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Abstract: Neutrophil extracellular traps (NETs) are macromolecular structures programmed to
trap circulating bacteria and viruses. The accumulation of NETs in the circulation correlates with
the formation of anti-double-stranded (ds) DNA antibodies and is considered a causative factor
for systemic lupus erythematosus (SLE). The digestion of DNA by DNase1 and DNases1L3 is the
rate- limiting factor for NET accumulation. Mutations occurring in one of these two DNase genes
determine anti-DNA formation and are associated with severe Lupus-like syndromes and lupus
nephritis (LN). A second mechanism that may lead to DNase functional impairment is the presence
of circulating DNase inhibitors in patients with low DNase activity, or the generation of anti-DNase
antibodies. This phenomenon has been described in a relevant number of patients with SLE and
may represent an important mechanism determining autoimmunity flares. On the basis of the
reviewed studies, it is tempting to suppose that the blockade or selective depletion of anti-DNase
autoantibodies could represent a potential novel therapeutic approach to prevent or halt SLE and
LN. In general, strategies aimed at reducing NET formation might have a similar impact on the
progression of SLE and LN.

Keywords: neutrophil extracellular traps; systemic lupus erythematosus; lupus nephritis; autoim-
mune disease; immunosuppressive treatment

1. Introduction

The formation of extracellular traps by neutrophils (or NETs) is part of the innate
immune response and consists of the release of DNA from neutrophils and granule com-
ponents that, once outside the cell, compose a net where pathogens are entrapped and
killed through proteolytic mechanisms [1–3]. The activation of nicotinamide-adenine-
dinucleotide-phosphate (NADPH) oxidase is linked to the generation of NETs and the
activation of intracellular granular proteases [3]. The complex and interactive network of
molecules activated during NETosis is part of the initial immune response against any type
of infection [4]. Indeed, subjects affected by inherited disorders causing the inactivation of
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NADPH oxidase, such as chronic granulomatous disease, are more exposed to bacterial
and fungal infections [4,5].

Considering the elaborate structure involving chromatin-DNA and more than
300 proteins [6], and given the interactive nature of the functions, the significance of
NETs goes beyond the immune response [3]. In the last decade, consolidated evidence has
demonstrated that DNA, and proteins derived from NETs, may serve as autoantigens in
several autoimmune diseases [6,7]. The complex of DNA and oxidized proteins acts, in
fact, as a hapten, stimulating the formation of autoantibodies more intensely than DNA or
proteins alone [6]. The link of NETs with autoimmunity is particularly evident in the con-
text of systemic lupus erythematosus (SLE) and lupus nephritis (LN), since NETs represent
an important source of the two major antigens in both conditions [8]: DNA and oxidized
(93 methionine sulfoxide) α-enolase. Studies measuring NET levels in SLE and LN suggest
the relevance of maintaining a physiological balance between formation and removal that
is critical for reducing the formation of autoantibodies in both conditions [9,10].

2. NET Levels and Formation in Autoimmune Conditions

Neutrophil-generating NETs, also known as NET remnants, can be detected in circu-
lation through an ELISA test specific for myeloperoxidase (MPO) and, therefore, able to
detect the DNA–MPO complex of NETs [8].

In the last two decades, on the basis of this assay, several studies have reported
increased circulating NETs in subjects affected by autoimmune conditions, such as small
vessel vasculitis [11,12], and SLE/LN [10,13,14]. This finding does not necessarily mean
that NET production is increased in autoimmunity. In fact, direct evidence for an increased
production of NETs in any of the clinical settings above-mentioned is lacking. The unique
indirect evidence is that neutrophils derived from patients with SLE/LN, and stimulated
with phorbol 12-myristate 13-acetate (PMA), produce more and different NETs compared to
neutrophils derived from healthy subjects [15]. When PMA was infused in rats to stimulate
NETs, the rodents developed a sort of pulmonary capillaritis, miming the small vessel
vasculitis associated with anti-MPO autoantibodies [15].

In a similar way, neutrophils from the circulation of New Zealand mice, a model
of spontaneous lupus, are able to produce an increased formation of NETs compared to
neutrophils derived from control mice [16].

3. NET Balance in Systemic Lupus Erythematosus

The increased NET production in autoimmunity, as reported above, is of interest and
represents a possible mechanism. On the other hand, several findings indicate that, in SLE,
increased NETs may result from reduced degradation rather than increased production [3].
Taken together, these studies suggest that the balance between NET production and removal
plays a critical role in SLE and other autoimmune conditions. NET removal is, accordingly,
crucial to maintaining the right balance between NET formation and degradation. Of most
importance, it was shown that the entity of reduction covaried with disease activity. In
particular, patients with a reduced ability to remove NETs had lower levels of the circulating
complement components, C3 and C4 [17,18] that, when reduced, represent the common
clinical markers of increased disease activity. Moreover, such subjects presented increased
circulating levels of anti-DNA and anti-histone antibodies and developed, in many cases,
glomerulonephritis [9]. The laboratory approach, in the first series of studies, was based
on testing the capability of the sera, obtained prospectively from patients with SLE, to
remove in-vitro-generated NETs and, therefore, did not focus on the possible mechanisms.
As a main result of the initial functional studies, DNases emerged as fundamental in
removing NETs [9], and a strong association between the reduction of DNases activity and
the accumulation of NETs in autoimmune conditions was reported [9].

The DNase complex is composed of three enzymes, DNase I, DNase II, and DNase1L3,
with roles in the digestion and removal of circulating DNA. They have specificities for differ-
ent DNA and are variably implicated in maintaining a correct DNA balance. In LN, the re-
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moval of DNA, and consequently of NETs, may be impaired for different reasons [19]. One
reason is the loss-of-function mutations in one of the genes coding for the DNases [20–22].
A second mechanism that may lead to DNase functional impairment is the presence of
DNase inhibitors in the sera of patients with low DNase activity [9], or the generation of
anti-DNase antibodies [9,23]. This phenomenon has been described in a significant number
of patients, and may actually represent a relevant mechanism determining increased levels
of NETs in a significant number of subjects affected by LN [24].

4. Circulating DNA Forms and DNase Specificity

As mentioned, the presence of extracellular DNA, frequently in association with
multiple proteins [8], is critical for the anti-DNA antibody generation process and is
intimately associated with the different extracellular DNA species. To further increase
complexity, DNase acting upon those DNA species might well modulate the anti-DNA
antibody-generation process. Below, we review the literature related to both topics.

Extracellular DNA may be defined based on physical characteristics, such as variable
size, varying from short naked DNA to DNA as part of a chromatin strand, and follows,
in each case, specific degrading pathways. The nucleosome is, hierarchically, the largest
structure containing DNA. It corresponds to the basic unit of chromatin and is formed by a
framework of Histone 2A, 2B, 3, and 4 assembled as an octamer, surrounded and wrapped
by DNA.

Nucleosomes are generated during cell apoptosis by chromatin cleavage. In SLE,
specific antinucleosomes are directed towards conformational epitopes created by the
interaction between dsDNA and the core histones. Moreover, nonspecific antinucleo-
some antibodies recognize the basic elements of the nucleosome: the histones and the
DNA [25]. In the last two decades, nucleosomes have emerged as the principal antigen in
the pathophysiology of SLE, and antinucleosome antibodies are closely associated with
organ damage [26,27]. Nucleosomes have been shown to be more strongly immunogenic
than native DNA or histones, and induce a strong T-helper-cell response [28]. Moreover,
antinucleosome antibodies were recently proposed as a marker to identify patients with
a higher risk of developing renal relapse in inactive SLE [29,30]. It is largely recognized
that the physical form and the length of DNA are directly correlated and may determine
its antigenicity. The formation of antibodies against naked DNA develop later than anti-
bodies versus protein-bound DNA, suggesting that the whole complex of hapten-DNA,
rather than its individual components, is mainly involved in breaking the immunotoler-
ance [31]. Moreover, longer fragments of DNA, due to a more extended bivalent surface,
have increased avidity for anti-dsDNA antibodies [31,32].

Chromatin may exist as small soluble fragments, or as larger extracellular structures
derived from cells, such as NETs [33], or microparticles (MP) derived from apoptotic
cells [34–36]. The removal of extracellular DNA by DNase I and DNase1L3 represents
the critical step in DNA metabolism [37]. DNase I preferentially digests naked cell-free
DNA, while chromatin and MP-bound-chromatin DNA are degraded by DNase 1L3 [19,38].
While in healthy conditions, a variable amount of extracellular DNA (20–50%) is trans-
ported by MP, recent findings report that the fraction enriched in longer fragments may be
significantly increased in LN patients with reduced DNASE 1L3 activity [39]. A third form
of intracellular DNase, DNase II, is responsible for the degradation of DNA from apop-
totic bodies. Overall, DNase activity is reduced in the serum of SLE/LN patients, while
circulating DNase I levels are normal, suggesting that DNase 1L3-serum-level modification
is directly responsible for the reduced DNase activity [10], determining the imbalance in
extracellular DNA responsible for anti-ds DNA production.

Furthermore, dendritic cells and macrophages produce the large amount of circulating
DNASE1L3, supporting the fundamental role of these cells in maintaining self-tolerance
and protection from autoimmunity [40,41].
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5. DNase Mutations and Monogenic SLE

Deletions or mutations of any of the DNASE genes are inevitably associated with im-
munologic syndromes, with the common involvement of the kidney, phenotypically charac-
terized by an autoimmune glomerulonephritis. In vivo studies using DNASE-knocked-out
mice confirmed the direct correlation between DNase activity and autoimmune disease [31].

Mutations in exon 2 of DNASE1 have been described in 2001, by Yasutomo, in two
patients with SLE [16]. As expected from the presence of a stop codon in the DNASE1
sequence, both patients had low levels of circulating DNase I and high levels of anti-DNA
antibodies. Supporting that hypothesis, the genetic deletion of DNase I in vivo results in
serological features resembling those in SLE patients, with subsequent renal involvement
in the form of an autoimmune glomerulonephritis characterized by IgG and C3 glomerular
deposition [42].

Bi-allelic mutations in DNASE2 have been reported in three children who presented the
same clinical phenotype, characterized by recurrent febrile episodes, fibrosing hepatitis, and
membranoproliferative glomerulonephritis [17]. The serum levels of anti-DNA antibodies
were fluctuant, and none of the children fulfilled the clinical criteria of SLE. However, as a
common feature, a significantly high type I interferon signature was reported, suggesting
the inclusion of this syndrome in the interferon-mediated inflammatory diseases that also
characterize SLE.

Homozygous null mutations of DNASEIL3 cause the pediatric onset of familial SLE
that is characterized by high levels of circulating anti-dsDNA antibodies and renal involve-
ment [18]. Clinical variability may also exist and, in a few families, the disease initially
manifests as hypocomplementemic urticarial vasculitis syndrome (HUVS) [43,44] that
may progress, in surviving members, to severe SLE. In the same way, a polymorphism of
DNASE1L3 (rs35677470) coding for an R206C [45] amino acid substitution is associated with
less severe autoimmune diseases, including SLE, scleroderma, and rheumatoid arthritis.

The available literature demonstrates the inverse correlation between circulating
DNase1L3 and the formation of antichromatin and anti-dsDNA antibodies, with conse-
quent clinically relevant SLE-like disease and renal involvement [19,36,42]. DNASE1L3-
deficient mice develop a typical lupus syndrome [19], and have been widely used to
support a direct implication of DNASEIL3 in SLE/LN.

Overall, mutations of any DNASEs, even rare, are always associated with an inflam-
matory syndrome with profound clinical impact that evolves, in the majority of cases, to
SLE and LN.

6. DNase Inhibitors and Anti-DNase Antibodies in Lupus Nephritis

A decade ago, Hakkim et al. [11] first focused on the central role of DNase I for
disassembling NETs, and then correlated the functional impairments of DNase I with the
impaired degradation of NETs in a subset of patients with SLE. They further showed that,
in some subjects, defined as ‘non degraders’, a physiological NET balance was restored by
removing serum antibodies or by adding the sera of a healthy donor [11]. On the basis of
these findings, they postulated the existence of anti-DNase I antibodies or, alternatively,
of DNases I inhibitors in the sera of SLE patients that correlated with disease activity and
with progression to LN [9].

The second confirmatory study of the presence of anti-DNase antibodies that interfere
with NET degradation was described in subjects affected by MPO-ANCA-associated
microscopic polyangiitis (MPA) [46]. The authors describe a lower DNase I activity in
patients than in the healthy controls, and demonstrate that IgG depletion from MPO-
ANCA-associated MPA sera partially restores NET degradation. Finally, the addition of
DNase I synergistically enhanced this restoration [35].

More recently, Bruschi et al. [10] found that circulating NET levels were high in
216 incident SLE patients, half of which had incident LN, and correlated with either high
anti-dsDNA antibody-circulating levels or low C3 activity. DNase activity was found to be
selectively decreased in patients with LN compared to patients with SLE and the controls,
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despite similar serum levels of DNASE 1. A total of 20% of LN patients had a 50% reduction
in DNase activity. In these cases, the pretreatment of the serum with Protein A restored
DNase efficiency, implying the presence of an inhibitory immunoglobulin in the plasma of
patients with LN.

More recently, Hartl et al. [39] provided evidence for the direct implication of anti-
DNase antibodies in SLE complicated by different organ pathologies. They performed a
reliable assay for circulating DNase1L3 activity and found low levels in 50% of patients
with LN compared to patients with uncomplicated SLE and the healthy controls. In LN,
DNase1L3 activity was lower in those patients with active proteinuria compared to those
in remission. Since DNASE 1L3 genetic deficiencies are quite rare, and could not account
for the reduced DNase1L3 activity in half of the patients, an autoimmune mechanism
was postulated [39]. The same authors tested whether the autoantibodies to DNase 1L3
might contribute to decreased activity [39] and found the high and specific binding of
IgG to DNase 1L3 in the plasma of patients with LN correlating with activity; on the
other hand, no binding to DNase I was observed. Overall, the findings by Hartl et al. [39]
support the mechanistic hypothesis that the formation of anti-DNase 1L3 antibodies me-
diates the inhibition of its activity in patients with LN. As a consequence, the increase of
polynucleosome MP-bound DNA corresponds with the high-antigenic DNA that mediates
antibody formation.

7. Potential Treatments

The modulation of either the NET production or the DNA removal appear as two
possible effective strategies in SLE/LN treatment, and a balance of the two approaches
may better produce positive effects.

Blocking NET production is still an experimental area of investigation that has been
recently reviewed in detail [3]. However, blocking NET production may fail and, in
some cases, it impacted negatively on the general clinical status for the onset of severe
complications [3]. The development of new drugs are still at the preliminary conceptual
phase and will require more time for effective development [47]. Modulating the DNase
activity seems to represent a more concrete opportunity, especially in secondary SLE, and
it may be achieved by removing or blocking the synthesis of the circulating inhibitory
substances of such enzymes.

On the other hand, plasmapheresis presents a valuable opportunity, with the aim
of blocking the overall autoantibody production with the consequent relevant immune
depression. Plasmapheresis has been widely used in the past; however, efficacy has only
been supported by noncontrolled and/or retrospective studies [48]. Immune depression
with cyclophosphamide [49] and/or with anti-CD20 antibodies is a more recent approach
presenting contrasting results [50]. Moreover, a combination of both plasmapheresis
and the administration of anti-CD20 antibodies have been reported [51]. Future studies
determining DNase activity during the therapeutic approaches are needed in order to
verify a direct relationship between therapeutic efficacy and DNases inhibition.

8. Conclusions

Several studies on SLE and LN pathogenesis suggest that, in both conditions, the re-
moval of NETs is hampered because of the functional defects of DNases. Genetic mutations
affecting DNASE1, DNASE2, and DNASE1IL3, or the presence of DNases inhibitory agents
(and/or DNases-directed autoantibodies) could explain DNases functional impairment.
All of these studies highlight the relevance of NET DNA and NETosis, as a whole, as a
central pathomechanism directly implicated in the onset and progression of SLE and LN.
On the basis of the reviewed studies, it is tempting to hypothesize that the blockade or the
selective depletion of anti-DNase autoantibodies could be a potential novel therapeutic
approach to prevent or halt SLE and LN progression. More in general, strategies aimed at
reducing NET formation might have a similar impact on the progression of SLE and LN. It
is an approach that today can be envisioned thanks to the identification, using high-content
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screening technology [47], of clinical compounds able to prevent NET formation. Finally,
recombinant DNases could also have a critical role to play in monogenic SLE.
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