
“Make a model as simple as possible, but not simpler.”

– Albert Einstein

Part II

Transport of inertial particles under

the action of sea waves
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LIST OF SYMBOLS

d2 absolute dispersion

R auto-correlation function

CSF Corey shape factor

wD
s Dietriech settling velocity

D diffusion coefficient

β dimensionless added-mass

wm
s experimental net settling velocity

σ frequency

Fr Froude number

T integral scale

w∗
s non dimensional settling velocity

ρp particle density

dp particle diameter

Rp particle Reynolds number

g
′

reduced gravity acceleration

R reflection coefficient

ws settling velocity

R stochastic noise

St Stokes number

τ Stokes response time

a wave amplitude

ω wave angular frequency
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c wave celerity

H wave height

k wave number

T wave period

λ wavelength if not stated otherwise
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7
INTRODUCTION

T
he marine environment is continuously and increasingly threatened with pollution

derived from anthropogenic activities, through the uncontrolled released of waste and

dangerous substances transported by winds and rivers from land to sea. Among these,

the presence of plastics, at different sizes, is now recognized as one of the main threats to

the whole environment (Villarrubia-Gómez et al., 2018). Its global production has increased

significantly over the past decades, reaching more than 348 million tonnes in 2017, see for

example the Annual Report issued by the Association PlasticsEurope (PlasticsEurope, 2018).

A widely accepted definition of Microplastics (MPs) requires plastic particles to be smaller

than 5 mm in size (Hidalgo-Ruz et al., 2012). However, a clear and accepted terminology and

classification is still under discussion (Hartmann et al., 2019) as well as a standardization of

the plastic collection and analysis methods (Cutroneo et al., 2020). Besides the dimension, it

is important to note that MPs mass densities are generally close to that of water but may be

either positively or negatively buoyant (Hidalgo-Ruz et al., 2012; Kooi and Koelmans, 2019). The

mass density depends primarily on the plastic composition, with a wide range of values (e.g. high

density polyethylene, 930 - 970 kg.m−3, polypropylene, 850 - 920 kg.m−3, polyvinyl chloride,

1300 - 1450 kg.m−3), that can be further modified in the marine environment by degradation

or colonization of biofouling and weathering processes (Kaiser et al., 2017; Kooi et al., 2017;
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Porter et al., 2018). These aspects play a fundamental role on the fate of plastic debris in the

environment primarily influencing the settling velocity of the plastic particles. Several studies

have been dedicated to the accurate estimation of the settling velocities depending on the main

physical properties of the particles, namely size, shape and density (Chubarenko et al., 2016;

Khatmullina and Isachenko, 2017; Waldschlager and Schuttrumpf, 2019).

A great effort has been devoted in these last ten years in quantifying the plastics (micro and

macro) abundance in the different compartments (surface water, water column and sediment) of

open seas and other delicate environments (coastal areas, estuaries and rivers), see among others

Hidalgo-Ruz et al. (2012), Law (2017) and Rezania et al. (2018) for comprehensive reviews. The

main outcome of these studies was that plastics in different form (floating debris, microplastic

pieces and plastic fibers) are found in any sea basin around the world, with higher concentrations

occurring in areas characterized by intense human activity. Recent field campaign found a non

negligible plastics content even in the most remote sea basins (Bergmann et al., 2017; Suaria

et al., 2020). This demonstrates that plastic debris transport can be extremely efficient and that

the prediction of the plastics fate is of paramount importance. The plastics dispersion is driven

by a number of physical processes, acting over a wide range of scales; it is worth mentioning the

predominant effects of oceanic and coastal currents, wind and sea wave transport through the

Stokes drift.

Most efforts to numerically model MPs transport in the ocean or coastal areas treat the particles

as neutrally buoyant tracers (Maximenko et al., 2012; Ballent et al., 2013; Zambianchi et al., 2017).

Other models include effects related to wind-induced mixing and a superimposed constant settling

velocity (Kukulka et al., 2012; Isobe et al., 2014; Kukulka and Brunner, 2015; Brunner et al.,

2015; Liubartseva et al., 2016; Zhang, 2017; Kooi et al., 2017; Liubartseva et al., 2018). Overall,

most of the classical approaches in MP dispersion substantially disregard inertial effects owing

to buoyancy and drag. Recent contributions have been devoted to fill this gap in understanding

the role of inertial character of heavy particles, using more refined models to describe the particle

trajectories. The transport of heavy particles has attracted the attention of scientists in the last

decades, owing to the wide range of applications in both industrial and environmental flows.

A great effort has been dedicated to understand how homogeneous turbulence or turbulent
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boundary layers are able to transport particles at different scales. The inertial character of the

particles proved to modify substantially the statistics of the particle velocity and acceleration

fluctuations (Bec et al., 2006, 2007; Cencini et al., 2006) and the shape of the auto-correlation

functions and the corresponding integral scales (Ayyalasomayajula et al., 2006; Gerashchenko

et al., 2008; Wetchagarun and Riley, 2010). One of the interesting consequences of the modified

velocity auto-correlation functions is the effect on the dispersion regimes that heavy particles

show (Jung et al., 2008; Wetchagarun and Riley, 2010; Zhang and Xiao, 2018).

Fluid particles immersed in a turbulent flow tend to behaves differently from their fluid

counterpart and this is often investigated using the auto-correlation functions and the flow

properties of the fluid seen by particles (Pozorski and Minier, 1998, 1999; HE et al., 2006; Jung

et al., 2008). Inertial particles were found to behave differently from fluid particles already for

Stokes number of order one and their typical Lagrangian integral scales is extremely sensitive to

the values of the Stokes number (Jung et al., 2008).

A great amount of studies are dedicated to the interaction of heavy particles with turbulent

flows (boundary layers or homogeneous turbulence) and channel flows showing interesting

processes of clustering (Weiss et al., 2019; Fong et al., 2019; Barge and Gorokhovski, 2020; Berk

and Coletti, 2021; Baker and Coletti, 2021).

On the other hand, gravity effects on heavy particles transport received less attention, even if

they play a determinant role in several geophysical context, e.g. in atmospheric transport (Yudine,

1959; Csanady, 1963; Wang and Stock, 1993; Shao, 1995; Gustavsson and Mehlig, 2016; Berk

and Coletti, 2021). One of the main results of the mentioned studies is that the diffusion theory

by Taylor (1921) proved to be valid, provided a correct definition of the decorrelation time is used,

even for fairly high values of the Stokes number. In particular, a diffusive regime was observed

numerically and experimentally leading to diffusion coefficients that can be lower or higher with

respect to the fluid ones depending on the Stokes number (Yudine, 1959; Jung et al., 2008). After

introducing a wide class of models of inertial particle dynamics, we analyzed several particular

cases, starting from the Basset-Buossinesq-Oseen equation and the Maxey-Riley equationMaxey

and Riley (1983) to describe the inertial particle trajectories and the resulting Taylor’s formulas in

simplified cases (buoyancy-force case, Brownian force case, limiting cases for the Stokes number).
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In this chapter, we show the experimental investigation on the inertial Stokes drift depending on

several controlling parameters, i.e. wave and particle characteristics. The results will be used

to validate previous models and, ultimately, to suggest a new analytical formulation of the net

settling velocity to describe MPs transport in wave-exposed environments. Moreover, we also

investigated the possibility that the transport of inertial particles owing to sea waves could be

described in terms of an asymptotic diffusive regime. Thus, in the second part of the chapter,

we provide a simplified transport model based on the Maxey and Riley’s equations (Maxey and

Riley, 1983), including the effect of a background random flow disturbances superimposed to the

wave field. The inclusion of a stochastic term proportional to a diffusion coefficient is a common

simplified model to consider an isotropic random force acting on the particle (Reeks, 1988; Boi

et al., 2018; Rosti et al., 2020). The main application is the transport of negatively buoyant

microplastic particles. The choice of the range of the main particle parameters is guided by

several studies of observations of micro-plastics sampled both in the water column and in the sea

bed sediment. In a recent statistical analysis, Kooi and Koelmans (2019) analyzed the data from

many field studies and provided a description in terms of multi-dimensional probability functions.

We rely on the cited work for the definition of the range of particle diameters and the density of

the inertial particle. Moreover, sea waves parameters are varied with the aim to understand the

role of the intensity of the Stokes drift.

After a brief introduction of the experimental set up and methods and a mathematical background

of the numerical approach, a section dedicated to the experimental and numerical results is

provided. A conclusive section is reported in the end.
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8
METHODS

8.1 EXPERIMENTAL METHODS

8.1.1 EXPERIMENTAL SETUP

T
he experiments were performed in the MIO/SEATECH wave flume at SEATECH

Engineering School, University of Toulon. The flume is 13 m long, 30 cm wide and 50

cm deep. The net length of the flume that can be used for experimental measurements

is about 10 m. The flume is equipped with a piston wave-maker with a pneumatic actuator,

remotely controlled using a digital signal acquisition/generation system. The flume side walls are

made of thick glass panel allowing for direct visualization and video recordings. For the present

experiments the water depth was kept constant and equal to 26.5 cm. A dissipative sloping beach

was installed at the end of the flume to minimize the effects of wave reflection. Regular waves

were imposed with variable period and amplitude. During each experiment, the generated wave

field was monitored using three wave gauges (sampling frequency 200 Hz), placed in the center

line of the flume at 1, 2.22 and 2.64 m downstream the wave maker. The wave gauge data have

been analysed in order to compute the wave characteristics (period and amplitude) through peak

analysis and to quantify the reflection at the dissipative beach following the three gauges method

(Drevard et al., 2009; Rey et al., 2002). A schematic overview of the experimental set up is shown
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in Figure 8.1.

Figure 8.1: Schematic view of the experimental set up

The recovered wave data for the five wave cases are summarized in Table 8.1. The dimension-

less parameter H/gT2 is employed to synthetically describe a sea state, see LeMéhauté (1969). It

can also be viewed as a measure of wave steepness: for a given wave period T, higher values of

H/gT2 correspond to higher and steeper waves, since the wave period is related to the wave length

through the dispersion relationship. The set of waves generated in the present experimental

campaign is such that the wave parameter H/gT2 is monotonically increasing moving from the

first wave condition (W1) to the last one (W4). Overall, the experimental values of H/gT2 are in

a realistic range and they can well represent typical sea state conditions of several sea basins

Stocchino et al. (2019). All waves conditions fall in the intermediate depth regime except for W1

that correspond to shallow water conditions. The reflection coefficient ranges between 0.16 and

0.23, which means that the reflection effect is quite small.

Wave Condition H [m] T [s] R H/gT2 Exp.#
W1 0.031 0.85 0.23 0.0044 7-12
W2 0.041 0.85 0.16 0.0058 13-18
W3 0.077 0.85 0.17 0.0108 19-24
W4 0.033 0.5 0.18 0.0134 25-30

Table 8.1: Measured wave conditions. The reflection coefficient R has been evaluated following
Drevard et al. (2009). The last column refers to the experiment number given Table 8.3
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Figure 8.2: left panel: Particle diameter distributions for the six selected classes. Right panel:
example of microscope images with the particle diameter measurements

8.1.2 PARTICLES

The selected PMMA (polymethylmetacrylate) particles have a fixed density ρp = 1190 kg.m−3

and different diameters dp ranging from 150 and 640 µm. The PMMA particles were initially sold

as a mixture with a poorly sorted grain size distribution. The particles were, therefore, previously

sieved to obtain six grain classes with narrow size distributions, see Figure 8.2.

The particle diameters have been evaluated using microscope imaging analyzed with a specific

software (open source software ImageJ, imagej.nih.gov). Size statistics for the six selected classes

are reported in Table 8.2. A particle diameter distribution is defined starting from a list of

diameter sizes within the selected sieve. Than, they are ranged and normalized by the total

amount of the sampled diameters. The dx diameter is the diameter at which x% of particles are

finer and (100-x)% of particles are coarser. The resulting size distributions are narrow enough to

consider the d50 diameter as representative of the PMMA particle diameter, simply named dp in

the following. Plastic particles have been characterized in terms of their added-mass represented

by the dimensionless parameter β, and their drag response through the Stokes response time τ,
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class d16 (µm) d50 (µm) d84 (µm)
1 512 543 574
2 468 498 528
3 417 433 451
4 307 338 368
5 217 241 267
6 173 183 193

Table 8.2: Main parameters for the six selected classes of PMMA particles.

defined as:

β = 3ρ f

ρ f +2ρp
(8.1)

τ =
d2

p

12βν
(8.2)

where ρ f and ρp are the density of the fluid, water in the present case, and the particle,

respectively and, ν is the kinematic viscosity of the water. For the present experiments, the

added-mass parameter β kept a constant value equal to 0.8876. Note that the well known Stokes

number can be readily evaluated as

(8.3) St =ωτ

where ω= 2π/T is the angular frequency of the waves.

8.1.3 TEST CASES

A total of 30 experiments have been performed. The main experimental parameters (wave and

particles) are reported in Table 8.3. Four different wave conditions were tested by varying period

and amplitude, see Table 8.1 for further details. For each wave condition, all particle classes have

been released and tested. Experiments from 1 to 6 (not reported in Table 8.3) were dedicated

to the experimental protocol testing and therefore not considered for the physical analysis. For

each experiment, the particles of a specific diameter class have been released manually at the

free surface, few millimetres below it to avoid surface tension effects. The release was repeated

several times during a single acquisition in order to increase the number of measured trajectories.
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exp dp [µm] T [s] H [m] τ St
007 543 0.85 0.031 0.029 0.214
008 498 0.85 0.031 0.024 0.177
009 433 0.85 0.031 0.017 0.127
010 338 0.85 0.031 0.011 0.079
011 241 0.85 0.031 0.006 0.044
012 183 0.85 0.031 0.003 0.023
013 543 0.85 0.041 0.029 0.214
014 498 0.85 0.041 0.024 0.177
015 433 0.85 0.041 0.017 0.127
016 338 0.85 0.041 0.011 0.079
017 241 0.85 0.041 0.006 0.044
018 183 0.85 0.041 0.003 0.023
019 543 0.85 0.077 0.029 0.214
020 498 0.85 0.077 0.024 0.177
021 433 0.85 0.077 0.017 0.127
022 338 0.85 0.077 0.011 0.079
023 241 0.85 0.077 0.006 0.044
024 183 0.85 0.077 0.003 0.023
025 543 0.5 0.033 0.029 0.363
026 498 0.5 0.033 0.024 0.302
027 433 0.5 0.033 0.017 0.216
028 338 0.5 0.033 0.011 0.135
029 241 0.5 0.033 0.006 0.075
030 183 0.5 0.033 0.003 0.040

Table 8.3: Experimental wave and particles parameters.

8.1.4 SETTLING TRAJECTORY MEASUREMENTS

The present measurement strategy was specifically designed to track the trajectories of settling

particles under the influence of waves. The particle motion were recorded by a high-definition

GigaEthernet digital camera (Teledyne Dalsa Genie Nano C2450) with a 25mm lens. The camera

CCD is a 2/3
′′

format with a resolution of 2448×2048 pixel. The frame rate was adjusted for each

experiment, ranging between 20 and 25 fps. The camera optical axis was kept orthogonal to the

flume glass wall. The field of view (FoV) was about 22×28 cm, allowing to visualize the entire

flow depth and the horizontal movements of the settling particles. The illumination of the FoV

has been obtained using four 500 W white light halogen lamps complemented, in some cases,

with a 200 mW solid state laser.

A single acquisition typically lasted between 100 and 200 s, producing between 2500 and
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4000 images depending on the frame rate. A systematic background removal was applied on each

image to eliminate spurious reflections and regions with non uniform illumination. The resulting

images were then binarized applying a proper threshold based on the image intensity to ease

subsequent analysis.

The processed images were analysed using the tracking software MotionStudioTM (Integrated

Design Tool, Inc). The tracking procedure started manually by indicating the features that the

software shall track in the image sequence and setting a small area around the interested particle,

namely an Interrogation Window (IW). The tracking algorithm is based on a cross-correlation of

the IW between successive pairs. The above procedure has been applied many times on the same

image sequence in order to obtain a statistically significant set of particle trajectories. In general,

for each experiment, we have obtained a variable number of single particle trajectories between

30 and 60 depending on the quality of the images: diameters lower than 300 µm were generally

more difficult to track, owed to both the size and a lack of proper illumination. In fact, based on

the field of view of the images and the resolution of the digital camera, a single pixel represents

about 100 µm. Particle with diameters smaller than 300 µm becomes comparable with the pixel

size and, then, their tracking is impossible. In order to overcome this limitation, both increasing

the digital camera resolution or decreasing the field of view would enable the tracking of this

class of particles. The present method is similar to the Particle Image Velocimetry technique used

in a recent study (Waldschlager and Schuttrumpf, 2019).

8.2 NUMERICAL METHODS

8.2.1 MATHEMATICAL MODEL AND NUMERICAL EXPERIMENTS

The Eulerian wave flow on a vertical plane (x, z), u(x, t)= (ux(x, t);uz(x, t)) is calculated assuming

a second order Stokes wave as Dean and Dalrymple (1991):

(8.4)


ux(x, z, t)=

(
gka
ω

)
fc1 cos(kx−ωt)+

(
g(ka)2

ω

)
fc2 cos2(kx−ωt),

uz(x, z, t)=
(

gka
ω

)
fd1 sin(kx−ωt)+

(
g(ka)2

ω

)
fd2 sin2(kx−ωt),

where g is the gravitational acceleration, a is the wave amplitude, k = 2π/λ is the wave number

and λ the wavelength, ω= 2π/T is the angular frequency with T the wave period. The wavenumber
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k and the angular frequency ω are linked by a dispersion relation as:

(8.5) ω= kU0 +σ

where U0 is the value of a possible background uniform current velocity and σ is the frequency of

the wave in the moving frame of reference (Peregrine, 1976). For the present analysis we did not

consider any background flow U0.

The functions fc1, fc2, fd1 and fd2 are hyperbolic functions of the water depth h and the

vertical coordinate z and read:

fc1 = cosh(ks)/cosh(kz);(8.6)

fc2 = 3cosh(2ks)/4sinh3(kz)cosh(kh);(8.7)

fd1 = sinh(ks)/sinh(kz);(8.8)

fd2 = 3sinh(2ks)/4sinh3(kz)cosh(kh),(8.9)

having defined s as (h+ z).

In the following, different waves are described in terms of the wave steepness parameter

(Stocchino et al., 2019) defined as H/gT2, where H = 2a, or the Froude number

(8.10) Fr = ωa
c

,

where c is the wave celerity (Santamaria et al., 2013).

The motion of a small spherical inertial particle can be described by a set of equations that

reads:

(8.11)


dx(t)

dt
=up(t)+

p
2D R(t),

dup(t)
dt

= u(x, t)−up(t)
τ

+ (1−β)g+β
du(x, t)

dt
,

where up(t) is the Lagrangian particle velocity, u(x, t) is the flow field acting on the particle

derived from equations (8.4), with β, τand the Stokes number St defined by 8.2, 8.2 and 8.3,

respectively.

This model is a modified version of the original set of equations of Maxey and Riley (1983) for

a spherical particle. In particular, we neglect the Faxen and Basset terms from the original equa-

tions similarly to previous studies (Santamaria et al., 2013; DiBenedetto et al., 2018; Stocchino
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et al., 2019). Moreover, differently from the original set of equations, in the present context,

we included a zeroth-order Markov model term in the first equation. With this simple model a

stochastic noise is added to the particle positions through the term R(t), that assumes random

values with zero mean and unitary variance. The Brownian motion generated is multiplied by a

diffusion coefficient D, which should synthetically describe the presence of an external Brownian

force per unit mass equal to (Reeks, 1988; Boi et al., 2018)

(8.12)
p

2D
τ

R(t).

It could also be interpreted as the effect of the unresolved turbulent flow scales on single inertial

particles (Boi et al., 2015; Van Sebille et al., 2018; Rosti et al., 2020). In our analysis, the

coefficient D is used as a free parameter, varied in a range between the molecular diffusion value

(10−6m2s−1) and a value of 10−1m2s−1. The inclusion of a Brownian term was used in several

previous studies focused on the transport of inertial particles or droplets immersed in different

flow fields (Reeks, 1988; Drossinos and Reeks, 2005; Boi et al., 2015, 2016, 2018; Rosti et al.,

2020).

We acknowledge that this is a quite crude representation of the influence of possible small

scale turbulence effects. However, the particular flow under investigation, namely the flow field

generated by a sea wave, is usually characterized by low turbulent intensities, quite different

from classical turbulent flows used in other context where the transport of inertial particles has

been studied.

The Lagrangian transport equations (8.11) were numerically solved using a fourth order

Runge-Kutta method with a fixed integration time step much smaller than the Stokes time. Care

must be taken on the choice of the integration time in order to resolve time scales of the order of

τ, in our analysis we set the integration time as ∆t = τ/30.

To investigate the possible dispersive regimes, we designed several series of numerical

experiments varying the main physical parameters. In particular, four series of experiments

were performed varying the wave parameter H/gT2 in a range between 0.001 and 0.006 (Fr =
0.02−0.12). All simulations were performed in deep water conditions. For each wave condition,

the particle diameter was varied in a range between 102 and 103 µm maintaining a fixed value of
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test # dp [µm] a [m] ω [Hz] H/gT2 λ [m] β τ [s] St D [m2/s] n. sim.
000 100-1000 0.18 1.05 0.001 56.21 0.968 0.00086-0.086 0.0009-0.09 10−6-10−1 114
001 100-1000 0.36 1.05 0.002 56.21 0.968 0.00086-0.086 0.0009-0.09 10−6-10−1 114
002 100-1000 0.71 1.05 0.004 56.21 0.968 0.00086-0.086 0.0009-0.09 10−6-10−1 114
003 100-1000 1.06 1.05 0.006 56.21 0.968 0.00086-0.086 0.0009-0.09 10−6-10−1 114

Table 8.4: Wave and particle parameters used for the numerical simulations.

the added-mass parameter β equal to 0.9677. The resulting values of the Stokes number cover a

range approximately between 0.0009-0.09.

8.2.2 TEST CASES

A total of 456 simulations were performed using 3500 numerical particles, released at the free

surface, for an integration time equal to 1500-3500 wave periods, depending on St. The duration

of the simulation is chosen in order to let the particles reach a depth where the Stokes drift is no

longer felt. The main parameters of the numerical simulations are reported in Table 8.4.

Finally, it is worth discussing the range of particle parameters used for the present study.

Since the main application that stimulated the investigation is the transport of microplastic

and the role of the sea wave Stokes drift, we selected the range of particles diameters and the

values of the relative density using the data analysis reported in two recent reviews on sampled

microplastic debris, namely Hidalgo-Ruz et al. (2012) and Kooi and Koelmans (2019).

Hidalgo-Ruz et al. (2012) reviewed 68 studies with the aim to summarize the range of particle

debris in terms of sizes and densities. Based on similar data sets, Kooi and Koelmans (2019)

suggested a statistical interpretation of the data using multidimensional probability density

functions (pdf) involving size, density and shapes (Corey shape factor, CSF (Khatmullina and

Isachenko, 2017)) of the debris. In particular, the distribution of plastic density is well fitted by a

Normal-Inverse Gaussian distribution with a central value of around 1000 kg/m3 and a marked

positive skewness with non negligible probability values up to 1600 kg/m3. From this analysis

almost half of the observed plastic debris have a density in a range between 960 and 1580 kg/m3,

see the data of their Figures S1 and S4 and Table S3. Using the range of wave parameter reported

in Table 8.4, the Stokes number used for the present numerical experiments well describes a

wide range of microplastic debris observed in the field.
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We acknowledge that assuming a spherical shape is quite a crude representation of the real

microplastic debris, since microplastic debris show a Corey shape factor distribution dominated

by fibers and fragments (CSF = 0.25−0.75) with a second peak at a CSF of 0.07, which is mainly

attributed to sheets (Kooi and Koelmans, 2019).
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9
RESULTS AND DISCUSSIONS

9.1 MEASURED PARTICLE TRAJECTORIES

F
igure 9.7 shows four examples of measured trajectories for experiments 8, 12, 13 and 17.

Experiments 8 and 12 have been performed with wave conditions W1 with two different

particle size classes, namely with dp = 498 µm and dp = 183 µm, respectively. Similarly,

experiments 13 and 17 have been performed with the wave conditions W2, characterized by the

same period as W1 but larger wave height, in which another set of particle diameter has been

considered (dp = 543 µm and dp = 241 µm, respectively).

It is worth mentioning that for a neutrally buoyant particle, i.e. β= 1, the expected trajectory

driven by the wave Stokes drift would be an open spiral with no net transport in the vertical

position after a single wave period (Stokes et al., 1851). As soon as a particle has a density

difference with the fluid, i.e. β< 1, the particle trajectory substantially deviates from the β= 1

case. Figure 9.7 shows that in each case the particles tend to settle following a trajectories that

resemble a spiral that, as time passes, tends to unroll itself. This effect is stronger for larger

diameters (Figure 9.7, panels a) and c)). As soon as the settling particle no longer feels the

presence of the Stokes drift, the trajectories will be identical to the one expected for pure settling

in still fluid, i.e. a straight vertical line. For the smallest diameter (Figure 9.7, panels b) and
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Figure 9.1: Examples of measured trajectories for experiment a) 8, b) 12, c) 13 and d) 17.

d)), the spiral-like trajectories is better preserved during the particle settling, reaching depth

comparable with the total flow depth. In all cases, in the limit for long times, the trajectories will

be straight vertical lines.

The behavior described above for the experiments reported in Figure 9.7 can be considered

typical of all experiments performed during the present study. Similar behaviors have been

presented in recent theoretical and numerical studies (Santamaria et al., 2013; DiBenedetto

et al., 2018; Stocchino et al., 2019). The inertial character of the particles is the main reason to

this difference with respect to the Stokes drift trajectories for a fluid particle. The effect of wave

height H translates into a more intense Stokes drift that is felt at greater depths. In fact, the
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intensity of the Stokes drift can be estimated from bulk wave parameters (Kumar et al., 2017)

and it is proportional to the wave height and the angular frequency. In particular, it depends

quadratically on the wave height and linearly on the wave angular frequency. Increasing the

wave height H, or equivalently the wave parameter H/gT2 for a given wave period, will lead

the particle trajectories to manifest the rolling character for longer times, experiencing a more

intense Stokes drift.

Finally, Figure 9.2 shows the time evolution of the particle velocities for two typical experi-

ments, namely experiment 8 and 12. The interaction between the inertial effects and the Stokes

drift leads to an evolution of the velocity components periodic over time, which oscillate with a

period equal to the wave period and a decreasing amplitude. Note that the longitudinal velocity

component vx oscillates around a zero value, which will be reached at long time. In fact, as time

tends to infinity, the particle reaches a depth where the Stokes drift is no longer acting and,

thus, the particle, at that stage, would only settle with a zero horizontal velocity component

similarly as still fluid settling. On the other hand, at the long time limit, the vertical velocity

reaches an asymptotic value equal to the still fluid settling velocity for that specific particle.

Experiments 8 and 12 have been carried out with the same wave conditions and the observed

difference highlights the influence of the Stokes number.

9.1.1 THE ROLE OF THE INERTIAL STOKES DRIFT ON THE NET SETTLING VELOCITY

The estimation of the settling velocity of plastic particles in wave-exposed marine environment is

of paramount importance for the prediction of plastics dispersion and abundance. The settling

velocity enters as physical parameter in several modelling approaches employed to produce

large scale prediction of the distribution of microplastics in several sea basins (Isobe et al., 2014;

Liubartseva et al., 2016; Zhang and Savenije, 2017; Liubartseva et al., 2018; Jalón-Rojas et al.,

2019). So far, the inclusion of the particle settling velocity has been made as a tentative to

consider the inertial character of the plastics. In fact, the motion of a spherical inertial particle
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Figure 9.2: Time evolution of the particle velocities: a) experiment 8 x-component, b) experiment
8 y-component, c) experiment 12 x-component and d) experiment 12 y-component

could be described by the following set of equations:

dx(t)
dt

= V(t)(9.1)

dV(t)
dt

= u(x, t)−V(t)
τ

+ (1−β)g+β
du(x, t)

dt
(9.2)

where V(t) is the Lagrangian particle velocity at the position x(t) and u(x, t) the flow field acting

on the particle. This model is obtained by the original set of equations of Maxey and Riley

(1983) for a spherical particle neglecting the Faxen and Basset terms from the original equations.

The solution of the above system provides an accurate description of the physics of the present

problem (Santamaria et al., 2013; DiBenedetto et al., 2018; Stocchino et al., 2019) and in more

complex oceanographic flows (Beron-Vera et al., 2019). Large scale models for plastic transport,

based on Lagrangian and Eulerian equations, often implement the settling velocity as a steady

solution of equation (9.2) by equating the drag force term (second term on the right hand side)
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and the gravitational force term (third term on the right hand side), disregarding the effect

of time dependency of the latter system. Thus, the quest for a good empirical estimator of the

settling velocity has inspired numerous studies dedicated to plastic particles (Chubarenko et al.,

2016; Khatmullina and Isachenko, 2017; Waldschlager and Schuttrumpf, 2019). The dominant

approach was to test the applicability of well-known settling formulas to plastic particles. For

instance Khatmullina and Isachenko (2017) used several empirical models developed in other

context as settling of natural sediment grains (Dietrich, 1982; Zhiyao et al., 2008) or formulas

developed for non-spherical particles (Clift et al., 1978). A recent study followed a similar approach

on a wider range of particle parameters (Waldschlager and Schuttrumpf, 2019). However, it

should be emphasized that all tested formulas have been developed in pure settling in still

fluids, which represent a limiting case since the transport in marine environments are dominated

by an intense dynamics and, in particular, by sea waves. Aiming to provide further insight

on the settling velocity in wave-exposed environments, the present measurements of particles

trajectories obtained for a fairly wide range of particle and wave parameters are further processed

to provide estimates of the net settling velocity. In wave context, this latter is defined as the

effective settling velocity generated by the effect of the inertial Stoke drift as a result of the

interaction between drag forces, described by τ and the gravity force, described by β and wave

transport. The analysis is performed on the time evolution of the vertical position y(t) extracted

from the full trajectories, see Figure 9.3 for examples where panels a) and c) show the measured

trajectories for experiments 8 and 12. The net settling velocity is then directly estimated from

the slope of the linear fitting of the y(t) signal (Figures 9.3 b) and d)).

The linear regression filters out the y(t) periodic components with an R-square (R2) ranging

between 0.7 and 0.99, indicating the reliability of the linear model. Figure 9.4 displays the

measured net settling velocity in non dimensional form

(9.3) w∗
s = w3

s

g′ν

versus the squared particle Reynolds number

(9.4) R2
p =

g′d3
p

ν2 ;
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Figure 9.3: Time evolution of the vertical displacements for experiments a) 8 and c) 12. In panel
b) and d) are shown the linear regressions of a single track, respectively for experiment 8 and 12.

where g′ = g(ρp −ρ f )/ρ f is the reduced gravity acceleration and ν is the kinematic fluid viscosity

(see Khatmullina and Isachenko (2017) for a similar scaling). Note that Figure 9.4 is in loglog

coordinates. In the same plot, the theoretical prediction of settling velocity provided by the

Dietrich’s formula (Dietrich, 1982) is also reported for comparison, as it is commonly used to

describe plastics settling velocities. In particular, we have calculated the settling velocity by

means of the latter formula for each diameter dp. As expected the dimensionless settling velocity

increases for higher particle Reynolds number. Moreover, it is worth noting that for a fixed value

of the particle Reynolds number, Rp, the net settling velocity increases monotonically with the
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Figure 9.4: Non dimensional net settling velocity w∗
s as a function of the squared particle Reynolds

number.

wave parameter, H/gT2. This observation suggests that increasing the wave amplitude for a given

wave period, and therefore increasing the intensity of the Stokes drift, produces an increment of

the net settling velocity. Moreover, the effect of the inertial Stokes drift is stronger for small Rp,

leading to a greater difference with respect to the still water settling velocity. On the contrary, as

Rp increases the particle dynamic tends to a pure settling, collapsing with the settling velocity

prediction obtained by Dietrich formula.

To better compare the present results in wave-exposed context with the traditional pure

settling velocity formulas, Figure 9.5 depicts the measured net settling velocity wm
s for all
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experiments against the theoretical estimate with the Dietrich formula. The solid line indicates

the perfect agreement, whereas the black and blue dashed-dotted lines indicate the ±20% and

±50% thresholds, respectively. The results clearly indicate that the overall effect of the inertial

Stokes drift is to increase the settling velocity compared to the case of pure settling in still fluid.

Most of the experimental measurements fall inside the region of ±50%. On the contrary, the

smallest diameters, which corresponds to the lowest velocities, show the greater differences,

indicating that are more sensitive to the effect of the Stokes drift. Santamaria et al. (2013)

showed that inertial particles tend to increase the settling velocity under regular waves and

only asymptotically tend to the Stokes terminal velocity. Similar results have been obtained

numerically with a more refined wave model by Stocchino et al. (2019). The numerical prediction

reported in Stocchino et al. (2019) are fairly consistent with the present results. For particle

diameters in a range between 300 and 500 µm, the increase with respect to the pure settling

velocity was estimated by the numerical simulation of the order of 20% for the smallest diameter

and about 6% for the larger. In the present laboratory experiments, for the same diameter, the

increase is of the order of 15-20% and 5-9%, respectively.

9.1.2 A NEW FORMULATION OF THE SETTLING VELOCITY

We aim to present an analytic interpretation of the measured settling velocity. As already

mentioned, settling velocity formulas are often implemented into numerical models at regional

or oceanographic scale and the common choice is to use expression that have been tested in

still water (Khatmullina and Isachenko, 2017) and the effect of wave is added using Stokes

drift classical formulations. The present laboratory experiments have demonstrated that the

interaction of inertial effects and sea wave Lagrangian transport produces a more complex

settling dynamics of the plastic particles. Aiming to provide a simple and operable approach, we

suggest a new formulation of the settling velocity that empirically takes into account the inertial

Stokes drift. The proposed formulation should satisfy the limit when no wave field is acting, i.e.

H/gT2 = 0, and thus, the settling occurs as in still water. In this limit case, we have decided to

describe the settling velocity by the well established Dietrich formula, which we recall here for

the sake of clarity. The Dietriech settling velocity wD
s can be estimated as:
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Figure 9.5: Comparison between the measured net settling velocity against the theoretical settling
velocity as in Dietrich (1982). Rectangles are the mean of the measured settling velocities with
their standard deviation; the black solid line is the plane bisector, indicating perfect agreement,
whereas the black and the blue dot dashed line represent the ±20% and ±50% intervals of
confidence respectively.
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(9.5) wD
s =

√
g′

g
dP R f

where R f is:

(9.6)
R f =exp

{−b0 +b1 ln(RP )−b2 [ln(RP )]2

−b3 [ln(RP )]3 +b4 [ln(RP )]4}
in which the coefficient were fitted on experimental data and assume the values:

• b0 = 2.89139,

• b1 = 0.95296,

• b2 = 0.05683,

• b3 = 0.00289,

• b4 = 0.00024.

Note that the original values of the coefficient have been change in order to implement the

natural logarithm instead of the base-10 logarithm as in the original form (Dietrich, 1982).

Starting from the measured non-dimensional settling velocity defined as the ratio between the

experimental net settling velocity wm
s and the velocity wD

s provided by equation (9.5), we intend

to represent the dependency on the main parameters, namely the particle Reynolds number Rp

and the wave parameter H/gT2, using the following formulation:

(9.7)
wm

s

wD
s

= 1+aRb
P

(
H

gT2

)c

where the coefficients a, b and c are evaluated as the best fit on the experimental data. A

non-linear surface fitting is applied, based on an iterative Trust-Region-Reflective Least Squares

algorithm (Moré and Sorensen, 1983; Steihaug, 1983; Coleman and Li, 1996). Applying this

procedure on the experimental data, using equation (9.7), leads to the values of the parameters
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a = 97, b = 8/5 and c = 3/5. The fitted surface is shown in Figure 9.6 together with the experimental

data. The goodness of the non-linear fitting is quantified using several statistical metrics, in

particular the Sum of Squares Due to Error (SSE), R-Square (R2) and the Root Mean Squared

Error (RMSE). For the present database, we obtained SSE = 0.1798, R2 = 0.9108 and RMSE =
0.0787. The small values of SSE and RMSE indicate that the model used to describe the dataset

through equation (9.7) shows a small random error component, implying that the model is robust

in terms of prediction in the parameter space. Moreover, the high value of the R2 indicates that

the suggested formula describe about the 91% of the total variation in the data about the average.

The overall goodness of fitting values confirms that the proposed model is statistically robust in

representing the experimental observations and gives confidence for a more general application

on the estimation of settling velocity of microplastics particles exposed to wave action.

9.1.3 SCALING ARGUMENT AND APPLICABILITY OF THE RESULTS.

The present results have been obtained using a laboratory wave flume as described in the methods

section. It is worth discussing the limitation and applicability of the measurements, comparing

the set up and controlling parameters with the actual field observations. Scale reproduction of

free surface flows, such as waves, is typically achieved through a partial similarity of Froude

number, defined as in equation (8.10). As a consequence of this choice, some of the parameters

used for the present analysis require a proper scaling in order to extend the results at real world

conditions. Froude similitude implies that a geometrical reduction scale λ should be associated

with a time scale reduction as λ1/2, which also ensures the preservation of the wave parameter

H/gT2 between the model and the real sea waves. The present laboratory waves in the range

of H/gT2 = 0.004−0.013 are representative of realistic sea state conditions, see Stocchino et al.

(2019) for comparison. The main particle parameters that have been used in the present study

are the Stokes number St and the particle Reynolds number Rp. In Froude similitude, both are

scaled as a typical Reynolds number and, thus, as λ3/2. The range of the parameters investigated

at laboratory scale are St = 0.023−0.363 and RP = 3.39−17.9 for a fixed value of the particle

density that correspond to β = 0.8876. The direct comparison of such ranges at field scale is

not straightforward due to the fact that, despite the great amount of literature reporting field
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Figure 9.6: Reconstructed surface using equation (9.7) in the parameter space (Rp, H/gT2) versus
the experimental net settling velocity.

observations of plastic debris in different sea/ocean basins and different compartments (water

surface, water column and sediment), it remains difficult to have a comprehensive information

on particle size and density. Hidalgo-Ruz et al. (2012) presented an interesting review based

on 68 studies trying to summarize the range of particle debris in terms of sizes and densities.

However, it is interesting to note that heavy particles have been often collected during sediment

sampling with quite a wide range of sizes (McDermid and McMullen, 2004; Morét-Ferguson et al.,

2010). We base our estimate of the Stokes number and particle Reynolds number on a recent

work (Kooi and Koelmans, 2019) where an helpful statistical interpretation of the data derived

from eleven published studies is presented. In particular a multidimensional probability density

functions (pdf) involving size, density and shapes of the debris has been proposed. In particular,
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the distribution of plastic density is well fitted by a Normal-Inverse Gaussian distribution with

a central value of around 1000 kg.m−3 and a marked positive skewness with non negligible

probability values up to 1600 kg.m−3 (Kooi and Koelmans, 2019). From this analysis about

45% of the observed plastic debris have a density in a range between 960 and 1580 kg.m−3,

not considering the chemical and weathering process that tend to increase plastic density, see

table S3 of Kooi and Koelmans (2019). Based on the analysis of Kooi and Koelmans (2019), in

particular the data of their Figures S1 and S4 and Table S3, we used a range of particle size

dp = 100−4000µm and density ρP = 1030−1300 kg.m−3. Using a range of wave parameter

similar to the one used for the present experiments, the Stokes number and the particle Reynolds

number obtained are St = 0.002−11 and RP = 0.5−430 for a range of added-mass parameters

β between 0.848 and 0.997. The experimental ranges of St and RP are therefore fully included

in the ranges expected at field scale. We could conclude that the present formulation for a net

settling velocity of heavy particles well represent the realistic conditions of the transport of plastic

particles by sea waves, for quite a wide range of realistic plastic characteristics. We acknowledge

the limitation of the present study in considering only spherical particles and the fact that our

wave flume does not allow for the generation of sea wave in deep water conditions. The former

issue will deserve further investigations based on the present study. The latter, however, it is not

considered as a main factor in the dynamics of negatively buoyant particles.

9.2 NUMERICAL PARTICLE TRAJECTORIES, VELOCITIES AND ACCELERATIONS

Particles trajectories were computed using the system (8.11), and typical examples for a fixed

Stokes number (St = 2×10−3) are shown in Figure 9.7 for two waves conditions, H/gT2 = 0.001

and H/gT2 = 0.006, and varying the values of the random term in the equations.

For very low value of the coefficient D (panels a) and d)), the particle trajectories are similar

to the one computed in previous studies (Santamaria et al., 2013; Stocchino et al., 2019) or

measured in the laboratory experiments of section 9.1 and seen in De Leo et al. (2021). The

inertial character of heavy particles, already at low value of the Stokes number, interacts with

the wave Stokes drift leading to an augmented settling velocity. The net settling velocity was

experimentally measured and was found to depend on both the particle characteristics and the
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Figure 9.7: Example of particle trajectories for the same particle, St = 2×10−3, and different
waves and coefficient D. H/gT2 = 0.001: a) D = 10−6m2s−1; b) D = 10−3m2s−1; c) D = 10−1m2s−1.
H/gT2 = 0.006 d) D = 10−6m2s−1; e) D = 10−3m2s−1; f) D = 10−1m2s−1. For all panels particle has
been released in the same position and at the same time. The colors represent the time.
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Figure 9.8: Example of non dimensional velocities and accelerations time signals for two values
of the Stokes number and for the same wave parameter (H/gT2 = 0.006) and diffusion coefficient
(D = 10−3m2s−1). Panels a) - d) St = 9×10−4 , panels e) - h) St = 5.77×10−2.

wave parameter (De Leo et al., 2021).

Following the theoretical predictions of Santamaria et al. (2013) under linear waves approxi-

mation, the maximum dimensionless longitudinal distance traveled by the particle owing the sea

waves depends on the added-mass parameter β, the wave Froude number and the Stokes number.

As shown in Figure 9.7, the maximum distance in the wave propagation is several wavelengths.

Increasing the value of the background random process through the coefficient D leads to, as

expected, less regular trajectories, see panels b), c), e) and f). Note that Figure 9.7 shows only one

particle trajectory out of the 3500 particles used.
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For the present purpose, the velocities and accelerations time signals of the particle and the

fluid seen by particle (Pozorski and Minier, 1998, 1999; HE et al., 2006; Jung et al., 2008) were

also calculated. Examples of the computed non dimensional longitudinal and vertical velocities

(ux/(ωa),uz/(ωa)) and accelerations (ax/(ω2a),az/(ω2a)) are shown in Figure 9.8 for the most

intense wave conditions and two different values of the Stokes number, panels a) - d) St = 9×10−4

and panels e) - h) St = 5.77×10−2. In all cases the coefficient D was set at 10−6m2s−1. Note that

particle variables are drawn in red and fluid seen by particle variables in blue.

In all cases, velocities and accelerations tend to decrease oscillating around an asymptotic

value. The asymptotic values of the longitudinal velocities and both components of the acceleration

tend to zero, as soon as the particles reach a depth where the wave velocity field is no longer felt.

The depth at which the wave velocities are zero depends only on the wave parameter, whereas

the time at which the particles reach this depth depends on the particle properties. At this depth,

heavy particles tend to behave as settling particles in still fluid, thus, their vertical velocity is

simply described by the Stokes settling velocity (Santamaria et al., 2013)

(9.8) ws =−(1−β)gτ.

It is worth noting that the vertical velocity of the fluid seen by particle tends to zero differently

from the particle vertical velocity. This is clearly visible in panel f), where the vertical velocity

of the heavy particle tends to a constant non zero value (the Stokes settling velocity). Moreover,

the random contribution
p

2D R(t) modifies the velocities and acceleration at the small Stokes

number, see Figure 9.8 panels a) - d), whereas it is already ineffective for Stokes number of order

10−2, see panels e) - f). For larger Stokes number, the effect of the stochastic terms is even less

important also for the highest value of the coefficient D.

9.2.1 LAGRANGIAN AUTO-CORRELATION FUNCTIONS AND INTEGRAL SCALES

9.2.1.1 Definition of the auto-correlation functions

tarting from the trajectories computed using the system (8.11), we first introduce the Lagrangian

auto-correlation functions and, then, we discuss their shapes and integral time scales depending
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on the main controlling parameters. The knowledge of their shapes is essential to understand

the dispersion process (Boi et al., 2018).

For a generic variable g, we define the Lagrangian auto-correlation function as:

(9.9) ρg(τ)= 〈g(t)g(t+τ)〉

where the brackets indicates an ensemble average. Considering, at this moment, the fluid

velocities (ux,uz) and fluid acceleration (ax,az), we can define the normalized Lagrangian auto-

correlation function as:

(9.10)

Rux (τ)= ρux (τ)√
ρux (0)2

, Ruz (τ)= ρuz (τ)√
ρuz (0)2

,

Rax (τ)= ρax (τ)√
ρax (0)2

, Raz (τ)= ρaz (τ)√
ρaz (0)2

.

The auto-correlations are then used to evaluate the Lagrangian integral scales Tu as:

(9.11)
Tux =

∫ +∞

0
Rux dτ, Tuz =

∫ +∞

0
Ruz dτ, Tu = 1

2
(Tux +Tuz ),

Tax =
∫ +∞

0
Rax dτ, Taz =

∫ +∞

0
Raz dτ, Ta = 1

2
(Tax +Taz ).

Similarly we can define the normalized auto-correlation functions and their corresponding

integral scales for the particle velocities and accelerations (indicated in the following with a

superscript p) and the fluid seen by particle velocities and acceleration (indicated in the following

with a superscript f ).

In general, the normalized auto-correlation functions of the fluid, the particle and the fluid

seen by particle could display a different behavior; note that in case of a passive tracer (limiting

case for mass-less particle) all these quantities collapse together and are equal to the ones

calculated for the carrier fluid.

Following the Taylor’s theory (Taylor, 1921), formulated for tracers, or its recent generalization

to different dynamical models for inertial particles (Boi et al., 2018), the definition of a diffusion

coefficient is inherently related to the finite value of the limit time that tends to infinity of the

auto-correlation functions. Thus, a time independent diffusion coefficient requires that the auto-

correlation functions decay rapidly in time, regardless if we are considering tracers or inertial

particles.
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Commonly, the velocity fields used to compute the auto-correlations functions and integral scales

are built removing an average component when present. In the present case, no background

constant flow is added to the wave field. However, care must be taken when the vertical velocity

is considered. In fact, when the particles reach a certain depth, the leading order term in the

particle velocity equation, see (8.11), is the buoyancy term, (Santamaria et al., 2013). This term,

being independent of time, would produce a spurious effect on the auto-correlation function and,

ultimately, a long-time mean-square dispersion that grows as time squared. Thus, the R p
uz has

been evaluated subtracting the asymptotic settling velocity reached by the particle when the

effects of wave fields are no longer felt, namely u
′
z = uz −ws, where ws is the Stokes settling

velocity.

The integral Lagrangian scales defined above can be considered as an internal time scales

determined by the dynamic described by the system (8.11), provided the Eulerian velocity field

computed with the system (8.4). In the problem at hand, however, other external time scales

appear, namely the wave period T (typical of the fluid flow) and the Stokes time τ (typical of the

particle).

The wave periodicity is of particular interest; in fact, the periodicity of the velocity wave field

and the resulting Stokes drift is felt also by the particle motion, see Figures 9.7 and 9.8, and its

derived properties. The looping character of the particle position and velocity is reflected on a

looping-like auto-correlation function. The wave period is the external time scale related to the

flow forcing and, not surprisingly, it is reflected in the auto-correlation that assumes a looping

shape, whereas this tends to zero (Farazmand and Sapsis, 2019).

9.2.1.2 Velocity and acceleration auto-correlation functions of inertial particles and fluid seen

by particles

Figure 9.9 shows the particle horizontal and vertical velocity auto-correlations for the test 000

(H/gT2 = 0.001), and for several Stokes numbers and the extreme values of D, namely 10−6

m2s−1, panels a) and b), and 10−1 m2s−1, panels c) and d).

Although both R p
ux and R p

uz tend to zero as time grows, they oscillate around the zero value

as shown in the box in panel b). Comparing panel a) with b) and panel c) with d) there are no
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Figure 9.9: Normalized velocity auto-correlation for the experiment with H/gT2 = 0.001: a)
R p

ux with D = 10−6m2s−1, b) R p
uz with D = 10−6m2s−1, c) R p

ux with D = 10−1m2s−1; d) R f
uz with

D = 10−1m2s−1. In panel b) a zoom in is also inserted to show clearly the looping character of the
auto-correlation functions.

substantial differences between the auto-correlation of the two velocity components. However, we

will see in the following that the integral scales show a more marked anisotropy.

Increasing the coefficient D leads to two main effects, see panels c) and d): the envelope of the

auto-correlation functions tends to zero in shorter times and low frequency oscillations appear.

These effects are more clearly visible for low Stokes numbers, whereas higher Stokes number are

less sensitive to the Gaussian noise. The appearance of low frequency loops is even more evident

with increasing the wave parameter, e.g. for test 003 where the wave parameter has the highest

value of the present study (H/gT2 = 0.006), see Figure 9.10.

Three values of the Stokes number are reported for the lowest and highest value of the

coefficient D. For the case with St = 0.002, panels a) and b), and the case with St = 0.0036, panels

c) and d), the vertical auto-correlation shows low frequency loops even with the lowest values

of the turbulent diffusion coefficient, whereas for D = 10−1m2s−1 these lobes are more frequent

(panels b) and d)).

Differently from previous studies where the vertical velocity auto-correlation increases, reach-

ing almost a constant shape either in the absence of gravity effects (Jung et al., 2008; Wetchagarun
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Figure 9.10: Normalized vertical velocity auto-correlation R p
uz for the experiment with H/gT2 =

0.006 with two values of the coefficient D, namely D = 10−6m2s−1 panels a), c) and e), and
D = 10−1m2s−1 panels b), d) and f), for three values of the Stokes number.

and Riley, 2010) or when gravity is considered (Wang and Stock, 1993), we found that increasing

the Stokes number produces oscillating auto-correlation functions with envelopes that tend to

decrease more rapidly to zero. However, the latter aspect will turn out to be misleading in the

computation of the integral scales, as discussed in the next section.

Moreover, negative loops are reported by Wang and Stock (1993) only in the longitudinal corre-

lation for low or intermediate values of their drift parameters, a measure of the gravity effects

compared to the fluid velocity variance. On the contrary, the vertical correlation calculated by

Wang and Stock (1993) has a monotonic time decay and increasing values with St.

In the present case, the looping character of the auto-correlations does not disappear for

increasing Stokes number for both directions, R p
ux and R p

uz . Regarding the looping character of
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Figure 9.11: Normalized horizontal velocity auto-correlation R p
ux for all wave conditions, same

coefficient D = 10−6m2s−1 and Stokes number equal to 0.002. Black lines indicate the auto-
correlations sampled every period.

the auto-correlations, it is interesting to note that the oscillations of the auto-correlation functions

occur with a periodicity that does not always coincide with the wave period. Figure 9.11 shows

the cases for the same Stokes number (St = 0.002) and diffusion coefficient (D = 10−6m2s−1) for

the different wave conditions. In the Figure, the R p
ux is reported for every instant together with

its wave-period sampled value (black line).

For low wave parameter, panel a), the envelope of the auto-correlation functions coincides

with its period-sampled values. Increasing the wave parameter H/gT2, from panel b) to d), the

difference between the envelope of the auto-correlation function and its period-sampled value

is increasingly noticeable. The non-linear interaction between the typical time scale of the flow

and the particle time scales leads to the generation of oscillations with frequency slower then the

forcing wave period. Similar behavior is found for the vertical velocity auto-correlation functions.

If now we compare the correlations of the inertial particles with the fluid seen by particles, in all

cases the shapes of the auto-correlation functions are extremely similar, whereas we will see that

differences are detected in their integral scales.

Finally, no substantial differences in terms of shapes are detected when the acceleration auto-
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correlation functions are computed.

9.2.1.3 The dependency of the Lagrangian integral time scales on the particle and flow parame-

ters

We now analyze the Lagrangian integral time scales. The complex shapes of the auto-correlation

functions and their dependence on St and H/gT2 is reflected on the variability of the integral

scales.

Figure 9.12 summarizes the main findings for the velocity integral scales T p
u and T f

u and for

the acceleration integral scales T p
a and T f

a . Note that the values are normalized with the velocity

and acceleration integral scales of the fluid, which assumes values of the order of the wave period

T. The different plots correspond to the four values of H/gT2 and to the two extreme values of the

turbulent diffusion, namely D = 10−6 and 10−1m2s−1. Regarding the velocity integral scales of the

particle (T p
u ) and of the fluid seen by particles (T f

u), panels a) and c), both tend to monotonically

decrease for increasing Stokes where St < 10−1, whereas their trends seem to change for larger

values, possibly, indicating an increase for Stokes number that tends to 1.

The effect of the different wave parameters H/gT2 is again visible for St greater than 10−1.

In fact, increasing H/gT2 leads to a more intense wave Stokes drift, owing to its quadratic

dependence on the wave height (DiBenedetto et al., 2018), and, thus, to a more intense convec-

tive transport. The values of T p
u and T f

u remain lower than the integral scale of the fluid (i.e.

(T p
u ,T f

u)/Tu << 1) for the entire range of Stokes number and wave parameters investigated.

Wang and Stock (1993) found similar behaviors, in fact, for low St the crossing trajectory

effects are dominant and yields shorter particle time scales, whereas inertia makes T p
u > Tu

already for O (St)∼ 1. In the present case, we did not investigate the regime where St ≥ 1, where

we expect the buoyancy terms of system (8.11) to be dominant and lead to a process close to the

standard settling process in still fluid.

As far as the integral velocity time scale for the fluid seen by particles T f
u is concerned, it fol-

lows closely the particle counterpart for St less than 0.1, especially for high values of the wave

parameter. For weak wave H/gT2 = 0.001,0.002, T f
u deviates from the particle velocity integral

scales and tends to have a non monotonic dependence on Stokes, with a minimum value around
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Figure 9.12: Normalized integral time scales as a function of St for all experiments and for two
values of D: a) velocity integral time scale for D = 10−6m2s−1; b) acceleration integral time scale
for D = 10−6m2s−1; c) velocity integral time scale for D = 10−1m2s−1; b) acceleration integral time
scale for D = 10−1m2s−1. Square symbols indicate the particle times and the delta symbols the
fluid seen by particle times.
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St = 0.25.

For higher values of the wave parameter, it is reasonably to assume that the higher is the

convective velocity (fluid Stokes drift), the closer the particle and its fluid counterparts behave.

Moreover, in a wide range of Stokes number, the integral velocity scales show a negative power

law fitting in the Stokes number of the kind T p
u ,T f

u ∝ S−1
t (R2 = 0.99), see panel a). The range of

validity of the power law increases with higher wave parameters.

The influence of the increased background Gaussian noise contribution is reasonably weak for

the range of St investigated, see panel c). In fact, the behavior of both T p
u and T f

u is only slightly

perturbed even at the maximum value of D.

The monotonic decrease of the particle integral time scale is compatible with the crossing trajec-

tory effect described in previous studies where gravity effects were included in the description of

the transport of inertial particles (Csanady, 1963; Wang and Stock, 1993; Shao, 1995). In fact,

for increasing inertia (St), the particle trajectories are facilitated to escape from the looping like

Eulerian flow structures, typical of the Stokes drift, and loose correlation more rapidly, ultimately,

leading to smaller integral time scales. However, we will see in the following that the scales T p
u

and T f
u , calculated as in equations (9.11), mask an anisotropic behavior for both the particle and

the fluid seen by particles.

Accelerations of inertial particles or fluid particles, which are directly related to the wave

Stokes drift field, might provide some insight of particle diffusion. Panels b) and d) of Figure

9.12 report the acceleration integral scales T p
a and T f

a . We notice that the particle decorrelation

times are no longer monotonic with St and less dependent on the wave parameters, except for

Stokes numbers greater than 0.1. Moreover, T f
a seems to be monotonically increasing with the

Stokes number following, in this case, a power law of the kind T f
a ∝ St, with a similar goodness

of fitting parameter. As for the velocity integral scales, the fluid seen by particle does not show

any dependence on H/gT2.

Contrary to the velocity integral scales, T p
a is strongly modified by the background turbulence at

least for St < 0.03, increasing the distance with T f
a . At low levels of Brownian background and

for St < 0.05, in fact, T p
a and T f

a are very close to each other. The intermediate decrease of T p
a

is probably due to the deviation of inertial particles from the swirling motion associated with
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Figure 9.13: Velocity and acceleration integral scales for the single x and z components for
two values of the diffusion coefficient D and for two wave conditions: a)-d) H/gT2 = 0.001; e)-h)
H/gT2 = 0.006. p in the legend indicates particle integral scales and f indicates fluid seen by
particle.

the fluid Stokes drift as the particle inertia increases. As St increases further, the particle path

becomes insensitive to the flow structure, thus, the integral scales increase owing to the increase

of the particle inertia.

Finally, in Figure 9.13 we show the variation of the velocity and acceleration components of

the particle and fluid seen by particle integral scales for two values of the diffusion coefficient D

and for two wave conditions, namely H/gT2 = 0.001, panels a) - d) and H/gT2 = 0.006 e) - h).

Regarding the velocity integral scales, a similar behavior is found regardless of the wave parame-

ters and the diffusion coefficient and it indicates a strong anisotropy between the longitudinal

component T p
ux and the vertical component T p

uz. In fact, the vertical velocity time scale T p
uz tends

to increase with the Stokes number. However, its values are always less than the horizontal

velocity time scale T p
ux, thus, leading to the overall decay shown in Figure 9.12 panels a) and c).

The strong similarity between the particle time scales and the fluid seen by particle ones is

further confirmed and also the fluid seen by particle time scales show the same anisotropy.

The accelerations scales for both the particle and the fluid seen by particle show the greatest

variability, especially in the vertical direction, see panels d) and h), where T p
az and T f

az are plotted.

The vertical acceleration time scale seems to be very sensitive to the wave conditions and to the
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Figure 9.14: Non dimensional absolute dispersion d2/λ2 as a function of non dimensional time
t/T. a) Results for H/gT2 = 0.004 and three values of the Stokes number St = 0.022,0.044,0.081.
b) Non dimensional absolute dispersion estimated from the experiments of section 9.1 for similar
wave and particles parameters.

background Brownian noise, whereas its horizontal counterpart is much less influenced. It is

indeed the rapid increase of T p
az for Stokes greater than 0.1 that governs the overall trend shown

in 9.12 panels b) and d), reaching also values larger than the fluid particle integral scale.

9.2.2 DISPERSION REGIMES

We are now interested in evaluating how the shape of the auto-correlation functions and the

variability of the integral scales might influence the dispersion of heavy particles in the present

flow conditions.

Firstly, we define the absolute dispersion of the heavy particles d2(t) as the ensemble average

of the particle displacements with respect to an initial position, as the classical definition of the

Taylor’s theory. Assuming to deal with a certain number of particle trajectories released at some

initial time t0, the computation of the absolute dispersion could be performed accounting for or

not the displacement of the center of mass of the considered ensemble of particles. In case where

the mean drift of the center of mass is not considered, only the initial particle conditions are

relevant and this strategy has been applied in several geophysical contexts, see LaCasce (2008);

Stocchino et al. (2011); Mariano et al. (2016); Enrile et al. (2019) among others.

A different approach in the evaluation of the absolute dispersion involves the computation of
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a mean drift related to the center of mass of a cluster of particles (LaCasce, 2008; Enrile et al.,

2019). The total absolute dispersion is, therefore, evaluated removing at each time the position of

the center of mass and the dispersion coefficient is simply the time derivative of d2(t).

For the present analysis, we preferred to use this second strategy of computation, which

allows for an immediate removal of spurious effects related to mean drift that might lead to

artifacts in the total dispersion.

It is worth recalling that Taylor (1921) found that for times smaller than the Lagrangian

time scale a square time dependence of the absolute dispersion is recovered, i.e. d2(t)= ρ(0)t2,

whereas for times greater than TL a linear dependence in time is found (d2(t)= 2ρ(0)TL t+const).

The latter implies the existence of diffusive (Brownian) regime characterized by a diffusion

coefficient expressed as K = ρ(0)TL. These two regimes, originally derived for fluid particles,

have been found to be formally valid also for inertial particles (Csanady, 1963; Jung et al., 2008;

Wetchagarun and Riley, 2010; Boi et al., 2018) and the existence of the diffusive regimes has

been widely investigated in different contexts, owing to its extreme practical importance.

Taking advantage of the definition of K , several authors inferred the value of the coefficient

providing a model for the particle velocity integral scale and, most of the time, comparing the

value to the fluid value.

In the present case, the behavior of the non dimensional absolute dispersion d2/λ2 is affected

by the combined effect of different time scales: the wave period, the convective time scale

corresponding to the wave Stokes drift, the Stokes time and the integral time scales.

Figure 9.14 panel a) shows the total absolute dispersion normalized by the wavelength

d2/λ2, versus the dimensionless time t/T. The oscillating character, imposed by the periodic

Eulerian velocity field, is observed also in the time evolution of d2/λ2, similarly to the auto-

correlation functions. The periodicity is well captured by the choice of T as time scale for the

non-dimensional time. In panel a), we also report the values of d2/λ2 sampled every wave period,

i.e. retaining just the oscillation peaks (dot dashed-lines), which will help in describing the

dispersion regimes. Panel b) shows d2/λ2 evaluated from the experiments presented in De Leo

et al. (2021) with similar wave and particle parameters for comparison. A similar oscillating total

absolute dispersion is recovered also in the experiments.

177



CHAPTER 9. RESULTS

t / T 

d
2
 /
 λ

2

100 101 102 10310­7

10­5

10­3

10­1

101

103

St = 0.0009
St = 0.027
St = 0.09
linear
quadratic

H/gT
2
=0.001

a)

t / T 

d
2
 /
 λ

2

100 101 102 10310­7

10­5

10­3

10­1

101

103

St = 0.0009
St = 0.027
St = 0.09
linear
quadratic

H/gT
2
=0.002

b)

t / T 

d
2
 /
 λ

2

100 101 102 10310­5

10­4

10­3

10­2

10­1

100

101

102

103

St = 0.0009
St = 0.027
St = 0.09
linear
quadratic
St = 0.044, experiments

H/gT
2
=0.004

c)

t / T 

d
2
 /
 λ

2

100 101 102 10310­5

10­4

10­3

10­2

10­1

100

101

102

103

St = 0.0009
St = 0.027
St = 0.027
St = 0.09
linear
quadratic

H/gT
2
=0.006

d)

Figure 9.15: Normalized absolute dispersion for different wave parameter, Stokes number and
turbulent diffusion. For each St three curves are plotted for D = 10−6,10−3,10−1m2s−1. The green
solid lines indicates d2/λ2 ∝ (t/T)2 whereas the red solid line stands for d2/λ2 ∝ (t/T).

Figure 9.15 shows wave period sampled d2/λ2 varying H/gT2, for three different values of

the Stokes number, St = 0.0009,0.027 and 0.09.

The green solid line represents the ballistic regime, d2/λ2 ∝ (t/T)2, whereas the red solid line

represents the diffusive regime d2/λ2 ∝ (t/T). Moreover, for the same St, we report the results

obtained with three values of the turbulent diffusion D. For the case H/gT2 = 0.004, panel c), the

non dimensional absolute dispersion computed starting from the observed particle trajectories

during the experiments (De Leo et al., 2021) is also reported for comparison. The experimental

non dimensional absolute dispersion follows closely the ballistic regime and its values correctly

fall between the two numerical simulations for Stokes number equal to 0.027 and 0.09. A first

important observation is that no asymptotic diffusive regime exists in the range of parameters

investigated (wave and particle parameters) with very few exceptions. This is in contrast with
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what has been observed in other contexts of diffusion of heavy particles. In fact, a Brownian

regime was observed already in the seminal paper by Csanady (1963), who retained gravity effect

in his theory, claiming a difference between particle diffusion and fluid diffusion coefficient owing

to crossing trajectories effect and continuity effect.

Moreover, the existence of a diffusion regime for heavy particles in turbulent flows without

gravity effect or added-mass effect was always reported even for much higher Stokes numbers

(Jung et al., 2008; Wetchagarun and Riley, 2010). Depending on the value of the Stokes number,

the diffusion coefficient could also be increased by inertial effect, leading to values of the particle

Schmidt number (ratio between particle long-time diffusion over fluid diffusion) between 0.1 and

2.

The present results, instead, show that a linear dependence of the absolute dispersion appears

as a transient regime, only at very low Stokes number, between two quadratic regimes. Not

surprisingly, a linear regime could be also recovered for very low values of the Stokes number

and wave parameter and with a fairly high value of the Brownian process coefficient D of the

order of 10−3m2s−1 or higher. However, as soon as St is grater than 0.002, the only regime clearly

visible is the quadratic one. As the wave parameter increases, i.e. the wave Stokes drift is more

intense, the behavior of all particles tends to collapse to very similar values, see panel d).

The generalization of the Taylor theory has been described by Boi et al. (2018) for several

inertial forces and the buoyancy-forced case is particularly relevant for the present study. The

asymptotic diffusion coefficient can be defined and it requires that the integral of the particle auto-

correlation converges to a finite value. Super diffusive regimes, as the ballistic here described,

is associated with a non convergent integral owing to a slowly decaying correlation, i.e. a long

integral scale.

In the present case, the integral time scales, presented in Figure 9.12, show finite values,

however, the shape of the correlation functions might be responsible for the disappearance of the

Brownian regime. A possible physical explanation of the present results could be found in the

settling process of heavy particles. The trajectory followed by the heavy particle could resemble

the behavior described through the crossing trajectory effect introduced by Yudine (1959) and

Csanady (1963) and resumed by Shao (1995) and Jung et al. (2008). Moreover, Santamaria et al.
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(2013) aalready demonstrated with simple monochromatic wave that the net settling velocity

is increased by the interplay of the wave Stokes drift and the particle inertia. This was further

confirmed numerically by Stocchino et al. (2019) and exploited in section 9.1. The particle exits

the fluid trajectory owing to inertial and gravity effect with an increased settling velocity, whereas

it continues to be correlated and anti-correlated over a long time period.

Similar results are found by DiBenedetto et al. (2018) for the longitudinal dispersion and

it was described as the settling regime. In other context, super-diffusion processes were associ-

ated with an overall auto-correlation function that exhibits a strong oscillation pattern, with

a significant positive lobe that is more pronounced than the first negative lobe. The associated

eddy dispersion was found to be faster than the typical diffusive spreading (Berloff et al., 2002;

Veneziani et al., 2004). In the cited studies, the looping like auto-correlation was generated by the

presence of coherent rotational flow structures that tended to maintain a positive and negative

correlation over time, whereas the overall auto-correlation function decreased to zero. Anomalous

diffusion regimes were also extensively studied (Castiglione et al., 1999) and linked to very strong

correlations, which is the condition found in the present case.
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CONCLUSIONS

T
he present chapter reports both a laboratory investigation of the interaction between

inertial heavy particles, as a realistic model for MPs particles, and the Stokes drift

generated by sea waves, and a numerical simulation of a simplified transport model in

order to study the transport of inertial particles owing to sea waves.

A series of experiments have been performed in a wave flume to cover a range of particle and

wave parameters. The regular waves fall in intermediate and shallow depth conditions, with

dimensionless sea state parameter H/gT2 ranging from 0.001 to 0.006. Fixed-density but variably-

sized PMMA particles were employed to cover a range of Stokes number between 0.0009 and

0.09, for a fixed value added-mass parameter of 0.9677.

The measurements reproduced typical behaviors predicted by previous theoretical and numerical

models (Santamaria et al., 2013; Stocchino et al., 2019) confirming the validity of the model

approaches. In addition, the results have shown a clear dependence of the net settling velocity

not only on the particle characteristics, described by the particle Reynolds number, but also on

the wave characteristics, through the sea state parameter H/gT2. The inertial effects lead to

a remarkable increasing of the particle settling velocity with respect to the one predicted by

standard formulas validated in still fluids (Dietrich, 1982; Chubarenko et al., 2016; Khatmullina

and Isachenko, 2017). The increased settling velocity is more evident as the particle Reynolds
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number decrease, highlighting the tendency for larger particles to match more rapidly the still

fluid settling velocity than smaller ones.

The present results have been interpreted in terms of a modified version of the standard Dietrich

formula (Dietrich, 1982) allowing to account for wave dependency. The implementation of the

latter formula into regional or larger scale transport model should improve the prediction of the

fate of heavy MPs, including a simplified description of inertial effects.

Numerical simulation led on the conclusion that sea waves are able to generate a net La-

grangian transport by the Stokes drift, which is considered an important source of mass transport

in coastal areas. We investigated the wave induced transport of heavy plastics, owing to their

environmental importance, and discuss the possibility of the existence of an asymptotic diffusive

regime. The present study is relevant in the understanding of micro-plastic transport models. In

fact, among the different classes of plastic debris, particles with size smaller than a millimeter

with a density higher than water are commonly observed (Kooi and Koelmans, 2019).

Most of the current numerical transport model (Eulerian or Lagrangian) disregard the inertial

character of the micro-plastic particles and assume that it is possible to describe the fluxes of

plastic particles in terms of an effective dispersion coefficient, implicitly assuming the existence

of a diffusive regime (Isobe et al., 2014; Zhang and Savenije, 2017; Van Sebille et al., 2020).

On the contrary, the results of the present numerical simulations, performed using a wide range

of the main parameters (waves and particles), show that, even for low Stokes numbers (St < 0.36),

no asymptotic diffusive regime is observed except as a transient regime. The dispersion process

remains always confined to a ballistic regime.

The effect of an added transport due to a background turbulence is also ineffective, even for

turbulent coefficient of the order of 10−1 m2s−1, except for very low value of the Stokes number

(St < 0.005) and wave parameter.

Heavy particles under the action of wave transport behave very differently from fluid particle

showing correlations and integral scales far from the ones valid for passive particles. The looping

like auto-correlations strongly influence the dispersion processes, inhibiting the establishment of

a diffusive process following the classical Taylor’s law. This conclusion is further demonstrated by

the behavior of the absolute dispersion obtained from measured particle trajectories.
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Note that the range of parameters investigated well represent the observations of microplastic in

marine environment in terms of typical values of β and St (Kooi and Koelmans, 2019). Therefore,

we question the adoption of Fickian-like law to model the fluxes of heavy particles, which requires

a diffusive regime for time longer than the fluid integral time scale. Thus, more refined transport

model would be required to correctly simulate the fate of heavy particles in coastal and open

ocean circulations.

Future research will be dedicated to understand the role of the particle shapes and their

importance on the net settling velocity as well as a wider range of the added-mass parameter.

This aspect might be further complicated by the biofouling (Kooi et al., 2017; Porter et al., 2018;

Kaiser et al., 2017) that is able to change the overall density and, then, the inertial properties

of MPs. Moreover, several aspects need to be further investigated such as the role of a wave

spectrum instead of a regular wave Eulerian field, a random distribution of particles described as

a cluster and a more realistic non-spherical shape.

The results reported in Part 2 have been published in the following contributions:

– A. De Leo, L. Cutroneo, D. Sous, and A. Stocchino. Settling velocity of microplastics exposed

to wave action. Journal of Marine Science and Engineering, 9(2):142, 2021.

– A. De Leo and A. Stocchino. Dispersion of heavy particles under sea waves. Physics of

Fluids, accepted for publication.
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