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Two-Dimensional Green’s Function for an  

Elliptically Layered Cylindrical PEC Enclosure 

Andrea Randazzo, Alessandro Fedeli, and Matteo Pastorino 

Abstract—In this paper, a semi-analytical solution for the computation 

of the two-dimensional Green’s function for a cylindrical PEC enclosure 

containing an arbitrary number of confocal elliptic dielectric layers is 

provided. The approach relies on an expansion of the Green’s function 

into Mathieu functions, whose coefficients are found in an efficient way 

through a recursive procedure. The effectiveness of the technique is 

evaluated by comparisons with analytical formulas and against the 

results provided by independent numerical solvers. Moreover, the 

applicability to the solution of forward scattering problems using 

integral formulations is also assessed. In all the considered cases, the 

developed approach has been found to provide accurate results. 

Index Terms— Green’s function, integral equations, electromagnetic 

scattering, stratified media. 

I. INTRODUCTION1 

Green’s functions are very important tools in theoretical and 

applied electromagnetics [1]–[3], since they represent the basic 

solutions of the wave equations when a unit point source (a line-

current source in 2D settings or an elementary dipole in the 3D case) 

is considered, and, by exploiting the linearity of the problem, allow 

computing the field due to an arbitrary source distribution [4]. Due to 

their importance, several works dealt with the derivation of Green’s 

functions in different configurations [5]–[8]. An important case is 

represented by cylindrical structures with canonical shape. Indeed, 

they often lead to analytical solutions [9], [10], which can be used as 

a reference for numerical techniques, and allows to simulate, in an 

approximate way, targets with elongated shapes. In particular, 

several works focused on layered circular cylinders, both considering 

the full 3D vector problem (leading to a dyadic Green’s function) 

and the 2D case (resulting in a scalar Green’s function) [11]–[15]. 

Another significant case is represented by layered media with 

elliptical cross section, since they allow representing non-fully 

symmetric objects and better approximating real targets. A first 

solution for computing the dyadic Green’s function of a single-layer 

elliptical cylinder has been provided by Tai in [3], and further 

solving procedures has been later proposed [16], [17]. The scattering 

from elliptically layered structures has also been considered in 

several other works [18]–[22]. The multi-layer case has been 

addressed in a 2D transverse-magnetic (TM) configuration by the 

present Authors, considering media composed by all dielectric layers 

[23] and with a perfect electric conducting (PEC) core [24]. In 

particular, a semi-analytical solution based on the expansion of the 

Green’s function in series of Mathieu functions [25], [26] has been 

devised. The coefficients are obtained through a recursive procedure 

relying on the application of the boundary conditions at the 

interfaces between layers. The developed solution can be used for 

computing the field produced by arbitrary z-directed sources. 

Moreover, it can be integrated into optimization schemes aimed at 

finding the optimal position of the source that satisfies some 

constraints on the radiated field (e.g., for maximizing the power), or 

used in inverse-source problems [27], [28]. 
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In this paper, enclosures bounded by a PEC elliptical surface, 

whose interior is composed by an arbitrary number of confocal 

elliptical dielectric layers, are considered. Such a configuration is of 

particular interest in different applicative scenarios. For example, in 

[29], [30] a homogeneous elliptical PEC enclosure is used to model 

the electromagnetic interaction of a point charge travelling inside an 

elliptical vacuum chamber (e.g., the CERN Proton Synchrotron). 

Moreover, the Green’s functions of a PEC enclosure is fundamental 

in microwave imaging problems. Indeed, it represents the kernel of 

integral equations often used for modeling scattering problems in the 

presence of targets embedded in a dielectric medium, and thus may 

be used inside numerical procedures aimed at solving 

forward/inverse problems inside conducting chambers [31]–[34].  

In particular, the solution originally presented in [23], [24] is 

extended for the first time to deal with the presence of an outer PEC 

boundary. This new configuration requires introducing significant 

modifications in the terms involved in the recursive procedure, in 

order to properly impose the boundary conditions between layers. 

Moreover, the possibility of using the developed Green’s function 

for the solution of scattering problems involving dielectric targets 

inside a multilayer elliptical enclosure with PEC boundary is also 

addressed for the first time in this paper. The effectiveness of the 

developed solution is assessed by means of comparisons with the 

analytical solutions for homogeneous circular chambers and using a 

numerical solver based on the finite-difference time-domain (FDTD) 

method. Moreover, the capability of the approach in solving 

scattering problems is evaluated by exploiting an integral 

formulation using the Green’s function as kernel, and the results are 

compared with the ones provided by the FDTD method. 

The paper is organized as follows. The mathematical formulation 

of the procedure is detailed in Section II. Section III is devoted to the 

numerical validation of the approach. The application to scattering 

problems is discussed in Section IV. Conclusions follows. 
 

II. MATHEMATICAL FORMULATION 

A cross section of the considered configuration is shown in Fig. 1. 

The medium is composed by � inner dielectric layers with complex 

dielectric permittivity ��, � = 1, … , �, whereas the outer layer is 

assumed to be a PEC material. The layers are separated by elliptical 

boundaries with semi-major axis 	�, � = 1, … , �, and half-focal 

distance 
. All layers are confocal, i.e., they share the same foci.  

The Green’s function at a point ��, 
� in the �th layer, when the 

source point is at the point ���, 
�� in the �th one, can be written as  

 

 
Fig. 1. Schematic representation of the considered configuration (cross section). 
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��,���, 
 ��, 
�⁄ � � ���� ��, 
 ��, 
�⁄ � � ��,������, 
 ��, 
�⁄ �, where ��,� is the Kronecker’s delta function. Elliptical coordinates ��, 
�, 

which are related to the rectangular coordinates through the 

relationships � � 
 cosh � cos 
 and � � 
 sinh � sin 
, are used 

[35]. The singular and non-singular terms ���, ����  are expressed as 

series of Mathieu functions [23] as �����, 
 ��, 
�⁄ � �  ! "#�$�%&�'( � )$ ∑ +,-. %/0 ,12(+,-3 %/0,14(,5-%/0,67(,5- %/0 ,6(9--00  �:;<# )$ ∑ +�-. %/0,12(+�-3 %/0 ,14(�5-%/0,67(�5-%/0 ,6(=--00:;<>   

(1)

���� ��, 
 ��, 
�⁄ � � ∑ ?@;,>� AB;> �C� , �� �:;<#@;,$� AB;$ �C� , ��DB@;�C� , 
� � ∑ ?E;,>� AF;> �C� , �� �:;<>E;,$� AF;$ �C� , ��DF@;�C� , 
�  

(2)

where ' is the distance between ��, 
� and ���, 
��, AB;G  and AF;G  

are the even and odd radial Mathieu functions of kind H and order I, B@; and F@; are the even and odd angular Mathieu functions of 

order I, C� � &�$
$/4, � � 1, … , �, with &�$ � L$��M# (M# �4N O 10QR H/m being the magnetic permeability of vacuum), ST; VW;�G � X SB@; F@W;�CG , 
�SB@; F@W�%C , 
(

$)  # , whereas �Y ���, �Z � � if � [ �� and �Y � �, �Z � ��, otherwise.  

Similarly to [23], [24], the expansion coefficients @;,>� , @;,$� , E;,>� , E;,$�  are found by imposing the boundary condition at the layers’ 

interfaces through a Galerkin scheme using the angular Mathieu 

function B@�C�\>, 
� and F@�C�\>, 
� as testing functions. In 

particular, by exploiting the orthogonality properties of the angular 

Mathieu functions, i.e., X B@;�CG , 
�F@�%C , 
(

 � 0$)# , ∀I, ^, CG , C , and ST; VW;�GG � 0 when I _ ^, the following set of 

equations is obtained for � � 1, … , � ` 1 ∑ T;����\>� a@;,>� AB;> �C� , ��� � @;,$� AB;$ �C� , ��� �:;<# ��,�  )$ +,-. %/0,10(+,-3 %/0 ,17(,5-%/0,67(9--00 b �T����\>���\>� a@�,>�\>AB�>�C�\>, ��� � @�,$�\>AB�$�C�\>, ��� ���\>,�  )$ +,c.%/0,17(+,c3%/0,10d3(,5c%/0 ,67(9cc00 b , ^ � 0,1, …  

(3)

∑ V;����\>� aE;,>� AF;> �C� , ��� � E;,$� AF;$ �C� , ��� �:;<> ��,�  )$ +�-. %/0,10(+�-3 %/0,17(�5-%/0,67(=--00 b �V����\>���\>� aE�,>�\>AF�>�C�\>, ��� � E�,$�\>AF�$�C�\>, ��� ���\>,�  )$ +�c.%/0,17(+�c3%/0,10d3(�5c%/0,67(=cc00 b , ^ � 1,2, …
(4)

∑ T;����\>� a@;,>� fAB;> �C� , ��� � @;,$� fAB;$ �C� , ��� �:;<# ��,�  )$ g+,-. %/0 ,10(+,-3 %/0 ,17(,5-%/0,67(9--00 b �T����\>���\>� a@�,>�\>fAB�>�C�\>, ��� � @�,$�\>fAB�$�C�\>, ��� ���\>,�  )$ +,c.%/0,17(g+,c3%/0,10d3(,5c%/0,67(9cc00 b , ^ � 0,1, …
(5)

∑ V;����\>� aE;,>� fAF;> �C� , ��� � E;,$� fAF;$ �C� , ��� �:;<> ��,�  )$ g+�-. %/0,10(+�-3 %/0,17(�5-%/0 ,67(=--00 b �
V����\>���\>� aE�,>�\>fAF�>�C�\>, ��� � E�,$�\>fAF�$�C�\>, ��� ���\>,�  )$ +�c.%/0,17(g+�c3%/0 ,10d3(�5c%/0,67(=--00 b , ^ � 1,2, …

(6)

where fAB;G  and fAF;G  denote the derivatives of the even and odd 

radial Mathieu functions with respect to the radial elliptical 

coordinate �. In particular, (3)-(4) and (5)-(6) are obtained by 

imposing the continuity of the Green’s function and of its derivative 

at the interfaces, respectively [23]. It is worth remarking that such 

conditions are obtained under the assumptions of confocal layers. 

Allowing the half-focal distance to be different for each layer would 

result in the need of using different sets of elliptic coordinates 

(which depends upon the half-focal distance) for describing the field. 

This is expected to introduce substantial changes in (3)-(6). 

Moreover, by applying the boundary conditions to the outer PEC 

interface, i.e., for � � �, it results that @�,$h � ` +,c3�/i,1i�+,cj�/i,1i� @�,>h ` �h,�  )$ +,c.�/i ,1i�+,c3�/i,17�,5c�/i,67�+,cj�/i,1i�9ccii   (7)

E�,$h � ` +�c3�/i,1i�+�cj�/i,1i� E�,>h ` �h,�  )$ +�c.�/i,1i�+�c3�/i,17��5c�/i ,67�+�cj�/i ,1i�=ccii   (8)

If the series are truncated at the �A ` 1�th term, the following 

matrix equation, that link the expansion coefficients of the (� � 1)th 

layer with those of the �th one, is obtained k�\>l�\> � m�l� � ��,�n5op� ` ��\>,�nG�p� , � � 1, … , � ` 1 (9)

where the arrays l� , � � 1, … , �, which contain the expansion 

coefficients, are defined as (considering that for the inner dielectric 

layer it results @;,$> � E;,$> � 0 [23]) 

l� � ⎩⎨
⎧ ?@#,>$ , E>,>$ , ⋯ , @+Q>,>$ Dp � � 1?@#,>� , @#,$� , E>,>� , E>,$� , @>,>� , … , @+Q>,$� Dp � � 2, … , � ` 1?@#,>h , E>,>h , ⋯ , @+Q>,>h Dp � � �  (10)

and the matrices mG and kG\> are similar to those derived in [23], 

[24], i.e., 

m� �
⎣⎢⎢
⎢⎢⎢
⎡ mx##� 00 my>>� mx#>� 00 my>$�mx>#� 00 my$>� mx>>� 00 my$$�

⋯ mx#�+Q>�� 0mx>�+Q>�� 0⋮ ⋱ ⋮mx�+Q>�#� 0 mx�+Q>�>� 0 ⋯ mx�+Q>��+Q>�� ⎦⎥⎥
⎥⎥⎥
⎤
 (11)

k�\> �
⎣⎢⎢
⎢⎢⎡
k�#�\> ⋯ 0

⋮ k�>�\> k�>�\> ⋱ ⋮
0 ⋯ k�+Q>�\> ⎦⎥⎥

⎥⎥⎤ (12)

Specifically, the submatrices mx�;�  and my�;�  are defined as in 

equations (16) and (17) of [23], whereas k���\> (^ � 0,1, … , A ` 1) 

and k���\> (^ � 1, … , A ` 1� are given by 

k���\> � T����\>���\>� a AB�>�C�\>, ��� Ac�$�C�\>, ���fAB�>�C�\>, ��� fAB�$�C�\>, ���b, 
� � 1, . . , � ` 2 

k��h � T��hh � AB�>�Ch, �hQ>� ` +,c3�/i,1i�+,cj�/i,1i� AB�$�Ch, �hQ>�
fAB�>�Ch, �hQ>� ` +,c3�/i,1i�+,cj�/i,1i� fAB�$�Ch, �hQ>��

(13) 

k���\> � V����\>���\>� a AF�>�C�\>, �� � AF�$�C�\>, ���fAF�>�C�\>, �G� fAF�$�C�\>, ���b, 
� � 1, . . , � ` 2 

k��h � V��hh � AF�>�Ch, �hQ>� ` +�c3�/i,1i�+�cj�/i,1i� AF�$�Ch, �hQ>�
fAF�>�Ch, �hQ>� ` +�c3�/i,1i�+�cj�/i,1i� fAF�$�Ch, �hQ>��

(14) 
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Moreover, the source term n5op�
 is still given by equation (21) of 

[23], whereas nG�p�
 is now defined as  

nG�p� � �N2
⎣⎢⎢
⎢⎢⎡

AB#!%C�, ��(AB#>%C�, ��Q>(B@#%C�, 
�(AB#!%C�, ��(fAB#>%C�, ��Q>(B@#%C�, 
�(AF#!%C�, ��(AF#>%C�, ��Q>(F@#%C�, 
�(AF#!%C�, ��(fAF#>%C�, ��Q>(F@#%C�, 
�(⋮ ⎦⎥⎥
⎥⎥⎤ 

`�h,�  )$

⎣⎢
⎢⎢⎢
⎢⎢⎢
⎡ +,�.%/0,10(+,�3%/0 ,17(,5�%/0 ,67(+,�j%/0,10d3(+,�j%/0 ,10(+,�.%/0,10(+,�3%/0,17(,5�%/0,67(g+,�j%/0 ,10d3(+,�j%/0 ,10(+��.%/0,10(+��3%/0,17(�5�%/0 ,67(+��j%/0,10d3(+��j%/0 ,10(+��.%/0,10(+��3%/0,17(�5�%/0,67(g+��j%/0,10d3(+��j%/0 ,10(⋮ ⎦⎥

⎥⎥⎥
⎥⎥⎥
⎤

(15)

By applying recursively (9), a relationship between the innermost 

and outermost dielectric layers is obtained. In particular, setting � �1, l$ can be written in terms of l>. This expression is substituted in 

the subsequent condition for � � 2, obtaining a relationship between l� and l>. This procedure is iterated until all the boundary 

conditions are processed, resulting in the following relationship  khlh ` mhQ>�hQ$l> � %mhQ>�hQ$,� � �hQ>,��(n5op�  
`%mhQ>�hQ$,�Q> � �h,��(nG�p�

 
(16)

where 

��,� � ��� ⋯ ��\>k�\>Q> H� � � �
k�\>Q> H� � = �

� E�ℎ@��HF@
 (17)

with �� = k�\>Q> m� and �� = ����Q> ⋯ �>.  

From (16), it is finally possible to obtain the expansion 

coefficients for the innermost and outermost layers as 

�l>lh� = � �n5op�
nG�p� � (18)

where � is a matrix of dimension �4A ` 2� O �4A ` 2� given by 

� = �`mhQ>�hQ$ kh�Q> 
?mhQ>�hQ$,� � �hQ>,�� `%mhQ>�hQ$,�Q> � �h,��(D (19)

The coefficients for the remaining layers are found by recursively 

applying (9). It is worth noting that if � � 1 the problem can be 

directly solved by considering the boundary conditions in (7)-(8). In 

particular, since in the inner layer @;,$> � E;,$> � 0, it results  @�,>> � `  )$ +,c.�/3,13�+,c3�/3,17�,5c�/3,67�+,c3�/3,13�9cc33   (20)

E�,>> � `  )$ +�c.�/3,13�+�c3�/3,17��5c�/3,67�+�c3�/3,13�=cc33   (21)

Once the Green’s function has been computed, the electric and 

magnetic fields due to an arbitrary z-directed current density ���, 
� � ����, 
��Z, with ��, 
� ∈ V, can be obtained as ���, 
� ��LM# X �����, 
�����, 
, ��, 
���Z
V�=  and ���, 
� �?
√cosh$ � ` cos$ 
DQ> X �����, 
�� ¡` ¢¢6 ���, 
, ��, 
��£4 �=¢¢1 ���, 
, ��, 
��¤Z¥ 
V� (the derivatives of the Green’s function with 

respect to � and 
 can be computed by replacing the radial and 

angular Mathieu functions with their corresponding derivatives [4]).  

III. NUMERICAL VALIDATION 

The effectiveness of the proposed approach is evaluated by means 

of simulations and comparisons with other numerical solvers.  

As a first validation test, the capabilities of approximating the 

solution �,G¦,  for a homogeneous circular cavity [36] when 
 → 0 

has been assessed. The cavity is assumed to be composed by a two-

layer medium (to avoid reducing the computation to (20)-(21)) with 

semi-major axes 	> � 0.4¨# and 	$ � 0.5¨#. The half-focal distance 
 has been varied in the range �10Qª, 0.35�. In order to compare the 

solution with the one of a homogeneous circular structure, the two 

layers are assumed to have the same dielectric permittivity, i.e., �> ��$ � �3 ` �0.6��#. The source point has been located on the � axis 

at �� � 0.1¨#. The working frequency has been set equal to 300 

MHz. The number of terms used in the series is fixed to A � 20.  

Fig. 2 shows the amplitude of the computed Green’s function 

along the � and � axes for some values of the half-focal distance. As 

can be seen, the solution computed using (1)-(2) approximates very 

closely the values predicted by the analytical formula for the circular 

case as 
 → 0. The same behavior can also be observed in the phase 

of the Green’s function (not reported for sake of brevity).  

 

 
(a) 

 
(b) 

Fig. 2. Amplitude of the Green’s function along the (a) x and (b) y axes for 

different values of the half-focal distance 
. Homogeneous PEC enclosure. 

 

In order to check the convergence properties of the developed 

solution, the error @,G¦, � ‖� ` �,G¦,‖$ between the computed 

Green’s function (in the case 
 � 10Qª) and the analytical solution 

for the circular cavity has been evaluated versus the number of terms A considered in the truncated series. The results are shown in Fig. 3 

for different values of the number of layers, which are uniformly 

spaced in the chamber. In particular, it has been chosen to use layers 

with the same value of the permittivity in order to compare the 

results with the closed form solution for a homogeneous circular 

cavity, i.e., using a well-established reference case. However, the 

numerical procedure considers the presence of all the � layers, thus 

allowing to evaluate the numerical convergence considering all the 

terms of the series. Moreover, two different values of the dielectric 

permittivity of the chamber interior, i.e., � � S3�#, 6�#W, are 

considered to also assess the impact of this parameter. 
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In all the considered cases, a number of terms between 

approximately 10 and 18 is sufficient to achieve an error lower than 10Qª. The convergence rate estimated from the cases reported in the 

figure is exponential (the average R-squared coefficient obtained by 

fitting exponential curves is equal to 0.97). It is also worth remarking 

that in [24], when considering an elliptically layered structure with 

PEC core, it has been found that the number of required terms is 

comparable to &;®o	;®o, being &;®o and 	;®o the maximum 

values of the wavenumber and semimajor axis among the layers, 

which is consistent with the results in Fig. 3. Consequently, in the 

following of the paper the number of terms has been set equal to 20, 

to guarantee that the series converge in the considered cases. 

 

 
Fig. 3. Convergence behavior of the series. Homogeneous PEC enclosure. 

 

As a second validation scenario, the results provided by the 

developed technique are compared with the ones obtained by a 

numerical solver based on the FDTD method (the gprMax open-

source software [37] has been used). The considered chamber is 

composed by four layers with semi-major axes 	> � 0.15¨#, 	$ �0.25¨#, 	� � 0.35¨#, 	! � 0.5¨#, half-focal distance 
 � 0.14¨#, 

and dielectric permittivities �> � 2�#, �$ � �4 ` �0.9��#, �� ��3 ` �0.6��#, �! � �1.5 ` �0.3��#. It is worth remarking that lossy 

materials have been considered mainly for two reasons. First, this is 

a more general case, which requires the use of Mathieu functions 

with complex argument C. Second, the attenuation of the field inside 

the cavity allows to limit the duration of the time-domain 

simulations. Different positions of the source point along the � axis, 

i.e., �� � S0.1¨#, 0.2¨#, 0.3¨#, 0.4¨#W, have been considered, and the 

Green’s function has been evaluated along the � and � axes. A 

square simulation domain with side 1.5¨# enclosing the elliptical 

cylinder has been used and discretized into 640000 cells of side 1.875 O 10Q�¨#. The temporal duration of the FDTD simulation has 

been set equal to ² � 0.5 Ms. Such a value has been empirically 

chosen in order to guarantee that all transients are finished and the 

results are sufficiently stable. The frequency-domain data used for 

comparison are then extracted by applying a Fast Fourier Transform 

(FFT) to the computed time-domain data. 

Fig. 4 report the amplitude of the Green’s function along the x and 

y axes computed by using the developed approach, together with the 

values provided by the FDTD method. In all cases, there is a very 

good agreement between the two solutions, confirming the 

effectiveness of the developed approach. A similar behavior has also 

been observed in the phase (not reported for sake of brevity). Finally, 

to further analyze the convergence of the series, the quantity ³��+� ` ��$#�³, being ��+� the Green’s function computed using A 

terms, is shown in Fig. 5 for different values of the half-focal 

distance (with �� � 0.3¨#). As can be seen, the number of terms 

needed to converge is comparable to the one observed in Fig. 3, and 

this parameter is not significantly affected by the eccentricity. 

 
(a) 

 
(b) 

Fig. 4. Amplitude of the Green’s function along the (a) x and (b) y axes for 

different values of the source position. Inhomogeneous four-layer chamber. 

 

 
Fig. 5. Convergence behavior of the series. Inhomogeneous four-layer chamber. 

 

IV. SCATTERING FROM DIELECTRIC OBJECTS INSIDE A LAYERED 

ELLIPTICAL CHAMBER 

A relevant use of the developed Green’s function is the 

computation of the field produced by objects embedded in an 

elliptical chamber, e.g., for use in imaging algorithms based on 

integral scattering formulations. The capabilities of the developed 

solving strategy to calculate the field in such conditions are 

evaluated and compared with those provided by a numerical solver 

based on the FDTD method (the gprMax software is again used, and 

the simulation parameters have been set as in the previous Section). 

The considered configuration is shown in Fig. 6. A two-layer 

chamber is considered, with semi-major axes 	> � 0.35¨# and 	$ �0.5¨#, half-focal distance 
 � 0.2¨#, and dielectric permittivities �> � �3 ` �0.6��# and �$ � �2 ` �1.2��#. A line-current source with 

unit current amplitude located on the � axis at position �′ � 0.4¨# is 

considered. The target is a void cylinder (i.e., with �µ¶ � �#) with 

square cross section fµ¶  of side �µ¶ � 0.2¨# centered at position %�µ¶ , �µ¶ ( � �0.1¨#, 0.1¨#�. When the target is not present inside 

the chamber, an incident electric field is produced, whose z-

component is given by @G�,�·� � �LM#¸��·, ·��, where � is the two-
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dimensional Green’s function for the elliptical chamber. The ¹-

component of the total electric field is given by @pµp�·� � @G�,�·� ` &#$ X Δϵ�·��@pµp�·����·, ·��
·�g¼½¾   (22)

where Δϵ�·� = �µ¶ ` �5���·�, �5���·� being the dielectric 

permittivity of the elliptically-layered background. A method of 

moments (MoM) with pulse basis functions and Dirac’s delta testing 

function is used to numerically solve (22). The region fµ¶  occupied 

by the object is discretized into ¿ square subdomains f� of side � 

and center ·�, in which the electric field and the dielectric properties 

are assumed constant. The number of subdomains has been chosen to 

provide a side � much smaller than the wavelength, in order to 

guarantee a sufficient accuracy of the solution. Specifically, the 

values ¿ = 100 and � � 0.02¨# have been used. The resulting 

discrete problem can be written as @̅pµp � @̅G�, � �Á�diag�Δ��̅@̅pµp (23)

where @̅G�, and @̅pµp are arrays of length ¿ containing the values of 

the incident and total electric field in the subdomains used to 

discretize fµ¶ , whereas diag�Δ��̅ is a ¿ O ¿ diagonal matrix 

containing the discretized values of Δ��·�. The elements �Á�G, �`&#$ X ��·G , ·��
·�g¾  of the matrix �Á� are computed as: 

�Á�G, � Å `&#$�%·G , · (�$ ·G _ · ` Æ�jÆÇj È� )$ &�ÉÊj) ">�$� È&�ÉÊj) Ë � 1Ë ·G � ·   (24)

where &� is the wavenumber in the layer containing the point · . The 

Green’s function integral in the singular case ·G � ·  is approximated 

using the closed-form formula for the free-space Green’s function in 

the corresponding layer [38]. Once @̅pµp is obtained, the field in a 

generic point can be computed using again (22). A direct solver 

based on the LU decomposition is used for solving (23). In order to 

evaluate the robustness of the approach, the condition number of the 

matrix �¸� ` �Á�diag�Δ��̅ defining the linear problem to be solved by 

the MoM has been evaluated, and in the considered case it resulted 

equal to 1.48. Such a low condition number confirms that it is 

possible to obtain an accurate computation of the total field. 

The amplitude of the electric field along the � and � axes 

computed by using the developed Green’s function is shown in Fig. 

7, together with the corresponding FDTD values. The incident 

electric field is also shown. As highlighted by these results, there is a 

very good agreement between the values computed by the MoM, in 

which the layered structure is taken into account inside the Green’s 

function and only the object cross section is considered in (23), and 

the ones obtained by using the FDTD method, which instead requires 

to discretize the whole domain. A similar behavior has also been 

observed in the phase (not reported for sake of brevity). The 

corresponding computational times are reported in Table I. It is 

worth remarking that in the case of the MoM, the overall 

computational time can be split into two parts. The incident field and 

matrix computations, which may be quite time consuming, can be 

performed offline, and reused for obtaining the total field using 

different dielectric configurations of the inclusion inside the 

chamber. This latter operation requires a very limited time, thus 

allowing a significant time saving. Conversely, the FDTD method 

always requires solving a full propagation problem considering the 

whole enclosure. Moreover, the calculation of the Mathieu functions 

is not straightforward and may affect the computational time. 

Although efficient numerical schemes have been developed [19], 

[25], [26], when the argument C is small (e.g., for small eccentricity) 

it is possible to approximate them with Taylor expansions [39]–[41], 

thus reducing the computational complexity. 

 
Fig. 6. Schematic representation of the considered configuration (cross section). 

Scattering from a target inside a layered elliptical chamber. 

 

 
Fig. 7. Amplitude of the electric field along the x and y axes. Dielectric 

inclusion inside a two-layer elliptic chamber. 

 

TABLE I 

COMPUTATIONAL TIMES (PC EQUIPPED WITH AN INTEL(R) CORE(TM) I7-

11700F @ 2.50GHZ CPU AND 16 GB OF RAM) 

SOLVER STEP TIME [s] 

MOM 

Incident field computation (offline) 463 

Matrix fill time (offline) 983 

Total field computation (online) 0.021 

FDTD Total field computation (online) 393 

 

V. CONCLUSION 

A semi-analytical technique for computing the two-dimensional 

Green’s function for a PEC enclosure containing multiple confocal 

dielectric layers has been presented. The approach is based on an 

expansion in series of Mathieu functions, whose coefficients are 

found through a recursive procedure involving the inversion of a 

single matrix. The effectiveness of the approach has been evaluated 

by comparing the computed values with analytical solutions and 

independent numerical solvers, showing that the developed solution 

is able to provide accurate results in all the considered cases. 

Moreover, the scattering from targets located inside the chamber has 

been addressed by means of an integral formulation using the 

Green’s function as kernel for the integrals. Even in this case, the 

developed solution has been found to provide accurate results, which 

can be very helpful in the development of direct and inverse 

algorithms for imaging tasks. Future works will be aimed at the 

extension to the three-dimensional case, in order to obtain the full 

dyadic Green’s function. Moreover, the case of cylinders with 

eccentric and/or not confocal layers will be addressed, too. 
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