). Since no other evident source is identifiable in the area studied, Cd in
Lisbon is likely traffic related.

Cobalt and Mn have been respectively associated with vehicular emission and corrosion of
automobile parts (El-Hasan et al., 2002), thus these are probably, as for Cd, the main sources of
emission.

Unfortunately, the lack of articles in literature, reporting a correlation between magnetic parameters
and element concentrations in tree bark, does not allow any direct comparison with the results
obtained in this study. Overall, the results suggested that higher values of magnetic variables were
associated with higher element concentrations, especially those related to higher automobile

emissions.

4.2.  Large roads can be effectively distinguished from green spaces and small roads

Lacking large sources of industrial emissions, large roads in Lisbon are likely the main source of
particle pollution. In fact, large roads showed different magnetic fingerprint and chemical
composition, if compared to green areas and to small roads (Figure 4). This could be mainly related
to the high traffic volume that can increase the amount of vehicle exhaust emission leading to an
increased level of elements emitted to the atmosphere. On the other hand, the presence of green
spaces seems to reduce the dust effect created by roads (Gautam et al., 2005; Santos et al., 2017),

leading to a lower trace element concentration in the inner part of the green space itself and
10
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subsequently to a lower magnetic fingerprint (Kardel et al., 2012). Except for large roads, which
exhibit higher magnetic profile, related to higher levels of trace elements, we found that small roads
can have a lower magnetic profile and lower concentrations of trace elements if compared to green
spaces. This could be probably related to the dimensions of the green space considered; the smaller
the site, the bigger the similarity with the roads nearby. Such an outcome could help in planning
new green spaces, especially in those streets characterized by high traffic/pollution levels,
considering that the presence of green areas could actively reduce the dust effect at respirable height
(Gautam et al., 2005), with a positive impact in reducing dust particles emitted by large and
polluted roads/areas.

This study has pointed out that the combination of magnetic and chemical analyses provides a
powerful tool to distinguish the different effects of atmospheric pollution on different types of urban

site.

S. Conclusions

Air quality monitoring studies, especially in big cities, require a high spatial resolution for a better
understanding of the distribution and possible effects of pollutants; in fact, only a high sampling
density takes into account the possible presence of different local situations related to wind,
resuspension, road directions (uphill, downhill) and several other factors. The use of biomonitors,
e.g. tree bark, can help to achieve such resolution by allowing the collection of a large number of
samples.

This study has pointed out that magnetic analyses can be effectively applied on tree bark samples
for biomonitoring purposes, since they are a good proxy of different metal loads. Moreover, the
combination of magnetic and chemical analyses provided a powerful tool in order to distinguish the

different effects of atmospheric pollution on different types of urban site.
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Table 1. Quality assurance. The results obtained for the Certified Reference Material CRM 482

(European Commission — Joint Research Centre — Institute for Reference Materials and

Measurements, IRMM), expressed as pg g' d.w., are compared with the certified or reference

concentrations. The values found are reported as mean + standard deviation (n = 7).

Element  Certified Found
ngegldw.  pgg'dw
As 0.85+£0.07  0.98+0.12
Cd 0.56+£0.02  0.58+0.03
Co* 0.32+0.03  0.36+0.02
Cu 7.03£0.19  7.00+0.22
Fe® 804+160 748+40
Mn* 33.0+0.5 29.5+0.6
Ni 2.47+£0.07  2.47+0.08
P 690+10 703+26
Pb 40.9+1.4 39.8+1.6
\%S 3.74+0.61 3.73+0.18
Zn 100.6+2.2 101.1£3.9

2No certified data available and the

reference concentrations are reported.
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1@63 Table 2. Descriptive statistics (median, mean + standard deviation and min-max range) of trace element concentrations and magnetic parameters
464  based on land use for 34 sampling sites.

465
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9 g e dow td ik i u e g g L dy e g
0 : : : i :
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23 N=9 Mean+SD.  109+029 019%0.15 089026 4098 %2122 789 + 393 26+ 10.0 2.59+ 1.67 462+ 96
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27 Pb v IRM 0.05T IRM 02T SIRM X
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Figure captions

Figure 1. Dendrogram of magnetic intensities and trace element concentrations, Pearson correlation

coefficient as dissimilarity measure and single linkage as agglomeration method, n=98.

Figure 2. SIRM profiles for land use classification.

Figure 3. Results of Principal Component Analysis. Loading plot (left) of trace element

concentrations and magnetic intensities; score plot (right) of the samples.

Figure 4. Box plot of the scores on the first Principal Component (PC1) from PCA on magnetic

intensities and element concentrations according to land use classification.
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Figure 3
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Figure 4
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