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In this paper we consider nested (decreasing and increasing) sequences of stars or 
starshaped sets in Banach spaces. The intersection, if decreasing, and the closure 
of the union, if increasing, are studied with regards to the preservation of these 
properties. Among other results we show that the closure of an increasing sequence 
of stars is a star if and only if the sequence of their centers is weakly convergent. 
Similar results, for starshaped sets, are true exactly in reflexive spaces.
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1. Introduction

Let X be a real Banach space. We will denote by B(X) its closed unit ball. Here c0, l1 and c stand 
for the classical sequence spaces with their natural norm and {en} stands for their standard basis. The 
closure, the convex hull and the closed convex hull of A will be denoted, respectively, by A, co(A), and 
co(A). A nonempty set S ⊂ X is said to be balanced if tS ⊂ S for every t ∈ [−1, 1]. A nonempty, closed and 
bounded set S ⊂ X is said to be a star if there exists a c ∈ S, called center of S, such that S−c is balanced. 
A nonempty, closed and bounded set C ⊂ X is called starshaped, and c is a center, if C =

⋃
x∈C [c, x] where 

[c, x] denotes the closed segment (whereas (c, x) is the open segment). For a starshaped set C, its kernel, 
that we shall denote by ker(C), is the set of centers of C. Few basic properties concerning the sets we 
are considering are straightforward: stars sets are starshaped and the kernel of a starshaped set is always 
convex. It is also simple to see that the center of a bounded star is unique. Contrary to convex sets, closed 
stars and starshaped sets are not, in general, weakly closed: consider, for example in the Banach space l1, 
the set S =

⋃
n [−en, en].

Properties of decreasing sequences of sets have been considered in many cases: for example in every 
Banach space, every decreasing sequence of balls has nonempty intersection. Another well known property 
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involving sequences of convex sets is the following: a convex, closed set C is weakly compact if and only if 
every decreasing sequence of closed convex sets in C has nonempty intersection.

In this paper we consider “monotone” (increasing or decreasing) sequences of stars, or starshaped sets. 
We completely characterize what happens for their union or intersection: namely, we indicate in which 
spaces the union or the intersection of sets in one of these classes have the corresponding property.

2. Increasing sequences of starshaped sets

In this section we assume that {Cn} is a uniformly bounded (UB for short) sequence of starshaped sets, 
that is 

⋃
Cn is a bounded set. If we neglect the (UB) property the next simple example shows that also in 

the plane the set 
⋃
Cn need not to be starshaped.

Example 2.1. Consider Tk =
{
(x, y) ∈ R2 : max(0, k − x) ≤ y ≤ min(k, k + 1 − x)

}
and Cn =

⋃n
k=1 Tk. 

Then Cn are starshaped with:

ker(Cn) =
{
(x, y) ∈ R2 : max(0, n− x) ≤ y ≤ min(1, n + 1 − x)

}
.

It is easy to check that 
⋃

Cn is not starshaped.

The next two examples show that also with the (UB) condition the closure of an increasing sequence of 
starshaped sets could loose this property.

Example 2.2. Consider the increasing, (UB) sequence of starshaped sets:

Cn = {x ∈ c0 : 0 ≤ xk ≤ 1 for 1 ≤ k ≤ n with max xk = 1, xk = 0 for k ≥ n + 1}.

Then ker(Cn) = {(1, 1, · · · , 1, 0, 0, · · · )} and C =
⋃

Cn is the subset of c0 of all sequences with all compo-
nents in [0, 1] and at least one component equal to 1. The set C is not starshaped: by contradiction, let be 
a sequence c = {cn} ∈ c0 in ker(C) and suppose cn0 < 1. The elements of the standard vector basis {en}
are in C but the segment (c, en0) is not contained in C since no coordinate is equal to 1.

Example 2.3. Consider the following subsets Cn of B(l1): x = {xk} ∈ Cn if the following conditions are 
satisfied:

1) xk ≥ 0 for every k.
2)

∑n
k=1 xk = 1.

3) either xk ≤ 1
k for k = 1, 2, · · ·n, or if N = max

{
j ∈ {1, · · · , n} : xj >

1
j

}
we have x1 = x2 = · · · = xN−1.

Then it is easy to verify that Cn is an increasing (UB) sequence of starshaped sets with ( 1
n , 

1
n , · · · , 

1
n ,

0, · · · ) ∈ ker(Cn). The set C =
⋃

Cn is not starshaped: by contradiction, suppose that c = {cn} is a 
sequence in ker(C). We can suppose that cn < 1 and since λc + (1 − λ)en is in C, for λ small enough we 
have that λcn + 1 − λ > 1

n , and this implies that c1 = c2 = · · · = cn−1. Since n is arbitrary we obtain that 
c = 0: an absurdity.

The last example can be generalized to any arbitrary nonreflexive space:

Proposition 2.4. In every nonreflexive space there exists an increasing (UB) sequence of starshaped sets such 
that 

⋃
Cn is not starshaped.
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Proof. By James’ theorem (see for instance [6, Th. 10.3]) if X is a nonreflexive space there exist ε > 0, 
{xn} ⊂ B(X) and {x∗

n} ⊂ B(X∗) such that x∗
k(xi) ≥ ε for k ≤ i and x∗

k(xi) = 0 for k > i. Similarly to the 
last example we consider the sets Cn; a vector x ∈ X belongs to Cn if

1. x =
∑n

k=1 λkxk with 0 ≤ λk and 
∑n

k=1 λk = 1.
2. either λk ≤ 1

k for k = 1, 2, · · ·n or if N = max
{
j ∈ {1, · · · , n} : λj >

1
j

}
we have λ1 = λ2 = · · · = λN−1.

Again {Cn} is an increasing (UB) sequence of starshaped sets but 
⋃

Cn is not a starshaped set. �
In both Examples 2.2 and 2.3 it is easy to verify that no sequence of centers is weakly convergent. The 

next theorem shows that this is a sufficient condition for an increasing nested sequence of (UB) starshaped 
sets to have the closure of the union starshaped. We start with a simple lemma:

Lemma 2.1. Let {Cn} be an increasing (UB) sequence of starshaped sets and n1 < n2 < · · · < nk. Then, if 
y ∈ Cn1 and cnj

∈ ker(Cnj
) (for j = 1, 2, · · · , k), we have co(y, cn1 , cn2 , · · · , cnk−1 , cnk

) ⊂ Cnk
.

Proof. Let y ∈ Cn1 and cn1 ∈ ker(Cn1), then [y, cn1 ] ⊂ Cn1 . Let cn2 ∈ Cn2 . Since for a convex combination, 
we have

λ1y + λ2cn1 + λ3cn2 = (1 − λ3)
(

λ1

λ1 + λ2
y + λ2

λ1 + λ2
cn1

)
+ λ3cn2

it follows that co(y, cn1 , cn2) ⊂ Cn2 . The lemma follows easily by induction. �
Theorem 2.1. Let {Cn} be an increasing (UB) sequence of starshaped sets with cn ∈ ker(Cn). Then, if {cn}
has a subsequence weakly convergent to c, then the set 

⋃
Cn is starshaped and c ∈ ker(

⋃
Cn).

Proof. Since 
⋃
Cn =

⋃
Cnk

we can suppose that cn is weakly convergent to c. Moreover by Mazur lemma, 
we have that for every n, c ∈ co(cn, cn+1, · · · ) and by the previous lemma, this implies that c ∈

⋃
Cn. 

Finally suppose y ∈
⋃
Cn and let z ∈ [c, y], say z = λy+(1 −λ)c. There exists ȳ ∈ CN such that ‖ȳ−y‖ < ε

and similarly there exists c̄ ∈ co(cN , cN+1, · · · , cm) ⊂ Cm such that ‖c̄− c‖ < ε. Define z̄ = λȳ + (1 − λ)c̄. 
Then by the Lemma 2.1 z̄ ∈ Cm and

‖z̄ − z‖ ≤ λ‖ȳ − y‖ + (1 − λ)‖c̄− c‖ < ε

So [y, c] ⊂
⋃

Cn. �
Since for (UB) increasing sequence {Cn} every sequence of elements in the kernels is bounded, we have 

the following:

Corollary 2.5. Let be X a reflexive space and {Cn} an increasing (UB) sequence of starshaped sets. Then ⋃
Cn is a starshaped set.

Next result shows that, in nonreflexive spaces, if we add the hypothesis that 
⋃
Cn is starshaped then not 

necessarily a sequence of points in their kernels is weakly convergent.

Proposition 2.6. In every nonreflexive space X there exists an increasing (UB) sequence {Cn} of starshaped 
sets such that 

⋃
Cn is starshaped but no sequence in the kernels of {Cn} is weakly convergent.
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Proof. Let X be a nonreflexive space and Cn = co(x1, x2, · · · , xn) 
⋃

[xn, xn+1], where {xn} is a sequence 
in B(X) of linearly independent vectors without weakly convergent subsequences. Every Cn is starshaped 
with ker(Cn) = {xn} and 

⋃
Cn = co(x1, x2, · · · ) is clearly a starshaped set. �

We conclude this section by indicating the following nice characterization of reflexive spaces: it springs 
immediately from the last results.

Theorem 2.2. A Banach space is reflexive if and only if for any increasing (UB) sequence {Cn} of starshaped 
sets, the closure of their union is starshaped if and only if the kernels of {Cn} have a weakly convergent 
subsequence.

3. Decreasing sequences of starshaped sets

Decreasing sequences of starshaped sets and their intersections are already considered in the literature. 
In [1, (2.5)] the authors proved the following result:

Theorem 3.1. If X is a nonreflexive Banach space then each nonempty bounded weakly compact subset of X
is the intersection of a decreasing sequence of weakly closed starshaped sets.

We can use the same method of the previous section to obtain a similar description for the intersection 
of starshaped sequences.

Lemma 3.1. Let {Cn} be a decreasing sequence of starshaped sets and n1 < n2 < · · · < nk. Then, if 
cnj

∈ ker(Cnj
) for j = 1, 2, · · · , k and y ∈ Cnk

we have co(y, cn1 , cn2 , · · · , cnk−1 , cnk
) ⊂ Cn1 .

Proof. Suppose that cnk
∈ ker(Cnk

). Then [y, cnk
] ⊂ Cnk

an so co(y, cnk
, cnk−1) ⊂ Cnk−1 . The claim follows 

easily by induction. �
The following result may be proved in much the same way as Theorem 2.1 simply replacing Lemma 2.1

with Lemma 3.1.

Theorem 3.2. Assume that {Cn} is a decreasing sequence of starshaped sets and consider cn ∈ ker(Cn). If 
{cn} has a subsequence weakly convergent to c, then 

⋂
Cn is a nonempty starshaped set and c ∈ ker(

⋂
Cn).

As a consequence of this theorem and Theorem 3.1 we obtain the following result, which slightly gener-
alizes [3, (4.2)].

Corollary 3.1. A Banach space X is a reflexive space if and only if every decreasing intersection of starshaped 
sets is a nonempty starshaped set.

4. Increasing sequences of stars

In this Section we consider (UB) increasing sequences {Sn} of stars and we denote by {sn} the sequence 
of their (unique) centers. The first result is the analogue of Theorem 2.1 (or Theorem 3.2). We omit its 
proof since it can be obtained simply adapting the technique used in Theorem 2.1.

Theorem 4.1. Consider an increasing, (UB) sequence of stars {Sn}, and let {sn} the sequence of their 
centers. If snk

→ s weakly then 
⋃
Sn is a star and s is its center.
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A simple example shows that, in general, the closure of the union of an increasing (UB) sequence of stars 
need not be a star:

Example 4.1. Consider the sets: Sn = {x ∈ c0 : 0 ≤ xk ≤ 1 for 1 ≤ k ≤ n , xk = 0 for k > n}. Then they 
are stars with centers sn = (1/2, 1/2, · · · , 1/2, 0, 0 · · · ). Clearly 

⋃
Sn is a convex set but not a star.

Next result shows that the previous example is, in some sense, the only possible example. To prove this 
we recall two fundamental results of Rosenthal (see [5] and [4]):

Theorem 4.2 (First Rosenthal’s Theorem). Every bounded sequence in a Banach space has either a weak-
Cauchy subsequence, or a subsequence equivalent to the standard l1 − basis.

Theorem 4.3 (Second Rosenthal’s Theorem). Every non-trivial weak-Cauchy sequence in a Banach space 
has either a strongly summing subsequence, or a convex block basis equivalent to the summing basis.

We recall that a sequence {xn} in a Banach space is called strongly summing if {xn} is weak-Cauchy 
so that whenever {αn} is a sequence of scalars satisfying supn ‖ 

∑n
j=1 αjxj‖ < ∞, then 

∑
αn converges.

Theorem 4.4. Suppose that {Sn} a sequence in a Banach space X of increasing (UB) stars such that 
⋃

Sn

is not a star. Then X contains c0.

Proof. Consider the sequence {sn} of centers of {Sn} and assume that n1 < n2 < · · · < nk. Then sn1 ∈
Sn1 ⊂ Sn2 and this implies that 2sn2 − sn1 ∈ Sn2 ⊂ Sn3 . So 2sn3 − 2sn2 + sn1 ∈ Sn3 . By a simple iteration 
we obtain that

2snk
− 2snk−1 + 2snk−2 − · · · ± 2sn2 ∓ sn1 ∈ Snk

.

Moreover since {Sn} is uniformly bounded there exists a constant M such that
∥∥2snk

− 2snk−1 + 2snk−2 − · · · ± 2sn2 ∓ sn1

∥∥ < M (4.1)

By Theorem 4.1 {sn} has no weakly convergent subsequence and so by the first Rosenthal’s theorem 
{sn} has a subsequence equivalent to the standard basis of l1 or has a weak-Cauchy subsequence. Clearly, 
by (4.1) no subsequence of {sn} is equivalent to the standard basis of l1. So we can suppose that {sn} has a 
non trivial weak-Cauchy subsequence. By the second Rosenthal’s theorem this subsequence has a “strongly 
summing subsequence” or a “convex block basis” equivalent to the summing basis. Again, by (4.1), no 
subsequence of {sn} can be strongly summing. This implies that a convex block of {sn} spans a subspace 
isomorphic to c0. �

Since a convex block of centers belongs to suitable Sn we can state the following:

Corollary 4.2. Suppose that {Sn} is an increasing, (UB) sequence of stars such that 
⋃

Sn is not a star. 
Then there exists a sequence {xn}, with xn ∈ Sn, equivalent to the summing basis of c0.

Proposition 2.6 shows that in every nonreflexive space X there exists an increasing (UB) sequence {Cn}
of starshaped sets such that 

⋃
Cn is starshaped but no sequence with elements in their kernels is weakly 

convergent. We show that for increasing sequences of stars the situation is different.

Theorem 4.5. Suppose that {Sn} is an increasing (UB) sequence of stars, with centers sn ∈ Sn, bounded by a 
constant M, and such that 

⋃
Sn is a star. Then there exists a subsequence of {sn} which is Cesaro-summable.
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Proof. Let be s the center of S =
⋃
Sn. Then there exists y1 ∈ Sn1 such that ‖s − y1‖ ≤ 1/2. Since 

2sn1 − y1 ∈ Sn1 ⊂ S we have: 2s − (2sn1 − y1) ∈ S. So there exists y2 ∈ Sn2 (with n1 < n2) such that 
‖ [2s− (2sn1 − y1)] − y2‖ ≤ 1/4. Again, since 2sn2 − y2 ∈ Sn2 ⊂ S we have: 2s − (2sn2 − y2) ∈ S. So there 
exists y3 ∈ Sn3 (with n2 < n3) such that ‖ [2s− (2sn2 − y2)] − y3‖ ≤ 1/8. Notice that:

‖5s− 2sn1 − 2sn2‖ = ‖(2s− 2sn2 + y2 − y3) + (2s− 2sn1 + y1 − y2) + (s− y1) + y3‖ ≤
≤ ‖2s− 2sn2 + y2 − y3‖ + ‖2s− 2sn1 + y1 − y2‖ + ‖s− y1‖ + ‖y3‖ ≤

≤ 1/8 + 1/4 + 1/2 + ‖y3‖ < 1 + M.

Clearly by induction we obtain:

‖(2k + 1)s− 2(sn1 + sn2 + · · · + snk
)‖ < 1 + ‖ynk

‖ < 1 + M. (4.2)

From this we obtain s = limk→∞
2

2k+1
∑k

j=1 snj
. �

Theorem 4.6. If 
⋃

Sn is a star then there exists a subsequence of {sn} weakly convergent to the center s of ⋃
Sn.

Proof. By Theorem 4.4 and Theorem 4.5 we can suppose that there exists a subsequence of {sn} which is 
weak-Cauchy and such that s = limn→∞

2
2n+1

∑n
k=1 sk. Let x∗ ∈ X∗ and N such that, for every n ≥ N we 

have | x∗(sn) − x∗(sN ) |< ε. So:

| x∗(s) − x∗(sN ) |=
∣∣∣∣∣ lim
n→∞

(
2

2n + 1

(
n∑

k=1

(x∗(sk) − x∗(sN ))
)

− x∗(sN )
2n + 1

)∣∣∣∣∣ ≤
≤ 2

∣∣∣∣∣ lim
n→∞

∑N
k=1 (x∗(sk) − x∗(sN )) +

∑n
k=N+1 (x∗(sk) − x∗(sN ))

2n + 1

∣∣∣∣∣ + lim
n→∞

∣∣∣∣x∗(sN )
2n + 1

∣∣∣∣ ≤
≤ 2 lim

n→∞

∣∣∣∣∣
∑N

k=1 (x∗(sk) − x∗(sN ))
2n + 1

∣∣∣∣∣ + 2 lim
n→∞

∣∣∣∣
∑n

k=N+1 (x∗(sk) − x∗(sN ))
2n + 1

∣∣∣∣ ≤
≤ 2 lim

n→∞

∑n
k=N+1 |x∗(sk) − x∗(sN )|

2n + 1 ≤ lim
n→∞

2(n−N)
2n + 1 ε = ε

So {sn} is a weakly convergent sequence and from Theorem 4.1 we can assert that the sequence weakly 
converges to the center of 

⋃
Sn. �

5. Decreasing sequences of stars

Some simple examples show that we can have different behavior when we consider the intersection of a 
decreasing sequence of stars.

Example 5.1. Consider the stars Sn = {x ∈ c0 : x1 = x2 = · · · = xn = 1, −1 ≤ xk ≤ 1, k = n + 1, · · · }. 
Then 

⋂
Sn is the empty set. Moreover the sequence of the centers sn = (1, 1, · · · , 1, 0, · · · ) is not weakly 

convergent.

Example 5.2. Consider now Sn = {x ∈ c0 : 0 ≤ xk ≤ 1, k = 1, 2, · · · , n; −1 ≤ xk ≤ 1, k ≥ n + 1}; then the 
intersection is nonempty but 

⋂
Sn = {x ∈ c0 : 0 ≤ xk ≤ 1} is not a star. Again the sequence of centers 

sn = (1/2, · · · , 1/2, 0, 0, · · · ) is not weakly convergent.
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Example 5.3. Finally if we consider Sn = {x ∈ c : x1 = x2 = · · · = xn = 1, 0 ≤ xk ≤ 1, k = n + 1, · · · } then ⋂
Sn = {(1, 1, 1, · · · )} is a star but again the sequence of centers sn = (1, · · · , 1, 1/2, 1/2 · · · ) is not weakly 

convergent.

By a similar argument used in Theorem 2.1 we can prove:

Theorem 5.1. Let {Sn} be a decreasing sequence of stars with {sn} the sequence of their centers. If {sn}
has a subsequence weakly convergent to s, then 

⋂
Sn is a nonempty star and s is its center.

In [2] the author obtained the following result:

Theorem 5.2. Le X be a Banach space. The following are equivalent:

(1) Every decreasing sequence of stars has nonempty intersection.
(2) X does not contain c0.

We remark that it is not difficult to fit the proof of Theorem 4.4 to the decreasing case. So we obtain, 
with a different proof, the result of the above theorem. More precisely we can prove the following extension 
of Theorem 5.2:

Theorem 5.3. Suppose that {Sn} is a decreasing sequence of stars such that 
⋂
Sn is not a star. Then there 

exists a sequence {xn} ∈ Sn equivalent to the summing basis of c0.

As a final remark we observe that we cannot extend Theorem 4.5 to decreasing sequences of stars. Indeed 
consider Example 5.3, then the sequence of centers does not contain Cesaro-summable subsequences.
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