
Knowledge-Based Systems 223 (2021) 107074

t
b
e
a
a
t
r
b
m
s

l
o
h
b

a
f

N
N

h
0

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Efficient on-the-flyWeb bot detection
Grażyna Suchacka a,∗, Alberto Cabri b,c,1, Stefano Rovetta b,c,1, Francesco Masulli b,c,1
a Institute of Informatics, University of Opole, Opole, Poland
b Department of Informatics, Bioengineering, Robotics, and Systems Engineering (DIBRIS), University of Genoa, Genoa, Italy
c Vega Research Laboratories S.r.l., Genoa, Italy

a r t i c l e i n f o

Article history:
Received 7 January 2021
Received in revised form 6 April 2021
Accepted 20 April 2021
Available online 22 April 2021

Keywords:
Web bot
Internet robot
Real-time bot detection
Machine learning
Sequential analysis
Neural network
Early decision

a b s t r a c t

A large fraction of traffic on present-day Web servers is generated by bots — intelligent agents able to
traverse the Web and execute various advanced tasks. Since bots’ activity may raise concerns about
server security and performance, many studies have investigated traffic features discriminating bots
from human visitors and developed methods for automated traffic classification. Very few previous
works, however, aim at identifying bots on-the-fly, trying to classify active sessions as early as possible.
This paper proposes a novel method for binary classification of streams of Web server requests in order
to label each active session as ‘‘bot’’ or ‘‘human’’. A machine learning approach has been developed to
discover traffic patterns from historical usage data. The model, built on a neural network, is used to
classify each incoming HTTP request and a sequential probabilistic analysis approach is then applied to
capture relationships between subsequent HTTP requests in an ongoing session to assess the likelihood
of the session being generated by a bot or a human, as soon as possible. A performance evaluation study
with real server traffic data confirmed the effectiveness of the proposed classifier in discriminating bots
from humans at early stages of their visits, leaving very few of them undecided, with very low number
of false positives.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

In the present era of huge proliferation of Internet and mobile
echnologies, more and more of our everyday life activities have
een shifting to virtual platforms. Social life, communication,
ntertainment, shopping, or search for any kind of information
re only a few examples of this trend. At the same time Web
nalytics and online marketing tools have been increasingly used
o gain competitive advantage in this newly shaped market. The
apid development of these technologies caused the rise of Web
ot traffic, thanks to which advanced Web-based applications
ay provide users with up-to-date, accurate, and customized
ervices.
A Web bot, also called Internet robot, Web agent, or intel-

igent agent, is a software tool which carries out specific tasks
n the Web, usually autonomously, following the structure of
yper-links according to a specific algorithm [1]. Many bots are
enign and useful, like search engine crawlers, shopping bots

∗ Corresponding author.
E-mail addresses: gsuchacka@uni.opole.pl (G. Suchacka),

lberto.cabri@dibris.unige.it (A. Cabri), stefano.rovetta@unige.it (S. Rovetta),
rancesco.masulli@unige.it (F. Masulli).
1 Alberto Cabri, Stefano Rovetta and Francesco Masulli are members of the
ational Group for Scientific Computing (GNCS) of INdAM, the Italian Istituto
azionale di Alta Matematica ‘‘Francesco Severi’’.
ttps://doi.org/10.1016/j.knosys.2021.107074
950-7051/© 2021 The Author(s). Published by Elsevier B.V. This is an open access a

nc-nd/4.0/).
for collecting information on behalf of product search engines or
price comparers, link checkers to help website administrators in
detecting broken and backlisted links, or feed fetchers ferrying
website content to mobile applications. However, activities of
some bots raise concerns about ethics and users’ privacy, such
as in the case of e-mail harvesters, spambots, or content-stealing
bots. Furthermore, some robots are undoubtedly harmful: hack-
ing bots used to steal sensitive data or to inject malware, bots for
generating click frauds in pay-per-click advertising, or malware
used for DDoS (Distributed Denial of Service) attacks are only a
few examples.

A significant part of the overall Web traffic is generated by
bots, many of which have clearly malicious goals [2]. Bad bots
tend to obfuscate their true identities by taking on user agent
strings typical of legitimate Web browsers and ignore the file
robots.txt that contains website access rules for bots [3–5].
This makes it difficult to identify bot traffic on Web servers. In
practice, relatively simple bot detection techniques are enforced,
like comparison of an IP address or a user agent string with a
blacklist of known bots’ data or investigating some keywords
indicative of a bot in the user agent string. A request stream
may be also tested for some atypical statistical characteristics,
like extremely short inter-arrival times but these tests are often
ineffective because bots tend to mimic human behavior to conceal

themselves.

rticle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

https://doi.org/10.1016/j.knosys.2021.107074
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2021.107074&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:gsuchacka@uni.opole.pl
mailto:alberto.cabri@dibris.unige.it
mailto:stefano.rovetta@unige.it
mailto:francesco.masulli@unige.it
https://doi.org/10.1016/j.knosys.2021.107074
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074
The benefits of the aforementioned techniques are limited to
recognizing only well-known bots or to identifying aggressive
attacking behaviors, like DDoS attacks. To overcome this problem,
a CAPTCHA authentication test is commonly applied. However,
as a kind of a challenge–response test, its big disadvantage is
bothering the user with additional tasks, e.g., typing letters of
distorted images or solving a puzzle. This is burdensome for
users and negatively affects their Web experience, so despite its
efficacy in telling bots and humans apart, CAPTCHA has received
criticism and exposed the need to develop bot detection methods
transparent to Web users.

A large body of research has been dedicated to the problem
of robot traffic analysis, characterization, and classification. How-
ever, robot detection has been mostly addressed in the offline
scenario, working on historical session data. To the best of our
knowledge, very few studies have dealt with the problem of
identifying bots on-the-fly, while subsequent HTTP requests in
active sessions come to the server.

The ability to identify Web robots in real time is of crucial
importance for the security and performance of a website since it
makes it possible to mitigate threats before the end of robot visits
and, thus, to limit the impact of their presence. This demands
effective methods for early Web bot detection in real time, based
on HTTP request features and relationships between requests in
ongoing sessions.

The major contribution of this paper is a novel machine learn-
ing approach to identify ongoing robot visits on a website.

• The proposed method is particularly suitable to work in real
time. It can make a decision as soon as sufficient information
is gathered from the incoming requests of a given session;
experiments show that this usually occurs in the first few
requests, and in a number of cases in as few as two requests.

• The method relies on HTTP-level features which can be
easily extracted or computed from HTTP headers. Since this
information is easy to acquire in real-time for each current
observation, the method can be transparently implemented
on a real Web server software, without any need to modify
Web-based applications, like e-commerce software.

• The problem of early bot detection is formulated as a bi-
nary classification task of sequentially sampled multivariate
data and solved by applying a Multi-Layer Perceptron (MLP)
classifier combined with a Wald’s Sequential Probability
Ratio Test (SPRT) module. A multi-objective classification
approach allows the method to find the desired trade-off
between classification confidence and early decision.

Preliminary results of our method (here named NNSEQ), pre-
sented at the WIRN’17 [6] and EDMA’18 [7] conferences, showed
its great potential in early Web bot detection. In the present
study we applied our method, as well as a recently published
approach for real-time bot detection [8], to historical Web traffic
data from a real e-commerce site. The latter has been considered
as a reference because it addresses the same problem and, to
the best of our knowledge, is the only HTTP-level approach for
recognizing bots in real-time published so far. For each approach
a multi-objective optimization was performed to select the best
hyper-parameter values for a comparative analysis. An in-depth
performance study for our method was performed and discussed
in comparison with the corresponding results of the reference
method.

The proposed approach is more efficient than the reference
one in terms of recall, precision, accuracy, and percentage of clas-
sified sessions. Moreover, it is especially powerful in classification
of bots or humans given a very limited number of observations.

Critical challenges for on-the-fly bot detection include solu-
tions with high real-time performance and the need for their
2

adaptability in the face of inherent uncertainty in Web session
labeling due to the presence of unknown bots [9,10]. Our study
takes a step forward towards dealing with these challenges.

The rest of the paper is organized as follows. Section 2 presents
the preliminaries and formulates the problem. Section 3 describes
the related approaches to bot recognition on Web servers. The
proposed method is presented in Section 4, the reference method
in Section 5, while the experimental evaluation details are clari-
fied in Section 6. Section 7 discusses performance results of the
method in comparison with the reference approach, followed by
conclusions in Section 8.

2. Preliminaries and problem statement

The environment under consideration is a Web server host-
ing an e-commerce website, hence all the traffic is based on
the HTTP protocol, defined at the application layer of the ISO-
OSI stack [11,12]. Interaction through the HTTP protocol occurs
between Web clients and Web servers. A single client–server
transaction involves a request, issued by the client, and a response
sent by the server. The request indicates one of a number of
request methods, the most common being GET, POST and HEAD;
a header, containing meta-information including a user agent
string to identify the client; an URI (Unified Resource Identifier);
and a body. The response consists of a status line describing
the result of the transaction by means of a status code and a
verbal description (‘‘reason’’); a header; and a body containing
the requested data.

Web clients are typically Internet browsers or mobile apps
operated by human users, but may be also automated agents. In
the case of a browser, the interaction with the server takes place
by downloading consecutive Web pages, typically linked to each
other. For each new page, the browser generates a sequence of
HTTP requests, firstly for the page description file and then for
embedded objects, like images. In the case of intelligent agents,
however, a sequence of requests is not limited by the website
structure, as bots tend to traverse the site according to a given
strategy, e.g., depth-first or breadth-first, and may request only
selected types of server resources.

HTTP is a stateless protocol that does not define any server–
client permanent connection. When a session has to be main-
tained, such as during a customer visit in a Web store, other
mechanisms are used, e.g. cookies [13]. As opposed to HTTP
transaction data, however, such additional information is not
necessarily standardized across Web servers, nor easy to obtain
from website administrators, especially for e-commerce sites.
Therefore, given only a stream of HTTP requests observed at the
server, a common practice is to define a session as a sequence of
requests with the same IP address, the same user agent string, and
where the time interval between any two subsequent requests
does not exceed 30 min [8,14–17].

The problem of real-time session classification on a Web
server can be stated as an instance of early classification of mul-
tivariate data streams, i.e., classification in the shortest possible
time. Since a session corresponds to a single visit of a given client,
it is reasonable to assume that, within a session, the website
is accessed in a consistent style, hence the corresponding data
stream can be thought of as generated by a stationary source.
However, temporal dependencies are difficult to model.

Therefore, the problem of on-the-fly Web bot detection may
be stated as the task of identifying whether a sequence of HTTP
requests for a given session can be labeled as performed by a bot
or a human as early as possible before the end of the sequence.

The main assumption underlying the presented approach is its
compatibility with the real-time operating conditions of actual
Web servers and, consequently, a possibility to integrate it with



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

a
o
r
b

w
i
c

3

p
b

i
c
c
c
c
d
d
o
o

w
i
b
F
f
a
p
d
u
i
d
d
c
v
3

b
t
a
t
d
i
a
s
e
n
m
m
c

t
d
c
h
w
o
u
b
W
r
i

p
p
r
m
r

Web server software in the future. This could be done through-
ut a proxy server intercepting and analyzing incoming HTTP
equests and eventually enforcing decisions on further handling
y the server.
Our goal was to design a method as universal as possible,

hich does not require the analysis of website semantics, mod-
fications of a website structure, or a special process of data
ollection on the server or client side.

. Related work

In recent years, advances in bot technologies to run cons in
opular Web-based services motivated the quest for specialized
ot detection methods, targeted at specific applications.
The problem affects most websites and has direct economic

mplications for an online business. Many companies rely on
ommercial cyber security services, or have studied their own
ountermeasures. The scholarly literature, however, can only ac-
ount for those methods that have been publicly disclosed; in
ontrast, many of these are business secrets or use proprietary
ata, and do not contribute to the state of the art since they
o not allow replication, experimentation, third party validation,
r further development. In this work we will therefore restrict
urselves to known methods described in scholarly sources.
Some studies investigate attacking bot behaviors on the net-

ork level [18–21]. On the other hand, many techniques rely on
nvestigating the statistical differences in behavioral patterns of
ots and humans with regard to application dependent features.
or instance, [22] aims at detecting apps subject to search rank
rauds in Google Play by analyzing a set of relational, behavioral,
nd linguistic features. [23] proposes detection of click frauds in
ay-per-click advertising by identifying duplicate clicks. Features
erived from the analysis of user profiles and product reviews are
sed to detect spammer groups [24] and shilling attacks [25,26]
n online recommender systems. A large number of dedicated bot
etection approaches use supervised classification techniques to
etect spambots [27], blog bots [28,29], shopping bots [30] and
lick frauds [31]. Machine learning techniques proved to be also
ery effective at identifying frauds in online social networks [32–
4].
These approaches, developed for specific Web services, are

ased on selected high-level, application-specific features so
heir application is limited only to some kind of websites. There
re also approaches based on semantic features, which require
he prior analysis of the website semantics [35]. Other recent bot
etection methods need initial website’s pre-processing or mod-
fication, like generating a special graph-based sitemap [36] or
dding special markers to website URLs [37]. Methods designed
pecifically to recognize camouflaged robots require adding hon-
ypots or trap files to the site, invisible for human visitors but
aturally followed by bot algorithms [38–40]. Methods using bio-
etric or biostatics features [41–43], derived from users’ mouse
ovements and keystroke data, in practice require introducing a
lient-side event logger.
Although additional data collecting mechanisms introduced in

he aforementioned bot detection methods may provide more
ata, they may limit versatility of such methods and increase the
ost of implementing them on various websites. On the other
and, HTTP-level features of the traffic observed on Web servers
ithout interfering with the website or server software turn
ut to be efficient discriminators between bots and legitimate
sers [44,45]. Differences in bot and human traffic patterns have
een widely investigated, typically based on data recorded in
eb server access logs. Some features, representative for bot

equests, have been identified for various websites [5,14,46,47],
ncluding the following: a tendency to ignore image files, lower
3

volumes of HTTP response data, higher rates of unassigned re-
ferrers, requests of type HEAD, and erroneous requests. More-
over, resource request patterns, represented as sequences of re-
source types, can strongly differentiate the behavior of bots and
humans [8,48,49].

HTTP feature–based approaches to bot detection employ traffic
pattern analysis or machine learning techniques. They typically
aim at offline bot detection, i.e., the task of categorizing the
historical HTTP data on entire sessions completed on the server.

Traffic pattern-based approaches utilize statistical properties
of HTTP request features, like types of downloaded resources [8,
48–50] or inter-arrival times [51], to construct probabilistic ses-
sion models.

Approaches exploiting machine learning techniques differ in
the selection of relevant session features, techniques used, as well
as methodology for session extraction and experimental classifier
evaluation. Supervised session classifiers have been implemented
with decision trees [14,17,47,52–54], [55], random forest [38,55],
neural networks [6,14], [38,55], logistic regression [14], [55], sup-
port vector machines [6,17,53], [38,55],Saputra13,Jacob12,
Bayesian classifiers [17,56–58], [55], k-Nearest Neighbors (kNN)
[17], [55], [56], and ensemble methods [15], [38]. Unsupervised
classification approaches have used such algorithms as k-means
and GPCM (Graded Possibilistic c Means) [6,59], Information Bot-
tleneck [60], PSO (Particle Swarm Optimization)-based cluster-
ing [61], DBSCAN (density-based spatial clustering of applications
with noise) [62], SOM (self-organizing maps) [63,64], Modified
ART2 (Adaptive Resonance Theory 2) [64], and MCL (Markov
clustering) algorithm [65].

The high efficiency of bot detection approaches, reported in
literature, confirmed the inherent differences characterizing bot
and human traffic. However, the analysis of related work showed
that very few studies addressed the problem of on-the-fly detec-
tion. In this context, the most relevant study is [8], which presents
a method based on resource request patterns to classify sessions
in real time: this method has been selected as a reference ap-
proach for a comparative analysis study detailed in Section 5. Two
other studies, [47] and [52], analyzed performance of decision
tree-based classification methods for various numbers of requests
observed in session. However, they both considered page requests
(corresponding to user clicks) instead of HTTP requests. In [47],
the focus was rather on determining a minimum number of
page requests needed to identify robot sessions with reasonably
high accuracy. In [52] evaluation experiments were performed
for some fixed minimum numbers of page requests that must
be observed in session before taking up a classification decision.
Due to these methodological options, the efficacy of the methods
in [47] and [52] for a full, real-server session dataset is not known.
Conversely, we address the problem of detecting Web bots as
soon as possible, without enforcing the minimum number of ob-
servations. Furthermore, we both evaluate ‘‘global’’ performance
scores of our method for the whole session dataset and analyze
the scores in terms of the number of requests sufficient to classify
a session.

4. Methodological framework

4.1. System architecture

The general framework of our approach is illustrated in Fig. 1.
It is logically divided into two main processing lines.

The back-end line represents activities that are performed
eriodically, triggered by specific performance conditions: pre-
rocessing of historical HTTP request data, training the neu-
al network model, monitoring and storing classification perfor-
ance scores at the output. Decrease in performance will trigger

e-training of the neural network estimator.



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

f
t
n
f
s
0
u

S
l
f

q
f
f
r
b
s

a
a
o
a
f
i
w
f
T
s
i
d

Fig. 1. A graphical sketch of the implemented framework.

The front-end line includes activities performed in real time
or each incoming request. These include feature extraction and
wo-stage classification. For each individual request the neural
etwork estimates its a posteriori class probability (fHUMAN and
BOT in Fig. 1). A sequential estimation for requests of the same
ession is used to make a decision to output either 1 (bot) or
(human). If the session ends before deciding, it is labeled as
ndecided and possibly processed according to some application-

specific policy: for instance, a CAPTCHA might be presented, or
the session can be marked for off-line analysis.

4.2. Choice of features

The choice of features is a crucial step in any recognition task.
everal considerations play a role in this design decision. In the
ight of the survey in Section 3, we now outline the rationale
ollowed for selecting the feature set.

As a first criterion, it is possible to use application-specific
uantities, related to the semantics of the web site or application,
or instance, by analyzing the content provided by users in a
orum; or alternatively to select application-agnostic features,
elated to the HTTP(S) protocol. We opted for the latter choice
ecause it has the advantage of being independent of the website
emantics, and largely of the server software as well.
Another criterion involves the choice of quantities measurable

t each request, versus summary indexes, like average, counts,
nd percentages. The latter carry information that is useful for
ffline recognition, and as noted in Section 3, this is the gener-
lly adopted approach in the literature when using HTTP-related
eatures. Indeed, previous work has demonstrated their discrim-
nating power even in an unsupervised setting [59,60]. However,
hen one of the goals is to minimize decision time, it is not

easible to wait for sufficient data to allow meaningful statistics.
he experiments show that it is possible to have a decision lag as
hort as two, or even one request. To attain these performances
t is mandatory to resort to instantaneously available real-time
ata.
4

For completeness we mention a third criterion, which how-
ever does not apply to the case at hand. Features can be engi-
neered by experts, or alternatively optimized (learned from data).
When dealing with signals, e.g., images, the data themselves come
in a natural representation, for instance pixels. Learning features
amounts to use optimization to find meaningful embeddings of
pixel patterns. However, in the present application there is no
unique natural set of measurements, so the only possible choice
is expert-engineered features.

Once a – possibly redundant – set of features has been iden-
tified, a minimal and most useful subset can be selected either
by reviewing experimental results, or systematically by means of
feature selection procedures. This approach has been preliminarily
applied [66] to the choice of the feature set to be used in the
present work.

In summary, the choice of the features was motivated by
their availability in real time, proven efficiency of using HTTP-
level features in the offline bot detection, and by results of our
preliminary exploratory data analysis. The resulting feature set is
described below.

4.3. HTTP request features used in classification

As shown in Fig. 1 in the front-end processing line, descriptive
features are extracted from HTTP headers (nine features) and
Apache server timestamps (one feature).

Seven features are taken from HTTP request headers:

• Feature method corresponds to HTTP method specifying an
action to be performed on a target resource. Methods typ-
ical for human users are GET, used to download the Web
contents, and POST, used to submit data to the server. In
contrast, robots often use HEAD method to retrieve only
Web metadata [5,14]. Related features applied in previous
offline bot detection studies have been based on percentages
of requests in session made with GET, POST, and HEAD
methods [6,14,15,17,47,52,63,65].

• Feature is_referrer_empty takes true if HTTP referrer is not
provided and false otherwise. Most bots are designed to
send requests with empty referrers in contrast to human
users, who interact with the site via the Web interface [5,
14,47]. Related features of Web sessions considered in the
literature have been percentage of requests with empty
referrers [6,14,15,17,47,62–65], and a switching factor on
empty referrer [54,63,65].

• Five features are determined from request URI and describe
the type of a target resource, which may (but does not
have to) be one of the following: a page description file
(feature is_page = true), a graphic file (is_graphic = true),
a script/program file (is_script = true), a style sheet file
(is_style = true), or a data file (is_datafile = true). Humans
and bots reveal evident differences in target resource types;
in particular, humans navigate through the website accord-
ing to a logical structure of hyperlinks and a common access
pattern for each visited page includes one page descrip-
tion file and a subsequent sequence of embedded (mostly
graphic) files. Robots differ in types of requested resources
depending on their functionalities but two common tenden-
cies may be observed: they either ignore embedded files
or limit themselves to only a certain type of files [5,16,46].
Hence, the following session features have been applied in
the offline bot detection approaches so far: percentages of
requests for various resource types [14–17,47,52,62–65],
ratio of requested file type switch [54,62,63,65], and image-
to-page ratio [6,17,62–65]. The type of target resource was
also a basis of DTMC method, used as a reference approach
in our experimental study.



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

t
i

i
a

f
c
s

t
s

4

t
s

p
t
,
a

T

p

Two request features are determined from HTTP response
headers:

• Feature response_status corresponds to HTTP response status
code, which indicates whether a request was successfully
completed on the server. Code 200 is the standard response
for successful requests, dominant in human sessions. Robots
instead are more likely to request outdated or non-existent
files so they typically have a higher rate of erroneous re-
quests, especially the ones with status codes of type 4xx
(meaning the client error) [14,46,52]. Percentage of requests
with response status 4xx has been the most common feature
applied in Web session classification [6,14–17,47,52,57,62–
65].

• Feature response_size is taken directly from the response
header field specifying volume of data sent to the client.
Since most bots tend to ignore graphic files, data trans-
fers are usually much smaller for them than for humans.
Consequently, the total response size in session has been
commonly used in the offline bot detection studies [6,14,
15,58,61–65].

The last request feature is derived from Apache HTTP server
imestamps of request arrival times so it is also easily available
n real time:

• Feature inter_arrival_time is the time interval between
timestamps of the current request and the preceding one.
Due to typically distinct styles of browsing the Web by
humans and bots (page views via the Web interface vs.
algorithmically-driven accesses), temporal access patterns
of both client types are inherently different. This has been
reflected in classification tasks by such session features as
the average or standard deviation of time between subse-
quent requests [14,15,65].

The features chosen are listed in Table 1 and can be grouped
nto three data types, each requiring different pre-processing
ctions:

• numerical features (N) are standardized by subtracting the
mean and scaling to unit variance;

• categorical features (C) are one-hot encoded, i.e., repre-
sented as a bit vector of all zeros except one;

• boolean features (B) are represented by 0 for false and 1
for true.

Although the data for real-time operation are obtained directly
rom requests, historical data for classifier training may also be
ollected from server logs or from a database maintained at the
erver (Fig. 1, back-end line).
After feature extraction and pre-processing, each request at

he server is represented as a 25-feature vector, which is then
ubmitted to the two-stage classification process.

.4. The idea behind two-stage classification

The described task is to state whether a session can be referred
o a human or a bot agent. It is a binary classification task with
equentially sampled input.
Although requests are treated as independent by the HTTP

rotocol, their sequence depends on the navigational pattern of
he visiting agent. This is likely to be different between humans
identified by class 1 in our experiments, and bots, conversely
ssociated to class 0 [47].
At step k, we consider the sequence of observations x1, . . . , xk.

he probability p1(k) that the sequence is of class 1 is given by

1(k) =
Pr(class = 1)

×

Pr(x1, . . . , xk)

5

Fig. 2. The two-stage model.

Pr(x1|class = 1)
k∏

i=2

Pr(xi|x1, . . . , xi−1, class = 1),

where Pr(A) is probability, Pr(A|B) conditional probability, and
∏

product of an indexed sequence.
The intractable complexity of this model is usually tackled by

assuming a limited extent of temporal dependency. A common
choice is to assume a fixed number of past observations (Markov
assumption), most frequently one:

p1(k) ∝ Pr(x1|class = 1)
k∏

i=2

Pr(xi|xi−1, class = 1),

where ∝ indicates proportionality.
One such method [8], presented in Section 5, is adopted in this

paper as the reference for comparative evaluation. The method
proposed here, however, follows a naive approach by ignoring any
conditional dependency over successive requests:

p1(k) =

k∏
i=1

Pr(class = 1|xi).

In the first stage it scores each individual HTTP request with
a probability of being from either a human (class=0) or a bot
(class=1). Then, in the second stage, it uses a sequential classifica-
tion approach to combine the estimated probabilities of multiple
requests and make the final decision as soon as the degree of
confidence is satisfactory.

The naïve assumption corresponds to the hypothesis that,
given an appropriate description, looking at the mix of request
types is sufficient to discriminate between bots and humans. To
avoid overfitting, the number of adaptable parameters must be
kept at a minimum, especially when dealing with estimates of
probabilities which are in principle an ill-posed problem. Ac-
counting for previous observations exponentially increases the
parameter count, so in this respect the optimum choice is a mem-
oryless system, while a Markov structure with memory 1 appears
as a possibly reasonable trade-off. However, the comparison with
an order-1 Markov method presented here confirms that the
memoryless approach achieves very good results, outperforming
the reference while featuring less model parameters to be fitted.

4.5. The two-stage classification model

The classification model is depicted in Fig. 2 as a schematic
representation of the main building blocks. The left box repre-
sents the internal structure of a neural network, while the right
block is the sequential classification module, implementing a
Sequential Probability Ratio Test.

We will refer to this model as NNSEQ, as the cascade of a
neural network estimator and a sequential decision maker.



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

(
f

Table 1
Original request features before pre-processing.
Name Type Description

inter_arrival_time N int Time interval between timestamps of the current request and the preceding one (in seconds)
method C string HTTP method specifying an action to be performed on a given resource (e.g., GET, HEAD)
response_status C int HTTP response status code (e.g., 200, 403, 404)
response_size N double Volume of data in the HTTP response (in kilobytes)
is_referrer_empty B bool Whether the HTTP referrer is known (false) or not (true)
is_page B bool Whether the requested resource is a page description file (true) or an embedded object file (false)
is_graphic B bool Whether the requested resource is a graphic file (true) or not (false)
is_script B bool Whether the requested resource is a script/program file (true) or not (false)
is_style B bool Whether the requested resource is a style sheet file (true) or not (false)
is_datafile B bool Whether the requested resource is a specific data file (e.g., a zipped file) (true) or not (false)
T
c
c
a
(
s
D
s
i

c
a
t
t

t
a
w
o
f
t

o
c
S

4.5.1. Stage 1: Posterior probability estimation for individual re-
quests

The first stage is a soft classifier that, given one observation x
a single request), outputs an estimate of the posterior probability
1(x) (the conditional probability of class 1 given the observation
x) that the request is from a bot, as well as the corresponding
probability f0(x) = 1 − f1(x) that the request is from a human.
This is done without considering any context information, i.e., in-
dependently of the previous requests received, according to the
naive assumption previously described.

To produce this estimate, there are several options. Our choice
is a dense neural network with a logistic (equivalent to softmax)
output and optimized with respect to the cross-entropy objective.
As a non-linear generalization of logistic regression, this classi-
fier is especially well-suited to posterior probability estimation
problems.

4.5.2. Stage 2: Sequential classification
The sequential nature of the session is handled by the second

decision stage which implements Wald’s Sequential Probability
Ratio Test [67] to estimate the class posterior probability as new
requests are received by the system. The original test is based on a
sequential independence assumption and therefore is suitable for
the case at hand, which is designed under the same assumption.

Let xk be the kth observation in a sequence and f1(xk), f0(xk) be
the posterior probabilities of observation xk to be of class 1 (bot)
or class 0 (human), respectively. Under the memoryless ‘‘naïve’’
assumption, these probabilities reduce to

p0(k) =

k∏
i=1

f0(xi) ; p1(k) =

k∏
i=1

f1(xi) (1)

The ratio of these probabilities at step k is therefore:

R =
p1(k)
p0(k)

=

∏k
i=1 f1(xi)∏k
i=1 f0(xi)

=

k∏
i=1

f1(xi)
f0(xi)

(2)

or, in terms of cumulative log-likelihoods:

L = log p1(k) − log p0(k) =

k∑
i=1

(
log f1(xi) − log f0(xi)

)
. (3)

The log transformation reduces sensitivity to strongly imbal-
anced values and to numerical precision limits.

Given two predefined threshold values T0 < T1, the decision
output at the sequential classification stage at step k is:

deck =

⎧⎨⎩
1 if L ≥ T1
0 if L ≤ T0
None otherwise.

(4)

If desired probabilities of false positives α and false negatives
β are given, in principle T1 and T0 can be computed as:

T1 = log
β

, T0 = log
α

. (5)

1 − α 1 − β a

6

Under ideal hypotheses, this sequential probability ratio ap-
proach is guaranteed to converge to a decision with the minimum
number of observations for a given pair (α, β).

However, the problem as stated does not satisfy the ideal
assumptions. The first issue is that, obviously, it is not possible
to actively sample requests from a session at will: the number
of requests is not controllable and may be lower than that re-
quired for a decision at a prescribed confidence level. As a result,
some sessions may ultimately remain undecided. The classifica-
tion problem therefore has a three-state output since it includes
a reject option [68]. Validation of the result (Section 7) takes this
fact into account.

A second issue refers to the applicability of (5). Given the
‘‘black box’’ approach used to estimate probabilities, a non-
quantifiable estimation error might be present in the values of f0
and f1. Moreover, the naive assumption may introduce additional
errors in the evaluation of L. Consequently, (5) is an approxima-
tion whose error cannot be assessed a priori. The values of T0 and
T1 must be estimated from the data (see 4.5.3).

4.5.3. Parameter values
The problem of real-time detection with minimum lag has

two different goals: classification quality and detection speed
(minimum number of observations before making a decision).
These are inherently conflicting goals, so it is an intrinsically
multi-objective optimization problem [69].

The NNSEQ method requires setting the thresholds T0 and T1.
hese influence the trade-off between classification with high
onfidence and early decision, so their values should maximize
lassification quality metrics (in particular we focus on F1) and
t the same time minimize the number of classification steps
k90, the 90th percentile of the maximum number of classification
teps, in our case). A similar problem is encountered in the case of
TMC [8], where values for two parameters have to be properly
et: the minimum number of requests that have to be analyzed
n a session, namely kmin, and a probability decision threshold ∆.

We therefore adopt the multi-objective setting. Rather than
ombining multiple different scores into a single objective with
rbitrary weights, we independently measure the two objec-
ives, obtaining a set of pairs of measurements which, being
wo-dimensional, cannot be ordered naturally.

Among all the measurement pairs obtained while exploring
he search space, the Pareto optima or nondominated solutions
re these solutions that cannot be improved by one objective
ithout sacrificing their quality in the second objective. The set
f Pareto optima is called the Pareto frontier. From the Pareto
rontier one may decide a posteriori the desired balance between
he two objectives [70].

With this approach we are able to select empirically (based
n data) the values of the two tunable parameters T0 and T1,
hoosing the best available trade-off according to desired criteria.
ince it applies generally to any method-specific parameters, it

lso makes it possible to match the performance of the NNSEQ



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074
Table 2
List of parameters used.
Name Algorithm Description

T0 NNSEQ decision threshold for the negative class (humans), tuned through Pareto optimization
T1 NNSEQ decision threshold for the positive class (bots), tuned through Pareto optimization, T0 < T1
α SPRT [67] given desired false positives rate — not used in NNSEQ due to the use of data-driven approach to tune T0 and T1
β SPRT [67] given desired false negatives rate — not used in NNSEQ due to the use of data-driven approach to tune T0 and T1
∆ DTMC confidence threshold to exceed in order to make a decision
kmin DTMC minimum number of request to be analyzed before making any decision
Fig. 3. On-the-fly bot detection algorithm.
•

method with that of the DTMC method, so as to obtain a fair
comparison.

The parameters described in the theoretical background and
considered for the experimental setup of this research activity are
summarized in Table 2.

4.6. The algorithm

The decision process is described in Fig. 3. The algorithm
(procedure classify-session) is parameterized by the decision
thresholds T0 and T1. It reads each HTTP request in a session, as
vectors xk. The class likelihoods f1(xk) and f0(xk) for observation k
are produced by the estimator (procedure nnet).

All estimates from observations 1 to k are then combined
together to compute L according to (3) (procedure classify-
request). If either threshold is crossed, the corresponding option
(bot or human) is taken and no further observations are consid-
ered. Otherwise, decision is set to None and additional requests
in the session will be processed until a decision is taken, or the
session ends.
7

5. A reference bot detection method

To demonstrate the effectiveness of the proposed method we
compare it against another real-time bot detection approach,
recently proposed in [8]. To the best of our knowledge, this is the
only method from the literature that can be directly compared
to ours as it also uses HTTP request features and aims at taking
a classification decision as early as possible. To allow for a fair
and thorough comparison, for lack of an available implementation
and data, the method was entirely re-implemented. This made it
possible to comparatively test the two methods using exactly the
same datasets and evaluation methodology.

The basic idea of the method is representing a session as a se-
quence of requested resource types, a ‘‘resource request pattern’’.
This is modeled with a first-order Discrete-Time Markov Chain
(DTMC) whose states are resource types.

To this end, each server resource, identified by its URI, is
assigned a type depending on the file extension. We defined the
following resource types:

web for web page and script files (e.g., html, htm, php, cgi, asp,
jsp, js),



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

•

•

•

•

•

•

•

w
t

s
t
i
d
D

r
s
k

(

m
o
d
x

i
w
t
S
o
n
l

6

6

d

g
b
b
a

T
t

o
a

text for text-formatted files (e.g., txt, xml, sty, tex, c, cpp, java,
css),
doc for rich-text documents (e.g., doc, xls, ppt, pdf),
img for images (e.g., bmp, jpg, png, tiff, raw, ico),
av for multimedia files (e.g., avi, mp3, mpg, au),
prog for program files (e.g., exe, dat, bat, dll, msi, jar),
compressed for compressed files (e.g., zip, gz, 7z, rar),
malformed for malformed requests or unknown file types.

This categorization is consistent with the one proposed in [8],
hich however has an additional request type for directory con-
ents, unused in our case.

A DTMC model is defined by a vector of starting probabilities
= (si) and a transition probability matrix P =

(
pij

)
. These are

rained based on resource request patterns of sessions in a train-
ng dataset. During the training phase a separate DTMC model is
eveloped for each class. Let R = (sr , Pr ) and H = (sh, Ph) be
TMCs trained with robot and human sessions, respectively.
To make the decision, let X = (x1, . . . , xK ) be the resource

equest pattern of a session with K requests observed on the
erver. The log-probability that a DTMC will generate X at step
≤ K is:

log Pr(X|s, P) = log sx1 +

k∑
i=2

log pxi−1,xi . (6)

Given X, Pr(X|R) represents the probability computed using
6) for R (bot), and similarly Pr(X|H) for H (human).

The method requires two decision parameters: kmin is the
inimum number of requests to be analyzed, to gain a degree
f confidence before making a decision; and ∆ is the probability
ecision threshold. The recognition procedure at the kth request
k in a session X is the following:

1. Update log Pr(X|R) and log Pr(X|H)
2. If k ≥ kmin, compute D = log (Pr(X|R)/Pr(X|H)).
3. • If |D| < ∆, do not classify X at step k.

• Otherwise, if D ≥ 0, classify X as a robot session;
• or if D < 0, classify X as a human session.

If a session ends before being classified, it is undecided. This
s an important difference from the procedure described in [8],
here each undecided session was classified using ‘‘offline’’ de-
ection, i.e., taking all the requests of the session into account.
uch approach might be feasible for performance evaluation; in
n-field operation, however, waiting for a session to complete is
ot compatible with real-time operation. In the experiments, we
eft these sessions undecided.

. Experimental evaluation

.1. Dataset description

Access log data of a real e-commerce website were used.2 The
website consists of an online bookstore, offering mainly conven-
tional books, audiobooks, and computer games, as well as pages
with entertainment and multimedia content, like short movies,
mini games, or quizzes.

The bookstore is implemented on the osCommerce platform
and hosted on Linux Apache HTTP server with PHP and MySQL
support. The access log data is recorded according to NCSA Com-
bined log format and covers the period from April 1st to 30th,
2014. The whole request dataset contains 1 397 838 HTTP re-
quest entries, totaling 13 395 sessions reconstructed according

2 The website identity cannot be revealed in the paper due to a non-
isclosure agreement.
8

to the procedure described in Section 2, after eliminating one-
request sessions, one-page sessions, and sessions generated by
the website administrator and administrative software.

6.2. Data preparation

Each session was assigned a ground truth label (bot or hu-
man) based on two online databases of user agent strings and
IP addresses, recognized by experts as representing bots or Web
browsers, augmented with heuristics concerning session features
indicative of a bot [48]. A primary source was the Udger on-
line database [71], containing 2832 and 843 known user agent
strings of bots and browsers respectively, and 996 657 known
bot IP addresses. A supplementary source was User–agents online
database [72] with 2459 known user agent strings.

Session labeling rules were defined as follows:

1. A session was labeled as a bot if at least one of the following
conditions was met:

• user agent classified in the Udger database as ‘‘crawler’’, ‘‘e-
mail client’’, ‘‘library’’, ‘‘validator’’, ‘‘multimedia player’’, or
‘‘offline browser’’;

• user agent classified in the User–agents database as a robot;
• user agent contained a keyword suggesting a bot (‘‘spi-

der’’, ‘‘crawler’’, ‘‘robot’’, ‘‘worm’’, ‘‘search’’, ‘‘track’’, ‘‘har-
vest’’, ‘‘hack’’, ‘‘trap’’, ‘‘archive’’, ‘‘scrap’’, etc.);

• IP address classified in the Udger database as ‘‘crawler’’,
‘‘fake crawler’’, ‘‘known attack source — http’’, ‘‘known at-
tack source — mail’’, or ‘‘known attack source — ssh’’;

• at least one of the following indicators was true: the image
to page ratio equal to 0, 100% of page requests with empty
referrers, 100% of response status codes of type 4xx, or 100%
of requests with HEAD method;

• file robots.txt requested.

2. A session was labeled as a human if the user agent was classi-
fied in the Udger database as ‘‘browser’’ or ‘‘mobile browser’’.

3. Otherwise, a session remained unlabeled.

Unlabeled sessions were excluded from the dataset, whereas
6190 sessions labeled as bots and 7200 labeled as humans were
used in the analysis (therefore classes were roughly balanced).

Training and model selection for the neural network estimator
were performed by 10-fold cross-validation, using proportion-
preserving subsets containing 619 bot and 720 human sessions.

6.3. Performance evaluation

Experimental studies were performed separately for the
NNSEQ and DTMC methods on the same training and test streams
and comparing the obtained scores. In the following, the method-
ology and metrics used are described.

6.3.1. Evaluation scenarios
By considering bot-generated sessions as positive and human-

enerated ones as negative, the overall classification results may
e quantified by means of a confusion matrix reporting the num-
er of true and false positives (TP and FP, respectively) and true
nd false negatives (TN and FN, respectively).
An additional measure is the number of undecided sessions.

wo evaluation scenarios can be defined, depending on whether
his information is used or not:

Scenario 1: Performance scores are determined only on account
f the sessions classified as a bot or human: no undecided sessions
re considered.



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

•

•

•

•

•

•

•

•

•

•

Scenario 2: Performance scores are determined taking into ac-
count undecided sessions. To reflect this real-life aspect in our
study, here we assume that undetected bots are humans. Thus,
undecided sessions are included into negatives: FN is increased by
undecided bot sessions and TN by undecided human sessions.

6.3.2. Performance metrics
Classifier performance is described by the following metrics.

Recall = TP / (TP+FN), fraction of positive sessions that are
correctly classified.
Precision = TP / (TP+FP), fraction of positive decisions that are
correct.
Accuracy = (TP+TN) / (TP+TN+FP+FN), fraction of correct classi-
fications.
F1 = 2 · Precision · Recall/(Precision + Recall), harmonic mean of
recall and precision, overall quality of the classifier.
k90 – the 90th percentile of the maximum number of classifi-
cation steps, i.e., the maximum number of steps to classify 90%
of non-undecided sessions; ability to take up early decisions.
Pc(k), percentage of sessions classified at step k.
Pu(k), percentage of undecided sessions that ended at step k.
CPc(k) =

∑k
i=1 Pc(k), cumulative percentage of sessions classi-

fied in ≤ k steps.
CPu(k) =

∑k
i=1 Pu(k), cumulative percentage of sessions that

ended in ≤ k steps but not classified.
Pc, percentage of classified sessions.

Performance rates were averaged over the ten cross-validation
rounds. In the following, results are first discussed regarding the
overall classifier effectiveness, from the perspective of all com-
pleted sessions. Afterwards, the scores are analyzed considering
the number of requests which was sufficient to classify a session
(i.e., as a function of k).

6.3.3. Parameter setting
The architecture of the neural network was optimized em-

pirically, since reliable objective criteria are not available. The
resulting layout includes two hidden layers and a structure of 25-
50-50-1, that is, the input layer has 25 units, corresponding to
the input data size, and is followed by two 50-unit hidden layers
with ReLU activation function and a single logistic output unit,
corresponding to softmax in the two-class case.

The decision thresholds T0 and T1 were optimized according
to the procedure described in Section 4.5.3; the results of the
procedure are discussed in the following.

7. Results and discussion

In this section, first, values of the method-specific parameters
are determined through Pareto optimization, and then, classifi-
cation results for both methods are analyzed. The computational
burden and some implementation issues are also discussed.

7.1. Tuning the parameter values

By simultaneous varying values of thresholds T0 in [−5.5,
−0.1] and T1 in [0.1, 5.5], a set of solutions was computed for
both methods. As a guideline, if we set α = β , these values
correspond to varying them from a minimum of about 10−5 to
a maximum of about 0.44. For each solution, mean performance
scores were determined by cross-validation under scenario 2.
Regarding the objective functions: maximization of F1 and mini-
mization of k90, the search space used to find the Pareto frontier is
two-dimensional. Similarly, the search space was determined for
the DTMC method by varying values of ∆ from 0.01 to 1.9 and

kmin from 1 to 21. Fig. 4 visualizes the resulting Pareto frontiers

9

Table 3
Classification results (10-fold cross-validation)
Metric (avg.) NNSEQ DTMC

#TP 577.3 429.2
#TN 710.5 494.7
#FP 9.5 50.4
#FN 32.5 58.5
#undecided – bots 9.2 131.3
#undecided – humans 0 174.9

k90 3.0 4.0
Pc 99.31 77.13

for both methods (in Fig. 4(b) only solutions for ∆ in the range
of 0.01 to 0.29 are shown since, for ∆ > 0.29, F1 was too low).

As it can be seen in Fig. 4(a), our method yielded extremely
good results. For all combinations of the threshold values F1
exceeds 0.92, which indicates very high rates of both recall and
precision. Moreover, in all cases k90 ≤ 3.2, which means that in
90% of classified sessions a decision was determined well before
the 4th request. The Pareto frontier contains 18 points; among
them there is one extreme solution with the minimum k90 equal
to 1.0 and F1 equal to 0.93, which was achieved for T0 = −2.2
and T1 = 1.9; the second extreme is the point with the maximum
accuracy equal to 0.96 and k90 equal to 3.0, achieved for T0 =

−5.4 and T1 = 4.6.
Fig. 4(b) shows that the DTMC method is much more sensitive

to its parameter values and the achieved performance scores are
much worse than for NNSEQ. Its search space covers much wider
range of values in both dimensions (in Fig. 4(b) only the best
solutions, with F1 above 0.4 and k90 ≤ 16, are plotted). The
Pareto frontier contains 33 points, overlapping in some cases.
There are 15 points with the minimum k90 equal to 1.0 and the
corresponding F1 equal to 0.51 — they were achieved for kmin = 1
and ∆ ranging from 0.01 to 0.15. The maximum F1, equal to 0.78,
with the corresponding k90 = 4, was achieved for three solutions
with kmin = 2 and ∆ ranging from 0.18 to 0.2.

As an illustration, Fig. 5 shows the values of NNSEQ, both
pointwise and cumulative, in two different short sessions, one of
positive class (bot) and one of negative class (human). The ses-
sions were chosen among those that required at least 8 requests
before deciding, using as a reference the thresholds indicated
(T0 = −5.5, T1 = 4.6).

7.2. Comparative analysis

From among all the Pareto-optimal solutions for each method,
a case providing the maximum F1 was selected for direct com-
parative analysis. In the case of multiple equivalent candidate
points, ties were broken using the additional criteria of highest
accuracy and lowest number of undecided sessions. As a result, the
following parameter values have been used in the comparative
experimental study: T0 = −5.4, T1 = 4.6 for NNSEQ and kmin = 2,
∆ = 0.18 for DTMC.

Overall results are summarized in Table 3.
The NNSEQ method was able to determine a decision for

nearly all active sessions: only 0.69% sessions were left unde-
cided and all of them were generated by bots. As for the DTMC
method as many as 22.87% sessions ended before being classified,
including 21.2% bots and 24.3% humans.

Fig. 6 shows cumulative percentage of classified and unde-
cided sessions for initial steps (requests in sessions) for both
methods. Fig. 7 illustrates percentages of sessions classified and
undecided by NNSEQ at the initial steps, with the session break-
down according to their ground truth labels; Fig. 8 presents

analogous results for DTMC.



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

Fig. 4. Pareto frontier for NNSEQ and for DTMC.

Fig. 5. Two sample sessions, shown up to the request at which the decision was taken. For each request, log probability ratio and cumulative log probability ratio
as computed by NNSEQ are shown.

10



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

o
f
c
b
w
t
t

c
o
l

Fig. 6. Cumulative percentages of classified and undecided sessions as a function of the number of steps.
Fig. 7. Percentages of classified and undecided NNSEQ sessions as a function of the number of steps.
Fig. 8. Percentages of classified and undecided DTMC sessions as a function of the number of steps.
As it can be seen in Fig. 6(a), NNSEQ was able to classify 99%
f sessions within six requests, with 16.7% being classified at the
irst step and the next 67.5% – at the second step. 15% of visitors
lassified just after analyzing the first request in session were
ots; among 67% of visitors identified after two requests, 25%
ere bots and 42% were humans (Fig. 7(a)). Moreover, for NNSEQ
he maximum number of requests before decision over the whole
est dataset was 19 (Fig. 6(a)).

On the other hand, the DTMC-based method was able to
lassify only 75% of sessions after six requests and larger numbers
f observations in session did not improve the results (the cumu-
ative percentage of classified sessions in Fig. 6(a) flattens at about
11
the 7th step), although some sessions are still being analyzed,
even after receiving more than fifty requests. Furthermore, due
to kmin = 2, no decision was taken at the first step. Fig. 6(b)
shows that the cumulative percentage of sessions ended before
being classified for DTMC constantly increases with the increase
in the number of requests observed in session. For both methods
most of undecided sessions were extremely short ones, containing
only two or three requests (Fig. 6(b)) and they were mostly bots
(Figs. 7(b), 8(b)).

Regarding the quality of decisions, performance scores for
both evaluation scenarios are reported in Table 4. The scores are
also presented for initial steps in a cumulative form, considering



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

T
P
u
(

s
a
c
8
h
b
p
b
a
p

a
d
t

Fig. 9. Cumulative performance scores as a function of the number of steps (scenario 1 – excluding undecided sessions).
f
t
n
f
h

a
b
w
q

able 4
erformance scores (10-fold cross-validation), computed without considering
ndecided sessions (scenario 1) and counting undecided sessions as humans
scenario 2).
Evaluation scenario Metric (avg.) NNSEQ DTMC

Scenario 1

Recall 0.95 0.88
Precision 0.98 0.90
F1 0.96 0.89
Accuracy 0.97 0.89

Scenario 2

Recall 0.93 0.69
Precision 0.98 0.90
F1 0.96 0.78
Accuracy 0.96 0.82

the number of requests that were sufficient to take a classification
decision (Fig. 9 for scenario 1 and Fig. 10 for scenario 2): for
each step and the preceding ones the incremental number of true
and false positives and negatives were computed and used to
determine the corresponding performance scores.

Considering only classified sessions (scenario 1), one can ob-
erve in Table 4 very high efficiency of both approaches, with
clear advantage of the proposed NNSEQ which was able to

orrectly identify as many as 97% of all visitors, compared to
9% recognized by DTMC. Furthermore, NNSEQ achieved very
igh recall of 0.95 which confirms its capability of detecting
ots on the fly to a high extent. Precision, which measures the
erformance with respect to erroneously classifying humans as
ots, is even higher (0.98), which indicates that human visitors
re not penalized by the algorithm. For comparison, recall and
recision for DTMC amounted only to 0.88 and 0.90, respectively.
On the other hand, when undecided sessions were treated

s undetected bots (scenario 2), performance scores of NNSEQ
ecreased only slightly whereas for DTMC they deteriorated dras-

ically (except precision, which remained unchanged for both r

12
classifiers). NNSEQ was able to detect 93% of all bots on the fly,
compared to only 69% of bots recognized by DTMC. Our method
achieved both F1 and accuracy of 0.96 while the corresponding
scores for DTMC were only 0.78 and 0.82.

This leads to the conclusion that under stricter, real-life as-
sumptions the proposed approach is very effective in detecting
bots interacting with a Web server while DTMC leaves many of
them undecided or misclassified. However, this scenario is more
realistic, because in practice leaving a session undecided means
that a bot was not detected. Thus, evaluating performance score
with undecided sessions treated as undetected bots reflects the
real power of a classifier. For this reason, the classifier perfor-
mance at the initial classification steps is further analyzed just
for scenario 2.

Fig. 10 demonstrates a very high efficiency of NNSEQ at the
initial classification steps over the greatest amount of sessions,
which is the main objective of our early bot detection approach.
F1 score was in the range of 0.96 to over 0.98, depending on the
classification step, and the earlier the sessions were classified, the
higher F1 was achieved. Recall was evidently the highest for the
irst three steps and amounted to 0.998, 0.979, and 0.964, respec-
ively. Precision was slightly lower for the first-step decisions, but
evertheless it always exceeded 0.98. All the performance scores
or NNSEQ flatten out at about the 7th step, where most sessions
ave already been classified.
For DTMC the cumulative performance scores also stabilize

fter about seven requests (this is a similar conclusion as in [8]),
ut at much lower levels. Furthermore, in contrast to NNSEQ,
hich was able to classify all the sessions up to the 19th re-
uest, DTMC kept analyzing very long sessions which ultimately

emained undecided (Fig. 6(b)).



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

7

g
i
m
t
f
s

o
n
a
V
o
i
i
w
m
a
p
b
a

7

H
s
t
m
d
p
p

Fig. 10. Cumulative performance scores as a function of the number of steps (scenario 2 – with undecided sessions counted as humans).
d
s
a
m
w
a
p
a
d
s

t
W
O
(
c
i
t
t
m
a
u

s
w
w
h
o
t
w
d

p

.3. Estimation of the computational complexity

An on-the-fly bot detection solution should evaluate every sin-
le incoming request to a server. As a consequence, for scalability
t should be unintrusive to the Web server and should add only a
inimal computation overhead to the request processing in real

ime. The NNSEQ method uses data that are readily obtainable
rom HTTP request headers without intervention by the server,
o that it can be easily integrated.
From the computational complexity perspective, classification

f a single request is performed in constant time. The neural
etwork model, presented in Fig. 2, has a fixed structure, so f1(x)
nd f0(x) are computed in O(1) time (as well as O(1) space).
alues of log p1(k) and log p0(k) may be stored as session variables
n the server. The sequential probability ratio is also computed
n O(1) time, so for N sessions the complexity of a sequential
mplementation is O(N), but the problem is inherently parallel,
ithout inter-thread communication. Compared to the DTMC
ethod, NNSEQ requires a similar amount of memory and limited
dditional time to classify one request. However, due to its better
erformance in early classification, the expected computational
urden is smaller, since much fewer requests per session will be
nalyzed.

.4. Limitations of the presented work

NNSEQ relies on binary classification with reject option of
TTP requests, assuming two classes: one class for human ses-
ions and the second one for all Web bots aggregated. An al-
ernative and natural extension of this approach would be a
ultinomial classification of bot requests, either consisting in
ifferentiating benign and malicious robots or defining multi-
le robot classes depending on the connotation of their traffic
atterns .
13
Reconstructing sessions from Web traffic at the HTTP level,
espite being a common practice in bot detection research, has
ome disadvantages. Sessions based on IP addresses and user–
gents may not be an exact representation of real Web sessions,
ainly due to the existence of firewalls and proxies in the net-
ork, caching of popular Web content, as well as the fact that the
dvanced bot software may interact with a website using multi-
le IP addresses at the same time. Nevertheless, since we do not
im at characterizing bot traffic itself but focus on investigating
ifferences in bot and human traffic, an HTTP-based approach is
ufficient.
Our method has a point of weakness in being based on ground

ruth that may possibly contain errors — this is common for
eb bot detection approaches based on supervised learning.
n the other hand, previous works using unsupervised learning
e.g., [59]) have proven that there is a notable overlap between
lusters and classes (cluster purity). Therefore, the ground truth
s mostly reliable because it corresponds to actual differences in
he data, and it was observed that – when there is a mismatch be-
ween unsupervised result and labels – there may be annotation
istakes in the ground truth. So mistakes can be identified. This
lso introduces the possibility of self-learning during operation,
sing semi-supervised learning.
Furthermore, classification performance evaluation through

imulation experiments may be perceived as a limitation of our
ork. Implementing a bot detection method on a real Web server
ould make it possible to assess its efficacy, computational over-
ead and possible benefits of early detection of Web bots. On the
ther hand, a simulation-based approach provides a fully con-
rollable experimental environment with exactly the same server
orkload and operating conditions arranged for two different bot
etection methods, which ensures their fair comparison.
Our work is based on one e-commerce traffic dataset. Ex-

erimenting with multiple different datasets would undoubtedly



G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074

p
W

8

W
c
r
a

l
t
a
s
a
m
r
a
w
d

c
t
c
e

N
r
a
t
T
b
h

t
b
w
s
l
m
s
p
t
g

s
m
e
T
t
t
c

C

t

D

c
t

rovide a more complete and comprehensive picture of the study.
e leave this issue to our future work.

. Conclusion

In the paper a novel method for Web bot detection on a
eb server in real time was proposed. The two-stage classifier

ombines a neural network model and a sequential probability
atio test to classify an active visitor as a bot or human as early
s possible.
The proposed NNSEQ method is one of the first machine

earning approaches for real-time Web bot detection. The ex-
ensive experimental study, tested on traffic streams from an
ctual server, showed that under strict real-time assumptions of
erver operation NNSEQ is able to determine a decision for nearly
ll active sessions, leaving only 0.69% of them undecided. The
ethod is especially powerful given a very limited number of

equests observed in session and achieves a very high efficiency
t the initial classification steps. 99% of sessions were classified
ithin six requests and the maximum number of requests before
ecision over the whole test dataset was 19.
Decision quality is very high: the method is able to correctly

lassify as many as 96% sessions; regarding Web bots, it is able
o detect as much as 93% of all bots on the fly. Depending on the
lassification step, F1 score ranges from 0.96 to over 0.98, and the
arlier the sessions are classified, the higher score is achieved.
In contrast to other bot detection approaches (e.g., [8,47,52]),

NSEQ does not impose a threshold for the minimum number of
equests that must be observed in a session before determining
classification decision. Furthermore, precision of 0.98 confirms
hat very few human visitors are erroneously classified as bots.
his observation is especially important since bot detecting and
locking mechanisms should be as transparent as possible to
uman users.
The classifier can be easily implemented as a simple extension

o a real Web server software and integrated with other fallback
ot detection mechanisms, like a CAPTCHA test. In future work
e are going to extend our approach with a feature selection
tage, experimenting with different techniques for feature se-
ection and extraction. We will also investigate some sequence
odeling techniques, like recurrent neural networks [73] at the
econd decision stage. Furthermore, we will perform the ex-
erimental verification of the approach performance using mul-
iple Web traffic traces from different domains, aiming at the
eneralization of our conclusions.
On the implementation side, if the recognition system is de-

igned as a filter (for instance as a proxy server), its throughput
ight constitute a performance and scalability bottleneck, since
ach request should be analyzed before it is sent to the server.
herefore, future work will concentrate on a side-chain realiza-
ion operating in parallel to the HTTP stream. This will allow
he system integrator to choose, at deployment time, a suitable
ompromise between timeliness and scalability.

RediT authorship contribution statement

Grażyna Suchacka: Conceptualization, Data curation, Inves-
igation, Methodology, Software, Visualization, Writing. Alberto
Cabri: Formal analysis, Investigation, Software, Visualization,
Writing. Stefano Rovetta: Conceptualization, Formal analysis,
Methodology, Writing. Francesco Masulli: Conceptualization.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared

o influence the work reported in this paper.

14
Acknowledgments

This paper is based upon work from COST Action IC1406 High-
Performance Modelling and Simulation for Big Data Applications
(cHiPSet), supported by COST (European Cooperation in Science
and Technology).

Alberto Cabri, Stefano Rovetta and Francesco Masulli are mem-
bers of the National Group for Scientific Computing (GNCS) of IN-
dAM, the Italian Istituto Nazionale di Alta Matematica ‘‘Francesco
Severi’’.

References

[1] V. Geroimenko, Dictionary of XML Technologies and the Semantic Web,
Springer-Verlag, London, UK, 2004.

[2] Bad Bot Report 2020: Bad Bots Strike Back, Tech. Rep., Imperva Incap-
sula, 2020, https://www.imperva.com/resources/resource-library/reports/
2020-Bad-Bot-Report.

[3] I. Zeifman, Bot Traffic Report 2016, Tech. Rep., Imperva Incapsula, 2017,
https://www.incapsula.com/blog/bot-traffic-report-2016.html.

[4] S. Gianvecchio, M. Xie, Z. Wu, H. Wang, Humans and bots in Internet chat:
Measurement, analysis, and automated classification, IEEE ACM T. Netw.
19 (5) (2011) 1557–1571, http://dx.doi.org/10.1109/TNET.2011.2126591.

[5] G. Suchacka, Analysis of aggregated bot and human traffic on e-commerce
site, in: Proc. FedCSIS’14, 2014, pp. 1123–1130, http://dx.doi.org/10.15439/
2014F346.

[6] S. Rovetta, A. Cabri, F. Masulli, G. Suchacka, Bot or not? A case study on
bot recognition from Web session logs, in: Quantifying and Processing
Biomedical and Behavioral Signals, in: Smart Innovation, Systems and
Technologies, vol. 103, Springer, 2019, pp. 197–206, http://dx.doi.org/10.
1007/978-3-319-95095-2_19.

[7] A. Cabri, G. Suchacka, S. Rovetta, F. Masulli, Online web bot detection using
a sequential classification approach, in: Proc. HPCC/SmartCity/DSS’18, 2018,
pp. 1536–1540, http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00252.

[8] D. Doran, S.S. Gokhale, An integrated method for real time and offline web
robot detection, Expert Syst. 33 (6) (2016) 592–606, http://dx.doi.org/10.
1111/exsy.12184.

[9] H. Chen, H. He, A. Starr, An overview of web robots detection tech-
niques, in: Proc. Int. Conf. Cyber Security and Protection of Digital
Services, Cyber Security’20, IEEE, 2020, pp. 1–6, http://dx.doi.org/10.1109/
CyberSecurity49315.2020.9138856.

[10] A. Mason, Y. Zhao, H. He, R. Gompelman, S. Mandava, Online anomaly
detection of time series at scale, in: Proc. Int. Conf. Cyber Situational
Awareness, Data Analytics and Assessment, Cyber SA’19, IEEE, 2019, pp.
1–8, http://dx.doi.org/10.1109/CyberSA.2019.8899398.

[11] T. Berners-Lee, R. Fielding, H. Frystyk, Hypertext Transfer Protocol –
HTTP/1.0, IETF RFC 1945, 1996.

[12] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, T.
Berners-Lee, Hypertext Transfer Protocol – HTTP/1.1, IETF RFC 2616, 1999.

[13] D. Kristol, L. Montulli, HTTP State Management Mechanism, IETF RFC 2109,
1997.

[14] C. Bomhardt, W. Gaul, L. Schmidt-Thieme, Web robot detection – pre-
processing Web logfiles for robot detection, in: New Developments in
Classification and Data Analysis, Springer, Berlin, Heidelberg, 2005, pp.
113–124.

[15] D.S. Sisodia, S. Verma, O.P. Vyas, Agglomerative approach for identification
and elimination of web robots from web server logs to extract knowledge
about actual visitors, J. Data Anal. Inf. Process. 03 (2015) 1–10, http:
//dx.doi.org/10.4236/jdaip.2015.31001.

[16] A. Stassopoulou, M.D. Dikaiakos, Web robot detection: a probabilistic
reasoning approach, Comput. Netw. 53 (3) (2009) 265–278, http://dx.doi.
org/10.1016/j.comnet.2008.09.021.

[17] D. Stevanovic, A. An, N. Vlajic, Feature evaluation for web crawler detection
with data mining techniques, Expert Syst. Appl. 39 (10) (2012) 8707–8717,
http://dx.doi.org/10.1016/j.eswa.2012.01.210.

[18] D. Acarali, M. Rajarajan, N. Komninos, I. Herwono, Survey of approaches
and features for the identification of HTTP-based botnet traffic, J. Netw.
Comput. Appl. 76 (2016) 1–15, http://dx.doi.org/10.1016/j.jnca.2016.10.
007.

[19] A. Jakóbik, F. Palmieri, J. Kołodziej, Stackelberg games for modeling defense
scenarios against cloud security threats, J. Netw. Comput. Appl. 110 (2018)
99–107, http://dx.doi.org/10.1016/j.jnca.2018.02.015.

[20] S. Lysenko, K. Bobrovnikova, O. Savenko, A. Kryshchuk, BotGRABBER: SVM-
based self-adaptive system for the network resilience against the botnets’
cyberattacks, in: Proc. Computer Networks, CN’19, in: CCIS, vol. 1039,
Springer, 2019, pp. 127–143, http://dx.doi.org/10.1007/978-3-030-21952-
9_10.

http://refhub.elsevier.com/S0950-7051(21)00337-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb1
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb1
https://www.imperva.com/resources/resource-library/reports/2020-Bad-Bot-Report
https://www.imperva.com/resources/resource-library/reports/2020-Bad-Bot-Report
https://www.imperva.com/resources/resource-library/reports/2020-Bad-Bot-Report
https://www.incapsula.com/blog/bot-traffic-report-2016.html
http://dx.doi.org/10.1109/TNET.2011.2126591
http://dx.doi.org/10.15439/2014F346
http://dx.doi.org/10.15439/2014F346
http://dx.doi.org/10.15439/2014F346
http://dx.doi.org/10.1007/978-3-319-95095-2_19
http://dx.doi.org/10.1007/978-3-319-95095-2_19
http://dx.doi.org/10.1007/978-3-319-95095-2_19
http://dx.doi.org/10.1109/HPCC/SmartCity/DSS.2018.00252
http://dx.doi.org/10.1111/exsy.12184
http://dx.doi.org/10.1111/exsy.12184
http://dx.doi.org/10.1111/exsy.12184
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138856
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138856
http://dx.doi.org/10.1109/CyberSecurity49315.2020.9138856
http://dx.doi.org/10.1109/CyberSA.2019.8899398
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb11
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb12
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb13
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb14
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb14
http://dx.doi.org/10.4236/jdaip.2015.31001
http://dx.doi.org/10.4236/jdaip.2015.31001
http://dx.doi.org/10.4236/jdaip.2015.31001
http://dx.doi.org/10.1016/j.comnet.2008.09.021
http://dx.doi.org/10.1016/j.comnet.2008.09.021
http://dx.doi.org/10.1016/j.comnet.2008.09.021
http://dx.doi.org/10.1016/j.eswa.2012.01.210
http://dx.doi.org/10.1016/j.jnca.2016.10.007
http://dx.doi.org/10.1016/j.jnca.2016.10.007
http://dx.doi.org/10.1016/j.jnca.2016.10.007
http://dx.doi.org/10.1016/j.jnca.2018.02.015
http://dx.doi.org/10.1007/978-3-030-21952-9_10
http://dx.doi.org/10.1007/978-3-030-21952-9_10
http://dx.doi.org/10.1007/978-3-030-21952-9_10


G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074
[21] S. Ustebay, Z. Turgut, M.A. Aydin, Cyber attack detection by using neural
network approaches: shallow neural network, deep neural network and
autoencoder, in: Proc. Computer Networks, CN’19, in: CCIS, vol. 1039,
Springer, 2019, pp. 144–155, http://dx.doi.org/10.1007/978-3-030-21952-
9_11.

[22] M. Rahman, M. Rahman, B. Carbunar, D.H. Chau, Search rank fraud and
malware detection in google play, IEEE Trans. Knowl. Data Eng. 29 (6)
(2017) 1329–1342, http://dx.doi.org/10.1109/TKDE.2017.2667658.

[23] L. Zhang, Y. Guan, Detecting click fraud in pay-per-click streams of online
advertising networks, in: Proc. ICDCSW’08, IEEE Computer Society, 2008,
pp. 77–84, http://dx.doi.org/10.1109/ICDCS.2008.98.

[24] F. Zhang, X. Hao, J. Chao, S. Yuan, Label propagation-based approach for
detecting review spammer groups on e-commerce websites, Know.-Based
Syst. 193 (2020) 105520, http://dx.doi.org/10.1016/j.knosys.2020.105520.

[25] F. Zhang, Y. Qu, Y. Xu, S. Wang, Graph embedding-based approach for
detecting group shilling attacks in collaborative recommender systems,
Know.-Based Syst. 199 (2020) 105984, http://dx.doi.org/10.1016/j.knosys.
2020.105984.

[26] W. Zhou, J. Wen, Q. Qu, J. Zeng, T. Cheng, Shilling attack detection for
recommender systems based on credibility of group users and rating time
series, PLoS One 13 (2018) e0196533, http://dx.doi.org/10.1371/journal.
pone.0196533.

[27] P. Hayati, V. Potdar, K. Chai, A. Talevski, Web spambot detection based
on Web navigation behaviour, in: Proc. AINA’10, 2010, pp. 797–803, http:
//dx.doi.org/10.1109/AINA.2010.92.

[28] Z. Chu, S. Gianvecchio, A. Koehl, H. Wang, S. Jajodia, Blog or block:
Detecting blog bots through behavioral biometrics, Comput. Netw. 57 (3)
(2013) 634–646, http://dx.doi.org/10.1016/j.comnet.2012.10.005.

[29] Y. Wu, Y. Fang, S. Shang, J. Jin, L. Wei, H. Wang, A novel framework
for detecting social bots with deep neural networks and active learning,
Know.-Based Syst. 211 (2021) 106525, http://dx.doi.org/10.1016/j.knosys.
2020.106525.

[30] H. Xu, Z. Li, C. Chu, Y. Chen, Y. Yang, H. Lu, H. Wang, A. Stavrou, Detecting
and characterizing web bot traffic in a large e-commerce marketplace, in:
J. Lopez, J. Zhou, M. Soriano (Eds.), Computer Security, Springer, Cham,
2018, pp. 143–163, http://dx.doi.org/10.1007/978-3-319-98989-1_8.

[31] C. Walgampaya, M. Kantardzic, Cracking the smart clickbot, in: Proc. IEEE
Int. S. Web Syst., WSE’11, 2011, pp. 125–134, http://dx.doi.org/10.1109/
WSE.2011.6081830.

[32] E.M. Clark, J.R. Williams, C.A. Jones, R.A. Galbraith, C.M. Danforth, P.S.
Dodds, Sifting robotic from organic text: A natural language approach
for detecting automation on Twitter, J. Comput. Sci. 16 (2016) 1–7, http:
//dx.doi.org/10.1016/j.jocs.2015.11.002.

[33] S. Sadiq, Y. Yan, A. Taylor, M.-L. Shyu, S.-C. Chen, D. Feaster, AAFA: Asso-
ciative affinity factor analysis for bot detection and stance classification in
Twitter, in: Proc. IEEE Int. Conf. Information Reuse and Integration, IRI’17,
2017, pp. 356–365, http://dx.doi.org/10.1109/IRI.2017.25.

[34] V. Sharma, R. Kumar, W.-H. Cheng, M. Atiquzzaman, K. Srinivasan, A.Y.
Zomaya, NHAD: Neuro-fuzzy based horizontal anomaly detection in online
social networks, IEEE Trans. Knowl. Data Eng. 30 (11) (2018) 2171–2184,
http://dx.doi.org/10.1109/TKDE.2018.2818163.

[35] A. Lagopoulos, G. Tsoumakas, G. Papadopoulos, Web robot detection: A
semantic approach, in: Proc. Int. Conf. Tools with Artificial Intelligence,
ICTAI’18, IEEE, 2018, pp. 968–974.

[36] Y. Luo, G. She, P. Cheng, Y. Xiong, Botgraph: Web bot detection based on
sitemap, 2019, arXiv:1903.08074.

[37] S. Wan, Y. Li, K. Sun, PathMarker: protecting web contents against inside
crawlers, Cybersecurity 2 (2019) 1–17, http://dx.doi.org/10.1186/s42400-
019-0023-1.

[38] C. Iliou, T. Kostoulas, T. Tsikrika, V. Katos, S. Vrochidis, Y. Kompatsiaris,
Towards a framework for detecting advanced Web bots, in: Proc. Int. Conf.
Availability, Reliability and Security, ARES’19, Association for Computing
Machinery, New York, NY, USA, 2019, http://dx.doi.org/10.1145/3339252.
3339267.

[39] A. Laughter, S. Omari, P. Szczurek, J. Perry, Detection of malicious HTTP
requests using header and URL features, in: K. Arai, S. Kapoor, R. Bhatia
(Eds.), Future Technologies Conference (FTC’20) II, in: AISC, vol. 1289,
Springer, Cham, 2021, pp. 449–468, http://dx.doi.org/10.1007/978-3-030-
63089-8_29.

[40] W. Zhu, H. Gao, Z. He, J. Qin, B. Han, A hybrid approach for recogniz-
ing Web crawlers, in: E.S. Biagioni, Y. Zheng, S. Cheng (Eds.), Wireless
Algorithms, Systems, and Applications, WASA’19, in: LNCS, vol. 11604,
Springer, Cham, 2019, pp. 507–519, http://dx.doi.org/10.1007/978-3-030-
23597-0_41.

[41] Z. Chu, S. Gianvecchio, H. Wang, Bot or human? A behavior-based online
bot detection system, in: P. Samarati, I. Ray, I. Ray (Eds.), From Database To
Cyber Security: Essays Dedicated To Sushil Jajodia on the Occasion of His
70th Birthday, in: LNCS, vol. 11170, Springer, Cham, 2018, pp. 432–449,
http://dx.doi.org/10.1007/978-3-030-04834-1_21.
15
[42] R.U. Rahman, D.S. Tomar, New biostatistics features for detecting web
bot activity on web applications, Comput. Secur. 97 (2020) 102001, http:
//dx.doi.org/10.1016/j.cose.2020.102001.

[43] A. Acien, A. Morales, J. Fierrez, R. Vera-Rodriguez, BeCAPTCHA-Mouse:
Synthetic mouse trajectories and improved bot detection, 2021, arXiv:
2005.00890.

[44] D. Doran, S.S. Gokhale, Web robot detection techniques: Overview and
limitations, Data Min. Knowl. Discov. 22 (2011) 183–210, http://dx.doi.org/
10.1007/s10618-010-0180-z.

[45] J. Lee, S. Cha, D. Lee, H. Lee, Classification of Web robots: An empirical
study based on over one billion requests, Comput. Secur. 28 (8) (2009)
795–802, http://dx.doi.org/10.1016/j.cose.2009.05.004.

[46] M.D. Dikaiakos, A. Stassopoulou, L. Papageorgiou, An investigation of Web
crawler behavior: Characterization and metrics, Comput. Commun. 28 (8)
(2005) 880–897, http://dx.doi.org/10.1016/j.comcom.2005.01.003.

[47] P.-N. Tan, V. Kumar, Discovery of Web robot sessions based on their
navigational patterns, Data Min. Knowl. Discov. 6 (1) (2002) 9–35, http:
//dx.doi.org/10.1023/A:1013228602957.

[48] G. Suchacka, I. Motyka, Efficiency analysis of resource request patterns in
classification of Web robots and humans, in: Proc. Eur. Conf. Modelling
and Simulation, ECMS’18, 2018, pp. 475–481, http://dx.doi.org/10.1109/
CYBConf.2015.7175961.

[49] S. Kwon, Y.-G. Kim, S. Cha, Web robot detection based on pattern-matching
technique, J. Inf. Sci. 38 (2) (2012) 118–126, http://dx.doi.org/10.1177/
0165551511435969.

[50] W. Guo, S. Ju, Y. Gu, Web robot detection techniques based on statistics
of their requested URL resources, in: Proc. Int. C. Comp. Supp. Coop.
(CSCWD’05), 1, 2005, pp. 302–306, http://dx.doi.org/10.1109/CSCWD.2005.
194187.

[51] W.-Z. Lu, S.-Z. Yu, Web robot detection based on Hidden Markov Model,
in: Proc. Int. C. Commun. Circuit., IC3S’20, 3, 2006, pp. 1806–1810, http:
//dx.doi.org/10.1109/ICCCAS.2006.285024.

[52] A. Balla, A. Stassopoulou, M.D. Dikaiakos, Real-time Web crawler detection,
in: Proc. Int. Conf. Telecommunications, ICT’11, IEEE, 2011, pp. 428–432,
http://dx.doi.org/10.1109/CTS.2011.5898963.

[53] T. Gržinić, L. Mršić, J. Šaban, Lino – an intelligent system for detecting
malicious Web-robots, in: Intelligent Information and Database Systems,
ACIIDS’15, in: LNAI, vol. 9012, Springer International Publishing, Cham,
2015, pp. 559–568, http://dx.doi.org/10.1007/978-3-319-15705-4_54.

[54] S. Kwon, M. Oh, D. Kim, J. Lee, Y.-G. Kim, S. Cha, Web robot detection based
on monotonous behavior, in: Proceedings of the Information Science and
Industrial Applications, Vol. 4, 2012, pp. 43–48, http://dx.doi.org/10.1109/
CSCWD.2005.194187.

[55] R.U. Rahman, D.S. Tomar, Threats of price scraping on e-commerce web-
sites: attack model and its detection using neural network, J. Comput.
Virol. Hacking Tech. 17 (2021) 75–89, http://dx.doi.org/10.1007/s11416-
020-00368-6.

[56] C.H. Saputra, E. Adi, S. Revina, Comparison of classification algorithms to
tell bots and humans apart, J. Next Gener. Inf. Technol. 4 (7) (2013) 23–32.

[57] G. Jacob, E. Kirda, C. Kruegel, G. Vigna, PUBCRAWL: Protecting users
and businesses from CRAWLers, in: Proc. USENIX Security Symposium,
Security’12, USENIX Association, Berkeley, CA, USA, 2012, p. 25.

[58] G. Suchacka, M. Sobków, Detection of Internet robots using a Bayesian
approach, in: Proc. IEEE Int. Conf. Cybernetics, 2015, pp. 365–370, http:
//dx.doi.org/10.1109/CYBConf.2015.7175961.

[59] S. Rovetta, G. Suchacka, F. Masulli, Bot recognition in a Web store: An
approach based on unsupervised learning, J. Netw. Comput. Appl. 157
(2020) 102577, http://dx.doi.org/10.1016/j.jnca.2020.102577.

[60] G. Suchacka, J. Iwański, Identifying legitimate Web users and bots with
different traffic profiles – an Information Bottleneck approach, Know.-
Based Syst. 197 (2020) 105875, http://dx.doi.org/10.1016/j.knosys.2020.
105875.

[61] S. Alam, G. Dobbie, Y.S. Koh, P. Riddle, Web bots detection using Particle
Swarm Optimization based clustering, in: Proc. IEEE C. Evol. Computat.,
CEC’14, IEEE, 2014, pp. 2955–2962, http://dx.doi.org/10.1109/CEC.2014.
6900644.

[62] M. Zabihi, M.V. Jahan, J. Hamidzadeh, A density based clustering approach
to distinguish between web robot and human requests to a Web server,
ISC Int. J. Inf. Secur. 6 (1) (2014) 77–89, http://dx.doi.org/10.1109/ICCKE.
2014.6993362.

[63] J. Hamidzadeh, M. Zabihimayvan, R. Sadeghi, Detection of Web site visitors
based on fuzzy rough sets, Soft Comput. 22 (7) (2018) 2175–2188, http:
//dx.doi.org/10.1007/s00500-016-2476-4.

[64] D. Stevanovic, N. Vlajic, A. An, Detection of malicious and non-malicious
website visitors using unsupervised neural network learning, Appl. Soft
Comput. 13 (1) (2013) 698–708, http://dx.doi.org/10.1016/j.asoc.2012.08.
028.

[65] M. Zabihimayvan, R. Sadeghi, H.N. Rude, D. Doran, A soft computing
approach for benign and malicious web robot detection, Expert Syst. Appl.
87 (2017) 129–140, http://dx.doi.org/10.1016/j.eswa.2017.06.004.

http://dx.doi.org/10.1007/978-3-030-21952-9_11
http://dx.doi.org/10.1007/978-3-030-21952-9_11
http://dx.doi.org/10.1007/978-3-030-21952-9_11
http://dx.doi.org/10.1109/TKDE.2017.2667658
http://dx.doi.org/10.1109/ICDCS.2008.98
http://dx.doi.org/10.1016/j.knosys.2020.105520
http://dx.doi.org/10.1016/j.knosys.2020.105984
http://dx.doi.org/10.1016/j.knosys.2020.105984
http://dx.doi.org/10.1016/j.knosys.2020.105984
http://dx.doi.org/10.1371/journal.pone.0196533
http://dx.doi.org/10.1371/journal.pone.0196533
http://dx.doi.org/10.1371/journal.pone.0196533
http://dx.doi.org/10.1109/AINA.2010.92
http://dx.doi.org/10.1109/AINA.2010.92
http://dx.doi.org/10.1109/AINA.2010.92
http://dx.doi.org/10.1016/j.comnet.2012.10.005
http://dx.doi.org/10.1016/j.knosys.2020.106525
http://dx.doi.org/10.1016/j.knosys.2020.106525
http://dx.doi.org/10.1016/j.knosys.2020.106525
http://dx.doi.org/10.1007/978-3-319-98989-1_8
http://dx.doi.org/10.1109/WSE.2011.6081830
http://dx.doi.org/10.1109/WSE.2011.6081830
http://dx.doi.org/10.1109/WSE.2011.6081830
http://dx.doi.org/10.1016/j.jocs.2015.11.002
http://dx.doi.org/10.1016/j.jocs.2015.11.002
http://dx.doi.org/10.1016/j.jocs.2015.11.002
http://dx.doi.org/10.1109/IRI.2017.25
http://dx.doi.org/10.1109/TKDE.2018.2818163
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb35
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb35
http://arxiv.org/abs/1903.08074
http://dx.doi.org/10.1186/s42400-019-0023-1
http://dx.doi.org/10.1186/s42400-019-0023-1
http://dx.doi.org/10.1186/s42400-019-0023-1
http://dx.doi.org/10.1145/3339252.3339267
http://dx.doi.org/10.1145/3339252.3339267
http://dx.doi.org/10.1145/3339252.3339267
http://dx.doi.org/10.1007/978-3-030-63089-8_29
http://dx.doi.org/10.1007/978-3-030-63089-8_29
http://dx.doi.org/10.1007/978-3-030-63089-8_29
http://dx.doi.org/10.1007/978-3-030-23597-0_41
http://dx.doi.org/10.1007/978-3-030-23597-0_41
http://dx.doi.org/10.1007/978-3-030-23597-0_41
http://dx.doi.org/10.1007/978-3-030-04834-1_21
http://dx.doi.org/10.1016/j.cose.2020.102001
http://dx.doi.org/10.1016/j.cose.2020.102001
http://dx.doi.org/10.1016/j.cose.2020.102001
http://arxiv.org/abs/2005.00890
http://arxiv.org/abs/2005.00890
http://arxiv.org/abs/2005.00890
http://dx.doi.org/10.1007/s10618-010-0180-z
http://dx.doi.org/10.1007/s10618-010-0180-z
http://dx.doi.org/10.1007/s10618-010-0180-z
http://dx.doi.org/10.1016/j.cose.2009.05.004
http://dx.doi.org/10.1016/j.comcom.2005.01.003
http://dx.doi.org/10.1023/A:1013228602957
http://dx.doi.org/10.1023/A:1013228602957
http://dx.doi.org/10.1023/A:1013228602957
http://dx.doi.org/10.1109/CYBConf.2015.7175961
http://dx.doi.org/10.1109/CYBConf.2015.7175961
http://dx.doi.org/10.1109/CYBConf.2015.7175961
http://dx.doi.org/10.1177/0165551511435969
http://dx.doi.org/10.1177/0165551511435969
http://dx.doi.org/10.1177/0165551511435969
http://dx.doi.org/10.1109/CSCWD.2005.194187
http://dx.doi.org/10.1109/CSCWD.2005.194187
http://dx.doi.org/10.1109/CSCWD.2005.194187
http://dx.doi.org/10.1109/ICCCAS.2006.285024
http://dx.doi.org/10.1109/ICCCAS.2006.285024
http://dx.doi.org/10.1109/ICCCAS.2006.285024
http://dx.doi.org/10.1109/CTS.2011.5898963
http://dx.doi.org/10.1007/978-3-319-15705-4_54
http://dx.doi.org/10.1109/CSCWD.2005.194187
http://dx.doi.org/10.1109/CSCWD.2005.194187
http://dx.doi.org/10.1109/CSCWD.2005.194187
http://dx.doi.org/10.1007/s11416-020-00368-6
http://dx.doi.org/10.1007/s11416-020-00368-6
http://dx.doi.org/10.1007/s11416-020-00368-6
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb56
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb56
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb56
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb57
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb57
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb57
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb57
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb57
http://dx.doi.org/10.1109/CYBConf.2015.7175961
http://dx.doi.org/10.1109/CYBConf.2015.7175961
http://dx.doi.org/10.1109/CYBConf.2015.7175961
http://dx.doi.org/10.1016/j.jnca.2020.102577
http://dx.doi.org/10.1016/j.knosys.2020.105875
http://dx.doi.org/10.1016/j.knosys.2020.105875
http://dx.doi.org/10.1016/j.knosys.2020.105875
http://dx.doi.org/10.1109/CEC.2014.6900644
http://dx.doi.org/10.1109/CEC.2014.6900644
http://dx.doi.org/10.1109/CEC.2014.6900644
http://dx.doi.org/10.1109/ICCKE.2014.6993362
http://dx.doi.org/10.1109/ICCKE.2014.6993362
http://dx.doi.org/10.1109/ICCKE.2014.6993362
http://dx.doi.org/10.1007/s00500-016-2476-4
http://dx.doi.org/10.1007/s00500-016-2476-4
http://dx.doi.org/10.1007/s00500-016-2476-4
http://dx.doi.org/10.1016/j.asoc.2012.08.028
http://dx.doi.org/10.1016/j.asoc.2012.08.028
http://dx.doi.org/10.1016/j.asoc.2012.08.028
http://dx.doi.org/10.1016/j.eswa.2017.06.004


G. Suchacka, A. Cabri, S. Rovetta et al. Knowledge-Based Systems 223 (2021) 107074
[66] S. Rovetta, G. Suchacka, A. Cabri, F. Masulli, Feature selection: a multi-
objective stochastic optimization approach, in: Proc. Int. Conf. Optimization
and Applications, ICOA’20, IEEE, 2020, pp. 1–5, http://dx.doi.org/10.1109/
ICOA49421.2020.9094478.

[67] A. Wald, Sequential tests of statistical hypotheses, Ann. Math. Stat. 16 (2)
(1945) 117–186, http://dx.doi.org/10.1214/aoms/1177731118.

[68] C.K. Chow, An optimum character recognition system using decision
functions, IRE Trans. Electron. Comput. 6 (4) (1957) 247–254, http://dx.
doi.org/10.1109/TEC.1957.5222035.

[69] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Academic
Publishers, Boston, 1999.
16
[70] C. Saule, R. Giegerich, Pareto optimization in algebraic dynamic program-
ming, Algorithms Mol. Biol. 10 (1) (2015) 22, http://dx.doi.org/10.1186/
s13015-015-0051-7.

[71] Udger, 2017, URL https://udger.com (access date: 4 September 2017).
[72] User-agents, 2017, https://http://www.user-agents.org (access date: 4

September 2017).
[73] B. Hidasi, A. Karatzoglou, L. Baltrunas, D. Tikk, Session-based recom-

mendations with recurrent neural networks, in: Proc. Int. Conf. Learning
Representations, ICLR’16, 2016.

http://dx.doi.org/10.1109/ICOA49421.2020.9094478
http://dx.doi.org/10.1109/ICOA49421.2020.9094478
http://dx.doi.org/10.1109/ICOA49421.2020.9094478
http://dx.doi.org/10.1214/aoms/1177731118
http://dx.doi.org/10.1109/TEC.1957.5222035
http://dx.doi.org/10.1109/TEC.1957.5222035
http://dx.doi.org/10.1109/TEC.1957.5222035
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb69
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb69
http://refhub.elsevier.com/S0950-7051(21)00337-3/sb69
http://dx.doi.org/10.1186/s13015-015-0051-7
http://dx.doi.org/10.1186/s13015-015-0051-7
http://dx.doi.org/10.1186/s13015-015-0051-7
https://udger.com
https://http://www.user-agents.org

	Efficient on-the-fly Web bot detection
	Introduction
	Preliminaries and problem statement
	Related work
	Methodological framework
	System architecture
	Choice of features
	HTTP request features used in classification
	The idea behind two-stage classification
	The two-stage classification model
	Stage 1: Posterior probability estimation for individual requests subsubsec:stage1 
	Stage 2: Sequential classification subsubsec:stage2 
	Parameter values

	The algorithm

	A reference bot detection method
	Experimental evaluation
	Dataset description
	Data preparation
	Performance evaluation
	Evaluation scenarios
	Performance metrics
	Parameter setting


	Results and discussion
	Tuning the parameter values
	Comparative analysis
	Estimation of the computational complexity
	Limitations of the presented work

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


