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Center for Autoinflammatory Diseases and Immunodeficiencies, IRCCS Istituto Giannina Gaslini, Genoa, Italy

A growing number of monogenic immune-mediated diseases have been related to genes
involved in pathways of actin cytoskeleton remodeling. Increasing evidences associate
cytoskeleton defects to autoinflammatory diseases and primary immunodeficiencies. We
reviewed the pathways of actin cytoskeleton remodeling in order to identify inflammatory
and immunological manifestations associated to pathological variants. We list more than
twenty monogenic diseases, ranging from pure autoinflammatory conditions as familial
Mediterranean fever, mevalonate kinase deficiency and PAPA syndrome, to classic and
novel primary immunodeficiencies as Wiskott-Aldrich syndrome and DOCK8 deficiency,
characterized by the presence of concomitant inflammatory and autoimmune
manifestations, such as vasculitis and cytopenia, to severe and recurrent infections. We
classify these disorders according to the role of the mutant gene in actin cytoskeleton
remodeling, and in particular as disorders of transcription, elongation, branching and
activation of actin. This expanding field of rare immune disorders offers a new perspective
to all immunologists to better understand the physiological and pathological role of actin
cytoskeleton in cells of innate and adaptive immunity.

Keywords: pyrin, Wiskott-Aldrich syndrome, autoinflammatory diseases, cytoskeleton, actin
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“Cosa bella e mortal passa e non dura.” Francesco Petrarca
INTRODUCTION

Actin is a family of globular proteins that form microfilaments of cell cytoskeleton. In the past, the
most important function of actin was related to the binding of myosin, collaborating to the muscle
contraction with troponin. These properties can easily be tested adding pure myosin to water and
actin, causing an increase in viscosity and birefringence of the liquid due to the formation of the
actomyosin complex (1). Thus, the term of actinopathies was originally considered for a well-
defined group of monogenic muscle diseases secondary to the actomyosin complex dysfunction (2).
During the recent years, a growing number of disorders of the immune system have been linked to
actin cytoskeleton abnormalities (numbers are related to the Table 1 and Figure 1) (3).
Furthermore, evidences that actin cytoskeletal deregulation in immune cells causes inflammatory
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TABLE 1 | Monogenic immune system diseases characterized by actin remodeling defects.

N Location Gene Protein Mechanism Effect Diseases MIM Inheritance Main symptoms Main laboratory
characteristics

Elongation defects
1 17p13.2 PFN1 Profilin 1 LOF Failure to

differentiate
pre-osteoblast

Early-onset
Paget’s disease

None AR Polyostotic Paget’s
disease,
osteosarcome

None

2 7p22.1 ACTB Beta-actin GOF Failure to
polarize
cytoskeleton in
response to
fMLP

ACTB-related
immunodeficiency

102630 DN Recurrent stomatitis
and otitis media,
tuberculosis
pneumonia, iritis,
keratoconjunctivitis
acne, polyarthralgia,
intellectual
impairment, and
short stature

Thrombocytopenia, poor
neutrophil chemotaxis and
oxidative burst

3 4p16.1 WDR1 WDR1 LOF Defect of cofilin
activation

PFIT None AR Recurrent fevers and
stomatitis,
microstomia,
Pneumocystis
jiroveci pneumonia,
pyoderma
gangrenosum,
genital ulcers, septic
arthritis,
and necrotizing
cellulitis

Thrombocytopenia,
neutrophil and lymphoid
dysfunction,
hyperferritinaemia

Activation defects
4 16p11.2 CORO1A Coronin1A LOF Defect of

WDR1
activation

Coronin1A
deficiency

615401 AR Mycobacterial and
viral infections,
neurological
disorders

Naive T-cells lymphopenia

5 16q22.1 RLTPR Carmil2 LOF Defective
regulation of
capping protein
and CD28-
mediated
costimulation in
T-cell

CARMIL2
deficiency

618131 AR Bacterial and fungal
infections, atopy,
disseminated EBV-
positive smooth
muscle tumors

T-cells functional defect

6 21q22.3 ITGB2 ITGAL/M/X LOF Deficit of the
beta-2 integrin
subunit of the
LFA-1 causing
delayed motility
of neutrophils

LAD type I 116920 AR Recurrent bacterial
infections, delayed
separation of the
umbilical cord, and
delayed wound
healing

Severe granulocytosis

7 11p11.2 SLC35C1 GDP-L-
fucose
transporter

LOF Deficit of CD15
causing
delayed motility
of neutrophils

LAD type II/
CDG2C

266265 AR LAD1-like immune
deficiency,
psychomotor
retardation, mild
dysmorphism

Severe granulocytosis,
Bombay blood type

8 11q13.1 FERMT3 Kindlin-3 LOF Deficit in inside-
out signaling
that enable
high-avidity
binding of
integrin to
ligands on
leucocytes and
platelets

LAD type III/I
variant

612840 AR LAD1-like immune
deficiency,
Glanzmann
thrombasthenia-like
bleeding problems,
osteopetrosis

Severe granulocytosis

9 7q31.2 CFTR CFTR LOF Defect of
monocyte
adhesion

LAD type IV/Cystic
fibrosis

219700 AR Recurrent lung
infections, pancreatic
insufficiency, male
infertility

Hypergammaglobulinemia

10 Xq11 MSN Moesin LOF Impaired T cells
proliferation,

X-MAID 300988 XLR Recurrent bacterial
and varicella zoster

Leukopenia with defective
T-cell proliferation and

(Continued)
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TABLE 1 | Continued

N Location Gene Protein Mechanism Effect Diseases MIM Inheritance Main symptoms Main laboratory
characteristics

migration and
adhesion

virus infections,
eczema and other
skin manifestations
(recurrent
molluscum,
thrombotic
thrombocytopenic
purpura), acute
stroke

fluctuating neutropenia,
hypogammaglobulinemia,
ADAMTS13+
thrombocytopenia

Protrusion defects
11 15q14 RASGRP1 RasGRP1 LOF Defect in Ras

activation in T-
cells and B-
cells

RASGRP1
deficiency

618534 AR Bacterial and viral
infections,
autoimmunity

T-cells and B-cells
functional defect

12 1p36.12 CDC42 CDC42 GOF Dysregulation
of cytoskeleton

NOCARH/TKS 616737 AD Fever, rash,
lymphedema

Cytopenia,
hemophagocitosis,
macrothrombocytopenia

13 22q13.1 RAC2 RAC2 LOF/GOF Defect in fMLF-
induced actin
remodeling;
increased
neutrophil
superoxide
production

RAC2 dysfunction 608203 AR/AD/DN Recurrent sterile
abscesses
(frequently perirectal)

Low-normal T and B cells
number,
hypogammaglobulinemia,
leukocytosis with
neutrophilia,

14 5q35.1 DOCK2 DOCK2 LOF Deficit of RAC2
activation

DOCK2 deficiency 616433 AR Early-onset invasive
bacterial and viral
infections,
autoimmunity

Lymphopenia and
defective lumphocytes
migration

15 9p24.3 DOCK8 DOCK8 LOF Deficit of
CDC42
activation

DOCK8 deficiency 243700 AR Recurrent viral
infections, early-
onset malignancy,
and atopic dermatitis

Lymphopenia,
hypergammaglobulinemia,
mild-to-moderate
eosinophilia

16 12q13.13 NCKAP1L HEM1 LOF Deficit of WAVE
regulatory
complex

HEM1 deficiency None AR Recurrent
sinopulmonary
infections, asthma,
hepatosplenomegaly
and
lymphadenopathy

Increased T and memory
T cells, neutrophils
migration defects,
decreased NK cytotoxicity

Branching defects
17 Xp11.23 WAS WASP LOF/GOF Deficit of ARP2/

3 complex
activation
causing lack of
actin branching

WAS/X-linked
thrombocytopenia/
X-linked
neutropenia

301000 XLR Recurrent bacterial
sinopulmonary
infections, eczema,
autoimmunity,
bleeding diathesis

Thrombocytopenia,
defective T cell and NK
cell functions, increased
number of NK cells/
Neutropenia

18 20q13.12 STK4 STK4 LOF Deficit of L-
plastin
phopshorilation
causing
abnormal T-cell
migration

STK4 deficiency 614868 AR Recurrent bacterial
and viral infections
with warts and
abscesses,
autoimmunity,
cardiac
malformations

CD4+ and naive CD8+ T-
cell and B-cell
lymphopenia, neutropenia

19 2q31.1 WIPF1 WIPF1 LOF Deficit of ARP2/
3 complex
activation
causing lack of
actin branching

WAS type 2 614933 AR WAS-like immune
deficiency

Thrombocytopenia,
defective T-cell and NK-
cell functions, increased
number of NK cells

20 7q22.1 ARPC1B ARPC1B LOF Deficit of ARP2/
3-dependent F-
actin
polymerization

PLTEID 617718 AR Recurrent viral
infections, vasculitis,
periodic fevers

Thrombocytopenia,
hypogammaglobulinemia
with high IgE, reduced
CD8+ T cell count

21 15q24.3 PSTPIP1 PSTPIP1 GOF Dysregulation
of cytoskeleton

PAPA, PAMI 604416 AD Sterile abscesses,
pioderma

High acute phase
reactants

(Continued)
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manifestations are increasing (4). In this review, we illustrate the
inflammatory and immunological disorders associated with
different pathways of actin-binding molecules.

Elongation Defects
Actin is the most abundant protein in the majority of eukaryotic
cells, contributing to acquire and maintain cell structure and
functions. Vertebrates express three actin isoforms, including the
a-isoform of skeletal, cardiac, and smooth muscles cells, and the
b- and g-isoforms (5). The conformation of actin monomer,
called globular (G)-actin, is the same among different isoforms.
G-actin assembles into polarized filaments, called filamentous
(F)-actin, that form cortical actin network (CAcN) and cell
protusions (6). Monomer binding proteins, such as the
Profilin-1, control polymerization. Individual filaments lifetime
can be as short as ten seconds or lasting for days, depending on
the extracellular stimulus duration and intracellular conditions
(7). Inhibiting the actin polymerization through activity of the
capping proteins, or stimulating actin disassembly through the
Cofilin/actin depolarizing factor (ADF) influences the intracellular
concentration of G-actin, usually relatively equal throughout the
cell cytoplasm.

Profilin-1 is ubiquitously expressed in human cells (8). Its
main function is to chaperone G-actin to the positive-charged
barbed end of F-actin in response to an increased concentration
Frontiers in Immunology | www.frontiersin.org 4
of the phosphatidylinositol (4,5)-bi-phosphate (PIP2). Mutation
of the PFN1 gene coding for the Profilin-1 causes the familial
form of amyotrophic lateral sclerosis (9) and deletions have been
recently related to an early-onset form of Paget’s disease (no. 1 in
Table 1 and Figure 1) (10). This condition is characterized by
anomalies of the appendicular bone, favoring malign tumors.
Pre-osteoblasts lacking Profilin-1 lose their differentiation and
adhesion capability and fail to mineralize efficiently the
appendicular bone, acquiring invasive properties. Depletion
of the Profilin-1 in breast tumor cells causes defects in
formation of filopodia, limiting cell motility and favoring
proliferation through upregulation of the transcriptional factor
SMAD3 (11). On the other hand, deficiency of Profilin-1 acts
against invasion of cytotoxic T lymphocytes in tumors and
haploinsufficiency of Profilin-1 seems protective against
subcutaneous inflammation induced by high fat diet (12).
Furthermore, activation of the Profilin-1 pathway has been
related to the inflammatory vascular damage in patients with
diabetic retinopathy (13, 14).

Heterozygous gain-of-function (GoF) variant of the ACTB
gene, coding for the b-isoform of actin, has been reported in a
female with recurrent infections and defect of neutrophil
chemotaxis and oxidative burst (no. 2 in Table 1 and Figure 1)
(15). The patient also presented a short stature and intellectual
disabilities. No other patients have been reported to date. The
TABLE 1 | Continued

N Location Gene Protein Mechanism Effect Diseases MIM Inheritance Main symptoms Main laboratory
characteristics

resulting in
activation of
pyrin
inflammasome

gangrenosum,
arthritis

22 16p13.3 MEFV Pyrin GOF Dysregulation
of cytoskeleton
resulting in
activation of
pyrin
inflammasome

FMF/PAAND 134610 AR/AD Recurrent fevers with
abdominal pain and
arthralgia

High acute phase
reactants/Neutropenia

23 12q24.11 MKD Mevalonate
kinase

LOF Dysregulation
of cytoskeleton
resulting in
activation of
pyrin
inflammasome

MKD 260920 AR Recurrent fevers,
lymphadenopathy,
arthralgia, skin rash

High concentration of
mevalonate acid in urine
during fever attacks

Transcription defects
24 22q13.1 MLK1 MLK1 LOF Deficit of actin

production
MLK1 deficiency None AR Severe bacterial

infections
(Pseudomonas
sepsis, malignant
otitis media), skin
abscesses with
abnormal scarring

Mild intermittent
thrombocytopenia,
selective defect of T-cell
proliferation to anti-CD3
antibody, neutrophil
phagocytosis and
migration defect

25 14q11.2 CEBPE C/EBPe LOF/GOF Deficit in
regulation of
actin-related
genes
transcription

SGD/CAIN 245480 AD Recurrent fevers,
skin and tongue
abscesses, crater-
like oral ulcers,
pyoderma
gangrenosum,
paronychia, enteritis,
bleeding diathesis

Atypical Pelger-Huët
anomaly with neutrophil
hyposegmentation, and
impaired chemotaxis,
lymph nodal
granulomatous
inflammation
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authors showed that the mutant b-isoform binds Profilin-1 less
efficiently, despite a normal actin polymerization. Loss-of-function
(LoF) variants of the ACTB gene, as well as of the ACTG1 gene,
coding for the g-isoform of actin, have been related to the highly
variable spectrum of the Baraitser-Winter syndrome, a rare
condition without relevant immunological manifestations (16).

Cofilin/ADF activation is dependent by phospholipase Cg
(PLCg) in tumors and Rac2 signaling in neutrophils (17).
Reduction of Cofilin/ADF expression in leukocytes is
associated with abnormal chemotaxis (18). In neurons, Cofilin/
ADF controls axon elongation and regeneration (19) and serum
levels are significantly higher in patient with Alzheimer’s disease
(20). Cofilin/ADF is also upregulated in patients with
Friedreich’s ataxia, whose mutations correlate with an altered
immune-related genes transcription (21, 22).

Proteins containing a short structural motif of approximately
40 amino acids, often terminating in a tryptophan-aspartic acid
(WD) dipeptide, called WD40 repeat, can accelerate the Cofilin/
ADF activity. The best-known example is the WD40 repeat
protein 1 (WDR1), also known as Actin interacting protein 1
(AIP1). Homozygous LoF mutations of the WDR1 gene cause a
monogenic autoinflammatory disease characterized by periodic
fever, immunodeficiency, and thrombocytopenia (PFIT; no. 3 in
Table 1 and Figure 1) (23, 24). Patients display recurrent fever
Frontiers in Immunology | www.frontiersin.org 5
attacks lasting 3–7 days, every 6–12 weeks, with high acute
phase reactants and hyperferritinaemia. Recurrent mucosal
inflammation, causing a peculiar acquired microstomia, may
resemble the Behcet’s disease’s attacks during childhood (25).
Lymphocytes of patients with PFIT show adhesion and motility
defects (26). Coronin-1A is another WD40 repeat-containing
protein whose LoF mutants have been related to a severe
combined immunodeficiency characterized by increased
susceptibility to viral and mycobacterial infections (no. 4 in
Table 1 and Figure 1) (27–30). Patients usually present with
mucocutaneous manifestations, sinopulmonary diseases and
neurocognitive disorders without inflammatory manifestations.

On the other hand, the capping proteins are heterodimers
composed by two unrelated subunits with highly conserved
amino acid sequences. The RGD, leucine-rich repeat,
tropomodulin and proline-rich containing protein (RLTPR),
also called CARMIL2, is a cytosolic protein that acts as scaffold
between the nuclear factor kappa-light-chain-enhancer of
activated B cells (NFkB) and CD28 (31, 32). Autosomal
recessive (AR) LoF mutations of the RLTPR gene cause a
primary immunodeficiency (PID) characterized by allergy,
increased incidence of bacterial and fungal infections, and
virus-related tumors (no. 5 in Table 1 and Figure 1) (33). The
abnormal cytoskeleton of T-cell in patients with CARMIL2
FIGURE 1 | Proteins and pathways involved in monogenic immune system diseases characterized by actin remodeling defects (numbers are related to the
manuscript and Table 1).
January 2021 | Volume 11 | Article 604206
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deficiency causes defects of activation and is related to an
abnormal activity of the capping proteins (34).

Activation Defects
Over 40 years ago, studies on the ligand-induced movement of
immunoglobulin on the surface of lymphocytes called attention
to a special relationship between CAcN and antigen-presenting
cells (35). A specialized cell–cell junction, the immune synapse
(36), is required for the activation of lymphocytes and begin with
the formation of thousands of transient, low affinity interactions
between antigens and integrins, such as the lymphocyte
function-associated antigen 1 (LFA-1) (37). These interactions
require a minimum distance of 40 nm, while the major
histocompatibility complexes require 15 nm. The consequent
antigen-induced CAcN rearrangements leads to morphological
changes that are crucial for adhesion, migration, endocytosis,
division, gene expression, and calcium flux, as well as for the
releasing of cytokines and cytotoxic granules in lymphocytes,
neutrophils and monocytes (38).

In particular, on resting leucocytes, LFA-1 is maintained in a
low activity state by an inhibitory interaction with the CAcN (39,
40). Therefore, activation of leucocytes requires the release of
CAcN-integrin interactions, so that LFA-1 can diffuse in the cell
membrane and start binding activities (37). The essential role of
CAcN in phagocyte function can be highlighted during chronic
infections (41). In fact, microbes are able to lose their integrin
ligands in order to escape the immune response (42). The
abnormal rolling of leukocytes seems the main affected
mechanism in patients with PID caused by LFA-1 defects (nos.
6–9 in Table 1 and Figure 1) (43). The deficiency of the b2 integrin
subunit of the LFA-1 causes the leukocyte adhesion deficiency
(LAD) type I, and the defective activation of LFA-1 subunits has
been related to the LAD type III, both nowadays effectively treated
with the hematopoietic stem cells transplantation (44, 45). On the
other side, LAD type II is caused by mutations of a fucose
transporter gene leading to cell membrane glycans lacking
fucosylation. The administration of oral fucose did not seem
effective to control the LAD type II clinical manifestations (46, 47).

Finally, a monocyte-selective adhesion defect has been
recently noted in patients with cystic fibrosis (CF) and called
LAD type IV (48–50). CFTR heterozygous LoF variants cause
hyper activation of the small G-proteins Rho family that controls
integrins activation (51). Interestingly, these small G-proteins are
also well-known inhibitor of the pyrin inflammasome (52).
Furthermore, CFTR interacts with Ezrin protein via its C-
terminal domain. Ezrin is the most prominent members of the
Ezrin-Radixin-Moesin (ERM) domain-containing protein family
that links CAcN to the cell membrane, regulating tension during
motility and endocytosis (53, 54). In hematopoietic cells, Ezrin
and Moesin are highly expressed, whereas Radixin is mostly
absent. Hemizygous LoF mutations of the MSN gene coding for
Moesin is associated to a PID called X-linked MSN-associated
immunodeficiency (X-MAID; no. 10 in Table 1 and Figure 1)
(55). Patient T cells displayed impaired proliferative responses
after activation by certain mitogens, and a variable defects in cell
migration and adhesion, whereas the formation of immunologic
synapses is normal. Thus, CAcN dysfunctions impair epithelial
Frontiers in Immunology | www.frontiersin.org 6
tight junction formation as well as lymphocytes adhesion
capability in X-MAID patients.

Protrusions Defects
The collapse of CAcN to the side of cells occupied by
microtubule organizing centers creates an opening for new
actin polymerization to form membrane protrusions at the
leading edge. This process is controlled by the small G-
proteins Rho family, including the Cell division control protein
42 homolog (Cdc42) and Rac2 (56).

Small G-proteins are a superfamily of ubiquitously
expressed cytosolic hydrolase enzymes that can independently
bind and hydrolyze guanosine triphosphate (GTP) to guanosine
diphosphate (GDP), becoming inactive (57). The best-known
subfamily members are the Ras GTPases that are divided into
five main families: Ras, Rho, Ran, Rab, and Arf. The Ras family is
generally responsible for cell proliferation, Rho for cell
morphology, Ran for nuclear transport and Rab and Arf for
vesicle transport. The Ras guanyl nucleotide-releasing protein 1
(RASGRP1) is a diacylglycerol-regulated nucleotide exchange
factor specifically activating Ras and regulating T and B
cells development, homeostasis and differentiation. Rasgrp1
deregulation in mice results in a systemic lupus erythematosus-
like disorder (58) and RASGRP1 deficiency in humans causes a
PID characterized by impaired cytoskeletal dynamics (no. 11 in
Table 1 and Figure 1) (59). Patients with RASGRP1 deficiency
suffer from recurrent bacterial and viral infections especially
affecting the lung with a severe failure to thrive and can develop
EBV-related lymphomas.

The localization of small G-proteins on the cell membrane is
due to their prenylation, a post-translational modification
characterized by the addition of twenty-carbon lipophilic
isoprene units to the cysteine residues at the C-terminus (60).
Furthermore, most of the Rho family members contain a cluster
of positively charged residues (i.e., polybasic domain), directly
preceding their geranylgeranyl moiety that serves to fine-tune
their localization among different cell membrane sites. Overall,
the prenylation of small G-proteins is involved in the regulation
of cytokines production (61) and can be regulated by statins in
monocytes and macrophages (62).

On 2D surfaces, activated Cdc42 and Rac2 generate filopodia
and lamellipodia, respectively. The formation of these membrane
protrusions consents leucocytes to reach the damaged tissue
passing through an intact vessel wall, a process called diapedesis.
The local concentration of the complement system C3 fraction
also contributes to this process (63). However, in 3D environment,
the blebbing motility seems the more common migratory strategy
of blood cells (64, 65). Stop-codon variants of the CDC42 gene has
been recently associated with a novel autoinflammatory disease
characterized by neonatal-onset of cytopenia, rash, and
hemophagocytosis (NOCARH), successfully treated with
interleukin-1b inhibition (no. 12 in Table 1 and Figure 1) (66).
Furthermore, heterozygous CDC42 missense variants have
been related to the Takenouchi-Kosaki syndrome (TKS) (67–
69). TKS patients do not usually display autoinflammatory
manifestations but hematologic and/or lymphatic defects,
including macrothrombocytopenia, lymphedema, intestinal
January 2021 | Volume 11 | Article 604206
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lymphangiectasia and recurrent infections. Characteristics of
platelets and B cells have been recently described (70–72). A
recent extensive genotype-phenotype correlation study allows to
classify three groups of the CDC42 variants regarding involved
protein domain (73). Based on these evidences, the NOCARH-
associated variants occur at the C-terminus that usually allows
PIP2 interaction, whereas variants associated with TKS resembling
Noonan syndrome occurs at the N-terminus. Thus, different roles
of the Cdc42 protein may be subverted in these conditions with
different clinical manifestations.

The Rho guanosine triphosphatases Rac2 is expressed only in
hematopoietic cells. Patients with Rac2 dysfunction secondary to
dominant negative or homozygous LoF mutations present early-
onset recurrent abscesses, neutrophilia, and defective wound
healing, whereas monoallelic germline GoF mutations of the
same RAC2 gene cause a severe combined immunodeficiency (no.
13 in Table 1 and Figure 1) (74–77). Interestingly, Rac2 activation
in neutrophils is primarily mediated by the dedicator of cytokinesis
(DOCK) 2, an atypical guanine nucleotide exchange factor (GEF)
that rapidly translocate to the plasma membrane in a
phosphatidylinositol 3,4,5-trisphosphate (PIP3)-dependent
manner upon stimulation, resulting in increased local CAcN
polymerization (78, 79). DOCK2 is mainly expressed in
peripheral blood leukocytes and DOCK2 deficiency causes an
early-onset PID characterized by a T-cell defective chemotactic
responses with bacterial and viral infections (no. 14 in Table 1 and
Figure 1) (80).

On the other side, DOCK8 is a Cdc42-specific GEF that
regulates interstitial migration of dendritic cells and DOCK8
deficiency causes the AR Hyper-IgE syndrome (HIES), a
combined immunodeficiency characterized by recurrent viral
infections, early-onset malignancy and atopic dermatitis (no. 15
in Table 1 and Figure 1). Patients with DOCK8 deficiency
display severe viral skin infections, such as chronic anogenital
ulcers, multiple acral warts, and disfiguring molluscum
contagiosum (81–84). Selective loss of group 3 innate lymphoid
cell has been described in these patients (85).

Branching Defects
Cdc42 and Rac2 transmit many signals through the GTP-
dependent binding of effector proteins containing the Cdc42/
Rac interactive binding (CRIB) motif, such as the Wiskott-
Aldrich syndrome (WAS) protein (WASP) (86). WASP is
restricted to hematopoietic cells, while neuronal WASP (N-
WASP), closely related in amino acids sequence, is more
widely expressed (87). Other members of this proteins family
include the Scar/WAVE proteins. N-WASP has been implicated
in filopodia formation downstream of Cdc42, and the Scar/
WAVE proteins family has been shown to contribute to the
formation of lamellipodia downstream of Rac2. Recently, an
immune dysregulation disorders characterized by deficit of the
hematopoietic-specific WAVE complex regulator HEM1, coded
by the NCKAP1L gene, has been characterized (no. 16 in Table 1
and Figure 1) (88). Patients with HEM1 deficiency suffer from
recurrent infections, asthma and lymphoproliferation.

N-WASP deficiency increases the production of
inflammatory cytokine (89, 90). Human LoF mutations of
Frontiers in Immunology | www.frontiersin.org 7
WAS gene cause severe defects in hematopoietic cell functions,
leading to the well-known triad of microthrombocytopenia,
immunodeficiency, and eczema (no. 17 in Table 1 and Figure
1) (91). The cytoskeletal defects of megakaryocytes are
responsible for the low number of platelets in patients with
WAS (92). WASP deficiency promotes T-cell cytoskeletal
tension decay and phosphorylation of a serine/threonine
protein kinase 4 (STK4) that usually increase T-cell migration,
therefore promoting immune synapse breaking and secondary B
cells dysfunction (93, 94). WASP-deficient lymphocytes fails to
differentiate into memory cells (95) and are more prone to
develop DNA damages due to the loss of the Golgi-dispersal
response, a recently described mechanism of cell survival after
ionized radiation exsposure (96). The STK4 deficiency causes a
PID characterized by B and T cell lymphopenia, neutropenia,
and cardiac malformations (no. 18 in Table 1 and Figure 1) (97).
STK4 phosphorylates the Forkhead box O1 transcription factor,
increasing NFkB-mediated production of interleukin 12 in
dendritic cells and limiting the oxidative stress susceptibility
(98). No platelets anomalies have been described in patients with
STK4 deficiency. Equally, deficiency of the WASP interacting
protein family member 1 (WIPF1) causes a WAS-like syndrome
with normal platelet volume (no. 19 in Table 1 and Figure 1).
WIPF1 is able to stabilize WASP, preventing its degradation in
lymphocytes (99).

ASP controls the rate of actin branching by activating the
actin related protein (ARP) 2/3 complex constituted by seven
subunits. Two of them, the ARP2 and 3, closely resemble the
structure of the G-actin, allowing the formation of a
thermodynamically stable dimer that serves as a nucleation site
for the new actin filaments at 70° angle from the main filament.
Homozygous LoF variants of the ARPC1B gene, coding for the
p41 regulatory subunits of the ARP2/3 complex, cause the
platelet abnormalities with eosinophilia and immune-mediated
inflammatory disease (PLTEID; no. 20 in Table 1 and Figure 1)
(100–104). Patients with PLTEID usually present systemic
inflammation with lymphoproliferation and immunodeficiency
resembling WAS, with early onset vasculitis, severe infections,
and eczema. A functional test has been recently described to
detect asymptomatic carriers (105).

Additional WASP activators include the proline–serine–
threonine phosphatase-interacting protein 1 (PSTPIP1), PIP2,
and the c-Src protein-tyrosine kinases family. Heterozygous
GoF mutation of the PSTPIP1 gene causes the pyogenic sterile
arthritis, pyoderma gangrenosum, and acne (PAPA) syndrome
and the PSTPIP1-associated myeloid-related proteinemia
inflammatory (PAMI) syndrome (no. 21 in Table 1 and Figure
1) (106, 107). PAMI syndrome is caused by variants that
substantially alter electrostatic properties of the PSTPIP1 critical
region for auto-inhibiting dimerization, resulting in a GoFmutant
protein that constitutively activates the underlying Pyrin
inflammasome (108). Pyrin is the pivotal protein of the related
inflammasome, a member of cytosolic multiprotein oligomers
family responsible for the activation of inflammatory responses in
human cells. The Pyrin-associated autoinflammation with
neutrophilic dermatosis (PAAND) and familial Mediterranean
fever (FMF) are well-known monogenic autoinflammatory
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diseases both related to GoF variants at different locus sites of the
MEFV gene and associated with an excessive activation of the
Pyrin inflammasome (no. 22 in Table 1 and Figure 1). Recently,
the mevalonate kinase deficiency (MKD) caused by homozygous
or compound heterozygous LoF mutations in the MVK gene has
been related to the constitutive activation of Pyrin (no. 23 in
Table 1 and Figure 1) (109).

Production Defects
Megakaryoblastic leukemia 1 (MKL1) is a member of the
myocardin-related transcription factors and usually held in an
inactive state in the cytoplasm in a reversible complex with G-
actin (110). Stimulation of the small Rho GTPases promotes
incorporation of G-actin into F-actin, allowing MLK1 to enter
into the nucleus, stimulating transcription of actin and other
cytoskeletal proteins genes. Homozygous LoF mutation in the
MKL1 gene result in a PID characterized by susceptibility to
severe bacterial infection and recurrent skin abscesses (no. 24 in
Table 1 and Figure 1) (111). MKL1 deficiency causes reduced
phagocytosis and almost complete abrogation of neutrophils
spreading properties (112). MLK1 participates in differentiation
of megakaryocytes and mild thrombocytopenia has been noted in
patients with MKL1 deficiency (113).

Finally, LoF variants of the gene coding for the transcription
factor CCAAT enhancer binding protein epsilon (C/EBPϵ) cause a
PID called AR neutrophil-specific granule deficiency-1 (SGD)
(114), whereas heterozygous GoF variants have been recently
related to an autoinflammatory disease called the C/EBPϵ-
associated autoinflammation and immune impairment of
neutrophils (CAIN; no. 25 in Table 1 and Figure 1). Patients
with CAIN display recurrent fevers characterized by abdominal
pain, lasting 4–5 days, and skin inflammatory manifestations, such
as sterile abscesses, pyoderma gangrenosum and oral ulcerations.
The mutant C/EBPϵ causes deregulated transcription of
interleukins and interferon response genes in neutrophils (115).
DISCUSSION

The field of autoinflammation is moving from a gene-centric
view of innate immune-mediated diseases towards a systems-
based concept, which describes how various convergent
molecular pathways, including actin cytoskeleton, contribute to
Frontiers in Immunology | www.frontiersin.org 8
the autoinflammatory process (116) and to a number of
conditions characterized by the coexistence of inflammation,
autoimmunity and defective immune response. Indeed,
the complex regulation of the actin remodeling represents
an example of autoinflammatory diseases merging with
immunodeficiencies. Despite the wide range of symptoms
associated with these disorders, some features may suggest the
diagnosis, such as recurrent fevers or infections, atypical skin
manifestations (from severe viral infections to eczema and sterile
abscesses), cytopenias and defects of chemotaxis and
lymphocytes proliferation. Cytopenias may be secondary to the
abnormal release of immune cells from the bone marrow and/or
impairments in the immune synapsis, while the abnormal
diapedesis associated with an altered vessels wall and the
increased cell apoptosis in the skin matrix, called cytothripsis,
may favor cutaneous manifestations (86). Cytoskeleton-targeted
therapies, such as colchicine, may play new roles in these
disorders. The study of the molecular and modular diversity of
these immune responses to the changing conditions has only
recently become possible through the development of the new
“omics”-based screening technologies (117). The adoption of
“omics” and systems-based concepts will have implications for
the discovery of novel diseases and for the possible development
of targeted diagnostic tests and treatment options.
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et al. The scaffolding function of the RLTPRprotein explains its essential role for
CD28 co-stimulation in mouse and human T cells. J Exp Med (2016) 213
(11):2437–57. doi: 10.1084/jem.20160579

33. Schober T, Magg T, Laschinger M, Rohlfs M, Linhares ND, Puchalka J, et al.
A human immunodeficiency syndrome caused by mutations in CARMIL2.
Nat Commun (2017) 8:14209. doi: 10.1038/ncomms14209

34. Wang Y, Ma CS, Ling Y, Bousfiha A, Camcioglu Y, Jacquot S, et al. Dual T
cell- and B cell-intrinsic deficiency in humans with biallelic RLTPR
mutations. J Exp Med (2016) 213(11):2413–35. doi: 10.1084/jem.20160576

35. Unanue ER, Perkins WD, Karnovsky MJ. Ligand-induced movement of
lymphocyte membrane macromolecules. I. Analysis by immunofluorescence
and ultrastructural radioautography. J Exp Med (1972) 136(4):885–906. doi:
10.1084/jem.136.4.885

36. Li J, Yin W, Jing Y, Kang D, Yang L, Cheng J, et al. The Coordination
Between B Cell Receptor Signaling and the Actin Cytoskeleton During B Cell
Activation. Front Immunol (2018) 9:3096. doi: 10.3389/fimmu.2018.03096

37. Dustin ML, Cooper JA. The immunological synapse and the actin
cytoskeleton: molecular hardware for T cell signaling. Nat Immunol
(2000) 1(1):23–9. doi: 10.1038/76877

38. Seppänen MRJ. Novel cytoskeletal mutations with immunodeficiency: Why
is the raven like a writing desk? J Allergy Clin Immunol (2018) 142(5):1444–
6. doi: 10.1016/j.jaci.2018.08.020

39. Das A, Bhat A, Sknepnek R, Köster D, Mayor S, RaoM. Stratification relieves
constraints from steric hindrance in the generation of compact actomyosin
asters at the membrane cortex. Sci Adv (2020) 6(11):eaay6093. doi: 10.1126/
sciadv.aay6093

40. Schroer CFE, Baldauf L, van Buren L, Wassenaar TA, Melo MN, Koenderink
GH, et al. Charge-dependent interactions of monomeric and filamentous
actin with lipid bilayers. Proc Natl Acad Sci USA (2020) 117(11):5861–72.
doi: 10.1073/pnas.1914884117

41. Demirdjian S, Hopkins D, Cumbal N, Lefort CT, Berwin B. Distinct
Contributions of CD18 Integrins for Binding and Phagocytic Internalization
of Pseudomonas aeruginosa. Infect Immun (2020) 88(5):e00011–20. doi:
10.1128/IAI.00011-20

42. Dos Santos MA, Alves Martins F, Borges BC, de Gouveia Santos J,
Nascimento Alves R, Dias MH, et al. Human B cells infected by
Trypanosoma cruzi undergo F-actin disruption and cell death via caspase-
7 activation and cleavage of phospholipase Cg1. Immunobiology (2020) 225
(3):151904. doi: 10.1016/j.imbio.2020.151904

43. Bousfiha A, Jeddane L, Picard C, Al-Herz W, Ailal F, Chatila T, et al. Human
Inborn Errors of Immunity: 2019 Update of the IUIS Phenotypical Classification.
J Clin Immunol (2020) 40(1):66–81. doi: 10.1007/s10875-020-00758-x

44. Essa MF, Elbashir E, Alroqi F, Mohammed R, Alsultan A. Successful
hematopoietic stem cell transplant in leukocyte adhesion deficiency type
III presenting primarily as malignant infantile osteopetrosis. Clin Immunol
(2020) 213:108365. doi: 10.1016/j.clim.2020.108365

45. Qian X, Wang P, Wang H, Jiang W, Sun J, Wang X, et al. Successful umbilical
cord blood transplantation in children with leukocyte adhesion deficiency
type I. Transl Pediatr (2020) 9(1):34–42. doi: 10.21037/tp.2020.01.06

46. Etzioni A, Frydman M, Pollack S, Avidor I, Phillips ML, Paulson JC, et al.
Recurrent Severe Infections Caused by aNovel Leukocyte AdhesionDeficiency.
N Eng J Med (1992) 327(25):1789–992. doi: 10.1056/NEJM199212173272505

47. Wolach B, Gavrieli R, Wolach O, Stauber T, Abuzaitoun O, Kuperman A,
et al. Leucocyte adhesion deficiency-A multicentre national experience. Eur J
Clin Invest (2019) 49(2):e13047. doi: 10.1111/eci.13047
January 2021 | Volume 11 | Article 604206

https://doi.org/10.1002/jbmr.3964
https://doi.org/10.1038/s41416-018-0284-6
https://doi.org/10.1038/s41416-018-0284-6
https://doi.org/10.1002/eji.201747124
https://doi.org/10.2337/db13-0050
https://doi.org/10.2337/db13-0050
https://doi.org/10.1016/j.exer.2017.10.009
https://doi.org/10.1073/pnas.96.15.8693
https://doi.org/10.1016/j.ajhg.2017.11.006
https://doi.org/10.1016/j.ajhg.2017.11.006
https://doi.org/10.1242/jcs.031146
https://doi.org/10.1016/S0962-8924(02)02404-2
https://doi.org/10.1016/j.neuron.2019.07.007
https://doi.org/10.3389/fnagi.2019.00214
https://doi.org/10.1038/s41598-020-62050-7
https://doi.org/10.1371/journal.pgen.1000812
https://doi.org/10.1182/blood-2016-03-706028
https://doi.org/10.1084/jem.20161228
https://doi.org/10.1093/rheumatology/key445
https://doi.org/10.1016/j.jaci.2018.04.023
https://doi.org/10.1038/ni.1662
https://doi.org/10.1016/j.clim.2008.11.002
https://doi.org/10.1016/j.jaci.2013.01.042
https://doi.org/10.1007/s10875-014-0074-8
https://doi.org/10.1007/s10875-014-0074-8
https://doi.org/10.1016/j.gene.2004.09.004
https://doi.org/10.1084/jem.20160579
https://doi.org/10.1038/ncomms14209
https://doi.org/10.1084/jem.20160576
https://doi.org/10.1084/jem.136.4.885
https://doi.org/10.3389/fimmu.2018.03096
https://doi.org/10.1038/76877
https://doi.org/10.1016/j.jaci.2018.08.020
https://doi.org/10.1126/sciadv.aay6093
https://doi.org/10.1126/sciadv.aay6093
https://doi.org/10.1073/pnas.1914884117
https://doi.org/10.1128/IAI.00011-20
https://doi.org/10.1016/j.imbio.2020.151904
https://doi.org/10.1007/s10875-020-00758-x
https://doi.org/10.1016/j.clim.2020.108365
https://doi.org/10.21037/tp.2020.01.06
https://doi.org/10.1056/NEJM199212173272505
https://doi.org/10.1111/eci.13047
https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Papa et al. Actin Remodeling Defects
48. Fan Z, Ley K. Leukocyte Adhesion Deficiency IV. Monocyte Integrin
Activation Deficiency in Cystic Fibrosis. Am J Respir Crit Care Med
(2016) 193(10):1075–7. doi: 10.1164/rccm.201512-2454ED

49. Sorio C, Montresor A, Bolomini-Vittori M, Caldrer S, Rossi B, Dusi S, et al.
Mutations of cystic fibrosis transmembrane conductance regulator gene
cause a monocyte-selective adhesion deficiency. Am J Respir Crit Care Med
(2016) 193(10):1123–33. doi: 10.1164/rccm.201510-1922OC

50. Das J, Sharma A, Jindal A, Aggarwal V, Rawat A. Leukocyte adhesion defect:
Where do we stand circa 2019? Genes Dis (2020) 7(1):107–14. doi: 10.1016/
j.gendis.2019.07.012

51. Castellani S, Guerra L, Favia M, Di Gioia S, Casavola V, Conese M. NHERF1
and CFTR restore tight junction organisation and function in cystic fibrosis
airway epithelial cells: role of ezrin and the RhoA/ROCK pathway. Lab Invest
(2012) 92(11):1527–40. doi: 10.1038/labinvest.2012.123

52. Park YH, Wood G, Kastner DL, Chae JJ. Pyrin inflammasome activation and
RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat
Immunol (2016) 17(8):914–21. doi: 10.1038/ni.3457

53. Di Pietro C, Zhang P, O’Rourke TK, Murray TS, Wang L, Britto CJ, et al.
Ezrin links CFTR to TLR4 signaling to orchestrate anti-bacterial immune
response in macrophages. Sci Rep (2017) 7(1):1–11. doi: 10.1038/s41598-
017-11012-7

54. Slifer ZM, Blikslager AT. The Integral Role of Tight Junction Proteins in the
Repair of Injured Intestinal Epithelium. Int J Mol Sci (2020) 21(3):972–83.
doi: 10.3390/ijms21030972

55. Lagresle-Peyrou C, Luce S, Ouchani F, Soheili TS, Sadek H, Chouteau M,
et al. X-linked primary immunodeficiency associated with hemizygous
mutations in the moesin (MSN) gene. J Allergy Clin Immunol (2016) 138
(6):1681–9. doi: 10.1016/j.jaci.2016.04.032

56. Ghose D, Lew D. Mechanistic insights into actin-driven polarity site
movement in yeast. Mol Biol Cell (2020) 31(10):1085–102. doi: 10.1091/
mbc.E20-01-0040

57. Murali A, Rajalingam K. Small Rho GTPases in the control of cell shape and
mobility. Cell Mol Life Sci (2014) 71(9):1703–21. doi: 10.1007/s00018-013-
1519-6

58. Yasuda S, Stevens RL, Terada T, Takeda M, Hashimoto T, Fukae J, et al.
Defective Expression of Ras Guanyl Nucleotide-Releasing Protein 1 in a
Subset of Patients with Systemic Lupus Erythematosus. J Immunol (2007)
179(7):4890–900. doi: 10.4049/jimmunol.179.7.4890

59. Salzer E, Cagdas D, Hons M, Mace EM, Garncarz W, Petronczki ÖY, et al.
RASGRP1 deficiency causes immunodeficiency with impaired cytoskeletal
dynamics. Nat Immunol (2016) 17(12):1352–60. doi: 10.1038/ni.3575

60. Johnson JL, Erickson JW. Cerione RA. C-terminal Di-arginineMotif of Cdc42
Protein Is Essential for Binding to Phosphatidylinositol 4,5-Bisphosphate-
containing Membranes and Inducing Cellular Transformation. J Biol Chem
(2012) 287(8):5764–74. doi: 10.1074/jbc.M111.336487

61. AkulaMK, IbrahimMX, IvarssonEG,KhanOM,Kumar IT,ErlandssonM,et al.
Protein prenylation restrains innate immunity by inhibiting Rac1 effector
interactions. Nat Commun (2019) 10(1):1–13. doi: 10.1038/s41467-019-
11606-x

62. Fu H, Alabdullah M, Großmann J, Spieler F, Abdosh R, Lutz V, et al. The
differential statin effect on cytokine production ofmonocytes ormacrophages is
mediated by differential geranylgeranylation-dependent Rac1 activation. Cell
Death Dis (2019) 10(12):880. doi: 10.1038/s41419-019-2109-9

63. Kolev M, West EE, Kunz N, Chauss D, Moseman EA, Rahman J, et al.
Diapedesis-Induced Integrin Signaling via LFA-1 Facilitates Tissue Immunity
by Inducing Intrinsic Complement C3 Expression in Immune Cells.
Immunity (2020) 52(3):513–527.e8. doi: 10.1016/j.immuni.2020.02.006

64. Yamada KM, Collins JW, Cruz Walma DA, Doyle AD, Morales SG, Lu J,
et al. Extracellular matrix dynamics in cell migration, invasion and tissue
morphogenesis. Int J Exp Pathol (2019) 100(3):144–52. doi: 10.1111/
iep.12329

65. Guzman A, Avard RC, Devanny AJ, Kweon OS, Kaufman LJ. Membrane
blebs play a critical role in a hybrid mode of cancer cell invasion in three-
dimensional environments. J Cell Sci (2020) 133(8):jcs236778. doi: 10.1242/
jcs.236778

66. Gernez Y, de Jesus AA, Alsaleem H, Macaubas C, Roy A, Lovell D, et al.
Severe autoinflammation in 4 patients with C-terminal variants in cell
division control protein 42 homolog (CDC42) successfully treated with
Frontiers in Immunology | www.frontiersin.org 10
IL-1b inhibition. J Allergy Clin Immunol (2019) 144(4):1122–5.e6. doi:
10.1016/j.jaci.2019.06.017

67. Takenouchi T, Kosaki R, Niizuma T, Hata K, Kosaki K. Macrothrombocytopenia
and developmental delay with a de novo CDC42 mutation: Yet another locus for
thrombocytopenia and developmental delay. Am J Med Genet A (2015) 167A
(11):2822–5. doi: 10.1002/ajmg.a.37275

68. Takenouchi T, Okamoto N, Ida S, Uehara T, Kosaki K. Further evidence of a
mutation in CDC42 as a cause of a recognizable syndromic form of
thrombocytopenia. Am J Med Genet A (2016) 170A(4):852–5. doi:
10.1002/ajmg.a.37526

69. MotokawaM,Watanabe S, Nakatomi A, Kondoh T, Matsumoto T,Morifuji K,
et al. A hot-spot mutation in CDC42 (p.Tyr64Cys) and novel phenotypes in the
third patient with Takenouchi-Kosaki syndrome. J Hum Genet (2018) 63
(3):387–90. doi: 10.1038/s10038-017-0396-5

70. Pleines I, Eckly A, Elvers M, Hagedorn I, Eliautou S, Bender M, et al.
Multiple alterations of platelet functions dominated by increased secretion in
mice lacking Cdc42 in platelets. Blood (2010) 115(16):3364–73. doi: 10.1182/
blood-2009-09-242271

71. Burbage M, Keppler SJ, Gasparrini F, Martıńez-Martıń N, Gaya M, Feest C,
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