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Abstract—We investigated the threat level of realistic attacks
using latent fingerprints against sensors equipped with state-of-
art liveness detectors and fingerprint verification systems which
integrate such liveness algorithms. To the best of our knowledge,
only a previous investigation was done with spoofs from latent
prints. In this paper, we focus on using snapshot pictures of latent
fingerprints. These pictures provide molds, that allows, after
some digital processing, to fabricate high-quality spoofs. Taking a
snapshot picture is much simpler than developing fingerprints left
on a surface by magnetic powders and lifting the trace by a tape.
What we are interested here is to evaluate preliminary at which
extent attacks of the kind can be considered a real threat for state-
of-art fingerprint liveness detectors and verification systems. To
this aim, we collected a novel data set of live and spoof images
fabricated with snapshot pictures of latent fingerprints. This data
set provide a set of attacks at the most favourable conditions. We
refer to this method and the related data set as “ScreenSpoof”.
Then, we tested with it the performances of the best liveness
detection algorithms, namely, the three winners of the LivDet
competition. Reported results point out that the ScreenSpoof
method is a threat of the same level, in terms of detection and
verification errors, than that of attacks using spoofs fabricated
with the full consensus of the victim. We think that this is a
notable result, never reported in previous work.

I. INTRODUCTION

A well-known principle in computer security, named “con-
servative design”, states that if designers of security systems
fail to anticipate the capabilities of an adversary major security
compromises can occur [1]. Instead, if we are able to anticipate
the new capability of adversaries, we can understand the worst-
case threat posed by an adversary, and users are less likely to
be surprised by an attack by some unanticipated adversary.

Fingerprint spoofing is a well-known presentation attack for
biometric recognition systems and previous work proposed
different software-based liveness detection algorithms as a
defense countermeasure. The most recent algorithms are based
on deep learning paradigm that allowed a notable increase of
detection accuracy [2].

As to prevent attackers’ intention is important in this kind of
arms-race problem, we organized the international fingerprint
liveness detection competition (LivDet) as the premier forum
that shapes the state of the art on spoofs’ fabrication techniques
and anti-spoofing technology [3]. Performances of liveness
detection algorithms submitted to all the LivDet editions have
been mainly assessed with spoof images fabricated by the so
called “consensual” method. Spoofs are created by following

a rigorous in vitro protocol, which includes the careful and
controlled pressure of the volunteer’s finger on a plasticine-
like material. Once the material is solidified, you have the
mold, namely, the 3D fingerprint ”negative”, where locations
of ridges and valleys are inverted. Then, the cast material,
in a liquid form, is dripped over the mold. Finally, the cast is
removed from the mold after the time necessary to its appropri-
ate solidification. The material should have properties similar
to those of the human skin: thus, it should be flexible, not too
dry, not too moist, and, possibly, wearable or “stealthy”.

This method is considered a “worst-case”, namely, the
optimal case for the attacker, because it can lead to a very
good mold [4]. By the LivDet organization, we experienced
that very good molds allow to fabricate spoofs that are likely
to deceive the sensor and the matching algorithm used for
identity recognition, even if the most recent approaches based
on deep learning are adopted [3]. On the other hand, this kind
of attack has a low probability to be executed since it requires
the cooperation of the victim; therefore, it can be considered
a high-risk attack with a very low probability of execution.
Recently, several videos posted on social networks have shown
that very good spoofs can be obtained from latent fingerprints,
and such spoofs allowed to crack smartphones of famous
brands [5], [6], [7]. Worth noting, the spoofs lifted from latent
prints were also investigated in the 2013 edition of LivDet
[8]. Replicas were obtained by developing the latent traces on
a piece of paper with magnetic powders. The LivDet 2013
spoofs have been analyzed in [9], and their effectiveness was
quite limited. The development step is a destructive process
(it can be done one time only per trace); thus, the quality
of the mold entirely depends on the ability of the attacker
to perform this process without degrading the quality of the
latent mark. Moreover, the scenario where the attacker is able
to develop and lift the latent fingerprint of the victim with
forensic techniques is not very realistic, as the attacker should
have a lot of time and good technical skills.

Recent efforts towards realistic presentation attacks [7] led
to the observation that latent traces of fingerprints can be
captured by a snapshot picture taken with a smartphone; see
for example Fig. 1. This paves the way to unconsensual
methods for the fabrication of spoofs where molds are fab-
ricated with the total unawareness of the victim. Taking a
snapshot picture requires much less time, efforts and technical
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skills than the standard forensic procedure that develops the
latent trace and puts it on a lifting tape. Finally, according
to [7], spoofing by snapshots allows to fabricate fake fingers
that pass the identity check of several modern smartphones
equipped with fingerprint sensors. It is easy to see that if
spoofs fabricated with snapshot pictures would be able to
evade state-of-art fingerprint liveness detectors, we should
reconsider current methods to design and test them. The low
probability of the “worst-case” attack means that this does
not have a real impact when assessing the ROC curve of the
fingerprint verification system. On the contrary, the probability
of the spoofing attack by “snapshots” can be expected to be
much higher, as this attack is much easier to be executed in the
reality. Therefore, such new attack should be taken into serious
account when designing anti-spoofing systems and assessing
their ROC curves [10].

Investigating the level of threat of spoofs fabricated with
snapshot pictures is the goal of this paper. We use a technique
for fingerprint spoofing by snapshot pictures that is much
simpler than the one proposed in [7]. We called this technique
“ScreenSpoof”. To obtain statistically significant insights, we
collected a novel data set of live and spoof fingerprint images
fabricated by snapshot pictures. To assess the extent at which
such spoofs are a real threat for sensors equipped with
the best fingerprint liveness detectors, we assumed that the
attacker is able to develop the “optimal” latent mark from
the smartphone’s screen. The ScreenSpoof data set is of the
same size than the ones of the leading LivDet competitions.
We tested this data set with the three winning algorithms of
the last edition of LivDet [3]. This means that our spoofing
attacks were carried out against sensors equipped with the
best liveness detection technology currently available. Our
results show that we are at a turning point of the research
on fingerprint liveness detection: the detection error and the
matching accuracy achieved with our ScreenSpoof technique
are comparable with those obtained in the “worst-case” sce-
nario where spoofs are fabricated with the full consensus
of the victim. The paper is organized as follows. Section

Fig. 1: Picture of a latent fingerprint on a smartphone screen
(left) and details of the pores (right).

2 describes the main approaches to spoof fabrication and
previous attempts to evaluate the performance of state-of-
art fingerprint liveness detectors against replicas from latent
traces. Section 3 evaluates the threat level of the ScreenSpoof
method presenting the collected data set and reporting the

performance of state-of-art fingerprint liveness detectors and
matchers taking part at the LivDet 2019 competition. Section
4 closes the paper.

II. MAKING FINGERPRINT SPOOFS: STATE OF THE ART

A. Consensual method

The consensual method for fabrication of fingerprint
“spoofs” is considered the “worst-case” for anti-spoofing
systems as it allows to obtain a perfect replica, or artefact,
of a live fingerprint and high-quality spoofs. With the term
“consensual” method we refer to the basic molding and
casting method [11], described in this section, but other more
sophisticated 2D and 3D printing techniques can be used [12].
The consensual method for molding and casting consists of
three steps. In the first step, the volunteer pushes the finger
into a silicone material to leave the negative impression of
her/his biometric trait on a mold. The mold is then filled
with a cast material, such as latex, liquid ecoflex or glue. The
solidified material is detached from the mold and represents
an accurate copy of the real fingerprint and can be used to
execute a presentation attack against a fingerprint recognition
system (also equipped with a liveness detector).

Although this method may achieve the goal of evading a
fingerprint verification system, it is not realistic as it requires
the consensus of the victim. It can be successful only in the
hypothetical case that the target user is a partner in crime of
the attacker, or the attacker is so skillful that the victim does
not realize that a copy of her/his fingerprint has been stolen,
for example, by an accidental pressure on a wax or plasticine
surface. Even in this favourable case, the mold could not be
useful to provide a good replica of the victim’s fingerprint.
Therefore, if this method is optimal in vitro, it is not easy to
execute successfully in a real context.

B. Unconsensual method

The non-consensual method is the most realistic and “dan-
gerous” method by which an attacker can fabricate spoofs and
evade a fingerprint recognition system. In fact, it does not
require the victim’s consensus and collaboration. Usually, a
latent fingerprint is taken from a smooth or nonporous surface
through magnetic powders and digitized through a scanner or
a photograph. The cast material is then applied to a transparent
sheet on which the negative latent has been printed. This
implies more or less complex digital processing to make useful
the fingerprint negative by a printer. Another way to create the
spoof is to etch the fingerprint negative onto a printed circuit
board and then drip the material.

The fabrication of spoofs from latent prints is usually
difficult because it requires great skills, specialized equipment
and time enough.

1) Previous work on spoofing by latent prints: A first as-
sessment of the level of threat of attacks with spoofs fabricated
by the unconsensual method was described in the LivDet 2013
paper [8]. Two data sets were created using latent fingerprints
collected by dusting a sheet of paper with fingerprint powder.
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The developed fingerprint was then photographed and digi-
tized, and the negative image was printed on a transparency
sheet. Using this printed image as mold, spoofs were created
with different materials (gelatine, latex, ecoflex, modasil and
wood glue).

The LivDet 2013 results showed that this replication tech-
nique is only partially effective. In fact, the spoofs were
apparently easy to detect due to the low Equal Error Rate
(EER) obtained. In particular, the three winning algorithms
reported performances over 95% with the “unconsensual” data
sets and much lower performances with the “consensual” data
sets.

This result is confirmed by [13] that compared the LivDet
2013 average results achieved with Biometrika and Italdata
sensors with those of the LivDet 2011 edition in which
these two sensors were used with the consensual method.
The authors pointed out that in the 2013 edition, the error
rate with these two data sets was 20% less than the one of
the previous edition (from 30% to around 10% in terms of
average detection rate). Although algorithms and participants
were different, the above figure clearly shows that, in 2011,
spoofs fabricated from latent prints were far from being a real
threat for fingerprint liveness detection systems.

2) Spoofing by snapshot pictures of latent prints: The
reflective surfaces easily get dirty with the human skin residues
consisting of secretions of the eccrine, sebaceous and apocrine
glands. Recently, it has been shown that latent fingerprints left
on smartphones and touchscreen-equipped mobile devices are
easy to identify without the use of specialized equipment and
can be used to evade a fingerprint authentication system. In
2013, the hackers of the Chaos Computer Club (CCC) [6]
broke the Apple TouchID using a photo-sensitive PCB mold
created by taking a picture or scanning a latent fingerprint on
a smartphone screen.

The effectiveness of this new spoofing technique was
confirmed later by [7], in which the authors simulated an
attack against five different smartphones by collectiong the
latent fingerprints from the device screens. In particular, the
technique used by [7] was based on a scanner app to take
the picture with flash of the latent fingerprint. The acquired
image was then improved by removing the background and
other adjustments. Finally, the mold was created from the
pre-processed image by PCB techniques and four materials
were used to fabricate spoofs (Play-Doh, gelatin, latex with
sprayed graphite powder and white glue with sprayed graphite
powder).

The target devices were vulnerable at the attack, reporting
an average Impostor Attack Presentation Match Rate (IAPMR)
of 9%. Three out of four of the materials used to fabricate
spoofs were effective against smartphone sensors, although
there was a substantial performance difference among the
targeted victims.

This previous work did not check if a modern liveness
detection system could identify this attack and whether this
technique for spoofs fabrication is better or worst than the
techniques used at state-of-art. In the following sections,

we investigate the level of threat of an attack using spoofs
fabricated from snapshot pictures of latent prints.

III. MAKING SPOOFS BY SNAPSHOT: A REAL THREAT?

A. The ScreenSpoof data set

To assess the level of threat of a realistic approach that
steals latent fingerprints without the consensus of the victim,
we collected a novel data set called “Stealthy Spoofing from
Smartphone” or “ScreenSpoof” data set and made up of live
and fake fingerprint images. In the following, we refer to both
spoofing methods and data by the term “ScreenSpoof”. We
were inspired by the technique presented in [7] but we further
simplified it to achieve an even more realistic attack. This
technique is based on taking a snapshot of the smartphone
screen, where it is almost sure that a good set of possible
latent “molds” can be found.
It is worth noting that a latent fingerprint is often characterized
by (a) a noisy/complex background, (b) partial friction ridge
information, and (c) poor friction ridge clarity [14]. In partic-
ular, the fingerprints left on the screens are due to the actual
use of the device, as in the case of tap and scroll, which almost
always lead to partial and overlapping fingerprints. However,
holding the device in hand causes non-overlapping impressions
with complete and clear friction ridge information. Fig. 2
exemplifies the above cases. In the last one, an appropriate
pre-processing of the image allows to obtain a useful mold,
as shown in Fig. 3. It is hence obvious that the attacker has
the time to choose the best one among latent prints visually
detected, once she/he took the snapshot.
On the basis of these observations, our “ScreenSpoof” data

Fig. 2: Typology of impressions on screens based on usage.

set was acquired in vitro, with the collaboration of the users.
As shown in Fig. 2, the same type of candidate images can
be obtained “in the wild”, but with much more expense of
time and efforts. Leaving the problem of this task to a next
publication, we dealt with the “worst case”, where the attacker
was able to develop a full and complete latent print left on the
screen by the incautious user.

The main collection phases of our data set are (Fig. 4):
1) Acquisition: once the screen has been carefully cleaned,

the user is asked to place index, middle and ring fingers
of the right hand in the upper part and the same fingers
of the left hand in the lower part; then the smartphone
is placed on a vertical support in order to take a high-
resolution photo of all six fingerprints. The same proce-
dure is performed for the thumb and little finger of both
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Fig. 3: Development by pre-processing of a fingerprint ac-
quired “in the wild”.

hands. Users have not been asked to wash their hands,
nor to use moisturizers, the quality of the impression
depends on the natural dryness and dirtyness of the skin
during the acquisition.

2) Binarization: the RGB image is converted to grayscale,
inverted and image contrast between ridges and valleys
increased.

3) Pagination: the photo is cropped and scaled with respect
to the size of the real fingerprint, using reference points
on the screen.

4) Fake fabrication: the resulting “negative” image is
printed on a transparent sheet. The creation of spoofs,
starting from the transparent sheet print, coincides with
the traditional non-consensual method described above:
the sheet is used as mold. Different cast materials are
dripped over several prints of the mold. Once dried,
spoofs are removed from the sheet and captured with
the sensors.

The ScreenSpoof data set consists of 30 people: five acquisi-
tions were made per finger, reaching a total of 1500 images per
sensor. Spoofs were fabricated with three different materials
(Mix 1, Mix 2 and body double) and acquired twice for a total
of 1800 images (600 per material) per sensor.
All the acquisitions were carried out with two sensors, the
Green Bit and Digital Persona sensors (Table I), already used
in the LivDet 2019 [3] so that we are able to compare the
state-of-art consensual method with our ScreenSpoof method.

Fingerprints quality varies from user to user based on the
dryness of the skin and the cosmetics used (e.g. individuals
who use foundation and often touch their facial skin leave
clear impressions on the screen).

Scanner Model DPI Image Size Type
Green Bit DactyScan84C 500 500x500 Optical
Digital Persona U.are.U 5160 500 252x324 Optical

TABLE I: Green Bit and Digital Persona device features.

B. Threat evaluation

As we explained before, the ScreenSpoof fabrication tech-
nique is realistic and easy to use. Therefore, it is important to
evaluate how much it is also effective and it could be a real
threat against state-of-art liveness detectors.

To this aim, we tested the three winning algorithms submit-
ted to the last edition of the LivDet competition [3], namely,
the algorithms named PAD, ZJUT, and JLW, with our Screen-
Spoof data set. These three algorithms have different features:
PAD is a presentation attack detection system based on hand-
crafted features, ZJUT and JLW are fingerprint verification
systems also equipped with a presentation attack detection
module based on deep learning techniques. In particular, the
PAD method uses a combination of local and global feature
to characterize fingerprints [15]. The ZJUT algorithm uses a
residual convolutional neural network, called Slim-ResCNN
[16]. We have no further information on the JLW method.
In particular, we used the ZJUT Det A and JLWs versions
described in [3]. All algorithms have been pre-trained with the
LivDet 2019 training set [3]. We analyzed liveness detection
performances for all three algorithms, and recognition perfor-
mances for ZJUT and JLW, using the experimental protocol
of the LivDet 2019 competition on LivDet 2019 testing set
and on the ScreenSpoof data set. Therefore, the experiments
are cross-material and cross-database, in line with the typical
fingerprint presentation attack detection evaluation protocols,
for which the absence of knowledge of the type of spoofing
attack is a fundamental point. Figure 6 shows the ROC
curves of the three algorithms in terms of liveness detection
performance, the Bona fide Presentation Classification Error
Rate (BPCER) and the Attack Presentation Classification Error
Rate (APCER). For each plot, we compare performances of
spoofs fabricated with the consensual method (“worst-case”
scenario) with the ones of spoofs fabricated with our technique
using snapshot pictures, for Green Bit sensor (in blue) and
Digital Persona sensor (in red). The continuous lines indicate
the ROCs calculated with the LivDet 2019 test set, the dotted
ones refer to the ScreenSpoof test set. It is worth noting that
our spoofs by snapshot pictures provide performances very
close to the ones of the consensual method. Our spoofs are
sometimes even more difficult to detect than the “consensual”
spoofs. This is a notable result never reported before.

BPCER@1%APCER and APCER@1%BPCER values re-
ported in Table III confirms the effectiveness of our spoofs by
snapshot pictures and, therefore, the high level of threat of this
kind of spoofing attack. In particular, the liveness detection
algorithm tested with images acquired with the Green Bit
sensor shows a very high drop of the performance.

Some hypotheses can be done to explain the reasons of the
noticeable performance of the spoofs obtained by our method.
Just to give a first motivation, we show in Fig. 5 some ex-
ample images of the spoofs obtained by our ScreenSpoof and
consensual methods and the related live images. Images look
similar by visual and optical microscope inspections: ridge and
valleys are clearly replicated, and pores are visible even in
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Fig. 4: The four collection steps of the ScreenSpoof data set: the latent fingerprint is (1) photographed from the device screen,
(2) pre-processed, (3) printed on a transparent sheet and (4) spoof is fabricated by pouring a material over the sheet.

Test ScreenSpoof Test LivDet 2019
Dataset Live Mix 1 Mix 2 Body Double Live Mix 1 Mix 2 Liquid Ecoflex

Green Bit 1500 600 600 600 1020 408 408 408
Digital Persona 1500 600 600 600 1019 408 408 408

TABLE II: Details of the two test sets used to compare the consensual method with our ScreenSpoof. The algorithms had
previously been trained with the LivDet 2019 train set (using the consensual method).

the ScreenSpoof-based image. This qualitative evaluation may
lead to the conclusion that both methods are able to effectively
replicate the main features of the “stolen” fingerprint. On
the other hand, further investigations are necessary to support
better and clarify the cases where our ScreenSpoof method
clearly outperforms the consensual one.

(a) Live (b) Consensual (c) ScreenSpoof

Fig. 5: Example of live and spoof images adopted in the test
stage of the LivDet 2019 algorithms.

Tables IV and V show the performance of the two integrated
systems, ZJUT and JLW, respectively for GreenBit and Digital
Persona sensors. The values of False Match Rate (FMR), False
Non-Match Rate (FNMR) and Impostor Attack Presentation
Match Rate (IAPMR) [10] are computed as follows. If the
integrated match score between the submitted image and the
template is more than 0.5, according to the LivDet 2019 com-
petition rules, the image is verified as belonging to the claimed
identity. Otherwise it is rejected as zero-effort (impostor) or
presentation attack.

Between the ScreenSpoof and LivDet results, there are some
performance fluctuations. Genuine users of the ScreenSpoof
data set are better recognized (FMR) while it is easier to
correctly classify the zero-effort impostors of the LivDet data
set (FNMR). Since in both cases, these images have been
produced from live fingerprints, these fluctuations cannot be
due to the spoof fabrication technique and derive from the
response of the presentation attack detector integrated on the

matcher. It should be noted that we do not know the matchers’
details and the rule of integration with the presentation attack
detector.

The IAPRM value is a measurement of how “dangerous”
these spoofs can be for an integrated system (i.e., a fingerprint
verification system integrated with a liveness detector). It
is worth noting that the variations of IAPMR values differ
substantially on the basis of the sensor used. For the Green
Bit sensor, ScreenSpoof attacks are less effective than the con-
sensual ones. The PAs created with the ScreenSpoof technique
and acquired with the Digital Persona sensor are instead very
difficult to be classified correctly. Since the Digital Persona
data set was the most “difficult” one in LivDet 2019, the
evidence of an attack even harder to be detected points out
the need for a better understanding of the features replicated
by the ScreenSpoof method.

IV. CONCLUSIONS

The design and test of fingerprint liveness detection systems
was made so far by adopting the consensual technique to
fabricate high-quality spoofs. However, the effort to provide
very good quality molds and spoofs is not easy to provide in
vitro, and can be even more difficult in real scenarios, as we
experienced during the organization of the editions of LivDet.
Therefore, a presentation attack of that kind is unlikely to be
executed.

In this paper, we tried to anticipate attackers of fingerprint
recognition systems by proposing a realistic technique that
uses snapshot pictures of latent fingerprints to fabricate high
quality spoofs, which we called ScreenSpoof. Despite this data
set is still made up of spoof images collected by assuming the
ability of the attacker in developing the best latent mark, our
results point out that this kind of attack is a clear and present
threat of the same level, in terms of detection and verification
errors, than that of attacks using spoofs fabricated with the
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GreenBit Digital Persona
BPCER@1%APCER APCER@1%BPCER BPCER@1%APCER APCER@1%BPCER

LivDet 2019 ScreenSpoof LivDet 2019 ScreenSpoof LivDet 2019 ScreenSpoof LivDet 2019 ScreenSpoof
PAD [15] 5.00% 40.80% 14.22% 48.39% 14.03% 8.93% 40.95% 20.61%

ZJUT [16] 0.39% 0.07% 0.16% 0.17% 26.76% 18.07% 55.68% 27.56%
JLW 0.39% 0.07% 0.33% 0.17% 26.67% 18.07% 55.60% 27.67%

TABLE III: Comparison of BPCER@1%BPCER and APCER@1%BPCER for the three most accurate liveness detectors of
the LivDet 2019 competition using a consensual test set (LivDet 2019 test) and a unconsensual test set (ScreenSpoof data set).

GreenBit
FMR FNMR IAPMR

LivDet 2019 ScreenSpoof LivDet 2019 ScreenSpoof LivDet 2019 ScreenSpoof
ZJUT 0.49% 0.33% 5.48% 7.31% 2.60% 1.33%
JLW 0.76% 0.58% 0.03% 0.46% 2.65% 1.44%

TABLE IV: Evaluation of integrated algorithms (matching algorithms and liveness detectors) under presentation attacks using
a consensual test set (LivDet 2019 test) and a unconsensual test set (ScreenSpoof data set) for the GreenBit sensor.

Digital Persona
FMR FNMR IAPMR

LivDet 2019 ScreenSpoof LivDet 2019 ScreenSpoof LivDet 2019 ScreenSpoof
ZJUT 6.93% 2.68% 8.79% 12.38% 8.79% 22.87%
JLW 11.52% 6.10% 0.19% 0.59% 8.73% 14.20%

TABLE V: Evaluation of integrated algorithms under presentation attacks using a consensual test set (LivDet 2019 test) and
a unconsensual test set (ScreenSpoof data set) for the Digital Persona sensor.

full consensus of the victim. Moreover, the apparent effort
to fabricate fingerprint artefacts by the ScreenSpoof method is
much less than the unconsensual approaches based on forensic
techniques, and can be carried out by fooling the victim.
This is a notable result, never reported in previous work:
attackers have a realistic chance to evade the best liveness
detection technology currently available. This was confirmed
by the performance of the three winning algorithms of the
LivDet 2019 competition.

Our future work will be focused on large scale comparisons
among unconsensual spoofing attacks. In particular, we will
check the extent at which an attacker can obtain “stealthy”
molds in-the-wild in terms of the latent’s size and quality.
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Fig. 6: ROC curves of the three winning algorithms of LivDet 2019 for the two sensors: the blue lines indicate the Green
Bit sensor and the red lines indicate the Digital Persona sensor. The continuous lines indicate the ROCs calculated using the
LivDet 2019 test set, the dotted ones indicate the ScreenSpoof test set.

3418


