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Abstract—Artificial tactile systems can facilitate the life of
people suffering from a loss of the sense of touch. These systems
use sensors and digital, battery-operated embedded units for data
processing. Therefore, low-power, resource-constrained devices
should host those embedded devices. The paper presents a
framework based on 1-D convolutional neural networks (CNNs),
which tackles the problem of classifying touch modalities, while
limiting the number of architecture parameters. The paper also
considers the computational cost of the pre-processing stage
that handles tactile-sensor data before classification. The related
pre-processing unit affects resources occupancy, computational
cost, and ultimately classification accuracy. The experimental
session involved a state-of-the-art real-world dataset containing
three touch modalities. The 1-D CNN outperformed existing
solutions in terms of accuracy, and showed a satisfactory trade-off
between accuracy, computational cost, and resources occupancy.
The implementation of the 1-D CNN classifier on an Arduino
Nano 33 BLE device yielded real-time performances.

Index Terms—Touch modalities classification, CNNs, embed-
ded systems.

I. INTRODUCTION

In the last years, tactile sensing systems were used for
assisting humans who lost the sense of touch and helping them
interact with the surrounding environment. An effective tactile
sensing system should include tactile sensors and processing
units, which should handle information from sensors in real-
time to provide valuable feedback to users. These systems
should be deployed on resource-constrained devices, especially
when targeting use in daily life. Thus balancing power con-
sumption, size, and latency becomes a considerable challenge.

The paper tackles the classification of a set of touch
modalities when applied to an electronic skin. Toward that
goal, the system should correlate in real-time the activations of
several sensors placed over the skin to infer the overall action.
Artificial Intelligence (AI) models can support the effective
and efficient elaboration of the sensed signals. From among
the many existing AI techniques, one may summarize that “tra-
ditional” machine learning relies on hand-crafted features to
support inference. By contrast, deep-learning methods extract
features directly from data; this ability comes at the expense of
a large number of parameters, thus inflating memory require-
ments, computational load, and energy consumption. Indeed,
traditional implementation approaches seem more suitable for
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highly constrained scenarios [1], [2]. On the other hand, the
gap in accuracy performances is wide enough that most of
the research activity is shifting progressively towards deep
learning. The deployment of deep networks on low-power
devices still proves a crucial issue due to the large number
of parameters that characterize these models. In fact, deep
networks with a small number of parameters might easily
satisfy tight hardware constraints, and therefore be hosted on
low-power, inexpensive commercial micro-controllers for real-
time applications.

This paper presents an end-to-end framework based on 1-D
convolutional neural networks (CNNs) to address the classi-
fication of touch modalities, while limiting the computational
cost (in terms of FLOPs) and the resource occupancy (in terms
of the number of parameters). A matrix of sensors acquires the
signals which are characterized by a 3-D tensor structure, in
which two dimensions represent the geometry of the sensors
patch, whereas time is the third dimension. The pre-processing
unit that reduces noise and data dimensionality before feeding
the CNN ultimately affects the resources occupancy, power
consumption, and classification accuracy.

The main contributions of the presented research can be
summarized as follows:

• adopting 1-D CNNs to classify touch modalities can
outperform existing solutions in terms of accuracy;

• the 1-D CNN approach also compares favourably with
state-of-the-art solutions on the same problem, when con-
sidering the computational cost (FLOPs) and the number
of parameters;

• deploying the 1-D CNN classifier on an low-cost Arduino
Nano 33 BLE micro-controller still yielded real-time
performances.

In the following, Section II overviews related works in this
area of research, while Section III describes the proposed ap-
proach; Section IV illustrates the experimental set-up, whereas
Section V reports on the obtained results. Concluding remarks
are made in Section VI.

II. RELATED WORKS

Prosthetics and robotics widely adopt tactile sensing sys-
tems, either to restore the loss of sense of touch in humans
or to augment robot manipulation by providing feedback to
human operators.
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A decision-tree predictor [3] classified four categories of
touch-patterns, which were collected by 3x3 sensors arrays
and integrated with accelerometer information. In [4], [5], the
authors employed the LogitBoost algorithm [6] to discriminate
eights types of touch modalities. The approach described in
[7] involved a set of biologically inspired features and Support
Vector Machines (SVMs) to categorize nine touch modalities,
which were collected on a humanoid covered with an artificial
skin. Those results outperformed the accuracy values obtained
with the features collected by [5]. In [8], the authors compared
different algorithms to recognize 14 social touch gestures,
and reported that a kernel SVM attained the best accuracy.
Similar accuracy scores on the same dataset were reported
in [9], when applying deep-learning algorithms. An image-
based deep network [10] classified 6 touch modalities, which
had been acquired by a camera under a translucent robot skin
while interacting with a non-rigid robot.

The approach described in [11] handled a dataset covering
three touch modalities, collected by piezoelectric sensors and
represented as tensor data; when applying tensor-SVM and
tensor-RLS algorithms, the 3-category classifiers attained aver-
age generalization accuracies of 71% and 73.7%, respectively.
Several subsequent works applied different techniques on
the same dataset to improve generalization performance and
reduce computational costs. In [12], [13], the authors adopted
the k-NN and the SVM models to address a two-class classi-
fication problem; approximate computing techniques reduced
the execution time and memory usage during the inference
phase.

A different approach [14] transformed the tensor data into
RGB images, and involved deep neural networks trained with
transfer learning techniques. Adopting an Inception Resnet
model resulted in a notable classification accuracy (76.9%) but
implied an excessive computational cost. In [15], the authors
applied recurrent neural networks, to take into account timing
dependencies within samples and easily deal with 3D tensor
data. The three-modality classifiers exhibited good results in
terms of average accuracy (74.5%) and a sharp reduction in
the predictors cost. Principal component analysis was also
applied to reduce the dimensionality of the feature space [16],
handled by a singular value decomposition-based kernel, and
a global alignment kernel to map the data into a suitable space
supporting kernel-SVM classification. This method scored an
average generalization performance of 85.4 %, at the expense
of an impractical computational cost for data processing.

III. 1-D CNNS FOR TOUCH-MODALITY CLASSIFICATION

The real-time classification of touch modalities requires that
sensor data be processed before feeding the predictor. The
approach proposed in this paper, therefore, involves a two-
stage system: in the first stage, data from the acquisition
system undergo a set of pre-processing operations, which
feed the second stage, where the actual inference of the
touch modality is worked out. Figure 1 outlines the overall
processing system.

Fig. 1. Elaboration system.

A. Data structure

The data acquired by the tactile sensor matrix form 3-
dimensional tensors; two dimensions relate to the geometry of
the sensor matrix, whereas the third dimension conveys time
information. Figure 2 illustrates the nature of the input tensor.

B. Pre-processing

Raw sensor signals are noisy and mostly contain useless
information that needs to be filtered out. In principle, CNNs
could filter out implicitly useless contents from input data;
that filtering capability, however, would increase the number
of parameters of the network and therefore hinder low-resource
implementations. To limit the computational cost, a straight-
forward moving-average algorithm (outlined in Procedure 1)
handles signal data and applies a moving window covering
50% of overlapped samples. This mechanism reduces both
noise and the number of signals samples. The resulting 3-D
tensors feed the second stage, which contains the CNN and
extracts features from complex data structures.

Procedure 1 Moving Average with 50% of overlapping sam-
ples
Input

• Dataset D = {Xi ∈ RM×N×T ; i = 1, ..., ND}
• Desired number of slices Ns

1. Methodology
1: wL = 2 ∗ length(X1(1, 1, :))/(Ns+ 1)
2: for (i = 1; i ≤ ND; i++) do
3: for (m = 1;m ≤M ;m++) do
4: for (n = 1;n ≤ N ;n++) do
5: for (s = 1; s ≤ Ns; s++) do
6: if s == 1 then
7: X̃i(m,n, s)=mean(Xi(m,n, 1 : wL))
8: wL = wL/2
9: else

10: X̃i(m,n, s)=mean(Xi(m,n,wL ∗ (s −
1) + 1 : wL+ s ∗ wL))

11: end if
12: end for
13: end for
14: end for
15: end for
2. Output Return DNs = {X̃i ∈ RM×N×Ns; i = 1, ..., 840}
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Fig. 2. 1-D CNN example.

C. Classifier

A 1-D CNN classifies the pre-processing results worked
out in the first stage. As compared with 2-D CNNs that
mostly address images and video applications, 1-D CNNs can
process 1-D time sequences. In fact, these networks can handle
input tensors featuring several dimensions, but the convolution
operation always involves one dimension only. The method,
therefore, takes advantage of the fact that touch-modality data
are temporal signals with a 3-D tensor structure, and ultimately
exploits the capability of 1-D CNNs to automatically learn
patterns from temporal sequences. As a major advantage,
a real-time, low-cost hardware implementation is feasible
thanks to the simple, compact nature of 1-D convolutions, just
involving scalar multiplications and additions [17].

Figure 2 gives an example of a 1-D CNN, embedding one
convolutional layer (Conv 1-D) that processes a 3-D tensor:
two dimensions correspond to the geometry of sensors, while
the third dimension gives time information. The convolution
consists of f 3-D kernels, having the same geometry of the
input tensor but with designer-fixed third dimension, that slide
along the time direction, creating f vectors (features) through
the scalar product operation. In this way, the CNN can learn
both the spatial and the temporal dependencies within the
signals of the input tensors [17]: at each step along the time
axis, the kernels merge geometrical information and yield one
scalar value, as shown in Fig. 2 (Kernel1 and Kernel2 work
out one value for each step along the time axis). Activation
functions such as ReLu or sigmoid usually introduce some
non-linearity after the convolutional layer. Subsequently, pool-
ing techniques (denoted as Max Pool in the Figure) reduce the
dimensions of the f features and aggregate local information,
for example, by extracting the maximum value from non-
overlapping patches. Finally, a fully connected layer (marked
as FC in the Figure) including non-linear activation functions
gets feature values from the topmost convolutional/pooling
and connects to the output layer. The number of neurons in
the latter layer corresponds to the number of possible output
categories, and the output neuron with the highest activation
marks the predicted class.

When envisioning deep architectures with several convolu-
tional layers, the features extracted by a lower-level layer just
provide the inputs to the subsequent convolution layer.

Fig. 3. Moving average with 50% of overlapped samples applied to DRaw .

IV. EXPERIMENTAL SETUP

A. Dataset

Seventy subjects performed three touch modalities [11],
namely, “slide a finger”, “brush a paintbrush”, and “rolling
a washer”; each touch action was repeated two times on a
4x4 piezoelectric sensors matrix in two directions starting
from a random position. The resulting dataset held 840 ten-
sor data, 280 per class: each datum was a 3-modes tensor,
in which the first two modes represented the 4x4 sensors
geometry (i.e. 16 channels), whereas the third dimension
carried time information (each action, sampled at 3KSamples/s
frequency, lasted 10 seconds). In the following, the dataset
is formalized as: DRaw = {(X , y)i;Xi ∈ R4×4×30000; y ∈
{Slide,Brush,Roll}; i = 1, ..., 840}.

B. Pre-processing Techniques

Raw sensor signal underwent the moving average procedure
1 (overlap window covering 50% of samples) to reduce the
tensor dimensions. The moving average applied along the
time axis in DRaw, and adopted four-time windows ampli-
tudes. This resulted in four datasets DNs, where Ns =
{30, 60, 100, 1000} was the number of slices of the extracted
tensors.

To illustrate the pre-processing Procedure 1, Figure 3 gives
an example of the moving average (MA) when applied to
the 16 channels of DRaw. In the Figure, the DRaw channels
contains 15 samples and Ns = 4.

For the sake of comparison, an alternative pre-processing
step adopted the strategy proposed in [15] to filter the original
dataset DRaw: before applying the moving average, a thresh-
olding mechanism reduced the number of samples in each
data channel from n = 30000 to n̂ = 6000, thus creating the
DThr dataset. As a result, four datasets D̂Ns originated from
DThr, holding the same number of time slices of DNs. All the
datasets had the same structure of DRaw, but with a different
number of time samples accordingly to the number of slices.
The pre-processing phase was completed by normalizing all
the datasets to zero mean and standard deviation equals 1.

C. Training Strategy

The training procedure involved model selection, i.e. the
tuning of the classifier architecture hyper-parameters. That
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procedure explored a grid of candidates, privileging solutions
with a low number of parameters and a low computational
cost:

• number of convolutional layers from 2 to 3 (the filter
candidates were: (4, 4), (4, 8), (8, 8), (4, 4, 4), (8, 8, 8),
(4, 8, 16));

• kernel size Ks = {4, 8, 10}.
The filters represented the number of kernels applied to the
input features in each convolutional layer. For example, setting
f = (4, 8, 16) implied the use of three convolutional layers, the
application of 4 kernels to the input tensor, and the doubling
in the number of kernels at each next convolutional layer. For
each hyper-parameter setting, the experiments trained 18 CNN
models, thus covering all possible combinations of filters and
kernel sizes, on each dataset. The ReLu activation function
characterized every convolutional layer, followed by a max-
pooling layer to halve the number of samples between two
consecutive convolutions. To reduce the models number of
parameters, a convolutional layer replaced fully connected
layers, followed by a non-linearity, that included three output
filters (i.e., as many as the number of touch-modality classes).
The max-pooling layer reduced the dimensions of each filter
to 1. Eventually, a softmax function prompted the predicted
label associated with the input signal.

To ensure a fair comparison with state-of-the-art solutions,
the experiments included the implementation of the LSTM
network for the same classification problem [15], as it showed
a notable accuracy and featured a good trade-off between
accuracy and computational cost. A pool of neurons (N =
{10, 25, 50, 100}) included the explored options to pinpoint
the best configuration during model selection.

In the experiments, the predictors were trained on all the
eight datasets DNs and D̂Ns. Each test involved 10 runs, that
is, 10 random training/validation/test sets. In each run, 70% of
data were used for training, whereas the remaining 30% were
equally split into a validation set (for model selection) and a
test set (to estimate generalization performance). The models
were all implemented in Python by using the Keras API, with
the following settings: number of epochs = 200, the patience
on the validation accuracy = 20 (to support early stopping),
batch size = 40, and learning rate = 0.001.

D. Embedded device

To test the time performance during the inference phase,
we deployed the 1-D CNN on a Arduino Nano 33 BLE, as
it could be easily embedded in a prosthetic tactile system.
That low cost and resources-constrained device featured a CPU
clock frequency = 64MHz, a flash memory size = 1MB,
SRAM holding 256kB, and operated at 3.3V . Upon training
completion of the 1-D CNN, the Python Tensorflow library
allowed to export the float32 and int8 models in the tflite
format. Deploying both those models on the device made
it possible to test the effects of each quantized model on
inference timings and the possible losses in generalization.
The inference-timing measurements averaged results on 120
input data (i.e. the test set dimension), also measuring, at the

same time, the increment in miss-classified data when adopting
the int8 model as opposed to the original float32 one.

V. EXPERIMENTAL RESULTS

This section presents the generalization performances ob-
tained by the deep networks on the tested datasets, the as-
sociate computational costs in terms of FLOPs, the number
of parameters of the processing systems (including both pre-
processing and classification), and the results attained when
deploying the architectures on the Arduino Nano 33 BLE.

A. Generalization performance Results

Figure 4 reports on the generalization performances (mea-
sured on the test set) attained by the compared deep networks
(i.e. the proposed 1-D CNN and LSTM [15]) on the various
datasets. In the x-axis of each graph, the four leftmost items
refer to the pre-processing techniques adopted in [15] that
generated D̂Ns datasets; the four rightmost items correspond
to the preprocessing approach proposed in Section IV.B (DNs),
i.e., when applying a moving average on the raw data DRaw.
The figure gives the boxplots of the measured accuracies (on
the test set) computed on each dataset over the 10 test sets (i.e.
10 runs). The red lines highlight the median values within each
boxplot, the blue box delimits the first and the third quartiles,
while the whiskers mark the variability outside the upper and
lower quartiles.

The reported results show that the 1-D CNN always out-
performed (in terms of the median value) the LSTM on each
dataset, except with D̂30 and D30; in the latter cases, anyway,
the differences proved marginal (75% and 80.8% for the CNN,
as opposed to 78.3% and 81.2%, respectively, for LSTM). The
variabilities featured by the 1-D CNN were lower or most
similar to the LSTM ones, and indicated a tighter spread over
the different runs. The experiments also pointed out that a
larger number of time slices in the LSTM corresponded to
higher variability in accuracy, also coming with lower median
values.

In the 1-D CNN, the highest accuracies were obtained on the
DNs datasets, and the best median (85.0%) was achieved on
D100. The best-performing network included 3 convolutional
layers, with a filter dimension f = 8 and a kernel size ks = 10
for each convolutional layer.

B. FLOPs and Parameters Results

Resource occupancy comparisons for both network models
and for each dataset measured the FLOPs and the number of
parameters in each best-performing architecture. The evalua-
tion of the FLOPs also kept into account the pre-processing
operations, since they ultimately affected the resources of the
target implementation devices. Table I reports the measured
Mega-FLOPs (MFLOPs) and the number of parameters of the
two networks for each dataset.

The table shows that, for each dataset, the LSTM always
required a larger number of FLOPs and parameters than those
required by the CNN, with the exceptions of D100 and D1000.
In the latter cases, however, LSTM scored much lower median
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Fig. 4. Boxplots of the accuracies obtained by the deep networks on the eight datasets, computed on the test sets over 10 runs.

TABLE I
DEEP NETWORKS NUMBER OF FLOPS AND PARAMETERS

Dataset CNN LSTM
MFLOPs Params MFLOPs Params

D̂30 0.28 1579 1.12 13553
D̂60 0.38 2099 2.04 13553
D̂100 0.53 1963 1.23 4278
D̂1000 3.46 1963 30.77 13553
D30 1.03 2611 1.85 13553
D60 1.12 2099 2.78 13553
D100 1.31 2611 1.24 1113
D1000 4.53 2611 3.89 1113

accuracies, as per Figure 4. So one may conclude that the 1-
D CNN outperformed the LSTM in terms of accuracy, also
involving a lower computational effort and a smaller amount
of parameters to be stored in the target implementation device.
In the comparison among the various 1-D CNN networks, the
DNs datasets required a larger number of FLOPS (about three-
time with Ns = {30, 60, 100}) and parameters with respect
to the D̂Ns datasets. As expected, the solutions that yielded
higher accuracies (DNs) required correspondingly larger com-
putational efforts, thus setting some design constraints to the
deployment on embedded devices.

C. Embedded System Deployment.

The implementation on the Arduino Nano 33 BLE platform
involved the 1-D CNN model that achieved the best general-
ization performance, i.e. the one trained with D100. The model
held 2611 parameters (Table I), and was exported in both the
float32 and the int8 quantized representations.

In the case of the int8 model, the average inference time
on 120 data, having dimensions 4 × 4 × 100, was about
26ms, a considerable improvement over the 128ms required
by the float32 model. The standard deviations were negligible
in both cases. On average, the loss in generalization perfor-
mance brought about by the int8 model with respect to the
float32 model just affected 2/120 of tested data. Both timing
performances met the real-time constraint of 400ms [18] but,

with a slight loss in generalization, the int8 quantized model
lead to a saving of 100ms that could be used for data pre-
processing.

VI. CONCLUDING REMARKS

The paper proposed the use of a 1-D CNN to support a
3-class touch modalities classification problem; the approach
included two alternative pre-processing strategies, and cov-
ered eight datasets. A moving-average technique reduced the
number of samples of the original dataset down to 100. The
results proved that the proposed method outperformed state-of-
the-art solutions in terms of both generalization performances
and computational cost. Eventually, we deployed the best-
performing architecture on a low-cost, resource-constrained
device, by using both the 32-bit floating-point and the quan-
tized, 8-bit integer representations. The resulting systems
attained real-time performances (< 400ms) in the inference
phase in both cases; with a marginal loss in generalization
performance, the quantized int8 model also yielded a time
saving of about 100ms.
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