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Introduction 14 

The Marine Strategy Framework Directive (MSFD), the Maritime Spatial Planning Directive 15 

(MSPD) and the Common Fisheries Policy (CFP) are the main EU policies incorporating the 16 

ecosystem-based management (EBM) framework to human activities as a significant 17 

contribution to achieving the goals of the Biodiversity Strategy for the EU marine environments 18 

(European Environment Agency, 2015). The main issue for the EU policy is to embank the loss 19 

of biodiversity in a holistic pathway, maintaining marine habitats as a whole in a healthy, clean, 20 

productive and resilient condition. Such an approach will allow supporting habitats' 21 

functioning and, consequently, to benefit by the delivery of ecosystem services. In particular, 22 

the implementation of any management action aimed at   marine biodiversity conservation, has 23 

to be founded on: 1) the knowledge of the spatial distribution of target species and extension 24 

of critical habitats as well as 2) their overlapping with human activities, pressure and impacts. 25 
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In fact, a key insight of ecosystem-based management is that human activities often affect the 26 

marine environment in complex ways. This is highly relevant in the Mediterranean Sea, the 27 

largest and deepest enclosed sea on earth, defined as a sort of ocean in miniature acting as a 28 

marine biodiversity hot spot hosting the 7% to the world's marine biodiversity (Coll et al., 29 

2012). Mediterranean sea diversity  has been severely altered by different anthropic pressures 30 

through time then resulting particularly vulnerable.  Anthropogenic pressures include, for 31 

example, increasing use of the coastal areas, eutrophication, pollution and dumping, marine 32 

traffic, alien species, global warming and they are expected to increase in the future (CIESM, 33 

1997; Bianchi and Morri, 2000; Myers et al., 2000; Coll et al., 2010 and 2012). The presence of 34 

different environmental and human drivers of change generates cumulative impacts at 35 

different spatial and temporal scales (Coll et al., 2012). This condition represents the main 36 

obstacle when striving to protect marine mammals. In Mediterranean coastal areasdolphins 37 

and whales,  suffering habitats fragmentation and loss (Simmonds and Nunny, 2002) or the 38 

alterations in distribution and availability of resources (Learmonth et al., 2006; Gambaiani et 39 

al., 2009; MacLeod, 2009), could also be exposed to high levels of local anthropogenic impact, 40 

such as fishing, shipping collision, noise from military sonar or seismic surveys (Bearzi, 2002; 41 

Roussel, 2002; Hildebrand, 2005; Nowacek et al., 2007; Fossi and Lauriano, 2008; Dolman et 42 

al., 2010), chemical pollution including marine litter (Kannan et al., 2002; Fossi et al., 2003; 43 

Petterson et al., 2004; Aguillar and Borrel, 2005; Triantafillou, 2008). Up to date, the knowledge 44 

about the presence and the distribution of cetaceans  in the Mediterranean Sea, as well as their 45 

conservation status, is still rather heterogeneous and defective. In particular large areas of the 46 

central-eastern regions are still scarcely or totally not surveyed (Notarbartolo di Sciara and 47 

Birkun, 2010). Concerning the Ionian Sea (Central-eastern Mediterranean Sea), the available 48 

information reported the presence of eight different species of cetaceans (Notarbartolo di 49 

Sciara et al., 1993; Reeves and Notarbartolo di Sciara, 2006; Notarbartolo di Sciara and Birkun, 50 



2010). Specifically, more recent observations collected in the framework of a monitoring vessel 51 

survey confirmed that the striped dolphin Stenella coeruleoalba regularly inhabits the Northern 52 

Ionian Sea, together with the common bottlenose dolphin Tursiops truncatus (Dimatteo et al., 53 

2011; Fanizza et al., 2014; Carlucci et al., in press). Despite the presence of adult, juveniles and 54 

calves of S. coeruleoalba, no conservation measures to ensure a favorable status and long-term 55 

survival of the species, are currently enforced in the area, mostly due to shortcomings in the 56 

basic scientific information (Fanizza et al., 2014). Conversely, both species could be exposed to 57 

high levels of anthropogenic threats such as strikes from merchant traffic, disturbance from 58 

high intensity military sonar and exposition to chemical pollution due to the presence of a 59 

commercial harbor (Taranto harbor) (Marsili and Focardi, 1997; Cardellicchio et al., 2000). In 60 

addition, recently  seismic surveys were permitted in order to detect possible offshore gas/oil 61 

deposits in the Northern Ionian Sea. These activities were allowed without taking into account 62 

that the striped dolphin and common bottlenose dolphin were both assessed as vulnerable 63 

species with evidence of suspected decline in subpopulation within the ACCOBAMS regions 64 

(Agreement on the Conservation of Cetaceans of the Black Sea, Mediterranean Sea and 65 

Contiguous Atlantic Area) (Reeves and Notarbartolo di Sciara, 2006). Hence, the need for 66 

identifying the critical habitats for S. coeruleoalba and T. truncatus in the Northern Ionian Sea 67 

become even more urgent. The habitats characterization should be matched with the 68 

identification of the distribution of the main anthropogenic threats in order to better support 69 

potential alternative management strategies (Ahmadi-Nedushan et al.,2006; Halpern et al., 70 

2008). 71 

In the last thirty years, the advances in the regression analyzes provided by generalized linear 72 

models (GLMs) and generalized additive models (GAMs) allowed the development of ecological 73 

models increasing our understanding of ecological systems (Guisan et al., 2002). Lastly, 74 

Random Forest technique (Breiman et al.,1984), based on an automatic combination of decision 75 



trees was also applied in comparison with other regression techniques, resulting more reliable 76 

and accurate in predicting habitat uses (Qui serve PER FORZA un riferimento/citazione). In 77 

particular, recent developments in spatial modeling have allowed predicting the 78 

presence/absence or the abundance of a species by means of a set of predictor variables, 79 

highlighting the relative importance of habitats (Baumgartner, 1997; Moses and Finn, 1997; 80 

Tynan, 2004; Phillips et al., 2006; Redfern et al., 2006; Thorne et al., 2012). In particular, such 81 

approaches are increasingly becoming essential to identify critical habitats enhancing the 82 

protection of threatened species, mostly in coastal areas where the potential for conflicts is high 83 

(Edren et al., 2010; Best et al., 2012; Thorne et al., 2012). 84 

In this study, the spatial pattern of S. coeruleoalba and T. truncatus in the Gulf of Taranto 85 

(Northern Ionian Sea, Central-eastern Mediterranean Sea) was modeled aiming at: 1) assessing 86 

the distribution of  S. coeruleoalba and T. truncatus in the gulf of Taranto2) identifying the  87 

driving forces influencing the distribution of these top predators and, in turn, 3) suggesting 88 

suggestions and practices for their conservation and management. At these purposes, different 89 

predictive variables were considered. Physiographic features, reckoned as important for 90 

cetaceans’ distribution both in the Atlantic oceans (Watts and Gaskin, 1986; Selzer and Payne, 91 

1988; Gowans and Whitehead, 1995; Baumgartner, 1997; Bailey and Thompson, 2006) and 92 

more recently in the Mediterranean Sea (Azzellino et al., 2008; Blasi and Boitani, 2012, Marini 93 

et al., 2015), were taken into account together with the human activities existing in the basin, 94 

suggesting an innovative approach to habitat modeling. Thus, eight predictive indirect 95 

variables were identified for modeling the spatial distribution of both striped and common 96 

bottlenose dolphins in the Gulf of Taranto: depth, slope, distance from coast, canyon, areas of 97 

navy exercises, routes of merchant traffic, fishing areas, industrial activities. In particular, these 98 

predictive variables were employed to determine the presence/absence probability by means 99 

of generalized additive model (GAM) and Random Forest (RF). 100 



 101 

Materials and methods 102 

Study area 103 

The Gulf of Taranto in the Northern Ionian Sea (Central Mediterranean Sea) stretches from 104 

Punta Alice to Punta Mèliso (Figure 1). In particular, the basin is the extension of a Southern-105 

Apenninic orogenic system characterized by very complex bottom topography. In fact, the 106 

western sector is characterized by a narrow continental shelf with a steep slope and several 107 

channels, while the eastern showed terraces declining toward the “Taranto Valley”, a NW-SE 108 

submarine canyon with no clear bathymetric connection to a major river system (Rossi and 109 

Gabbianelli, 1978; Pescatore and Senatore, 1986; Harris and Whiteway, 2011). This singular 110 

morphology involves a complex distribution of water masses with a mixing of surface and dense 111 

bottom waters (Sellschopp and Álvarez, 2003) and occurrence of upwelling currents with high 112 

seasonal variability (Bakun and Agostini, 2001; Milligan and Cattaneo, 2007). 113 

The coastal area in the Gulf of Taranto is characterized by a high level of urbanization  (Ladisa 114 

et al., 2010). In addition, the coastal zone nearby the harbor of Taranto is devoted to many 115 

different activities among which an intense commercial shipping throughout main defined 116 

commercial routes stands out (https://www.marinetraffic.com/it/) together with the presence 117 

of heavy industries (Ben Meftah et al., 2008). Different areas are employed to the execution of 118 

navy exercises such as naval, submarine and shooting ones. Their geographical coordinates and 119 

characteristics were gathered by consulting the decree provided by National Coast Guards and 120 

“Notice to Skippers” from 2009 to 2014 121 

(http://www.guardiacostiera.gov.it/taranto/Pages/ordinanze.aspx). 122 

An intense fishing activity is also recorded in the basin with trawlers, long-liners, gillnetters 123 

and purse seiners distributed in different fishing harbors along the coasts (Carlucci et al., in 124 

press).  125 

https://www.marinetraffic.com/it/


 126 

Distribution of fishing activities 127 

Different fishing activities are present in the basin since trawlers, long-liners, gillnetters and 128 

purse seiners are distributed in different fishing harbours along the coasts (Carlucci et al., in 129 

press). The data provided by the Vessel Monitoring System (VMS) were used, in this study, to 130 

assess the amount and the distribution of fishing effort for all the fishing vessels with length 131 

over all (LOA) larger than 12 m. The original VMS data were provided by by the Italian 132 

Ministry for Agricultural, Food and Forestry Policies (MAFFP) within the activities planned for 133 

the Data Collection Framework Program in Fisheries Sector (DCF) and were processed within 134 

the R-environment using the standard procedures provided by the VMSbase platform (Russo 135 

et al., 2014a). In summary, VMS data for each fishing vessel operating in the area were 136 

cleaned, interpolated (Russo et al., 2011a) and linked to external database (i.e. Logbook and 137 

the Community Fishing Fleet Register available at: 138 

http://ec.europa.eu/fisheries/fleet/index.cfm) to assess the fishing gear (Russo et al., 2011b). 139 

Then, after complete reconstruction and classification of the fishing activity for each vessel, 140 

the fishing set positions for each vessel/day of activity were finally inferred using speed and 141 

depth filters (Russo et al., 2014a). These fishing set positions were finally used to compute the 142 

spatial distribution of the fishing effort, for the different gears, on a XxX Km square grid, for 143 

each year of the temporal range 2006-2014. Given that VMS data for the current year (2015) 144 

were not already available, the expected distribution of the fishing effort for the year 2015 145 

was estimated from the previous years. Namely, for each cell, one-year ahead forecasts of the 146 

effort have been obtained from the estimates of an ARMA model (see Box et al., 2015) fitted 147 

on the available observations. Estimates have been obtained using the R package “forecast” 148 

(Hyndman, 2015). 149 

  150 



 151 

 152 

Investigated cetaceans species 153 

Striped dolphin (Stenella coeruleoalba, Meyen, 1833) 154 

The striped dolphin is a cosmopolitan species, preferentially inhabiting highly productive 155 

waters off the continental shelf (Perrin at al., 1994a; Notarbartolo di Sciara et al., 1993; Forcada 156 

et al., 1994; Frantzis et al., 2003; Gannier, 2005). In the Mediterranean Sea, S. coeruleoalba is 157 

distributed both inshore and offshore (Aguilar, 2000; Gaspari et al., 2007). The striped dolphin 158 

(S. coeruleoalba) is the most abundant cetacean species in the western Mediterranean with a 159 

decreasing W-E gradient in the abundance observed, probably reflecting the reducing in the 160 

productivity of the easternmost basins (Notarbartolo di Sciara and Birkun, 2010). 161 

The Red List of the IUCN classifies Mediterranean striped dolphin Mediterranenan 162 

subpopulation as vulnerable since it is suspected a 30% reduction in population size occurred 163 

over the last three generations due to a decline in quality of habitat, affecting food availability, 164 

incidental mortality in fisheries and the effects of pathogens and pollutants  (Aguilar and 165 

Gaspari, 2012; Notarbartolo di Sciara et al., 2007).  166 

 167 

Bottlenose dolphin (Tursiops truncatus) 168 

The bottlenose dolphin consists of two ecotypes, one coastal and the other pelagic with 169 

different morphological and ecological characteristics (Mead and Potter, 1995; Notarbartolo di 170 

Sciara and Demma, 2004; Reeves and Notarbartolo di Sciara, 2006). In the Mediterranean Sea, 171 

T. truncatus is preferentially distributed within the limits of the continental shelf, also 172 

inhabiting estuaries, bays and lagoons and generally show a residential attitude (Reynolds et 173 

al. 2000, Wells and Scott, 2002; Bearzi et al., 2008). However, the bottlenose dolphin can be also 174 

found in deeper waters above the shelf-break in the western Mediterranean (Forcada et al., 175 



2004; Cañadas and Hammond, 2006). The bottlenose dolphin generally constitutes small 176 

groups, which tends to be wider passing from coastal to offshore waters (Bearzi et al., 1997; 177 

Cañadas and Hammond, 2006). The shallow water preference of the bottlenose dolphin could 178 

be related to the feeding habits of the species, preying mostly on benthic and demersal fishes. 179 

Due to these attitude T. truncatus is subjected to various anthropogenic threats and then it has 180 

been included in the IUCN red list of threatened species being listed among species under the 181 

“least concern” category and classified as Vulnerable in the last IUCN report on the Status of 182 

Cetaceans in the Mediterranean and Black Sea (Marini et al., 2015; Reeves and Notarbartolo di 183 

Sciara, 2006). 184 

 185 

Data collection 186 

Data employed for the development of the prediction models were collected in a specific sector 187 

of the Gulf of Taranto (hereinafter named “survey area”, Figure 1) 640 km2 wide. The survey 188 

area was selected both for the heterogeneity of forcing factors acting in this specific sector of 189 

the Gulf of Taranto and for logistics reasons since it is comprised between the harbors of 190 

Taranto and Policoro allowing daily trips of the area. Further sightings (validation dataset), 191 

beyond those collected in the survey area and collected in other, independent research 192 

campaigns, have been employed for the validation of the presence/absence prediction when 193 

projected on the whole study area. 194 
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 195 

 196 

Figure 1 – Map of the study area located in the Gulf of Taranto (Northern Ionian Sea, Central 197 

Mediterranean Sea) with main isobaths. The survey area is marked in green. 198 

 199 

Sightings of both S. coeruleoalba and T. truncatus were collected according to a standardized 200 

vessel-based survey carried out from 2009 to 2015. In particular, until 2012 surveys were 201 

carried out with a rib boat, replaced by means of a 12 m catamaran in the following years. The 202 

sampling effort was set to about 5 h/days along 35 nautical miles. Speed was maintained 203 

between 7 and 8 knots and trips occurred only in favorable weather conditions (Douglas scale 204 

≤ 3 and Beaufort scale ≤4). Sightings data for both S. coeruleoalba and T. truncatus were 205 

collected following the line transect distance sampling according to the methodology proposed 206 

in Buckland et al. (2001). In particular, the random transect was adopted using the software 207 

Distance 6.0 (Thomas et al., 2010), with an equal coverage probability design in each sampling 208 

area. The observation team on board consisted at least of three people with specific experience 209 



in the recognition of marine mammals. One was an independent observer searching for targets 210 

around 180°, while the others searched in a sector from the track-line to 90°. Observer teams 211 

rotated each 90 minutes. Once a target was sighted, 7×50 binoculars were used to identify 212 

species and in the meanwhile during sightings, observers were recommended to adopt 213 

responsible behavior in order to prevent collisions and possible injuries to dolphins. Observers 214 

had to maintain a minimum safe distance of 5–10 m from dolphins lowering speed or 215 

interrupting navigation. In order to verify identification of the species, video-photo records 216 

were gathered. Documents were focused on body markers. Date, daytime, sea weather 217 

conditions, geographic coordinates, depth (m), group size, perpendicular distance (in NM) of 218 

the target to the track-line and behavior were recorded. 219 

 220 

Data processing 221 

The entire Gulf of Taranto area was divided into a regular grid composed by 109720 square 222 

cells (422 horizontal and 260 vertical cells)) of about 450 x 450 m. A dependent variable 223 

(response) is assigned to each cell identifying the cell as a presence cell if at least a sighting 224 

occurred (absence cell otherwise). Moreover, a set of 8 explanatory variables were calculated 225 

as reported in Table 1. 226 

 227 

Table 1: Description of the explanatory variables applied for the determination of striped and 228 

bottlenose dolphins’ distributions 229 

Variable Calculation method Acronym 

Depth 

Depth values are derived from EMODnet 

Bathymetry dataset provided by the 

European Marine Observation and Data 

Depth 



Network 

(http://www.emodnet.eu/bathymetry) 

Slope 
Maximum rate of depth variation between 

adjacent cells 
Slope 

Distance from coast 
Minimum distance of the cell center from 

the coastline 
Coast 

Distance from canyon 

Minimum distance of the cell center from 

the main axes of the “Taranto Canyon” 

(Figure 2) 

Canyon 

Distance from navy 

exercise area 

Minimum distance of the cell center from 

the areas of navy exercises (Figure 2) 
Navy 

Distance from the 

merchant shipping routes  

Minimum distance of the cell center from 

the main merchant routes recorded 

towards the Taranto harbor (Figure 2) 

Commercial 

Distance from fisheries  

Minimum distance of the cell center from 

the areas with recorded trawl fishing 

effort  

Fishery 

Distance from the 

industrial area 

Minimum distance of the cell center from 

the areas identified as specifically 

addressed to heavy industrial activities 

(Figure 2) 

Industry 

 230 

Some of the adopted explanatory variables were already applied in many studies on the 231 

distribution of dolphins and whales (Bailey and Thompson, 2006; Torres et al. 2008; Marini et 232 

al., 2015; Panigada et al., 2008; Azzellino et al., 2008; Fiori et al., 2014). A few explanatory 233 



variables have been specifically introduced in this study due to the peculiarity of the area and 234 

the strong anthropic features of the Gulf of Taranto (i.e. navy, commercial, fishery and 235 

industry). These latter are here considered as proxies of impacts and disturbances that may 236 

have an influence on shaping the distribution of cetaceans. In particular, distance from the 237 

industrial area is intended as a proxy of the pollution effect on cetaceans’ distribution, 238 

distance from the commercial routes and from areas of navy exercises are employed as 239 

measures of the effect of noise disturbance and, finally, distance from fisheries as a measure of 240 

the competition or synergies for the food resources. 241 

 242 

Figure 2 – Location of canyon main axes as identified by Senatore (1987) and anthropic variables 243 

identified in the study area. 244 

 245 

Spatial analyzes 246 

Usually, techniques applied for modeling the spatial distribution of dolphin and whales are 247 

based on the collection of presence-absence data. But, obtaining reliable and accurate absence 248 

data for cetaceans is problematic due to their mobility and ability to spend underwater time 249 

being undetectable to observers. Thus, although recurrent samplings may reduce this 250 

uncertainty, the separation of true from false absences is difficult and leads to uncertainty when 251 



interpreting results (Hall, 2000; Martin et al., 2005). In fact, the inclusion of false absences in 252 

predictive modeling could substantially bias analysis (Hirzel et al. 2002), indicating the need of 253 

the use of alternative approaches to modeling spatial distribution of species when there is no 254 

reliable absence data (zero inflated). Statistical adjustment to face this intrinsic uncertainty 255 

have been developed and, to this aim, in this study we applied a zero inflated correction recently 256 

proposed and applied in similar studies (Azzellino et al., 2012; Fiori et al., 2014; Marini et al., 257 

2015). It consists in the selection of random sets of cells where the number of absence cells was 258 

equal to the number of presence cells. This approach is reported to satisfactorily cope with 259 

zero-inflated data avoiding the application of more sophisticated methods such as the hurdle-260 

Negative Binomial and zero-inflated mixture-Negative Binomial models (Hall, 2000). In fact, the 261 

adopted procedure has the advantage to carry into the analysis a unique zero inflated 262 

correction that could be applied to both GAM and RF modeling, avoiding the introduction of 263 

further differentiations among methodologies. 264 

Errore. L'origine riferimento non è stata trovata.Errore. L'origine riferimento non è stata 265 

trovata. 266 
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 273 

Generalized additive model 274 

A statistical approach based on additive model (GAM) was applied to determine if the selected 275 

variables affect the distribution of S. coeruleoalba and T. truncatus in the study area. When data 276 

are related to certain variables but the relationships fall to be simply linear, additive modeling 277 

may be a useful tool to improve predictive accuracy. GAM relates the dependent variable to a 278 

combination of functions of explanatory variables. The coefficients of the combination are 279 

identified in order to generate the best fit (maximum likelihood) between the model outputs 280 

and the calibration data set (Hastie and Tibshirani, 1990). GAM technique was recently 281 

employed to model cetaceans distribution (Forney et al., 2012; Tardin et al., 2013) and in some 282 

cases also at Mediterranean level (i.e. Tepsich et al., 2014, Marini et al., 2015). 283 

The dependent variable in this study was spatial distribution of the presence of striped and 284 

bottlenose dolphins in each cell Yi (binominal variable, i.e. presence or absence) where 1 is the 285 

presence and 0 is the absence. As a consequence, the presence/absence of dolphins in each 286 

spatial cell (Yi) follows a Bernoulli distribution with Pi (probability of presence/absence) and 287 

can be specified as:  288 

Yi= B (1, Pi)  289 

where Pi=𝑃𝑖 = 𝑒𝑔(𝑥𝑖) (1 − 𝑒𝑔(𝑥𝑖))⁄  being Pi comprised between 0 and 1 and where g(xi)= α+fj(xj) 290 

+...+ fn(xn) is a combination of smoothing functions (splines) fj(xj) of explanatory variables 291 

(smoothers). xj are the explanatory variables, that in our case are: depth, slope and distance 292 

from coast, canyon, industry, fisheries, commercial routes and navy exercise areas. fj are the 293 

best smoothing functions, that were estimated by maximum likelihood and that are a fit of data 294 

most representative than a straight line. 295 

Generalized additive models (GAM) allow a data driven approach by fitting smoothed non-296 

linear functions of explanatory variables without imposing parametric constraints (Hastie and 297 



Tibshirani, 1990). The greatest benefit of using GAMs resides in their flexibility in capturing 298 

non-linear species-habitat relationships. In GAM, there is a link function used to establish a 299 

relationship between the mean of response variable and the smooth function of explanatory 300 

variable. As a consequence, the association between response and explanatory variables 301 

derives from data itself and not from the model, because it does not assume any kind of 302 

parametric assumption (Yee and Mitchel, 1991).  303 

In this study GAM regression and smoother terms were derived using penalized regression 304 

splines using the MGCV library for freeware R (Wood, 2006) with a binomial distribution 305 

(family=binomial, link function=logit) of dependent variable (presence/absence of cetaceans in 306 

each spatial cell). Smoothness selection was based on an Un-Biased Risk Estimator (UBRE). 307 

The numerical output of the model show significant variables, selected by means of a chi-308 

squared test with a significance level for the selection of the explanatory variable fixed at 5%. 309 

Significant explanatory variables were selected by means of a Backward Elimination method 310 

that starts from a model of size p (being p the total number of variables) and eliminates not 311 

significant variables in a step by step procedure.When a variables is selected a significant non-312 

linear relationship exists within this variable and the presence/absence of cetaceans.  313 

Output presents also the degrees of freedom of a smoother, sometimes called effective number 314 

of parameters, is an indication of the amount of smoothing. The smoothers are calibrated so 315 

that a smoother with one degree of freedom gives an approximate straight line. The default 316 

value in R is for four degrees of freedom, which approximately coincides with the smoothing of 317 

a third-order polynomial (Zuur et al., 2007; Liu, 2008). 318 

The model also gives information about the deviance, that is the explained variance or the 319 

residual sum of squares. This is equivalent to the R2 in linear regression.  320 

To help visual interpretation smoothing curves, graphically representing the relationship 321 

between the response variable and the explanatory variables, are shown: the y-axis show the 322 



influence predicted by GAM on presence/absence of cetaceans in function of each smoother, 323 

whose range of variability is displayed on the x-axis. The higher is the y value in the smoothing 324 

curve, the more it is probable the presence of cetaceans in the corresponding value of the 325 

explanatory variable considered. 326 

 327 

Models’ performances verification 328 

Models performances were evaluated within the survey area for the verification of the model 329 

reliability. Performances were tested comparing predicted to observed values and reporting 330 

the true and false presences (a and b respectively in Table  Tabella) and the true and false 331 

absences (c and d respectively in  Table  Tabella) at different cut-off values (Allouche et al., 332 

2006). 333 

 334 

Table 3: An error matrix used to evaluate the predictive accuracy of presence-absence models. a, 335 

number of cells for which presence was correctly predicted by the model; b, number of cells for which 336 

the species was not found but the model predicted presence; c, number of cells for which the species 337 

was found but the model predicted absence; d, number of cells for which absence was correctly 338 

predicted by the model. 339 

 

Observed 

Presence Absence 

Predicted 
Presence a b 

Absence c d 

 340 

Values in Errore. L'origine riferimento non è stata trovata. allow the calculation of a set of 341 

model accuracy metrics among which sensitivity and specificity. Sensitivity is calculated as the 342 

ratio among true presences and total presences (a/(a+c)) and thus counting for the probability 343 



that the model will correctly classify a presence. Specificity is computed as the ratio among true 344 

absences and total absences (b/(b+d)) measuring the probability that the model will correctly 345 

classify an absence (Allouche et al., 2006). 346 

Despite commonly adopted, sensitivity and specificity have been also reported as often 347 

dependent upon prevalence (the overall proportion of presences). Recently, the true skill 348 

statistic (TSS=sensitivity+specificity-1), a new measure for the performance of presence–349 

absence distribution models, have been proposed and is expected to correct for this 350 

dependency (Allouche et al., 2006). 351 

To select the optimal cut-off probability value, we applied the Youden Index method (Fluss et 352 

al., 2005) applied to the receiver operating characteristic (ROC) curve (Fielding and Bell, 1997). 353 

ROC curve is obtained plotting false-positive rate (1-specificity) on the horizontal axis and the 354 

true-positive rate (sensitivity) on the vertical axis for various cut-off values. The Youden Index 355 

method allows the determination of the optimal cut-off point using the maximum vertical 356 

distance of ROC curve from the chance line (where false positive rate = true positive rate). In 357 

fact, Youden index maximizes the difference between sensitivity and 1-specificity. Thus, by 358 

maximizing Sensitivity + Specificity across various cut-off points, the optimal cut-off point is 359 

calculated (Hajian-Tilaki, 2013). Once the optimal cutoff was identified, the model is projected 360 

to the entire study area, the suitable habitat areas are plotted and validated with an 361 

independent set of data collected outside the survey area borders (validation dataset). 362 

 363 

Random forest 364 

Random Forest (RF) is based on regression tree methodology, able to model a response variable 365 

from a number of explanatory variables by subdividing a dataset in subgroups. Subgroups 366 

originate from recursive partitions based on decision rules that allow dividing successively 367 

each part into smaller data portions.  368 



This can be represented as a binary tree, a hierarchical structure formed by nodes and edges, 369 

the latter representing some sort of information flow between adjacent nodes (Figure 3). 370 

 371 

Figure 3: A complete binary tree with a set of three decision rules. 372 

 373 

The random forests (RF) are a classification technique of neural networks (Breiman, 2001) 374 

based on regression tree methodology. It differs, as it does not only grow a single tree, but a 375 

whole forest of trees.  376 

This is achieved by two means: (1) a random selection of explanatory variables is chosen to 377 

grow each tree and (2) each tree is based on a different random data subset, created by 378 

bootstrapping (Efron, 1979). Finally the “splitting” optimal in comparison with real data is 379 

identified and selected as predictor. 380 

The data portion used as training subset is known as the “in-bag” data, whereas the rest is called 381 

the “out-of-bag” data. The latter are not used to build the tree, but provide estimates of 382 

generalization errors (Breiman, 2001). The mean square error calculated from prediction with 383 

the test dataset averaged over all trees is called the out-of-bag error. As forest size increases, 384 

this generalization error always converges (Breiman, 2001). The number of trees therefore 385 

needs to be set sufficiently high (800 in this case). In particular, RF implicitly deals with over 386 

fitting issue as decision trees are fitted to random samples of the data. In addition, RF performs 387 

splits in random subsets of the variable space, allowing to predict distribution on the whole 388 

dataset (Kehoe et al., 2012).  389 



The rank importance of each explanatory variable is accounted as the changes in mean square 390 

error estimated by leaving a variable out of the model. After the most relevant variables were 391 

identified, the following step is consisted in studying the nature of the dependence between the 392 

response variable and each explanatory variable. Partial dependence plots were used to 393 

graphically characterize relationships between individual explanatory variables and predicted 394 

probabilities of presence obtained from RF (Hastie et al. 2001). 395 

 396 

Results 397 

A total of 334 daily trips for about 1670 hours of observations and 11690 nautical miles were 398 

carried out actively searching for S. coeruleoalba and T. truncatus in the Gulf of Taranto from 399 

2009 to 2014. In particular, a total of 287 and 37 sightings of striped dolphin and bottlenose 400 

dolphin were recorded, respectively (Table 4).  401 

 402 

Table 4: Sampling period, daily trips, survey effort, range of depth investigated and number of 403 

sightings of T. truncatus and S. coeruleoalba in the study area. 404 

Sampling period 
Daily 

trips 

Survey 

Effort 

(NM) 

Survey 

Effort 

(hours) 

Range 

Depth 

(m)  

Number of sightings 

          
Stenella 

coeruleoalba 

Tursiops 

truncatus 

April-August 2009 13 455 65 93-500 11 1 

April-August 2010 24 840 120 
180-

636 
27 3 

Commentato [P2]: Da rivederere a seguito dell’introduzione dei 

dati 2015 



January-

November 2011 
61 2135 305 15-665 54 9 

January-August 

2012 
50 1750 250 20-694 42 6 

June-December 

2013 
73 2555 365 6-882 64 5 

May-December 

2014 
113 3955 565 5-1000 89 13 

Total 334 11690 1670 
5-

1000 
287 37 

 405 

An information summary about sightings of striped dolphin and bottlenose dolphin is shown in 406 

Table 5. 407 

Stenella coeruleoalba resulted the most frequently sighted species (88.6% of total sightings) 408 

with a frequency occurrence between 0.84 to 1.13 from 2009 to 2014. Observations occurred 409 

with a mean aggregation number of 47±39 specimens, in a depth range between 15 and 1000 410 

m with a mean depth of 428±163 m. Encounter rate varied between 0.023 and 0.032 411 

Tursiops truncatus presented a percentage occurrence of total sightings of 11.4% and frequency 412 

occurrence between 0.07 to 0.15 from 2009 to 2014. Observations occurred with a mean 413 

aggregation number of 12±10 specimens, in a depth range between 5 m to 586 m with a mean 414 

depth recorded 141±157 m.  Encounter rate varied from 0.002 to 0.004. 415 

Table 5 416 

 417 

Table 5: Sampling period, encounter rate (sightings per survey effort in nm), frequency of occurrence 418 

(number of sightings per daily trip), mean aggregation number (number of individuals per sighting)  419 

Commentato [P3]: 2015 

Commentato [P4]: Da rivedere considerando 2015 



standard deviation ) and range of depth of sightings of S. coeruleoalba and T. truncatus, in the study 420 

area. 421 

  Stenella coeruleoalba Tursiops truncatus  

Samplin

g period 

Encount

er rate 

Frequen

cy of 

occurenc

e 

Mean 

aggregati

on 

number 

 

Rang

e 

dept

h 

(m) 

Encount

er rate  

Frequen

cy of 

occurenc

e 

Mean 

aggregatio

n number 

 

Rang

e 

dept

h 

(m) 

April-

August 

2009 

0.024 0.85 46 68  
200-

500 
0.002 0.08 10  93 

April-

August 

2010 

0.032 1.13 49 91  
200-

636 
0.004 0.13 11 1  

180-

419 

January-

Novemb

er 2011 

0.025 0.89 43 38  
15-

665 
0.004 0.15 16 61  

36-

586 

January-

August 

2012 

0.024 0.84 46 68  
22-

694 
0.003 0.12 21   

20-

500 

June-

Decembe

r 2013 

0.025 0.88 62 28  
117-

882 
0.002 0.07 6   

6-

421 



May-

Decembe

r 2014 

0.023 0.79 38 87  
144-

1000 
0.003 0.12 8   

5-

401 

GAM results 422 

GAMs developed for S. coeruleoalba and T. truncatus reached respectively 34.7% and 23.4% of 423 

explained deviance. S. coeruleoalba distribution resulted mainly affected by depth, distance from 424 

navy exercise area and distance from industrial areas; lower influence but still significant is shown 425 

by distance from fisheries (Table 6). Slope, distance from coast, distance from canyon, distance from 426 

the merchant shipping routes were not significant variables and then are not considered. The habitat 427 

identified by the GAM was characterized by depth over 250 m; distances from fishery areas exceeding 428 

32 km; distances from navy exercise area greater than 6 km and distance from industrial areas ranging 429 

from 5 to 25 km (Figure 4). 430 

Table 6: GAM numerical results, reported statistics include the estimated degrees of freedom 431 

(edf) and significant values of test based on model deviance. 432 

S. coeruleoalba  T. truncatus 

 Estimate Std. err. p-val   Estimate Std. err. p-val 

(Intercept) -2.130 0.1285 <0.001  (Intercept) -2.213 0.399 <0.001 

Approximate significance of smooth terms: 

 edf Chi.sq p-val   edf Chi.sq p-val 

f(fishery) 0.621 2.735 0.033  f(fishery) 0.887 7.501 0.036 

f(depth) 2.716 70.252 <0.001  f(depth) 0.705 2.926 0.004 

f(navy) 1.169 68.747 <0.001  f(industry) 2.658 10.839 0.001 

f(industry) 2.329 15.178 <0.001      

 433 
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 434 

Figure 4: Generalized additive model (GAM) predicted smooth splines of the response 435 

variable presence/absence of striped dolphin as a function of the explanatory variables (see 436 

Table 6). The degrees of freedom for non-linear fits are in parentheses on the y-axis. Tick 437 

marks above the x-axis indicate the distribution of sightings. Dotted lines represent the 95% 438 

confidence intervals of the smooth spline functions. 439 

 440 

T. truncatus distribution resulted mainly affected by distance from fishery, depth and distance from 441 

industry (Table 6). Slope, distance from coast, distance from canyon, distance from the merchant 442 

shipping routes, distance from navy exercise area were not significant variables and then are not 443 

considered. The GAM identified the T. truncatus habitat as characterized by depth lower than 300 m, 444 

distances from fishery areas lower than 10 km, and distance from industrial area ranging from 15 to 445 

25 km with a second peak at distances higher than 40 km (Figure 5). 446 

 447 



 448 

Figure 5: Generalized additive model (GAM) predicted smooth splines of the response variable 449 

presence/absence of bottlenose dolphin as a function of the explanatory variables (Table 6). The 450 

degrees of freedom for non-linear fits are in parentheses on the y-axis. Tick marks above the x-axis 451 

indicate the distribution of sightings. Dotted lines represent the 95% confidence intervals of the 452 

smooth spline functions. 453 

 454 

RF results 455 

Random forest identified the S. coeruleoalba distribution driven principally by depth, distance 456 

from industrial areas, distance from coast and distance from navy exercise areas (Figure 6A). 457 

On the contrary, slope and distance from fishery resulted poorly important for the 458 

determination of S. coeruleoalba distribution. 459 



 460 

Figure 6: Importance scores of the explanatory variables used in the models (A) striped dolphin; (B) 461 

bottlenose dolphin. Importance is quantified as % increase in mean square error of the RF model 462 

when that explanatory variable is removed. 463 

 464 

The univariate partial dependence plots are a tool to identify, for each considered variable, the range 465 

of optimal values expected to increase the presence probability (signature). The influence of depth 466 

values on the distribution of striped dolphin is shown in Figure 7A displaying an increasing presence 467 

probability at increasing depth reaching maximum values from 300 m depth. A threshold level is 468 

clearly detectable with very un-probable presence of striped dolphins at depth lower than 200m.  469 

The second most important explicative variable influencing the striped dolphin distribution is 470 

distance from industrial zone (Figure 7B) displaying a single presence probability peak 471 

between 10 and 25 km from industrial zone and very low presence probability at distances 472 

higher than 28 km. Distance from coastline influenced the striped dolphin distribution with 473 

very low probabilities at distances lower than 5 km and a steep increase in probability toward 474 

10 km where a plateau is reached and presence probability is maximized Figure 7C. Distance 475 

from navy exercise areas has again a relevant effect on striped dolphin distribution. In 476 

particular, a continuous increasing trend is detected with maximum presence probabilities 477 

detected at distances exceeding 18 km (Figure 7D). 478 



 479 

Figure 7: Univariate partial dependence plots of the depth (A), distance from the industrial area (B), 480 

distance from coast (C) and distance from navy exercise areas (D) for striped dolphin in the study 481 

area. 482 

 483 

Also T. truncatus distribution is mainly shaped by depth followed by distance from industrial 484 

area, distance from coast and distance from fisheries. Once again slope resulted poorly 485 

important to discriminate the distribution also for T. truncatus (Figure 6B). 486 

Depth resulted the most important explicative variable also for bottlenose dolphin and it 487 

revealed an increasing presence probability at depth lower than 300 m with the highest 488 

influence around the 100 m bathymetry (Figure 8A). Dependence from industrial areas 489 

revealed an increasing presence probability at increasing distance. Bottlenose dolphin revealed 490 

a trend with a clear threshold at 40 km and a sudden increase at higher distance (Figure 8B). 491 

Distance from coast has again a relevant effect on bottlenose dolphin distribution. Its influence 492 

displayed a clear presence probability increase at distance lower than 5 km (Figure 8C). Unlike 493 

striped dolphin, bottlenose dolphin resulted attracted by fisheries with a clear dependency 494 

from this variable and the tendency to stay in the close proximity to fishing areas. A threshold 495 



level is detectable with bottlenose dolphin, unlikely to be detected at distances higher than 5 496 

km from fishery activity (Figure 8Figure 8D). 497 

 498 

 499 

Figure 8: Univariate partial dependence plots of depth (A), distance from industrial areas (B), distance 500 

from coast (C) and distance from fishery area (D) for bottlenose dolphin in the study area. 501 

 502 

Models’ performances verification 503 

 504 

Models’ reliabilities have been tested within the survey area considering the ability of the 505 

predicted distribution to correctly identify the habitat of the considered species. The Youden 506 

Index method applied to ROC curves was applied to recognize habitat versus non-habitat areas. 507 

The optimal cut-off values and a set of predictive accuracy metrics are reported in Table 7  for 508 

each model and for each species. 509 



 510 

 511 

Table 7: Measures of predictive accuracy calculated as reported in Errore. L'origine riferimento 512 

non è stata trovata.. 513 

  Cut-off Sensitivity Specificity TSS 

GAM 
SC 0.30 0.74 0.78 0.52 

TT 0.26 0.72 0.77 0.49 

RF 
SC 0.51 0.97 0.95 0.92 

TT 0.52 0.95 0.94 0.89 

 514 

The most reliable model is expected to show the highest values of sensitivity, specificity and 515 

TSS thus being able to correctly identify both presences and absences of considered species. RF 516 

resulted the most reliable model for both striped and bottlenose dolphin.  517 

The information provided by RF prediction together with the selection of the cut-off values 518 

allowed the projection of the expected presence/absence pattern of striped and bottlenose 519 

dolphins in the entire study area and produced the identification of habitat versus non habitat 520 

map reported in Figure 9.  521 



 522 

Figure 9: identification of habitat areas for striped dolphin (blue) and bottlenose dolphin (red). 523 

 524 

RF predicted striped dolphin widely present in the central part of the Gulf of Taranto while  525 

bottlenose dolphin resulted mainly distributed along the coast with clear coastal hot spots in 526 

the western sector and favorable areas moved slightly offshore in the eastern sector, probably 527 

allowed by the wider platform present in this sector of the Gulf of Taranto. A clear separation 528 

of the habitat is showed with a couple of exception in front of the Policoro harbor and in the 529 

south-western sector. 530 

The reliability of the projection on the entire study area has been tested considering the 531 

distribution of sightings collected as validation dataset and resulting in true presence rates of 532 

0.73 and 0.77 for striped dolphin and bottlenose dolphin respectively. 533 

 534 

Discussion 535 

This study aimed at developing a reliable habitat modeling procedure suite for the 536 

characterization of striped and bottlenose dolphin distribution in the Gulf of Taranto. By means 537 

of the application of two different models (GAM and RF) three main results were obtained: 1) 538 

to identify most relevant explanatory variables among a set initially chosen 2) to test the 539 



reliability of different regression techniques, and 3) to identify areas to be considered as 540 

suitable habitat for dolphins in the Gulf. 541 

Table 7 542 

Human activities, and in turn impacts originating from them, are able to influence the cetaceans 543 

distribution both directly and indirectly. Among the eight considered variables some are able 544 

to directly influence the distribution (e.g. commercial routes with collision risk) or indirectly 545 

by acting upon other biotic (e.g. fishery activity with competition for feed resources) or abiotic 546 

factors (e.g. navy exercise, commercial routes and industrial zone generating noise and 547 

pollution). 548 

Nonetheless variables employed, depth, distance from industry and distance from coast, turned 549 

out to significantly affect the distribution of both striped dolphin and bottlenose dolphin. On 550 

the contrary slope, which is commonly applied in other studies on cetaceans’ distribution 551 

(Cañadas et al., 2002; Cañadas et al., 2005; Pirotta et al., 2011; Azzellino et al., 2012) never 552 

brought significant improvement to predicted distribution together with the distance from 553 

commercial routes. 554 

For both species, two out of four among the most important variables identified during the 555 

analysis resulted dependent on human presence and activities. This finding highlighted how 556 

heavily  human activities act as driving forces in shaping the habitat of marine species 557 

outclassing natural, geomorphological parameters that would normally shape the habitat of an 558 

undisturbed species.  559 

Among anthropic variables, distance from industrial zones resulted the most important for the 560 

determination of the distribution of the considered species. Both species never showed the 561 

peak of probability values close to the industrial areas confirming the existence of these activity 562 

as disturbing the distribution of both striped and bottlenose dolphin.    563 



Bottlenose dolphin distribution is also significantly affected by the distance from fishery 564 

activities, while striped dolphin resulted unaffected by this variable. In particular, bottlenose 565 

dolphin presence resulted particularly probable closer to fishery activity with a sudden 566 

increase in presence probability for distances lower than 5 km. This is in accord with what 567 

expected since only bottlenose dolphin have been reported as possibly attracted by fishery due 568 

to the ability of this species to prey on fish nets (Fertl and Leatherwood 1997; Corkeron et al. 569 

1990; Pace et al. 2003; Chilvers and Corkeron 2001; Wells and Scott 2009; Lauriano et al. 2004; 570 

Diaz Lopez 2006; Brotons et al. 2008).  571 

On the other hand striped dolphin showed a significant dependency on the distance from navy 572 

exercise areas displaying the tendency to be more present at increasing distance and thus to 573 

move away from this possible disturbance. 574 

Depth and distance from coast resulted the only geomorphologic variables significantly 575 

affecting the distribution of both species. In the study area striped dolphin distribution is 576 

predicted mainly at depth higher than 350 m and distance from coast greater than 10 km while 577 

bottlenose dolphin distribution resulted concentrated near the 100 m isobath and rarely at 578 

depth higher than 200 m coupled with distances from coast unlikely to be greater than 5 km. 579 

This is in accord with other studies on S. coeruleoalba and T. truncatus habitat distribution in 580 

Mediterranean such as Cañadas et al. (2002) and Azzellino et al. (2012), who demonstrated that 581 

T. truncatus prefer coastal areas within 400 m while S. coeruleoalba presence probability is 582 

expected to increase around 1600-2000 m of depth and thus beyond the continental shelf. 583 

Regarding the applied modeling techniques, RF displayed better ability to cope with the observed 584 

distribution of both striped dolphin and bottlenose dolphin (Table 7) confirming findings of other 585 

researches (Cutler et al., 2007; Virkkala et al., 2010). RF is based on multiple individual classification 586 

and regression trees: this technique has already been used successfully for environmental mapping 587 

and management (Pesch et al., 2011; Parravicini et al., 2012) and for characterizing bottlenose 588 



distribution (Marini et al., 2015) also because it is particularly appropriate in identifying and modeling 589 

complex interactions among multiple variables (Loh, 2008). 590 

Conclusion 591 

To do  592 
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