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Abstract—We present a novel descriptor for crowd behavior
analysis and anomaly detection. The goal is to measure by
appropriate patterns the speed of formation and disintegration
of groups in the crowd. This descriptor is inspired by the
concept of one-dimensional local binary patterns: in our case,
such patterns depend on the number of group observed in a
time window. An appropriate measurement unit, named “trit”
(trinary digit), represents three possible dynamic states of groups
on a certain frame. Our hypothesis is that abrupt variations of
the groups’ number may be due to an anomalous event that
can be accordingly detected, by translating these variations on
temporal trit-based sequence of strings which are significantly
different from the one describing the “no-anomaly” one. Due
to the peculiarity of the rationale behind this work, relying
on the number of groups, three different methods of people
group’s extraction are compared. Experiments are carried out
on the Motion-Emotion benchmark data set. Reported results
point out in which cases the trit-based measurement of group
dynamics allows us to detect the anomaly. Besides the promising
performance of our approach, we show how it is correlated with
the anomaly typology and the camera’s perspective to the crowd’s
flow (frontal, lateral).

I. INTRODUCTION

Anomalous event detection in crowded environments [1]
by computer vision (CV) techniques is an investigation field
with a strong impact in the physical security domain. In this
context, the repressive action of the police could be helped if
an automatic mean of fast search of anomalous events over a
video-sequence would be available. Moreover, an automated
system could give significant help if it would be able to predict
the occurrence of such an event in real-time.

Although the notable efforts in terms of anomalous events
detection and classification, especially by using deep networks
[2], experimental results showed these systems cannot yet be
applied in real environments without knowing their limitations.

The main motivation is that it is not easy to define in a
mathematical closed-form what an anomalous event is [1].
Each application has its own specificities which may be asso-
ciated with behavioural anomalies. Accordingly, behavioural
biometrics [3], for example, the gestural analysis or the facial
expression evaluation, are useful to assess a certain class of
anomaly, such as physical or verbal violence [4].

In this paper, we focused on the assessment of how much
a “state variable” denoting an anomalous event is far from
the correspondent value of the “quiet” state, which denotes
the absence of anomaly, over time [5]. We took into account

that often video-surveillance cameras are very far from the
foreground scene and give very few insights about the gestures,
facial expressions and actions of individuals, although these
are potentially evidence of anomalous events.

In this paper, we considered that crowds tend to assume
an aggregative or dispersive behavior whose rapidity depends
on the nature of the occurring event. In particular, rapid and
random aggregative or dispersive behavior occurs in corre-
spondence of an anomaly: this is evident in events causing
the crowd’s panic. The rapidity modelling is, therefore, the
core of our approach; in other words, our goal is to assess the
rapidity of the crowd’s answer to a certain external stimulus.

We designed a descriptor based on accounting the number
of people groups detected into the scene, and how it increases
or decreases over time. A descriptor that works accordingly
allows us to “explain” what is happening by evaluating how
much it changes. Nevertheless, it may become less effective
when a normal transition in the groups’ number tends to be too
similar to that supposed for an anomalous event, thus causing
false alarms, even if they could be explained in retrospect.
This explanation ability is still difficult to be obtained by a
black-box approach like a deep network-based one [6].

Two modules compose our system. The first one is the
clustering module whose aim is to detect the people groups in
the scene – we implemented several state-of-the-art algorithms
[7], [8], [9], [10] beside the manual counting of the groups.
The second one is the original contribution of this paper: a
novel temporal descriptor aimed to represent the variations of
the group numbers over time.

The one-dimensional local binary pattern [11] inspired our
descriptor. By a time-window sliding over a certain video-
sequence’s set of frames, and centred on a certain temporal
instant, we compare the number of groups computed at that
instant with the groups count after and before it. Three cases
may happen: the number of groups increases, decreases, or
remains unaltered. This leads to have, for each time-window,
a set of “trinary” states (increase/decrease/unaltered), that we
called string of “trits” (trit=trinary digit). After collecting
a certain number of strings, we evaluated the histograms
of the trinary states occurrences, thus obtaining a temporal
description of the groups’ dynamic over that set of frames.
The deviation of each histogram from the “quiet” state-related
histogram allows us to decide if an alarm must be output.

We adopted the Motion-Emotion data set [12] to benchmark
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our system, and, where possible, we compared that with other
state-of-the-art methods. Unfortunately, the lack of a rigorous
experimental protocol shared by all research groups limits the
significance of this comparison, since the same data set is used
for different goals. Anyway, we computed the performance
parameters usually adopted in terms of the so-called F1 score
and precision/recall. Beside them, we discussed the pros and
cons of the system by correlating the system’s behaviour with
the video-sequence. This allowed us to observe the change
in the trit-based state histogram according to what happens
over the video. In other words, we verified if our hypothesis
is supported as well as the impact of the noise introduced
by non-zero-detection-error modules (in particular, the group
counting module).

Although the obtained performance is not yet ready for prac-
tical use of the system, reported experiments are in agreement
with our claim, that is, we propose a novel and explainable
method to anomaly detection in mass-based video-surveillance
applications. This method relies on a hypothesis physically
verifiable, thus it acts as full white-box whose parameters are
correlated to the specific detection goal.

The paper is organized as follows. Section 2 makes the point
about the state-of-the-art on modeling the crowd behavior.
Section 3 describes the proposed system. Experimental results
are reported in Section 4, and the concluding Section is a frank
discussion about the pros and cons of this proposal.

II. ANOMALOUS EVENTS AND PREVIOUS WORKS

The crowd analysis is the study of the natural movements
of people and objects in the scene. Such a group of people
is often named “crowd”. The crowd analysis [5] can be
conducted at the macroscopic level by considering the crowd
global motions, or at the microscopic level that is focused
on the movements of each individual. Based on the density
of the crowd in the scene, crowd analysis methods can be
grouped into two major categories, sparse crowd analysis
and dense crowd analysis (Fig. 1) [13]. The density of a
crowd is commonly an estimate of how many people are in a
delimited area and it concerns the possibility of distinguishing
the individuals and the background. Therefore, sparse crowd
is a crowd where the individuals are separable and identifiable
and occlusions are limited, while in the case of a dense crowd,
people are crammed together and it is impossible to distinguish
the shape of each individual due to the high level of occlusions.

The dense crowds can be divided into structured and un-
structured crowds according to the motion present in the scene.
If the crowd moves coherently on a macroscopic level with a
common and constant direction, the crowd is structured. If the
crowd is characterized by chaotic or random movements and
at a microscopic level from different directions and different
gestures, the crowd is called “unstructured”. Crowd analysis
allows to face a large number of tasks (Fig. 2) which can be
schematized by macro areas as density estimation [14], crowd
counting [15], behavioral analysis and prediction [16], people
tracking [17] and person identification.

Fig. 1: Taxonomy of crowds.

Fig. 2: Taxonomy of crowd analysis task.

Based on the task, the crowd analysis involves extremely
different methods and disciplines. The analysis is performed
in different levels, from raw to elaborate features.

Figure 3 shows an overview of the features used for
computer vision-based crowd analysis. Usually a bottom-
up approach is adopted, starting from a voluminous amount
of low-level features and refining the information through
processing and selection, up to high-level features [1].

At the base, a large set of raw features is collected. The
raw features are extracted from the sensors, such as one or
more videocameras. Raw features, such as the RGB level of
each pixels, can be used, but the extraction of specific features
is often done, such as for the optical flow-based features [18]
from the frames sequence or the textural-based features [19]
from the single frame.

At the middle level, aggregate features are obtained from
the raw features, usually by reducing the dimensionality and
number of features. At this level, individuals can be detected
and tracked, or groups of people can be identified [20] by the
extracted features. However, it is not possible to have the clear
understanding of the scenario, since they are still lacking of
the relationships with the whole context.

The high-level features allow to relate the previous features
sets with their context. This step includes psychological and
social knowledge in order to understand the targeted event.
The features processing is strongly affected by the accuracy of
the previous ones, and requires context-dependent modelling.
The final interpretation of the scene as given by the third-level
features is left to the humans.

In the anomaly detection task, numerous descriptors are
based on raw or aggregate features, generally called low-level
features, as Mixture of Dynamic Texture (MDT) [21] and the
spatio-temporal descriptors Histogram of Gradient (HOG) [22]
and Histogram of Optical Flow (HOF) [23]. Others combine
motion information and context information, as Ref. [24]
which extracts the local binary patterns for obtaining contex-
tual information. In recent years, deep learning-based anomaly
detection algorithms have become increasingly popular and
allowed to achieve very accurate results.

Despite their high accuracy, the black-box nature of deep-
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learning approaches makes these methods poorly interpretable
[25] and vulnerable to adversarial attacks [26]. In this work
we propose a time descriptor of the crowd that allows to give
an explanation of the detection of the anomaly.

Fig. 3: Overview of features used for CV-based crowd analysis.

III. A NOVEL DESCRIPTOR FOR ANOMALOUS EVENTS
DETECTION IN HIGH-DENSITY CROWDS

A. Crowd model

Crowd behaviour is strictly related with crowd motion
patterns. In a sparse crowd scenario, these patterns are defined
by individuals that move in the scene, and eventually form or
break-up groups. We identify a group as a set of individuals
that: 1) move together, speak together, or perform a common
action; 2) are physically close; 3) are directed in a common
centre of focus. Our system is based on the hypothesis that
anomalous events happen when multiple group formation
events and group breaking-up events suddenly appear in the
scenario. It is worth noting that these events happen likewise
in absence of anomaly, but with different dynamics. Figure 4
shows examples of slow and fast crowd dynamics. By counting
the number of groups in the scene and monitoring its variation
over time, it is possible to detect such variations and use them
for the purpose of anomaly detection in crowd behaviour.

(a) (b)

(c) (d)

Fig. 4: Examples of crowd dynamics: (a) slow formation; (b)
slow breaking-up; (c) fast formation; (d) fast breaking-up.

Our system consists of three layers, shown in Figure 5. First,
we select a subset of the total number of frames for avoiding
a dense analysis (1). In the second layer, we count the number
of groups in the scene for each selected frame with computer
vision techniques (2). This will serve as low-level features

Video
frames

Frame
selection

Low level
features

High level
features Anomalies

(1) (2) (3) (4)

Fig. 5: Anomaly detection pipeline. (1) A subset of the total
frames is selected from the whole sequence of frames; (2)
Low level features are extracted for obtaining the number of
groups in each scene; (3) High level features compute statistics
of dynamics patterns; (4) Anomalies are obtained through
thresholding a specific pattern.

and holds little information about the anomalies. Finally, the
output of this block passes through a refinement layer (3) that
describes with a histogram each analysed sequence and links
the low-level features with our crowd model. A threshold is
applied to the central bin of the histogram, characterizing the
state of quiet, and acts as a trigger for detecting the anomaly.

B. Low level features

The input of our system is a video sequence of Ntot frames.
We select one frame each F , the number of frames that we
skip between two subsequent group counts, obtaining Ntot

F
frames. Low level features are intended to count the number
of groups in the scene along time. We compare three automatic
methods for counting the groups, counting each F frames and
the manual counting as ground truth.
Clustering of optical flow (COF). We use dense optical
flow (OF)[18] for tracking moving blocks of pixels from one
(selected) frame to another. Then, a Density-Based Spatial
Clustering of Applications with Noise (DBSCAN) algorithm is
used for grouping into blocks the optical flow vectors that: 1)
have the same angle of movement (phase of the OF); 2) have
the same speed (magnitude of the OF); 3) are spatially close to
each other (x,y coordinates of the pixel). We use the clustering
algorithm for obtaining the number of clusters, rather than
assigning each point to a cluster.
Cascade detector (CD). We estimate the number of groups
by counting the number of bounding boxes resulting from the
application of an off-the-shelf Multi Scale Object Detector
implemented in OpenCV [10]. This method detects individual
persons rather than clusters, but our hypothesis is that for each
group only the front person will be completely visible. We
use the number of bounding boxes as a rough estimation of
the number of groups. This method is the fastest, but highly
inaccurate in the absolute count.
Blob detector (BD). We implemented our own version of a
bounding box detector. First, it removes the background and
applies gaussian blurring to the image in order to reduce the
noise. After, it binarizes the image and highlights the shapes of
the blobs, i.e., the groups that we are willing to count. Finally,
we apply dilation and opening for extracting the contour of the
shapes, then we count the number of detected contours and this
will act as our count.
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To the bounding box detection is not applied any post-
processing. The output of this block is a raw count of groups
for each selected frame. It is important to mark that we are not
interested in the accurate value of this count, rather a correct
detection of the abrupt changes. This means that the group
counting algorithm is supposed to capture a trend rather than
exact counts.

C. High level features

Once the group count has been extracted, we can proceed
with the high-level feature extraction (Fig. 6). We designed a
descriptor that can be applied to any one-dimensional signal
for anomaly detection. The output of this layer is a sequence
of labels that marks where the anomaly starts in each video.

After the first layer of feature extraction, using a sliding
window of size L, we obtain K arrays. Since scrolling the
window on the Ntot

F selected frames of one element at a time,
K = Ntot

F − L + 1. For each array ki, with i = 1, ...,K, we
apply the following algorithm:

1) We scroll the array ki with another sliding window
of size 2W + 1, being W a positive integer smaller
than half of L, getting L − 2W windows. For each of
these windows, we compare the number of groups of
the central value c with the surrounding ones. By the
comparison of each element cj of the sliding window,
being j = 0, .., 2W with the central value c, we obtain
a trinary code by applying Eq. 1.

tj =


0 if cj − c > T

1 if |c− cj | <= T

2 if c− cj > T

(1)

The descriptor threshold T is set to reduce the noise
influence in the count. This allows the state of quiet
to evolve over time: if the groups count gradually
increases or descends the sequence will not be identified
as anomalous. We drop the central value c for avoiding
self-comparison, and we obtain a code of 2W trinary
digits.

2) The trinary code is transformed into a decimal number
using Eq. 2.

d =

2W∑
j=0

(tj × 3j); (2)

We obtain L − 2W decimal numbers as the sliding
window strides along the sequence of L elements.

3) The L − 2W decimal values are collected into a his-
togram that summarises a patterns’ statistic observed in
the temporal sequence (without caring of the order).

At the end of this procedure, we obtain K histograms de-
scribing the subsequent statistics of patterns. The quiet state
is described by a histogram with a single central bin. The
lowering of the central bin means that other bins are reaching
non-zero configurations. For this reason, we apply a bin thresh-
old t∗ to the central value of the histogram, that characterises

TABLE I: Overview of the papers that use the ME dataset.

Refer. Method Application Performance
Anomaly
Detection

Behavior
Classification Acc[%] Avg Error

[12]

Trajectory 35.30 -
HOG 38.80 -
HOF 37.69 -
MBH 38.53 -

Dense Trajectory 38.71 -

[27] Emotion Attribute 43.6 -
Spatio-Temporal 71.70 -

[28] Density Heatmaps/
Optical Flow 90.9 -

[29] Phase-Based
Statistics - 0.118

the absence of anomaly. We mark as anomaly the moment in
which this histogram bin changes and triggers the threshold.

The key observation of this process is that we model the
normalcy in the scene through monitoring a trend of a specific
extracted pattern over time. The histograms act as a summary
of all the variations in the groups count, yet the bin that
models the normalcy is only the one that represents a static
crowd dynamics (changes in the number of groups below the
threshold T ).

Fig. 6: High-level features extraction scheme. The group
counts are divided into K arrays of size L through a first
sliding windows. Each array is further divided with another
sliding window in L−2W subgroups of size 2W −1, each of
which generates a trinary code. The trinary codes transformed
into decimal values are collected in a histogram.

IV. EXPERIMENTAL RESULTS

A. Data set

The algorithm has been tested using the Motion Emotion
(ME) data set [12]. It contains 31 video sequences of around
44000 frames in total. Each video is recorded as 30 frames
per second using a fixed video camera elevated at height,
overlooking individual walkways and a video resolution of
554 × 235. The crowd density in the videos ranges from
sparse to very crowded. The videos contain both normal and
abnormal behavior, labeled frame-by-frame as 5 classes (Panic,
Fight, Congestion, Obstacle and Neutral). The videos do not
capture only one behavior at a time, but rather the transition
from normal to abnormal situation. For each behavior, at least
two videos from different point of view are recorded.
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Table I shows the works that use the ME dataset in their
experiments. Most of these papers focus on the behavior
classification task. Even among them, it is difficult to compare
the performances since the experiments do not have a common
protocol. The only work on the detection anomaly task [29]
analyzes the performance of a “change detector”, considering
not only the onset of the anomaly but also its resolution.

B. Experimental protocol and evaluation parameters

The anomaly detection performance depends on:
• the alarm synchronization with the anomaly occurrence

- a maximum time delay can be taken into account in
order to counteract appropriately;

• “low” false positive detection rate - false alarms reduces
the effectiveness of the system; for example, too many
alarms over time are an obstacle during check of true
anomaly occurrences.

To evaluate the reliability of the proposed method, we consider
as anomalies correctly detected all those alarms that fall within
a range corresponding to about 27 seconds, centred on the
actual occurrence of the anomaly. This occurrence is manually
labelled, by following the perception of the human operator.

If several alarms fall in this range, only one is considered.
We considered the period before the occurrence of the anomaly
because some changes in the group numbers may represent the
dynamics leading to the anomaly.

We divided the videos in two separate sets according to
the camera position. In fact, some videos of the ME data set
present a slope between wall and ground more visible than
others (> 5◦). We have included these videos in the set of
“lateral camera” and those with a very small slope in the set
of “frontal camera”. Fig. 7 shows an example of lateral and
frontal view. These views reflect two real case scenarios.

We performed the following experiments:
• Experiment 1: set of videos recorded by the camera in

frontal position with respect to the scene. The set includes
videos [001, 002, 005, 006, 009, 010, 015, 016, 017, 018,
019, 020, 021, 022, 023, 024, 025, 026, 028, 029, 030,
031] of the Motion Emotion Dataset.

• Experiment 2: set of videos recorded by the camera in
lateral position with respect to the scene. The set includes
videos [003, 004, 007, 008, 011, 012, 013, 014, 027] of
the Motion Emotion Dataset.

We adopted the precision, recall and F1 score metrics
to evaluate the overall system performance since anomalous
detection is characterized by an uneven classes distribution:
the number of frames with anomalies are considerably smaller
than those without them.

We plotted the timeline description of the detection (Figs.
8-9(b)): the anomaly labels are green vertical lines and the
corresponding alarms are represented by red vertical lines.
The 27-seconds window centred on the anomaly is highlighted
in light green. Each alarm output into that time window is
evaluated as a true positive (TP). Eqs. 3-5 define the precision,
recall and F1 metrics, respectively:

(a) (b)

Fig. 7: Videos partition in two separate sets by the camera
position: the frontal videos have the line between the wall and
the ground with a zero or small slope (a), the lateral videos
have a visible slope (b).

precision =
TP

TP + FP
(3)

recall =
TP

TP + FN
(4)

F1score = 2 ∗ precision ∗ recall
precision+ recall

(5)

Where TP is the number of correctly detected anomalies,
FP is the number of false alarms, and FN is the number of
undetected anomalies.

Table II shows the parameters shared in all the experiments.
The remaining parameters have been set using a grid search,
which maximize the F1score. The ranges of the parameters
set by grid search are shown in Tab. III. The grid search was
done both in a supervised way, i.e. the F1score is maximised
on all videos, and with a Leave-one-out cross validation, i.e.
the parameters maximize the F1score on N − 1 videos and
then they are used to test the video left out. Results are
reported in Table IV for each Experiment. Although supervised
experiments lead to a biased estimate, they allow us to show
the optimal performances obtainable with the perfect setting
of the parameters.

TABLE II: Common parameters used for all the experiment.

PARAMETERS EXPERIMENT
video frame rate 30
skipped frames (F ) 20
trinary code sliding window size (2W + 1) 5

TABLE III: Tested parameters for tuning the algorithm.

GRID SEARCH RANGES
descriptor threshold (T ) [2, 3, 4, 5, 6]
descriptor sliding window size (L) [10, 15, 20, 25, 30]
bin threshold (t∗) [0.5, 0.55, 0.6, 0.65,

0.7, 0.75, 0.8, 0.85, 0.9, 0.95]

C. Overall Results

We reported the performance measurements related to Ex-
periment 1 and 2 in Tab. V and VI. Table VII illustrates the
overall performance results. In each table, the performance
refers to the proposed descriptor receiving as input the number
of groups obtained by the counting methods described in
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TABLE IV: Parameters used for the experiments 1 and 2.
For the Leave-one-out (LOO), the average and the standard
deviation of the parameters used for each video were reported.

Grid search
parameters

T L t*
Sup LOO Sup LOO Sup LOO

MC Exp 1 3 4.25± 1.09 15 15.00± 0.00 0.85 0.76± 0.15
Exp 2 2 4.00± 1.22 20 16.25± 6.49 0.65 0.68± 0.12

COF Exp 1 4 3.50± 0.50 15 15.00± 0.00 0.50 0.68± 0.17
Exp 2 6 4.25± 1.48 10 12.50± 4.33 0.85 0.76± 0.09

CD Exp 1 4 4.25± 1.09 15 15.00± 0.00 0.85 0.76± 0.15
Exp 2 4 3.75± 1.09 10 17.50± 5.59 0.85 0.69± 0.11

BD Exp 1 3 3.75± 0.83 15 18.75± 6.50 0.50 0.74± 0.17
Exp 2 5 4.25± 1.48 10 16.25± 6.50 0.70 0.76± 0.09

Section III-B, namely, Clustering of Optical Flow (COF),
Cascade Detector (CD) and Blob Detection (BD).

According to Experiment 1 and 2, the different position of
the camera leads to very different performances. Lateral views
appear to have a deeper observation surface than frontals (Figs.
7(a-b)), and this might suggest that the descriptor has more
“time” to observe changes in the scene, especially in case of
anomalous events.

The group counting method affects the performance of the
descriptor. The most reliable method is the Cascade Detector
which on all videos achieves better detection performance than
even the Manual Counting in the Leave-one-out protocol.

The difference in performance between the supervised and
the leave-one-out protocol suggests that a more accurate
setting of the parameters calculated by grid search would
allow for more reliable detection. Another explanation is that
the number of videos is too small for achieving a reliable
estimation by cross-validation approaches.

D. Analysis of individual cases

We analyze some videos in detail in order to explain how
the proposed descriptor behaves. In the following figures, the
green lines represent the actual anomalies and the red lines
the anomalies predicted by the system. If the red line lies in a
light green area, the anomaly is considered correctly detected.

Firstly, we selected the video 009 to represent the case
where the detector is able to correctly identify the anomaly
with all the counting methods (Fig. 8). The video is char-
acterised by an initial static flow of individuals, namely, a
structured crowd, and consequently a constant number of
groups. The panic event generates movement whereby the
detectors are able to notice the anomaly. This is fully in
agreement with the hypothesis behind our work. The video
025 (Fig. 9) presents an anomaly (protest) that is not detected
except by counting with Cascade Detector. This is due to
the fact that the anomaly is characterized by a single group
of people who cross the scene with a controlled and slow
movement. The number of groups therefore has no particular
variations. This is still a structured scene, and the behaviour
of the detector is in agreement with our hypothesis. The video
023 (Fig. 10) does not present anomalies. However, this case is
characterised by a large number of false alarms. This is a case
of unstructured and sparse crowd where we have very small
changes in the number of groups. This behaviour is detected by

Fig. 8: Frames summary and graphical description of detection
for video 009: the video presents a panic situation that has
been correctly identified by all the methods.

the system and interpreted as multiple anomalies. This effect
can be reduced by avoiding the bins of the trit-based histogram
that represent such small variations1.

E. Computational time analysis

The system configuration for determining the processing
times of a frame was a MacBookPro with macOS Sierra, 2.7
GHz Intel Core i5, 8 GB 1867 MHz DDR3 of RAM and a
Intel Iris Graphics 6100 1536 MB. The total processing time is
highly influenced by the group counting method, whose times
are of the order of magnitude of hundreds of milliseconds
and are reported in Tab. VIII. The creation of the high-level
features from the count values is in fact extremely fast, about
1 ms using a sliding window of size L=15. Considering that
we analyze one frame each F = 20 frames, namely one frame
per 666 ms, we can build a pipeline without delay for all
the methods analyzed. However, it should be noted that the
cascade detector and the blob detector, in addition to being
more performing, are faster than the clustering of optical flow.

1The histograms that describe the frames were not reported in the paper
for reasons of space but can be seen as supplementary material.
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TABLE V: Performance comparison of the proposed method using different counting methods for videos recorded by the
camera in frontal position.

Supervised Leave-one-out
Experiment 1 Precision Recall F1 Precision Recall F1

MC 84.61% 91.67% 88.00% 68.42% 59.09% 63.41%
COF 62.50% 83.33% 71.43% 48.28% 58.33% 52.83%
CD 70.97% 91.67% 80.00% 70.97% 91.67% 80.00%
BD 63.33% 79.17% 70.37% 50.00% 66.67% 57.14%

TABLE VI: Performance comparison of the proposed method using different counting methods for videos recorded by the
camera in lateral position.

Supervised Leave-one-out
Experiment 2 Precision Recall F1 Precision Recall F1

MC 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
COF 92.31% 100.00% 96.00% 63.64% 63.64 % 63.64%
CD 84.61% 91.67% 88.00% 80.00% 66.67% 72.73%
BD 85.71% 100.00% 92.31% 71.43% 90.91% 80.00%

TABLE VII: Performance comparison of the proposed method using different counting methods for all ME data set videos.

Supervised Leave-one-out
All ME videos Precision Recall F1 Precision Recall F1

MC 88.89% 94.12% 91.43% 79.31% 71.87% 75.41%
COF 71.11% 88.89% 79.01% 52.50% 60.00% 56.00%
CD 75.00% 91.67% 82.50% 73.17% 83.33% 77.92%
BD 70.45% 86.11% 77.50% 56.52% 74.29% 64.20%

Fig. 9: Frames summary and graphical description of detection
for video 025: in the video a protest crosses the scene. This
anamoly is difficult to identify because crowd change is slow
and controlled.

TABLE VIII: Time for the processing of a single frame with
the implemented algorithms.

Algorithm ms per frame
COF ∼ 650
CD ∼ 150
BD ∼ 100

V. CONCLUDING REMARKS

In this work, we proposed a novel temporal descriptor
of small and large crowds by computer vision algorithms.
We exploited the typical rapid aggregation and disruption of
crowds during anomalous events and the concept of one-
dimensional binary pattern. The former allowed us to focus
on the number of groups of individuals over time, the latter
on its variations, leading to describe them by what we called
trit-based bins.

We used the Motion-Emotion data set to benchmark the pro-
posed system and three different methods for group counting.
As expected, the descriptor works well with events that clearly
match our hypothesis, that is, the number of groups changes
quickly and presents errors if the disruptions and aggregations
are slow and controlled. On the other hand, further experiments
must be aimed at analysing the trit-based bins to reduce the
number of false alarms that may appear in case of sparse and
unstructured crowds.

Although the performance is not good enough for real
applications, the advantage of being a white box makes the
descriptor easily adaptable depending on the real context and
the type of anomaly to be detected.
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