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Abstract 1 

Marine caves are unique and vulnerable habitats, threatened by multiple global and local 2 

disturbances. While the effects of climate change on marine caves have already been 3 

investigated, no information exists about the effects of local human impacts, such as coastal 4 

development, on these habitats. This study investigated the impact of the construction of a 5 

touristic harbour on two shallow underwater marine caves in the Ligurian Sea (NW 6 

Mediterranean). As a standard methodology for monitoring marine caves does not exist yet, 7 

changes over time on the benthic community were assessed adopting two different non-8 

taxonomic descriptors: trophic guilds and growth forms. Harbour construction caused an 9 

increase of sediment load within the caves, with a consequent decline of filter feeder 10 

organisms. Abundance of small organisms, such as encrusting and flattened sponges, was 11 

greatly reduced in comparison to organisms with larger and erect growth forms, such as 12 

domed mounds and pedunculated sponges. Our study indicated that growth forms and 13 

trophic guilds are effective descriptors for evaluating changes over time in marine caves that 14 

could be easily standardised and applied in monitoring plans. In addition, as the harbour 15 

construction impacted differently according to the cave topography, the use of a systematic 16 

sampling in different zones of an underwater cave is recommended.  17 

 18 

Keywords: marine caves, local disturbance, sediment load, non-taxonomic descriptors, 19 

growth forms, trophic guilds, Mediterranean Sea.  20 
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Introduction 1 

Marine caves are unique and vulnerable ecosystems (Sarà 1976) listed in the EU Habitat 2 

Directive 92/43/EEC (habitat type 8330) and in the Barcelona Convention (UNEP-MAP-3 

RAC/SPA 2008; Giakoumi et al. 2013). However, marine caves are not included in the list of 4 

those priority habitats needing special conservation efforts. The importance of marine caves 5 

is linked to their role in maintaining a high biodiversity along coastal zones (Todaro et al. 6 

2006; Bussotti and Guidetti 2009; Fraschetti et al. 2009), due to their ecological connection 7 

(both trophic and at the population level) with other communities of coastal habitats, such as 8 

coralligenous and rocky reefs, seagrass beds and sandy bottoms (Harmelin et al. 2003). They 9 

also exhibit a connection with the pelagic system, due to water movement, which brings food 10 

and propagules into caves (Rastorgueff et al. 2015). Marine caves constitute a naturally 11 

fragmented habitat, which can act as a refuge or ecological island (Rastorgueff et al. 2015, 12 

and reference therein) and often possess an astonishing ecological and faunal affinity with the 13 

deep sea (Boury-Esnault et al. 1993; Bianchi et al. 1996; Janssen et al. 2013). Submerged or 14 

semi-submerged marine caves are widely distributed along coastal areas (Rastorgueff et al. 15 

2015), and about 66% of the Mediterranean marine protected areas include marine caves 16 

(Abdulla et al. 2008).  17 

Several motile organisms, such as crustaceans, molluscs and coastal fishes, can be found 18 

inside marine caves (Harmelin et al. 1985; Bussotti and Guidetti 2009; Bussotti et al. 2015), 19 

but the most peculiar resident community is represented by benthic sessile invertebrates such 20 

as sponges, ascidians, bryozoans, cnidarians, serpulids and brachiopods (Bianchi 2003). 21 

Distribution of these sessile invertebrates within marine caves is dictated by gradients of light 22 

and water movement, and vary in terms of species composition, domination and abundance 23 

according to the cave topography (Riedl 1966; Morri and Bianchi 2003; Gerovasileiou and 24 
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Voultsiadou 2015). For instance, in a blind-end (cul-de-sac) cave with linear topography, the 1 

gradients develop regularly along the exterior–interior axis, conforming to the classical 2 

zonation scheme: the first zone, at the cave entrance, is dominated by encrusting algae; 3 

inside the cave, a second zone is characterised by passive filter feeders; finally, in the 4 

terminal zones of the cave only active filter feeders remain (Balduzzi et al. 1989; Morri and 5 

Bianchi 2003). In tunnel-shaped caves or in cavities showing different topographies the 6 

zonation of communities becomes more complex and may be influenced also by other factors 7 

(Parravicini et al. 2010). 8 

Coastal ecosystems are changing under the pressure of global impacts, such as climate 9 

warming and ocean acidification (Bianchi et al. 2014; Rodrigues et al. 2015, and references 10 

therein). Global impacts may act in a simultaneous way (at the same time) or in an additive 11 

way (one after the other) with local impacts such as urbanization, coastal development and 12 

overfishing (Airoldi et al. 2005; Rossi 2013; Piggott et al. 2015). Different studies showed the 13 

effects of climate change on marine caves (Chevaldonné and Lejeusne 2003; Parravicini et 14 

al. 2010; Gerovasileiou and Voultsiadou 2012). However, available information about the 15 

effects of local impacts on marine caves only focused on unregulated underwater activities (Di 16 

Franco et al. 2010; Guarnieri et al. 2012), whilst no information exist on the effects of coastal 17 

constructions on these habitats. This lack of information may represent a serious problem in 18 

the view of a correct environmental management (Price et al. 2014). Coastal constructions 19 

may cause increase of sediment loads and water turbidity (Davenport and Davenport 2006; 20 

Anfuso et al. 2011), which are likely to cause a decline in filter feeders organisms (e.g. 21 

sponges), whose filter-feeding apparatus may get clogged by sediments (Bell et al. 2015). 22 

Additionally, a coastal construction may alter the hydrodynamic regime and local currents of 23 

an area (Anfuso et al. 2011; Ferrari et al. 2014). Variations in the regime of marine currents 24 



5 
 

may change the natural gradients of light penetration and water movement in an underwater 1 

cave, i.e. of the two most important factors responsible for the particular environment and for 2 

the biological zonation inside the caves (Bianchi and Morri, 1994; Corriero et al. 2000; Martì 3 

et al. 2004).  4 

This paper represents the first attempt to investigate the effects of a tourist harbour 5 

construction on two underwater marine caves. In order to assess changes over time of the 6 

benthic community, two different non-taxonomic descriptors were used, i.e. trophic guilds and 7 

growth forms (Parravicini et al. 2010). The former provide information about trophic 8 

organization (which depends on light penetration and particulate matter availability), the latter 9 

on the degree of ecological confinement (an expression of water exchange and cave 10 

topography).  11 

 12 

Materials and methods  13 

Study area 14 

The two marine caves are located near Ventimiglia, a city in the Western Liguria, Italy (Fig. 15 

1a). The largest cave is named Grotta Grande (Fig. 1b): it is a semi-submerged marine cave, 16 

facing NE, with the entrance at 4 m depth and the terminal part of the cavity at 2.5 m depth 17 

with respect to the mean sea level. The cave topography shows an internal subdivision in two 18 

sectors after a linear distance of 15 m from the entrance: the western sector continues for 19 

about 15 m within the coastal conglomerate, while the eastern sector terminates after about 20 

6 m. The zone of the cave near the entrance has a pebble bottom, whereas, going toward the 21 

innermost part of the cave, the bottom is characterized by a layer of fine sediments. The 22 

smallest cave is named Grotta Piccola (Fig. 1c): it is a submerged marine cave facing SW, 23 

with the entrance between 1.1 and 3.5 m depth. The cave ends after a linear distance of 24 
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about 20 m from the entrance, diminishing in size at the terminal part with rising chimneys. 1 

Like the Grotta Grande cave, the bottom near the entrance is dominated by pebbles but the 2 

bottom inside the cave is covered by fine sediment.  3 

The two caves do not have a karstic origin but have formed by a marine erosion process: the 4 

coastal rock in which they develop is constituted by the “Conglomerate of Monte Villa”, which 5 

was deposited during the Middle-Lower Pliocene and is composed of bedded gravelly 6 

deposits associated with sandstones related to several deltaic systems (Boni 1984). 7 

Therefore, only from a geomorphological point of view, these caves should be better defined 8 

as ‘pseudocaves’ (Eberhard and Sharples 2013) because they are non-karstic but have 9 

morphologically karst-like (cavernous morphology) components. However, from an ecological 10 

point of view they are not different from other underwater marine caves of the region 11 

(Canessa et al. 2014): they will be thus called caves throughout this paper.  12 

At a distance of about 600 m eastward from to two caves is the Roja river (Fig. 2): with a flow 13 

rate of 5.92 m3·s-1, the Roja induces high sedimentation rate and water turbidity in the area 14 

(Vacchi et al. 2012). However, as the SW (220-240°N) is the dominant wave direction in 15 

Liguria (Fig. 1a), with a fetch greater than 800 km and an offshore wave height of more than 16 

4 m, the sediment flow is mainly directed to the East, and so away from the caves. On the 17 

contrary, the SE (130-150°N) wave direction is characterized by a fetch of about 200 km and 18 

waves of about 2 m height (Fig. 1a), so that it has a comparatively lower influence on the 19 

natural sedimentation rate inside the caves (Vacchi et al. 2012).  20 

Being exactly adjacent, both caves have been exposed to the effects of the construction of a 21 

new touristic harbour started in 2010 (Fig. 2a). The project of the harbour covers a water 22 

mirror of about 70,000 m2 with 7 wharfs, which could receive 323 boats. For the harbour 23 

construction, a total of 570 t of boulders, 26,000 m3 of concrete for all wharf structures and 24 
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1600 m3 to support wharf structures, had been used. The seafloor around the new harbour 1 

will not have depths greater than 7-8 m. The wharfs are constructed with casting boulders. In 2 

2011, one year after the start of the works, the main wharf was constructed and the central 3 

wharf construction begun (Fig. 2b). In 2012, the secondary wharf began (Fig. 2c). In 2013, the 4 

construction of the central wharf and of the secondary wharf continued (Fig. 2d) but in 2014 5 

and in 2015 the construction works slowed down. Today (2016), works are still in progress. 6 

 7 

Field activity 8 

The two caves were investigated in five distinct periods, in 2010 (before the start of 9 

construction works), 2011, 2012, 2013 and 2015, always in summer. Sampling activities were 10 

not performed in 2014 because the works were interrupted in that year to be resumed at the 11 

beginning of 2015. Unfortunately, lack of other similar underwater marine caves in the area of 12 

Ventimiglia determined the impossibility to find appropriate controls to be used in a BACI 13 

(before-after control-impact) design (Underwood 1991). Moreover, benthic assemblages of 14 

marine caves are highly variable, even at small scales (Bussotti et al. 2006), not allowing the 15 

selection of proper controls. Thus, a BA (before-after) design was adopted (Gutperlet et al. 16 

2015). The BA design allows investigating the time x space interaction, whose significance is 17 

indicative of different responses to the impact of the stations through time (Guidetti et al. 18 

2014). A photographic sampling technique was applied to study benthic organisms over 19 

surfaces of 20 cm x 20 cm (Morri et al. 2003). As a strong gradient exists in both caves, a 20 

systematic sampling method was adopted (Krebs 1999, and references therein). The two 21 

caves were subdivided into sampling stations regularly spaced from one another, starting 22 

from the entrance and moving to the terminal part of the caves: 6 stations in the Grotta 23 

Grande (GG-a to GG-f, Fig. 1b) and 3 stations in the Grotta Piccola (GP-a to GP-c, Fig. 1c); 3 24 
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random replicated photographs were taken in each station (Corriero et al. 2000; Bussotti et al. 1 

2006). All replicates were taken on the left vertical walls of the caves. 2 

 3 

Data analysis 4 

Non-taxonomic descriptors were used to assess change in the sessile community, i.e. trophic 5 

guilds and growth forms (Parravicini et al. 2010). Considering the energy sources they exploit, 6 

the sessile organisms of the caves were divided in eight trophic guilds: autotrophs (i.e. algae), 7 

passive filter feeders (e.g. cnidarians), active ciliate (e.g. serpulids and spirorbids), active 8 

ciliate with lophophore (e.g. bryozoans and brachiopods), active pumping sponges, active 9 

pumping ascidians, mixotrophic sponges (e.g. Petrosia ficiformis, which may host 10 

photosynthetic endosymbionts), and mixotrophic algae (e.g. Chrysophyceae, which may 11 

exploit organic compounds). Growth forms were used to investigate different strategies of 12 

substratum occupation (Jackson 1979; Connell and Keough 1985). Considering the ratio 13 

between the height (h) and the radius (r) of the organism, ten different growth forms were 14 

recognized: prostrate algae, erect algae, runners, determinate sheets, indeterminate sheets, 15 

flattened (h < r) mounds, hemispherical (h = r) mounds, domed (h > r) mounds, vines and 16 

pedunculated sponges. Runners and sheets (either determinate or indeterminate) are 2-17 

dimensional, strictly adhering to the substrate; mounds and vines are 3-dimensional, 18 

projecting to some extent into the water column and producing higher habitat complexity. Two 19 

additional categories were included in the analyses to take into account the abiotic 20 

components: bare substrate, and turf and sediment considered together (due to the 21 

operational difficulty to separate them during image analysis), both providing an indication of 22 

environmental stress (Gatti et al. 2015a; Vannini et al. 2015). On each photograph (18 for the 23 
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Grotta Grande and 9 for the Grotta Piccola per each year) the percent cover of all non-1 

taxonomic descriptors was visually estimated. 2 

To assess change over time in the two caves, ecological distances, expressed as the average 3 

(± se) Euclidean distance between the 3 photoquadrats of a sampling station in a given year 4 

and the centroid of the photoquadrats in 2010, were calculated (Gatti et al. 2015b). Euclidean 5 

distance was chosen because it is particularly adequate to assess the measure of 6 

dissimilarity between two samples (Anderson et al. 2011). Arcsine √(x/100) transformation 7 

was applied to cover data (Legendre and Legendre 1998). Univariate analyses of variance 8 

(ANOVAs) were performed to assess significant differences in the most abundant descriptors 9 

through time and in those descriptors that appeared after 2010 and that might be a 10 

consequence of the impact. The model of the analysis consisted of 2 factors: the factor 11 

“station” (fixed, 6 levels in the Grotta Grande, 3 in the Grotta Piccola), which is orthogonal to 12 

the factor “year” (random, 5 levels for the two caves). Prior to the analyses, the homogeneity 13 

of variance was tested by Cochran’s test and, if necessary, data were appropriately 14 

transformed. When a treatment factor was significant, the post-hoc comparison of the means 15 

was performed with SNK test. Using the same model, PERMANOVA analyses were also 16 

performed. This method analyses the variance of multivariate data explained by one or more 17 

explanatory factors and gives p-values calculated using all possible permutations (Clarke and 18 

Warwick 1994). When a treatment factor was significant, the post-hoc comparison of the 19 

means was performed with the pair-wise test. 20 

Starting from the fourth sampling period, in 2013, the terminal zone of the Grotta Piccola 21 

resulted occluded by a huge deposit of fine sediment and organic matter, thus preventing the 22 

possibility to collect the 3 photographic samples in the station GP-c (see Fig. 6l). These 3 23 
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missing samples were operationally considered in the statistical analyses as completely 1 

covered by sediment (100%) in 2013 and 2015. 2 

 3 

Results 4 

Grotta Grande 5 

PERMANOVA showed that the factor year was significant (p < 0.01) considering both growth 6 

forms and trophic guilds and the pair-wise comparisons revealed that the sessile community 7 

in 2010 was significantly different from all the other years, and that it continuously changed 8 

through time (Table 1). No differences were found between the last two periods (2013 vs 9 

2015). A significant year × station interaction was found when considering sediment and turf 10 

(Table 2), which increased significantly (p < 0.001) from 2010 (7 ± 4%) to 2015 (62 ± 21%) in 11 

all the stations and became the dominant descriptor in the last two periods (Fig. 3 and Fig. 6), 12 

accompanied by a significant decrease (p < 0.001) in the bare substrate (Fig. 3), except in the 13 

year 2012 when it was not different from 2010 (Table 2). Indeterminate sheets decreased 14 

significantly (p < 0.001), reducing their cover by almost one third from 2010 to 2015, as well 15 

as flattened mounds (Fig. 3), which however showed a significant (p < 0.001) lower cover only 16 

in 2013 and 2015 (Table 2). Cover of domed mounds did not change over time (Fig. 3). In 17 

2013, pedunculated sponges appeared (Fig. 6) with cover values lower than 10%. The cover 18 

of active pumping sponges was higher (p < 0.001) in 2010 with respect to other years (Fig. 3 19 

and Table 2). Autotrophs and mixotrophic sponges did not change over time (Fig. 3 and Fig. 20 

6). The temporal drift (i.e. the rate of change) evidenced by ecological distances was the 21 

same for trophic guilds and growth forms and all stations denoted the same temporal drift 22 

(Fig. 5) experiencing the greatest change between 2010 and 2011 and between 2012 and 23 

2013 (see also Fig. 6). All the stations did not show significant changes from 2013 to 2015. 24 
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 1 

Grotta Piccola 2 

In the Grotta Piccola a significant year × station interaction was found with PERMANOVA 3 

considering both growth forms and trophic guilds, and the pair-wise comparisons indicated 4 

that the sessile community in 2010 was significantly different (p < 0.01) from 2011, 2012, 5 

2013 and 2015 only in the station GP-c, i.e. the innermost station (Table 1). Also in this cave, 6 

the cover of sediment and turf increased significantly (p < 0.01) from 2010 (29 ± 29%) to 2015 7 

(88 ± 14%) in all the stations, becoming the dominant descriptor in the last three periods, 8 

accompanied by a decrease in the bare substrate especially in the station GP-c (p < 0.001) 9 

(Fig. 4 and Table 3, and see also Fig. 7). Indeterminate sheets decreased significantly 10 

(p < 0.01) from 2012 and nearly disappeared in the subsequent sampling periods (Fig. 4 and 11 

Table 3). Cover of prostrate and erect algae did not change over time (Fig. 4 and Fig. 7). 12 

Similarly to Grotta Grande, when considering trophic guilds only active pumping sponges 13 

showed a significant change through time having a higher cover (p < 0.01) in 2010, whilst 14 

autotrophs did not change (Fig. 4 and Table 3). In 2015, mixotrophic algae (Chrysophyceae) 15 

appeared for the first time (Fig. 4 and Fig. 7). The temporal drift evidenced by ecological 16 

distances was the same for trophic guilds and growth forms (Fig. 5) also in this cave. 17 

According to PERMANOVA, stations GP-a and GP-b did not show significant temporal 18 

changes, whilst station GP-c showed the greatest changes between 2010 and 2013.  19 

 20 

Discussion 21 

The benthic community of the two underwater marine caves changed dramatically following 22 

the touristic harbour construction. The cover of sessile organisms declined, while sediment 23 

and turf increased on the walls of the caves. The natural hydrodynamic regime in the study 24 
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area do not explain the high sedimentation rates found in the two caves, as the littoral drift 1 

flows from West to East (Vacchi et al. 2012) and the sediment originating from the close Roja 2 

river follows this direction. Already after few months (in 2011) from the start of the works for 3 

the harbour construction, the amount of sediment (as estimated on the photographs) has 4 

increased by 4-fold in the Grotta Grande and by 3-fold in the Grotta Piccola, and after 5 years 5 

it was 6-fold and 4-fold higher in the two caves, respectively. This huge amount of sediment 6 

covered all the bare substrate on the walls of the caves and caused a decline of sessile 7 

organisms (Fig. 6). As expected, encrusting and flattened growth forms, such as 8 

indeterminate sheets and flattened mounds, were the most affected, whilst those forms rising 9 

up from the substrate, such as domed mounds, did not decline significantly over time (Fig. 6c, 10 

e). Encrusting and flattened organisms are favourite by good water exchanges within 11 

submerged caves (Bell and Barnes 2000; Bussotti et al. 2006; Parravicini et al. 2010). On the 12 

contrary, erect forms are more difficultly covered by sediments (Bell and Barnes 2000). 13 

Morphology of sessile organism was thus an effective descriptor to assess the effects of the 14 

harbour construction. Another clear sign of the sediment impact was the metamorphosis in 15 

the growth form experienced by the sponges of the genus Petrosia and Chondrosia, whom 16 

progressively modified their flattened mounds to a pedunculated morphology (Fig. 6f) - a 17 

growing strategy to counteract the silting (Bell and Barnes 2000). This particular growth form 18 

is also favoured in environments with low water exchanges because it allows a greater 19 

efficiency in the elimination of catabolites (Morri and Bianchi 2003). 20 

Taking into account the feeding strategy, active pumping sponges showed the greatest 21 

decline. High sedimentation rates are known to cause clogging of their feeding apparatus, 22 

which may lead to the death of the organism (Bell et al. 2015). Autotrophs exhibited no 23 

decline in the caves (Fig. 6a, b), and this is likely related with their position restricted only at 24 
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the entrance of the cave, which is subjected to less extreme environmental conditions (Morri 1 

and Bianchi 2003). Although increased levels of sedimentation in the caves are likely to 2 

enhance water turbidity, mixotrophic organisms, such as the sponge Petrosia ficiformis, did 3 

not lose their autotrophic endosymbionts over time, maybe because the vicinity of the caves 4 

to the sea surface allowed a sufficient light intensity to be maintained (Fig. 6d, e). 5 

The increased sedimentation within the two caves is likely to be due to a combined effect of 6 

constructional material released in the water and changes in the natural hydrodynamic regime 7 

of the area due to the realization of the primary and secondary wharfs, this latter being next to 8 

the Grotta Piccola (see Fig. 2). If the caves were exposed to direct effect of waves and 9 

currents before the harbour construction, especially to waves coming from the SE direction 10 

(Vacchi et al. 2012), the wharf structures acted as an artificial barrier slowing water exchange 11 

within the caves and favouring sediment deposition in all the area around the secondary 12 

wharf (Martì et al. 2004). In addition, as the secondary wharf interrupted the natural littoral 13 

drift, thus favouring further sediment deposition, starting from 2013 the terminal part of the 14 

Grotta Piccola has been completely occluded by a plug of fine sediments and organic matter 15 

deriving from seagrass leaves decomposition (Fig. 6l, m). It may also be hypothesised that 16 

the continuous deposition of sediments in the area will require the dredging of the harbour in 17 

the future, a further source of disturbance for the two caves in the years to come (Clarke and 18 

Tully 2014). 19 

The anoxic environment caused by organic matter deposition and low water exchange 20 

favoured the development of sulphur bacteria on the vault and on the walls of the Grotta 21 

Piccola (Fig. 6 h to n), which act as primary producers fixing carbons through chemosynthesis 22 

(Airoldi and Cinelli 1996; Herbet et al. 2005). The appearance of degrading bacteria in a 23 

polluted environment has been recognized as a strategy for enhancing the clean-up of 24 
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sediments (Barbato et al. 2016, and references therein). In 2015, mixotrophic Chrysophyceae 1 

(Fig. 6i, n) appeared in the Grotta Piccola, which photosynthetically produce dissolved organic 2 

carbon that may support the metabolism of sulphur bacteria (Das et al. 2009). Metabolic 3 

activity of both sulphur bacteria and Chrysophyceae could help consuming the wide deposit of 4 

organic matter on the floor of this cave in the future (Airoldi and Cinelli 1996). 5 

All the non-taxonomic descriptors we adopted, growth forms and trophic guilds, acted as 6 

effective indicators of the benthic community alteration within the marine caves. In particular, 7 

the morphology of sessile organisms seems to be more indicative of both local impacts and 8 

global change effects than the feeding strategy (Parravicini et al. 2010); morphology is also a 9 

more simple descriptor to be employed and identified (Bell and Barnes 2001; Bell 2007; 10 

Schonberg and Fromont 2013). The use of growth forms as a main descriptor in monitoring 11 

programs of marine caves is thus encouraged. The significant time × space interaction we 12 

often found evidenced the different response to the impact of the various zones along the 13 

caves. Stations positioned at the entrance and in the first part of the caves changed less than 14 

stations positioned in the terminal parts of the caves, i.e. in the most confined zone (Bianchi 15 

and Morri 1994). This result, also confirmed by other studies focusing on the motile fauna of 16 

marine caves (Bussotti and Guidetti 2009; Navarro-Barranco et al. 2015) evidences the 17 

adequacy of using a systematic sampling in environments characterized by strong ecological 18 

gradients, as recommended by Krebs (1999).  19 

The temporal drift of the benthic community slowed down after 2013, when the works for 20 

harbour construction had been temporarily interrupted. Alterations of hydrodynamic regime 21 

and sediment load should be always considered in all procedures of environmental impact 22 

assessment on marine caves (Feng et al. 2015). The poor resilience of marine caves 23 

(Parravicini et al. 2010) induces a pessimistic prospective for the two caves, especially for the 24 
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Grotta Piccola. Engineering initiatives aiming at reducing the sediment dispersion during and 1 

following coastal constructions should be mandatory to help preserving fragile and precious 2 

ecosystems such as underwater caves and other marine coastal habitats. 3 

.  4 
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Figure captions and tables headings 1 

Figure 1. Geographic location of the study area with the relative annual wave climate (data 2 

from Corsini et al. 2006, modified). HS0 is the mean annual significant offshore wave height 3 

(m) recorded by the La Spezia buoy (43°55’41.99” N; 09°49’36.01” E) (a); topography of the 4 

Grotta Grande (b) and of the Grotta Piccola (c), redrawn from “Catasto delle Grotte della 5 

Liguria DSL/SSI” and with the position of the sampling stations (GG-a to GG-f in the Grotta 6 

Grande, GP-a to GP-c in the Grotta Piccola).  7 

 8 

Figure 2. Progress of construction works of the Ventimiglia touristic harbour in 2010 (a), 2011 9 

(b), 2012 (c), 2013 (d). Aerial imagery from Google Earth. Locations of the two underwater 10 

caves and the main directions followed by littoral drift and Roja river flow are reported. 11 

 12 

Figure 3. Grotta Grande: change over time of the mean (± sd) cover data (%) of the most 13 

abundant growth forms (turf and sediment, bare substrate, indeterminate sheets, domed 14 

mounds, flattened mounds) and trophic guilds (active pumping sponges, autotrophs, 15 

mixotrophic sponges). n.a. = data not available. 16 

 17 

Figure 4. Grotta Piccola: change over time of the mean (± sd) cover data (%) of the most 18 

abundant growth forms (turf and sediment, prostrate algae, indeterminate sheets, erect algae, 19 

bare substrate) and trophic guilds (autotrophs, mixotrophic algae, active pumping sponges). 20 

n.a. = data not available. 21 

 22 
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Figure 5. Ecological distance, expressed as mean Euclidean distance (ED) (± se), of the 1 

stations GG-a, GG-b, GG-c, GG-d, GG-e, GG-f in the Grotta Grande and GP-a, GP-b and 2 

GP-c in the Grotta Piccola.  3 

 4 

Figure 6. Representative photographic samples from Grotta Grande. Station GG-a, at the 5 

entrance of the cave, in 2010, 2011 and 2015; station GG-b, with the mixotrophic sponge 6 

Petrosia ficiformis, and station GG-c in the intermediate zone of the cave in 2010, 2011 and in 7 

2015: in this latter year sponges with a pedunculated form appeared for the first time and a 8 

thick layer of sediment covered all encrusting and flattened growth forms but not domed 9 

mounds; station GG-e, in the terminal zone of the cave, in 2010, 2011 and 2015. Photos by 10 

Eugenio Beccornia (2010) and Monica Montefalcone (remaining years). 11 

 12 

Figure 7. Representative photographic samples from Grotta Piccola. Station GP-a, at the 13 

entrance of the cave, in 2010, 2011 and 2015; station GP-b, in the intermediate zone of the 14 

cave, in 2010, 2011 and 2015: in this latter year sponges with a pedunculated form appeared 15 

for the first time; station GP-c, in the terminal zone of the cave, in 2010, 2011 and 2015, 16 

where the walls have been completely covered by turf, sediment, mixotrophic algae 17 

(Chrysophyceae) and sulphur bacteria; terminal zone of the cave in 2015 that was occluded 18 

by the deposition of fine sediment and organic matter deriving from seagrass leaves 19 

decomposition that caused the floor rising: wall covered by fine sediment (on the left), floor 20 

covered by fine sediment and organic matter that favoured sulphur bacteria development (in 21 

the centre) and vault (on the right) covered by mixotrophic algae and sulphur bacteria. Photos 22 

by Eugenio Beccornia (2010) and Monica Montefalcone (remaining years). 23 
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Table 1. Results of PERMANOVA analyses performed on growth forms and trophic guilds 1 

datasets from Grotta Grande and Grotta Piccola. ye = year; st = station. * =p<0.01; 2 

** = p<0.001; n.s. = not significant. 3 

 4 

Table 2. Results of ANOVA analyses performed on turf and sediment, bare substrate, 5 

indeterminate sheet, flattened mounds and active pumping sponges in the Grotta Grande. 6 

ye = year; st = station. * = p<0.01; ** = p<0.001; n.s. = not significant. 7 

 8 

Table 3. Results of ANOVA analyses performed on turf and sediment, bare substrate, 9 

indeterminate sheet, flattened mounds and active pumping sponges in the Grotta Piccola. 10 

ye = year; st = station. * = p<0.01; ** = p<0.001; n.s. = not significant. 11 
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Table 1.  1 

Grotta Grande 

Growth forms Trophic guilds 

Source df SS MS p (perm)  SS MS p (perm) 

ye 4 35872 8968.1 0.001a  34438 8609.6 0.001b 

st 5 29523 5904.7 0.001  31520 6304 0.001 

ye×st 20 12108 605.4 0.053  7434 371.7 0.169 

Res 60 26057 434.3   17980 299.7  

Total 89 1.0356 E5    91373   

Pair-wise test:  
a ye: 2010 vs 2011**, 2012**, 2013**, 2015** 
        2011 vs 2012*, 2013**, 2015** 
        2012 vs 2013**, 2015** 
        2013 vs 2015 n.s. 

Pair-wise test:  
b ye: 2010 vs 2011**, 2012**, 2013**, 2015** 
        2011 vs 2012*, 2013**, 2015** 
        2012 vs 2013**, 2015** 
        2013 vs 2015 n.s. 

Grotta Piccola 

Growth forms Trophic guilds 

Source df SS MS p (perm)  SS MS p (perm) 

ye 4 19104 4776 0.001  19918 4979.6 0.001 

st 2 16903 8451.5 0.001  14599 7299.4 0.001 

ye×st 8 9543 1192.9 0.003c  8471.5 1058.9 0.001d 

Res 30 12503 416.8  8680.4 289.4 

Total 44 58054    51669   

Pair-wise test: 
c ye x st: 
st GP-c: 2010 vs 2011*, 2012*, 2013*, 2015* 

Pair-wise test:  
d ye x st:  
st GP-c: 2010 vs 2011*, 2012*, 2013*, 2015* 
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Table 2.  1 

 Turf and sediment  Bare substrate 

Source df SS MS F p  SS MS F p 

ye 4 43393.1 10848.2 47.48 0.000  172.8  43.2 30.6 0.000b 

st 5 6251.2 1250.2 2.37 0.076  13.8 2.7 2.2 0.081 

ye×st 20 10542.8 527.1 2.31 0.007a  24.5 1.2 0.8 0.621 

Res 60 13707.4 228.4    84.5 1.4   
Total 89 73894.6     295.7    
Cochran’s C-test  n.s. 

Transformation 

     C= 0.2967* Transformation = arcsine 

 Indeterminate sheet  Flattened mounds 

Source df SS MS F p  SS MS F p 

ye 4 5328.2 1332 16.4 0.000c  2224.1 556 3.6 0.009d 

st 5 825.1 165 1.9 0.132  1730.9 346 1.5 0.222 

ye×st 20 1733.6 86.6 1 0.400  4516.6 226 1.5 0.112 

Res 60 4871.2 81.1    9060.8 151   

Total 89 12758.2     17532.6    

Cochran’s C-test  n.s. 

Transformation 

   n.s 

      

 Active pumping sponges  SNK test:  
a ye x st:  

st GG-a: 2010<2013** 
st GG-b: 2010<2011**, <2013* 
st GG-c: 2010<2011**, <2013**, <2015** 
st GG-d: 2010<2011**, <2012**, <2013**, <2015** 
st GG-e: 2010<2011**, <2012**, <2013**, <2015** 
st GG-f: 2010<2013**, <2015** 

b ye: 2010>2011**, >2013**, >2015** 
c ye: 2010>2011**, >2012**, >2013**, >2015** 
d ye: 2010>2013**, >2015** 
e ye: 2010>2011**, >2012**, >2013**, >2015** 

Source df SS MS F p  
ye 4 14195.6 3548.9 16.9 0.000e  
st 5 9830.5 1966.1 8.2 0.000  
ye×st 20 4773.6 238.6 1.1 0.33  
Res 60 12573.7 209.5    
Total 89 41373.6     
Cochran’s C-test  n.s. 
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Table 3.  1 

 Turf and sediment  Bare substrate 

Source df SS MS F p  SS MS F p 

ye 4 27129.9 6782.4 27.47 0.000  5835.8 1458.9 16.1 0.000 

st 2 1210 605 1.02 0.404  5822.8 2911.4 3.5 0.083 

ye×st 8 4756.7 594.5 2.41 0.039a  6657.6 832.2 9.2 0.000b 

Res 30 7406.2 246.8    2712.4 90.4   

Total 44 40502.9     21028.8    

Cochran’s C-test  n.s. 

Transformation 

   C= 0.7061* 

 Indeterminate sheet  Flattened mounds 

Source df SS MS F p  SS MS F p 

ye 4 16.6 4.1 8.08 0.000c  108.1 27 1.9 0.121 

st 2 9.6 4.8 9.79 0.007  87.2 43.6 5.2 0.032 

ye×st 8 3.9 0.4 0.96 0.487  66.5 8.3 0.6 0.770 

Res 30 15.4 0.5    416.6 13.8   

Total 44 45.6     678.5    

Cochran’s C-test  C= 0.5006* Transformation = arcsine 

Transformation 

     C= 0.6096* 

 Active pumping sponges  SNK test:  
a ye x st:  

st GG-a: 2010<2011*, <2013**, <2015* 
st GG-b: 2010<2012**, <2013**, <2015** 
st GG-c: 2010<2011**, <2012**, <2013**, <2015** 

b ye x st: 
st GG-a: n.s. 
st GG-b: n.s. 
st GG-c: 2010>2011**, >2012**, >2013**, >2015** 

c ye: 2010>2012*, >2013*,>2015* 
d ye: 2010>2012*, >2013*,>2015* 

Source df SS MS F p  
ye 4 2152.1 538 9.42 0.000d  
st 2 536.8 268.4 2.15 0.174  
ye×st 8 1000.9 125.1 2.19 0.053  
Res 30 1713.6 57.1    
Total 44 5403.5     
Cochran’s C-test   n.s. 
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