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Abstract

We analyze the prediction error of ridge re-
gression in an asymptotic regime where the
sample size and dimension go to infinity at a
proportional rate. In particular, we consider
the role played by the structure of the true re-
gression parameter. We observe that the case
of a general deterministic parameter can be re-
duced to the case of a random parameter from
a structured prior. The latter assumption is
a natural adaptation of classic smoothness as-
sumptions in nonparametric regression, which
are known as source conditions in the the
context of regularization theory for inverse
problems. Roughly speaking, we assume the
large coefficients of the parameter are in cor-
respondence to the principal components. In
this setting a precise characterisation of the
test error is obtained, depending on the inputs
covariance and regression parameter structure.
We illustrate this characterisation in a sim-
plified setting to investigate the influence of
the true parameter on optimal regularisation
for overparameterized models. We show that
interpolation (no regularisation) can be opti-
mal even with bounded signal-to-noise ratio
(SNR), provided that the parameter coeffi-
cients are larger on high-variance directions
of the data, corresponding to a more regular
function than posited by the regularization
term. This contrasts with previous work con-
sidering ridge regression with isotropic prior,
in which case interpolation is only optimal in
the limit of infinite SNR.
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1 Introduction

Understanding the generalisation properties of overpa-
rameterized model is a key question in machine learning,
recently popularized by the study of neural networks
with millions and even billions of parameters. These
models perform well in practice despite perfectly fitting
(interpolating) the data, a property that seems at odds
with classical statistical theory (Zhang et al., 2016).
This observation has lead to the investigation of the
generalisation performance of methods that achieve
zero training error (interpolators) (Liang et al., 2020;
Belkin et al., 2018a, 2019b, 2018b, 2020) and, in the
context of linear least squares, the unique least norm
solution to which gradient descent converges (Hastie
et al., 2019; Bartlett et al., 2020; Mitra, 2019; Belkin
et al., 2020; Ghorbani et al., 2019; Muthukumar et al.,
2020; Gerbelot et al., 2020; Nakkiran et al., 2020).
Overparameterized linear models, where the number of
variables exceed the number of points, are arguably the
simplest and most natural setting where interpolation
can be studied. Moreover, in some specific regimes,
neural networks can be approximated by suitable linear
models (Jacot et al., 2018; Du et al., 2019a,b; Allen-Zhu
et al., 2019; Chizat et al., 2019).

The learning curve (test error versus model capacity)
for interpolators has been shown to possibly exhibit a
characteristic “Double Descent” (Advani et al., 2020;
Belkin et al., 2019a) shape, where the test error de-
creases after peaking at an “interpolating” threshold,
that is, the model capacity required to interpolate the
data. The regime beyond this threshold naturally cap-
tures the settings of neural networks (Zhang et al.,
2016), and thus, has motivated its investigation (Mei
and Montanari, 2019; Spigler et al., 2019; Nakkiran
et al., 2020). Indeed, for least squares regression, sharp
characterisations double descent have been obtained
for the least norm interpolating solution in the case
of isotropic or auto-regressive covariates (Hastie et al.,
2019; Belkin et al., 2020) and random features (Mei
and Montanari, 2019).
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For least squares regression the structure of the features
and data can naturally influence performance. Within
kernel regression (or inverse problems), for instance,
it is often assumed that the parameter of interest is
regular with respect to a given basis so as to to en-
sure a well-posed problem (Engl et al., 1996; Mathé
and Pereverzev, 2003; Bauer et al., 2007). Meanwhile
for neural networks, inductive biases can be encoded
in the network architecture e.g. convolution layers for
image classification (LeCun et al., 1989, 1998). In
each case, the problem is made easier by leveraging
(through model design) that data encountered in prac-
tice exhibits lower dimensional structure owing to, for
example, a set of simple physical laws governing the
data generation. In contrast, the least squares models
investigated beyond the interpolation threshold have
focused on cases where the true regression parame-
ter is isotropic (Dobriban et al., 2018; Hastie et al.,
2019), which is a single instance in the range possible
of alignements between the parameter and population
covariance. This has left open the natural questions
of whether additional structure within the data gener-
ating distribution can be responsible for determining
when interpolating is optimal.

In this work we investigate the performance of ridge
regression, and its ridgeless limit, in a high dimensional
asymptotic regime with a non-isotropic parameter. We
show that one can naturally reduce to a parameter sam-
pled from a prior that, in short, encodes how the signal
strength is distributed across the principal components
of the covariates. This structure has long been recog-
nized as relevant in the statistics literature (Jolliffe,
1982), and is analogous to standard smoothness condi-
tion used within kernel regression and inverse problems,
see e.g. (Engl et al., 1996; Mathé and Pereverzev, 2003;
Bauer et al., 2007).

Specifically, a prior function encodes the parameter’s
norm when it is projected onto eigenspaces of the co-
variates population covariance. Thus, it represents how
aligned the ground truth is to the principle components
in the data. When considering the expected test error
of ridge regression, this assumption can then encode
any deterministic parameter (Proposition 1). Follow-
ing the classic name in inverse problems, we call these
assumptions source conditions.

Given this assumption, we then study the test error
of ridge regression in a high-dimensional asymptotic
regime when the number of samples and ambient di-
mension go to infinity in proportion to one another.
The limits of resulting quantities are then characterised
by utilising tools from asymptotic Random Matrix The-
ory (Bai and Silverstein, 2010; Ledoit and Péché, 2011;
Dobriban et al., 2018; Hastie et al., 2019), with results
specifically developed to characterise the influence of

the prior function. This provides a natural and intu-
itive framework for studying the limiting test error of
ridge regression, characterised by the signal to noise
ratio, regularisation, overparmeterisation, and now, the
structure of the regression parameter as encoded by
the source condition.

We then illustrate our general framework and results
in a simplified setting that highlights the role of
model misspecification and its effect on prediction
error and regularisation. Specifically, we consider a
population covariance with two types of eigenvectors:
strong features, associated with a common large
eigenvalue (hence favored by the ridge estimator),
as well as weak features, with a common smaller
eigenvalue. This model is an idealization of a realistic
structure for distributions, with some parts of the
signal (associated for instance to high smoothness, or
low-frequency components) easier to estimate than
other, higher-frequency components. The use of source
conditions allows to study situations where the true
coefficients are either more or less aligned with the
principal components, than implicitly postulated by
the ridge estimator, a form of model misspecification
which affects predictive performance. This encodes the
difficulty of the problem, and allows to distinguish
between “easy” and “hard” learning problems. We
now summarise this work’s primary contributions.

• Asymptotic prediction error under general
source condition. An asymptotic characterisation
of the test error under a general source condition on
the regression parameter is provided. This required
characterizing the limit of certain trace quantities,
and provides a natural framework for investigating
the performance of ridge regression. (Theorem 1)

• Interpolating can be optimal even in noisy
cases. In the overparameterised regime, we show
that interpolation can lead to smaller risk than any
positive choice of the regularisation parameter. This
occurs in the favorable situation where the regression
parameter is larger in high-variance directions of the
data, and the signal-to-noise ratio is large enough
(but finite). Previously, for least squares regression
with isotropic prior, the optimal regularisation choice
was zero only in the limit of infinite signal to noise
ratio (Dicker, 2016; Dobriban et al., 2018). (Section
3.1)

Our analysis of the strong and weak features model
also provides asymptotic characterisations of a num-
ber of phenomena recently observed within the liter-
ature. That is, augmenting the data by adding noisy
co-ordinates performs implicit regularisation and can
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recover the performance of optimally tuned regression
restricted to the strong features (Kobak et al., 2020).
Also, we show an additional peak occurring in the
learning curve beyond the interpolation threshold for
the ridgeless bias and variance (Nakkiran et al., 2020).
These insights are presented in Sections 3.2 and 3.3,
respectively.

The remainder of this work is organized as follows.
Section 1.1 covers the related literature. Section 2 de-
scribes the setting, and provides the general theorem.
Section 3 formally introduces the strong and weak fea-
tures model, and presents the aforementioned insights.
Section 4 gives the conclusion.

1.1 Related Literature

Due to the large number of works investigating inter-
polating methods as well as double descent, we next
focus on works that consider the asymptotic regime.

High-Dimensional Statistics. Random matrix
theory has found numerous applications in high-
dimensional statistics (Yao et al., 2015; El Karoui,
2018). In particular, asymptotic random matrix theory
has been leveraged to study the predictive performance
of ridge regression under a well-specified linear model
with an isotropic prior on the parameter, for iden-
tity population covariance (Karoui and Kösters, 2011;
Karoui, 2013; Dicker, 2016; Tulino et al., 2004) and
then general population covariance (Dobriban et al.,
2018). More recently, (Mahdaviyeh and Naulet, 2019)
considered the limiting test error of the least norm
predictor under the spiked covariance model (John-
stone, 2001) where both a subset of eigenvalues and
the ratio of dimension to samples diverge to infinity.
They show the bias is bounded by the norm of the
ground truth projected on the eigenvectors associated
to the subset of large eigenvalues. In contrast, our
work follows standard assumption in kernel regression
or inverse problems literature (Engl et al., 1996; Mathé
and Pereverzev, 2003; Bauer et al., 2007), by adding
structural assumptions on the parameter through the
variation of its coefficients along the covariance basis.
Finally, we note the works (Liao and Couillet, 2019a,b)
that utilise tools from random matrix theory to charac-
terise the prediction performance of linear estimators
in the context of classification.

Double Descent for Least Squares. While inter-
polating predictors (which perfectly fit training data),
are classically expected to be sensitive to noise and ex-
hibit poor out-of-sample performance, empirical obser-
vations about the behaviour of artificial neural networks
(Zhang et al., 2016) challenged this received wisdom.
This surprising phenomenon, where interpolators can

generalize, has first been shown for some local aver-
aging estimators (Belkin et al., 2019b, 2018a), kernel
“ridgeless” regression (Liang et al., 2020), and linear
regression, where (Bartlett et al., 2020) characterised
the variance of the ridgeless estimator up to universal
constants. A “double descent” phenomenon for interpo-
lating predictors, where test error can decrease past the
interpolation threshold, has been suggested by (Belkin
et al., 2019a).

This double descent curve has motivated a number of
works established in the context of asymptotic least
squares (Hastie et al., 2019; Mei and Montanari, 2019;
Belkin et al., 2020; Xu and Hsu, 2019; Gerbelot et al.,
2020; Muthukumar et al., 2020; Nakkiran et al., 2020).
The work (Hastie et al., 2019) considers either isotropic
or auto-regressive features, while (Louart et al., 2018;
Mei and Montanari, 2019) consider Random Features
constructed from a non-linear functional applied to the
product of isotropic covariates and a random matrix. In
(Hastie et al., 2019; Mei and Montanari, 2019) the data
is assumed to be generated with an isotropic ground
truth with some model mis-specification. The works
(Mitra, 2019; Gerbelot et al., 2020; Muthukumar et al.,
2020) considers recovery guarantees under sparsity as-
sumptions on the parameter, with (Gerbelot et al.,
2020) showing a peak in the test error when the num-
ber of samples equals the sparsity of the true predictor.
The work (Muthukumar et al., 2020) considers recov-
ery properties of interpolators in the non-asymptotic
regime. In contrast to these works, we consider struc-
tural assumption on the ground truth in terms of the
population covariance that directly follow from stan-
dard smoothness conditions in the kernel regression/
inverse problem literature.

The work (Nakkiran et al., 2020) gave empirical evi-
dence showing additional peaks in the test error can
occur beyond the interpolation threshold when the co-
variance and ground truth parameter are misaligned.
These empirical observations are verified by the theory
in this paper. Along these lines, we also note the con-
current work (Chen et al., 2020) which shows a variety
of different learning curves are possible for interpolat-
ing least squares regression when the sample size is
fixed and dimension of the problem is varied.

Concurrent Work. We now review independent
work, which appeared in parallel to or since the first ver-
sion of this paper. The works (Wu and Xu, 2020; Amari
et al., 2020) also considers the asymptotic prediction
performance of ridge regression with prior assumptions
on the parameter. Similar to us, (Wu and Xu, 2020)
shows that interpolating is optimal when the parameter
is sufficiently “aligned” to the population covariance
and the signal to noise ratio is large. Our technical
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formulations are formally different but related: they
express the alignment between the parameter and the
population covariance in terms of the projections of β
on the eigenvectors of Σ, whereas we encode it through
the source function Φ; the correspondence between
the two formulations is obtained through Proposition 1.
They also include additional study of the sign of optimal
ridge penalty. Meanwhile, (Hastie et al., 2019) has been
recently updated to include refined non-asymptotic re-
sults that build upon both our work and (Wu and
Xu, 2020), also accounting for the structure of the re-
gression parameter along principal directions. They
derived a general non-asymptotic bound, controlling
the difference between the finite-sample risk and its
high-dimensional limit.

2 Dense Regression with General
Source Condition

In this section we formally introduce the setting as well
as the main theorem. Section 2.1 introduces the linear
regression setting. Section 2.2 shows the prior assump-
tion we consider can encapsulate a general ground truth
predictor. Section 2.3 introduces the functionals that
arise from asymptotic random matrix theory. Section
2.4 presents the main theorem.

2.1 Problem Setting

We start by introducing the linear regression setting
and the general source condition.

Linear Regression. We consider prediction in a
random-design linear regression setting with Gaussian
covariates. Let β? ∈ Rd denote the true regression
parameter, Σ ∈ Rd×d the population covariance, and
σ2 > 0 the noise variance. We consider an i.i.d. dataset
{(xi, yi)}1≤i≤n such that for i = 1, . . . , n,

yi = 〈β?, xi〉+ σεi, xi ∼ N (0,Σ), (1)

and the noise satisfies E[εi|xi] = 0, E[ε2i |xi] = 1. In
what follows, let Y = (y1, . . . , yn), ε = (ε1, . . . , εn) ∈
Rn, and the design matrix X ∈ Rn×d. Given the n
samples the objective is to derive an estimator β ∈ Rd
that minimises the error of predicting a new response.
For a fixed parameter β?, the test risk is then R(β) =
E[(〈x, β〉 − y)2] = ‖Σ1/2(β − β?)‖22 + σ2, where the
expectation is with respect to a new response sampled
according to (1). We consider ridge regression (Hoerl
and Kennard, 1970; Tikhonov, 1963), defined for λ > 0
by

β̂λ :=
(X>X

n
+ λI

)−1X>Y

n
. (2)

Source Condition. We consider an average-case
analysis where the parameter β? is random, sam-
pled with covariance encoded by a source function
Φ : R+ → R+, which describes how coefficients of
β? vary along eigenvectors of Σ. Specifically, denote
by {(τj , vj)}1≤j≤d the eigenvalue-eigenvector pairs of
Σ, ordered so that τ1 ≥ τ2 ≥ · · · ≥ τd ≥ 0, and let
Φ(Σ) =

∑d
i=1 Φ(τi)viv>i . For r > 0 the parameter β?

is such that

E[β?] = 0, E[β?(β?)>] = r2

d
Φ(Σ). (3)

For estimators linear in Y (such as ridge regression),
the expected risk only depends on the first two mo-
ments of the prior on β?, hence one can assume a
Gaussian prior β? ∼ N (0, r2Φ(Σ)/d). Under prior (3),
Φ(Σ)−1/2β? has isotropic covariance I/d, so that
E‖Φ(Σ)−1/2β?‖2 = 1. This means that the coordinate
βj := 〈β?, vj〉 of β? in the j-th direction has standard
deviation

√
Φ(τj)/d. We note that, as d→∞, β? has a

“dense” high-dimensional structure, where the number
of its components grows with d, while their magnitude
decreases proportionally. This prior is an average-case,
high-dimensional analogue of the standard source condi-
tion considered in inverse problems and nonparametric
regression (Mathé and Pereverzev, 2003; Bauer et al.,
2007), which describes the behaviour of coefficients of
β? along the eigenvector basis of Σ. In the special
case Φ(x) = xα, α ≥ 0, one has E‖Σ−α/2β?‖2 = r2.
For a Gaussian prior, Σ−α/2β? ∼ N (0, r2I/d), which
is rotation invariant with squared norm distributed as
r2χ2

d/d (converging to r2 as d→∞), hence “close” to
the uniform distribution on the sphere of radius r. In
Section 2.2 we show, when considering the expected
test error, that this source assumption can then encode
any deterministic ground truth parameter.

Easy and Hard Problems. The case of a constant
function Φ(x) ≡ 1 corresponds to an isotropic prior
under the Euclidean norm used for regularisation, and
has been studied by (Dicker, 2016; Dobriban et al.,
2018; Hastie et al., 2019). In this case (see Remark 1
below), properly-tuned ridge regression (in terms of
r2) is optimal in terms of average risk. The influence
of Φ can be understood in terms of the average sig-
nal strength in eigen-directions of Σ. Specifically, let
vj be an eigenvector of Σ, with associated eigenvalue
τj . Then, given β?, the signal strength in direction vj
(namely, the contribution of this direction to the signal)
is Ex〈〈β?, vj〉vj , x〉2 = τj〈β?, vj〉2, and its expectation
over β? is τjΦ(τj). When Φ is increasing, strength along
direction vj decays faster as τj decreases, than postu-
lated by the ridge regression penalty. In this sense, the
problem is lower-dimensional, and hence “easier” than
for constant Φ; likewise, a decreasing Φ is associated to
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a slower decay of coefficients, and therefore a “harder”,
higher-dimensional problem. While our results do not
require this restriction, it is natural to consider func-
tions Φ such that τ 7→ τΦ(τ) is non-decreasing, so that
principal components (with larger eigenvalue) carry
more signal on average; otherwise, the norm used by
the ridge estimator favours the wrong directions. In this
respect, the hardest prior is obtained for Φ(τ) = τ−1,
corresponding to the isotropic prior in the prediction
norm induced by Σ: for this un-informative prior, all
directions have same signal strength. Finally, note that
in the standard nonparametric setting of reproducing
kernel Hilbert spaces, source conditions are related to
smoothness of the regression function (Steinwart et al.,
2009).

Remark 1 (Oracle estimator) The best linear (in
Y ) estimator in terms of average risk can be described
explicitly. It corresponds to the Bayes-optimal estima-
tor under prior N (0, r2Φ(Σ)/d) on β?, which writes:

β̃ =
(X>X

n
+ σ2

r2
d

n
Φ(Σ)−1

)−1X>Y

n
. (4)

This estimator requires knowledge of Σ and r2Φ. In
the special case of an isotropic prior with Φ ≡ 1, the
oracle estimator is the ridge estimator (2) with λ =
(σ2d)/(r2n).

2.2 Reduction to Source Condition

In this section, we show that the source condition intro-
duced in Section 2.1 is not restrictive, since the general
case reduces to it. Specifically, the following proposi-
tion shows that the expected error for any deterministic
β? ∈ Rd is equal to the averaged error according to
a prior with covariance of the form Φ(Σ) for some
function Φ = Φβ?,Σ depending on β? and Σ.

Proposition 1 (Reduction to source condition)
Consider data generated according to (1). Let β? ∈ Rd,
βj = 〈β?, vj〉 for j = 1, . . . , d and Φ = Φβ?,Σ : R+ → R
be a function such that, for τ ∈ {τ1, . . . , τd},

Φ(τ) = d

|J(τ)|
∑
j∈J(τ)

β2
j , (5)

where J(τ) = {1 ≤ j ≤ d : τj = τ}. Let Π be
a distribution on Rd such that Eβ∼Π[β] = 0 and
Eβ∼Π[ββ>] = Φ(Σ)/d. Then, we have

EX,ε

[
‖Σ1/2(β̂λ−β?)‖22

]
=Eβ∼ΠEX,ε

[
‖Σ1/2(β̂λ−β)‖22

]
.

The equality in Proposition 1 holds for finite samples
and deterministic β? (and Σ), and provides a reduction
to the setting of random β? used in remaining sections.

On a technical side, the equality in Proposition 1 holds
for the expected test error, while the remaining results
within this work align with prior work (Dobriban et al.,
2018) where expectation is taken with respect to the
parameter and noise only (conditionally on covariates
X) i.e. Eε,β? [R(β̂λ)−R(β?)] = Eε,β? [‖Σ1/2(β−β?)‖22].
Note that convergence results on the conditional risk
can be integrated under suitable domination assump-
tions, for instance with positive ridge parameter λ.
In addition, framing our next convergence results in
the context of deterministic β? would lead to consider
source functions Φβ?,Σ = Φd depending on the dimen-
sion d, and converging to a fixed function Φ in a suitable
sense as d→∞. For the sake of simplicity, we instead
work in the setting of random parameter β? with a
fixed source function Φ.

On another note, the generalised ridge estimator,
which penalises with respect to a general covariance
‖Pβ‖22 for a positive definite matrix P , reduces af-
ter rescaling to standard ridge regression with an ap-
propriate prior and covariate covariance. Namely,
the problem instance with prior, penalisation and
covariate covariances (Π,P,Σ) is equivalent to using
(P 1/2ΠP 1/2, I, P−1/2ΣP−1/2) with parameterisation
β̃? = P 1/2β?, β̃ = P 1/2β and X̃ = XP−1/2.

2.3 Random Matrix Theory

Let us now describe the considered asymptotic regime,
as well as quantities and notions from random matrix
theory that appear in the analysis.

High-Dimensional Asymptotics. We study the
performance of the ridge estimator β̂λ under high-
dimensional asymptotics (Karoui and Kösters, 2011;
Karoui, 2013; Dicker, 2016; Dobriban et al., 2018;
Tulino et al., 2004; Bai and Silverstein, 2010), where
the number of samples and dimension go to infinity
n, d→∞ proportionally with d/n→ γ ∈ (0,∞). This
setting enables precise characterisation of the risk, be-
yond the classical regime where n→∞ with fixed true
distribution.

The ratio γ = d/n plays a key role. A value of γ > 1
corresponds to an overparameterised model, with more
parameters than samples. Some care is required in
interpreting this quantity: indeed, for a fixed sample
size n, varying γ changes d and hence the underlying
distribution. Hence, γ should not be interpreted as a
degree of overparmeterisation. Rather, it quantifies the
sample size relatively to the dimension of the problem.

Random Matrix Theory. Following standard as-
sumptions (Ledoit and Péché, 2011; Dobriban et al.,
2018), assume the spectral distribution of the covari-
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ance Σ converges almost surely to a probability dis-
tribution H supported on [h1, h2] for 0 < h1 ≤ h2 <
∞. Specifically, denoting the cumulative distribution
function of the population covariance eigenvalues as
Hd(τ)= 1

d

∑d
i=1 1(τ)[τi,∞), we have Hd(τ)→ H(τ) al-

most surely as d→∞.

A key quantity utilised within the analysis is the Stielt-
jes Transform of the empirical spectral distribution, de-
fined for z ∈ C\R+ as m̃(z) := d−1 Tr

((
X>X
n −zI

)−1).
Under appropriate assumptions of the covariates x (see
for instance (Dobriban et al., 2018)) it is known as
n, d→∞ the Stieltjes Transform of the empirical co-
variance m̃(z) converges almost surely to a Stieltjes
transform m(z) that satisfies the following stationary
point equation

m(z) =
∫ ∞

0

1
τ(1− γ(1 + zm(z)))− zdH(τ). (6)

For an isotropic covariance Σ = I the limiting spec-
tral distribution is a point mass at one, and the above
equation can be solved for m(z) where it is the Stielt-
jes Transform of the Marchenko-Pastur distribution
(Marčenko and Pastur, 1967). For general spectral den-
sities, the stationary point equation (6) may not be
easily solved algebraically, but still yields insights into
the limiting properties of quantities that arise. One
tool that we will use to gain insights will be the com-
panion transform v(z) which is the Stieltjes transform
of the limiting spectral distribution of the Gram matrix
n−1XX>. It is related to m(z) through the following
equality γ(m(z) + 1/z) = v(z) + 1/z for all z ∈ C\R+.
Finally, introduce the Φ-weighted Stieltjes Transform
defined for z ∈ C\R+

ΘΦ(z) :=
∫

Φ(τ) 1
τ(1− γ(1 + zm(z)))− zdH(τ),

which is the limit of the trace quantity
d−1 Tr

(
Φ(Σ)(X

>X
n − zI)−1) (Ledoit and Péché,

2011).

2.4 Main Theorem: Asymptotic Risk under
General Source Condition

Let us now state the main theorem of this work, which
provides the limit of the ridge regression risk.

Theorem 1 Consider the setting described in Section
2.1 and 2.3. Suppose Φ is a real-valued bounded func-
tion defined on [h1, h2] with finitely many points of
discontinuity and let v′(z) = ∂v(z)/∂z. If n, d → ∞
with γ = d/n ∈ (0,∞) then almost surely Eε,β? [R(β̂λ)−
R(β?)]→ RAsym(λ) where

RAsym(λ) = σ2
( v′(−λ)
v(−λ)2−1

)
︸ ︷︷ ︸

Variance

+ r2 ΘΦ(−λ)+λ∂ΘΦ(−λ)
∂λ

v(−λ)2︸ ︷︷ ︸
Bias

.

The above theorem characterises the expected test
error of the ridge estimator when the sample size and
dimension go to infinity n, d → ∞ with d/n = γ ∈
(0,∞), and β? is distributed as (3). The asymptotic
risk in Theorem 1 is characterised by the relative sample
size γ, the limiting spectral distribution H, and the
source function Φ (normalising σ2 = r2 = 1). This
provides a general form for studying the asymptotic test
error for ridge regression in a dense high-dimensional
setting. The source condition affects the limiting bias;
to evaluate it we are required to study the limit of the
trace quantity d−1 Tr

(
Σ(X

>X
n − zI)−1Φ(Σ)(X

>X
n −

zI)−1), which is achieved utilising techniques from both
(Chen et al., 2011) and (Ledoit and Péché, 2011) (key
steps in proof of Lemma 2 Appendix B). The variance
term in Theorem 1 aligns with that seen previously
in (Dobriban et al., 2018), as the structure of β? only
influences the bias.

We now give some examples of asymptotic expected risk
in Theorem 1 for 3 different structures of β?, namely
Φ(x) = 1 (isotropic), Φ(x) = x (easier case) and Φ(x) =
x−1 (harder case).

Corollary 1 Consider the setting of Theorem 1. If
n, d→∞ with γ = d/n, then almost surely

Eε,β?[R(β̂λ)−R(β?)]→σ2
( v′(−λ)
(v(−λ))2−1

)

+ r2


v′(−λ)

γ(v(−λ))4 − 1
γv(−λ)2 if Φ(x) = x

1
γv(−λ)−

λ
γ

v′(−λ)
(v(−λ))2 if Φ(x) = 1

2λ
γ
v′(−λ)
v(−λ) + (1− 1

γ

) v′(−λ)
v(−λ)2 − 1

γ if Φ(x) = 1/x

The three choices of source function Φ in Corollary
1 are cases where the asymptotic bias in Theorem 1
can be expressed in terms of the companion transform
and its first derivative. The expression in the case
Φ(x) = 1 was previously investigated in (Dobriban
et al., 2018), while for Φ(x) = x the bias aligns with
quantities previously studied in (Chen et al., 2011),
and thus, can be simply plugged in. For Φ(x) =x−1,
algebraic manipulations similar to the Φ(x) = x case
allow ΘΦ(z) to be simplified. Finally, for Φ(x)=1 it is
clear how the bias and variance can be brought together
and simplified yielding optimal regularisation choice
λ=σ2γ/r2 (Dobriban et al., 2018), see also Remark 1.
As noted in Section 2.1, Φ(x)=x−1 corresponds to a
“harder" case, with no favoured direction, while Φ(x)=x
corresponds to an “easier” case with faster coefficient
decay.

3 Strong and Weak Features Model

In this section we consider a particular covariance
structure, the strong and weak features model. Let
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U1 ∈ Rd1×d and U2 ∈ Rd2×d be orthonormal matri-
ces whose rows forms an orthonormal basis of Rd and
d1 + d2 = d. The covariance is then for ρ1 ≥ ρ2 > 0

Σ = ρ1U
>
1 U1 + ρ2U

>
2 U2. (7)

We call elements of the span of rows of U1 strong fea-
tures, as they are associated to the dominant eigenvalue
ρ1. Similarly, U2 is associated to the weak features. The
size of U1, U2 go to infinity d1, d2→∞ with the sample
size n→∞, with di/d→ψi ∈ (0, 1) and thus ψ1+ψ2 =1.
The limiting population spectral measure is then atomic
dH(τ)=ψ1δρ1 +ψ2δρ2 .

The parameter β? has covariance E[β?(β?)>] =
r2

d

(
φ1U

>
1 U1 +φ2U

>
2 U2

)
, where φ1, φ2 are the coeffi-

cients for each type of feature and the source condition
is Φ(x) = φ11x=ρ1 +φ21x=ρ2 . The coefficients φ1, φ2
encode the composition of the ground truth in terms
of strong and weak features, and thus, the difficulty of
the estimation problem. The case φ1 =φ2 corresponds
to the isotropic prior, while the case φ1 > φ2 corre-
sponds to faster decay and hence an “easier” problem.
Specifically, if φ1 > φ2 increases, β? has faster decay,
the problem becomes “easier” since the ground truth
is increasingly made of strong features. Therefore, if
φ1/φ2≥1 we say the problem is easy, while if φ1/φ2<1
we say the problem is hard.

Under the model just introduced, Theorem 1 provides
the following asymptotic characterization for the ex-
pected test risk as n, d→∞

RAsym(λ) = v′(−λ)
v(−λ)2

(
σ2+r2

2∑
i=1

φiψiρi
(ρiv(−λ)+1)2

)
−σ2.

To gain insights into the performance of least squares
when data is generated from the strong and weak fea-
tures model, we now investigate the above limit in the
overparameterised setting γ > 1. The insights are sum-
marised in the following sections. Section 3.1 shows
that zero regularisation is optimal for easy problems
with high signal to noise ratio. Section 3.2 shows how
weak features can be used as a form of regularisation
similar to ridge regression. Section 3.3 present findings
related to the ridgeless bias and variance.

Source Condition Reduction for Strong and
Weak Features Model. Following Section 2.2, the
case of a general deterministic parameter β? ∈ Rd
can be encoded by the strong and weak features set-
ting just described. Namely, let β1, β2 be the re-
spective projections of β? onto rows of U1, U2. Then
φ1 = ‖β1‖22d/d1 = and φ2 = ‖β2‖22d/d2, and thus, the
coefficients φ1, φ2 align with the norm of the ground
truth β? projected on each bulk.

3.1 Interpolating can be optimal in the
presence of noise

In this section, we investigate how the true regression
function, namely the parameter β? (through the source
condition), affects optimal ridge regularisation. We
begin with the following corollary, which, in short, de-
scribes when zero regularisation can be optimal. Let us
denote the derivative of the asymptotic risk RAsym(λ)
with respect to the regularisation λ as R′Asym(λ).

Corollary 2 Consider the strong and weak features
model with γ = 2, ψ1 = ψ2 = 1/2 and E[‖β?‖22] = r2.
If

r2

σ2
ρ1ρ2

(√ρ1 +√ρ2)2︸ ︷︷ ︸
Signal to Noise Ratio

( φ1
√
ρ1 + φ2

√
ρ2√

ρ1 +√ρ2
− 1︸ ︷︷ ︸

Alignment

)
≥ 1

then R′Asym(0) ≥ 0. Otherwise R′Asym(0) < 0.

Corollary 2 states that if the ground truth is aligned
φ1 > 1 (the signal concentrates more on strong fea-
tures) and the signal to noise ratio r2/σ2 is sufficiently
large, then the derivative of the asymptotic test error
at zero regularisation is positive R′Asym(0)≥ 0. The
interpretation being that interpolating is optimal if
adding regularisation increases (locally at 0) the test
error. The case γ=2 and ψ1 =ψ2 =1/2 is considered,
as the companion transform at zero takes a simple
form v(0) = 1/√ρ1ρ2, allowing the derivatives v′(0)
and v′′(0), and thus R′Asym(0), to be tractable.

Looking to Figure 1 plots for the performance of op-
timally tuned ridge regression (Left) and the optimal
choice of regularisation parameter (Right) against (a
monotonic transform) of the eigenvalue ratio ρ1/ρ2, for
a coefficient ratios φ1 ≥ φ2 have been given. As shown
in the right plot of Figure 1, for a fixed distribution of
X (characterised by ψ1, ρ1, ρ2) and sample size (char-
acterised by γ) as the ratio φ1/φ2 increases the optimal
regularisation decreases. Following Corollary 2, if the
ratio φ1/φ2 is large enough, the optimal ridge regulari-
sation parameter λ can be 0, corresponding to ridgeless
interpolation. We note that the negative derivative at
0 (Corollary 2) and the right plot of Figure 1, see also
(Kobak et al., 2020; Wu and Xu, 2020).

Comparison with the Isotropic Model. In the
case of a parameter β? drawn from an isotropic prior
Φ ≡ 1 (see Section 2.1), the optimal ridge parameter
is given by λ = (σ2d)/(r2n) (see Remark 1, as well
as (Dobriban et al., 2018; Hastie et al., 2019)). This
parameter is always positive, and is inversely propor-
tional to the signal-to-noise ratio r2/σ2. Studying the
influence of β? through a general φ1, φ2 shows that (1)
optimal regularisation also depends on the coefficient
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Figure 1: Left: Limiting test error for optimally tuned
ridge regression as described by RAsym(λ), Right: op-
timal regularisation computed numerically using the-
ory. Both: Quantities plotted against Eigenvalue ratio
ρ1/(ρ1 + ρ2). Problem parameters were E[〈x, β?〉2] =
ρ1φ1ψ1 + ρ2φ2ψ2 = 1, E[‖β?‖22] = r2(φ1ψ1 + φ2ψ2) =
r2 = 1, σ2 = 0.05, γ = 3.5 and ψ1 = 0.5. Left: Dashed
lines indicate simulations with d = 210, 40 replications,
noise ε from standard Gaussian and covariance Σ diago-
nal with ρ1 on first d1 co-ordinates and ρ2 on remaining
d2.

decay of β?; (2) optimal regularisation can be equal to
λ = 0, which interpolates training data. Finally, let
us note that the optimal estimator of Remark 1 (with
oracle knowledge of Σ,Φ) does not interpolate; hence,
the optimality of interpolation among the family of
ridge estimators arises from a form of “prior misspecifi-
cation”. We believe this phenomenon to extend beyond
the specific case of ridge estimators.

3.2 The Special Case of Noisy Weak Features

In this section we consider the special case where weak
features are pure noise variables, namely φ2 = 0, while
their dimension is large. Such noisy weak features
can be artificially introduced to the dataset, to induce
an overparameterised problem. We then refer to this
technique as Noisy Feature Regularisation, and note
it corresponds to the design matrix augmentation in
(Kobak et al., 2020). Looking to Figure 2, the ridgeless
test error is then plotted against the eigenvalue ratio
ρ2/ρ1 (Left) and the number of weak features with the
tuned eigenvalue ratio (Right).

Observe (right plot) as we increase the number of weak
features (as encoded by 1/ψ1), and tune the eigenvalue
ρ2, the performance converges to optimally tuned ridge
regression with the strong features only. The left plot
then shows the “regularisation path” as a function of
the eigenvalue ratio ρ2/ρ1 for some numbers of weak
features 1/ψ1.

Weak Features Can Implicitly Regularise. The
results in Sections 3.1 and 3.2 suggest that weak fea-
tures can implicitly regularise when the ground truth is
associated to a subset of stronger features. Specifically,
Section 3.1 demonstrated how this can occur passively

in an easy learning problem, with the weak features
providing sufficient stability that zero ridge regular-
isation can be the optimal choice 1. Meanwhile, in
this section we demonstrated an active approach where
weak features can purposely be added to a model and
tuned similar to ridge. We note the recent work (Jacot
et al., 2020) which shows a similar implicit regularisa-
tion phenomena for kernel regression.

Figure 2: Ridgeless test error for strong and weak
features model (r2 = σ2 = 1) against eigenvalue ratio
ρ2/ρ1 (Left) and size of noisy bulk 1/ψ1 = d1/d (Right).
Solid lines show theory computed using v(0) with γψ1 =
d1/n = 1.5 and ρ1 = 0.5. Dashed lines are simulations
with d = 28 (Left) and 210 (Right) and 20 replications.
Solid Grey Horizontal Line: Performance of optimally
tuned ridge regression with strong features only.

3.3 Ridgeless Bias and Variance

In this section we investigate how the ridgeless bias and
variance depend on the ratio of dimension to sample
size γ. Looking to Figure 3 the ridgeless bias and
variance is plotted against the ratio of dimension to
sample size in the overparameterised regime γ ≥ 1 .

Note an additional peak in the ridgeless bias and vari-
ance is observed beyond the interpolation threshold.
This has only recently been empirically observed for
the test error (Nakkiran et al., 2020), as such, these
plots now theoretically verify this phenomenon. The
location of the peaks naturally depends on the number
of strong and weak features as well as the ambient di-
mension, as denoted by the vertical lines. Specifically,
the peak occurs in the ridgeless bias for the “hard” set-
ting when the number of samples and number of strong
features are equal n = d1. Meanwhile, a peak occurs
in the ridgeless variance when the number of samples
and strong features equal n = d1, and the eigenvalue
ratio is large ρ1 > ρ2. This demonstrates that learning
curves beyond the interpolation threshold can have dif-
ferent characteristics due to the interplay between the

1Zero regularisation has been shown to be optimal for
Random Feature regression with a high signal to noise
ratio (Mei and Montanari, 2019) and a misspecified compo-
nent. The work (Kobak et al., 2020) numerically estimated
R′

Asym(λ) for a spiked covariance model and found it can
be positive.
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covariate structure and underlying data. We conjec-
ture this arises due to instabilities of the design matrix
Moore-Penrose Pseudo-inverse, akin to the isotropic
setting (Belkin et al., 2020). Since variance matches
prior work (Dobriban et al., 2018), the additional peak
could be previously derived. Meanwhile the peak in
the bias here uses of the source condition, and thus, as
far as we aware is not encompassed in prior work.

Figure 3: Ridgeless bias and variance for strong and
weak feature model plotted against relative dimension
γ = d/n with various eigenvalue ratios ρ1/ρ2 and coef-
ficients φ1/φ2. Solid lines are theory computed using
v(0) with ψ1 = 0.35, E[〈x, β?〉2] = ρ1φ1ψ1+ρ2φ2ψ2 = 1
and E[‖β?‖22] = r2(φ1ψ1 +φ2ψ2) = 1. Dashed lines are
simulations with d = 28 and 20 replications.

4 Conclusion

In this work, we introduced a framework for studying
ridge regression in a high-dimensional regime. We char-
acterised the limiting risk of ridge regression in terms
of the dimension to sample size ratio, the spectrum of
the population covariance and the coefficients of the
true regression parameter along the covariance basis.
This extends prior work (Dicker, 2016; Dobriban et al.,
2018), that considered an isotropic ground truth pa-
rameter. Our extension enables the study of “prior
misspecification”, where signal strength may decrease
faster or slower than postulated by the ridge estimator,
and its effect on ideal regularisation.

We instantiated this general framework to a simple
structure, with strong and weak features. In this case,
we show that “ridgeless” regression with zero regu-
larisation can be optimal among all ridge regression
estimators. This occurs when the signal-to-noise ratio
is large and when strong features (with large eigenvalue
of the covariance matrix) have sufficiently more signal
than weak ones. The latter condition corresponds to
an “easy” or “lower-dimensional” problem, where ridge
tends to over-penalise along strong features. This phe-
nomenon does not occur for isotropic priors, where
optimal regularisation is always strictly positive in the
presence of noise. Finally, we discussed noisy weak
features, which act as a form of regularisation, and
concluded by showing additional peaks in ridgeless bias
and variance can occur for our model.

Moving forward, it would be natural to consider non-
Gaussian covariates. Given universality results in Ran-
dom Matrix Theory we expect that the results provided
here extend to the case of random vectors with indepen-
dent coordinates (and linear transformations thereof).
Other structures for the ground truth and data gener-
ating process can be investigated through Theorem 1
by consider different functions Φ and the population
eigenvalue distributions. The tradeoff between pre-
diction and estimation error exhibited by (Dobriban
et al., 2018) in the isotropic case can be explored with
a general source Φ.
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