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Abstract: The loading and response of structures due to gust buffeting is a dominant topic of wind engineering. One of its crucial aspects is
the shape of vibration modes. Although numeric solutions are available for any mode, conceptual interpretations and closed-form solutions
mainly are limited to the case in which the sign of the mode does not change along the structural axis. For modes that change sign, it is
difficult, if not impossible, to recognize the physical role of the parameters that govern the problem and judge analysis results in qualitative
form. This paper addressed this issue in the framework of quasi-steady theory by clarifying the relationship linking aerodynamic admittance
with mode shape, showed that any mode may be brought back to a piecewise ensemble of regular modes with constant sign, and used this
concept to obtain a closed-form expression for any aerodynamic admittance. This solution is simple for modes with few changes of sign,
but becomes laborious as mode complexity increases. In addition, it provides a partial conceptual interpretation. Both of these limits were
overcome in the companion paper, in which the use of proper orthogonal decomposition led to a full conceptual interpretation of aerodynamic
admittance and a simple and general closed-form solution. DOI: 10.1061/(ASCE)EM.1943-7889.0001872. This work is made available
under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Modern research on the loading and response of structures due
to gust buffeting began in the 1960s (Solari 2019). In a series of
papers on the dynamic alongwind response of single-degree-of-
freedom (SDOF) systems the deformation of which occurs in the
mean wind direction, Davenport (1961, 1964, 1967) expressed the
mean value of the maximum displacement, called maximum dis-
placement for the sake of simplicity, as the product of the mean
static displacement and a nondimensional quantity referred to as
gust response factor (GRF). Exploiting structural linearity, Daven-
port also provided a novel definition of equivalent static force
(ESF), namely the force that when statically applied on a structure
causes the maximum displacement, as the product of the mean
static force and the GRF. Davenport merged rigorous and elegant
formulations with physical and engineering interpretations.

Davenport (1962a, b) studied the alongwind, crosswind. and
torsional response of monodimensional structures, including the
contribution of higher modes by modal analysis. These papers re-
tained Davenport’s trademark rigorous and elegant formulation.
However, the physical and engineering interpretations were
weaker, and were overwhelmed by analytical aspects due to modes
that change sign.

The studies carried out in the 1970s followed three distinct path-
ways. Vellozzi and Cohen (1968), Vickery (1970), and Simiu
(1976, 1980) perfected Davenport’s original method on SDOF sys-
tems with reference to wind and aerodynamic modeling. ESDU
(1976) and ECCS (1978) recognized the role of higher modes
in the quasi-static part of wind load effects other than displacement,
especially the bending moment and shear force; accordingly, they
applied the influence function technique, separated the maximum
values of the quasi-static and resonant response, and combined
them by the square root of the sum of squares invoking statistical
independence. Simiu and Lozier (1975) and Solari (1981) imple-
mented the first computer programs to consider the contribution of
higher modes by modal analysis.

Solari (1982, 1983) derived the first closed-form solution (CFS)
of the alongwind response, taking into account the sole first mode.
Continuing this research, Solari (1988) introduced the equivalent
wind spectrum technique (EWST), a method by which the partially
correlated wind field is schematized as an equivalent field perfectly
coherent in space. This enabled Solari to evaluate the wind loading,
as well as the seismic loading, by the response spectrum technique
(Solari 1989), and to provide a generalized definition of GRF
(Solari 1990). In addition, EWST led to an advanced CFS of the
alongwind response (Solari 1993a, b), which is a reference for stan-
dards and codes (Solari and Kareem 1998; Tamura et al. 2005;
Kwon and Kareem 2013).

In the spirit pioneered by ESDU (1976) and ECCS (1978), most
of the research in the 1990s derived from the observation that the
ESF conceived by Davenport produced correct estimates of dis-
placements but might lead to rough evaluations of different load
effects. Gerstoft and Davenport (1986) and Davenport and Sparling
(1992) developed the patch loading method through which the
quasi-static behavior of guyed masts is determined by the influence
function technique, whereas the resonant response is evaluated by
modal analysis. Kasperski (1992) proposed the load–response cor-
relation method by which the quasi-static ESF is defined as the
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most probable load pattern for each specified wind load effect.
Holmes (1994, 1996) used these concepts to derive a CFS of the
maximum displacements, bending moments, and shear forces of
free-standing lattice towers. Davenport (1995) applied the influence
function technique to structures in which the response is affected by
higher modes. Other authors used similar approaches (Zhou and
Kareem 2001; Holmes 2002; Sparling and Wegner 2006; Carrasco
Luzardo et al. 2012; Calotescu and Solari 2016).

In parallel, Piccardo and Solari (1996, 1998a, 2000) studied the
three-dimensional (3D) wind-induced loading and response of
slender structures. Alongwind, crosswind, and torsional actions
were modeled by quasi-steady theory as a linear combination of
the longitudinal, lateral, and vertical turbulence components; cross-
wind forces and torsional moments caused by vortex shedding were
schematized as independent of buffeting actions and summed to
them. The alongwind, crosswind, and torsional responses, dealt
with as uncoupled and each one depending on the related first
mode, were derived in closed form by the generalized equivalent
spectrum technique (Piccardo and Solari 1998b), a method that
extends EWST from the alongwind to the 3D response and origi-
nated the 3D GRF. A simplified CFS of the 3D GRF limited to
buffeting actions was proposed by Solari (2018).

Continuing this research, the Genoese wind engineering group
proposed a technique based on one non-dimensional quantity re-
ferred to as the 3-D gust effect factor that provides the mean maxi-
mum value of the most relevant wind load effects and the ESF of
cantilever slender vertical structures. This technique was evaluated
by Piccardo and Solari (2002) in closed form. Based on this, the
methods aiming to determine the ESF was classified into three fam-
ilies, referred to as the gust factor, load combination, and global
loading techniques (Repetto and Solari 2004). A numerical gener-
alization of the 3D gust effect factor technique was developed by
Pagnini (2016) for any slender structure and element.

A dominant aspect of this research concerns mode shapes and
influence functions. In this regard, physical interpretations and CFS
mainly are limited to the cases in which their sign does not change
along the structural axis. Therefore, they usually are precluded to
higher modes and to structures with intermediate constraints—
e.g., continuous beams, guyed masts, and chimneys linked to
buildings—as well as to RC telecommunication towers surmounted
by a steel antenna mast. Similarly, the vertical modes of footbridge
and bridge decks supported by cables change their sign, whereas
the first horizontal mode retains a constant sign; however, due to
deck stiffness in its plane, the dominant response often occurs in the
vertical direction.

This aspect is essential even in the computer era. The lack of a
CFS prevents the engineering and codification sector from using
simple methods, does not allow recognizing the role of key param-
eters in a clear way, and makes it difficult, if not impossible, to deal
with the problem conceptually. This happens because without the
sign change, the physical role of turbulence coherence is clear and
shared: it reduces the resulting loading and response to a greater
extent for higher frequencies and longer structures. The change
of sign makes this consideration not applicable, links aerodynamic
admittance to mode shapes and influence functions, and projects
the problem into a framework so complex that it is treatable only
numerically.

The lack of literature on this subject is significant. Davenport
(1977) examined the joint acceptance function, thus the aerody-
namic admittance, of a broad class of structures; focusing on slen-
der models, Davenport depicted the limit trends as a function of the
mode shape, without providing an exhaustive interpretation. Dyr-
bye and Hansen (1988) resumed the study of joint acceptance, solv-
ing the double integral in its expression as a chain of two single

integrals. Hansen and Krenk (1999) evaluated the alongwind re-
sponse of structures with arbitrary modes based on the two previous
solutions, but did not provide a full conceptual interpretation of the
differences that occur depending on whether the modes change or
do not change their sign. Caracoglia (2014) employed EWST to
study slender, tall structures under the influence of noise disturb-
ances; the problem of modes changing sign was solved approxi-
mately by modal correlation lengths (i.e., admittances), defined
in the mean-square convergence sense.

Most codes (CEN 2005; National Research Council 2010) state
that structures with vibration modes that have a variable sign re-
quire in-depth assessments, without giving any operational tool.
The few codes that provide ESFs for different wind load effects
(AIJ 2005; ISO 2009) are limited to vertical cantilever structures,
in which the influence functions of bending moments and shear
forces do not change sign.

This paper and its companion (Solari and Martín 2020) address
this issue by investigating the dependence of aerodynamic admit-
tance on modal shape, based on the hypotheses that the structure
is slender and linelike, and quasi-steady theory is applied. In particu-
lar, this paper first provides the fundamentals of the enhanced equiv-
alent spectrum technique, a method that extends to any mode shape
of the generalized equivalent spectrum (Piccardo and Solari 1998b),
limited to regular modes that do not change sign. Then it reports
some interpretations of specific modes and a closed-form solution
based on the principle that any mode may be brought back to a piece-
wise ensemble of regular modes with constant sign, using the novel
concept of stretched modes. Two examples are given that enhance
the applicability of this solution to structures with complex modes.
Finally, the most relevant results are summarized and the prospects of
this research are discussed.

This paper clarified several analytical aspects and derived a
solution which is precise and simple for modes with a few changes
of sign. However, the solution becomes laborious as mode com-
plexity increases and offers a partial conceptual interpretation of
the relationship linking aerodynamic admittance with the mode
shape. Both of these limits were overcome by Solari and Martín
(2020), in which the application of proper orthogonal decomposi-
tion (POD) leads to a simple closed-form solution of aerodynamic
admittance and its physical interpretation.

Fundamentals

This section provides the fundamentals of the gust buffeting and
aerodynamic admittance of slender structures with arbitrary modes
in the framework of quasi-steady theory and modal analysis. It re-
views the generalized equivalent spectrum technique (Piccardo and
Solari 1998b) and the hypothesis according to which its use is lim-
ited to regular modes that do not change sign. Then, it extends this
formulation to arbitrary modes through a new method referred to as
the enhanced equivalent spectrum technique.

Wind-Excited Response

Consider a structure whose length l is much greater than the refer-
ence size b of its cross section; x, y, z is a local Cartesian system
with origin at o (Fig. 1); z coincides with the structural axis, x is
aligned with the mean wind direction, and o lies at the height H
above ground. Furthermore, X, Y, Z is a global Cartesian system
with origin at O; the X, Y-plane is coplanar with the ground; the Y,
Z-plane is coplanar with the y, z-plane; X is parallel to x; Z is
directed upward and passes through o; and z is rotated ϕ with re-
spect to Z.

© ASCE 04020142-2 J. Eng. Mech.
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The wind loading is schematized as a three-variate (3-V) two-
dimensional (2D) stationary Gaussian process, in which the α ¼ x,
y, θ component is given by

fαðz; tÞ ¼ f̄αðzÞ þ f 0
αðz; tÞ ð1Þ

where 0 ≤ z ≤ l; t = time; fx, fy, and fθ = alongwind force, cross-
wind force, and torsional moment per unit length; f̄α = mean value
of fα; and f 0

α = zero mean fluctuation of fα.
The structure has linear elastic behavior with viscous damping

and three uncoupled components of motion, the alongwind dis-
placement x, crosswind displacement y, and torsional rotation θ.
Each α ¼ x; y; θ generalized displacement is a 2D stationary
Gaussian process given by

αðr; tÞ ¼ ᾱðrÞ þ α 0ðr; tÞ ð2Þ

where 0 ≤ r ≤ l; ᾱ = mean value of α; and α 0 = zero mean fluc-
tuation of α. The maximum value of jαj in period T over which the
mean wind velocity is evaluated is given by

ᾱmaxðrÞ ¼ jᾱðrÞj þ gαðrÞσαðrÞ ð3Þ

gαðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 ln½ΛαναðrÞT�

p
þ 0.5772ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2 ln½ΛαναðrÞT�
p ð4Þ

sναðrÞ ¼
1

2π
σα̇ðrÞ
σαðrÞ

ð5Þ

where σα, gα, and να = standard deviation, peak factor, and ex-
pected frequency of α, respectively; σα̇ = standard deviation of α̇;
and Λα ¼ 1 for ᾱ ≠ 0, and Λα ¼ 2 for ᾱ ¼ 0 (Piccardo and Solari
1998a, 2000).

Eqs. (3)–(5) are solved by modal analysis, assuming that
damping is small and natural frequencies in each direction are
well-separated. Unlike in Piccardo and Solari (1998a, 2000) and
following Solari (2018), the quasi-static part of α̇ is disregarded.
Thus

ᾱðrÞ ¼
X
k

ψαkðrÞf̄αk
mαkð2πnαkÞ2

ð6Þ

σ2
αðrÞ ¼

X
k

σ2
BαkðrÞ þ

X
k

σ2
RαkðrÞ ð7Þ

σ2
BαkðrÞ ¼

ψ2
αkðrÞ

m2
αkð2πnαkÞ4

Z ∞
0

SfαkðnÞdn ð8Þ

σ2
RαkðrÞ ¼

ψ2
αkðrÞ

m2
αkð2πnαkÞ4

πnαk
4ξαk

SfαkðnαkÞ ð9Þ

ναðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

kn
2
αkσ

2
RαkðrÞP

kσ
2
BαkðrÞ þ

P
kσ

2
RαkðrÞ

s
ð10Þ

where σBαk and σRαk ¼ kth background (quasi-static) and resonant
parts of σα, respectively; n = frequency; nαk, ξαk, mαk, and
ψαk ¼ kth natural frequency, damping ratio, modal mass, and vi-
bration mode, respectively, in α direction; and f̄αk and Sfαk = mean
value and power spectral density (PSD), respectively, of kth modal
loading in α direction

f̄αk ¼ l
Z

1

0

f̄αðζÞψαkðζÞdζ ð11Þ

SfαkðnÞ ¼ l2
Z

1

0

Z
1

0

Sfαðζ; ζ 0; nÞψαkðζÞψαkðζ 0Þdζdζ 0 ð12Þ

where Sfαðζ; ζ 0; nÞ = cross-PSD (CPSD) of f 0
αðζ; tÞ, f 0

αðζ 0; tÞ; and
ζ ¼ z=l and ζ 0 ¼ z 0=l = nondimensional coordinates. Expressing
the variance of the background displacement as the sum of the mo-
dal variances is acceptable only if the contribution of one mode
predominates over the other modes. On the other hand, disregard
the modal covariances may cause significant errors. This limitation
may be overcome by the influence function technique.

Wind Loading Model

Let ū be the mean wind velocity aligned with X, x (Fig. 1); B2
0 are

the longitudinal ðX; xÞ, lateral (Y), and vertical (Z) zero-mean tur-
bulence components, where u 0=ū ≪ 1, v 0=ū ≪ 1, and w 0=ū ≪ 1.
They are treated here as uncorrelated (Solari and Tubino 2002). The
wind loading model adopted by Piccardo and Solari (1996) is sim-
plified by neglecting vortex shedding (Solari 2018), and identifying
the wind loading with the gust buffeting. This approach is appro-
priate provided that vortex shedding occurs at critical mean wind
velocities well below the design wind velocity at which gust buf-
feting is evaluated. In that case, vortex shedding deserves indepen-
dent evaluations. Accordingly, f̄α, and f 0

α are defined as

f̄αðζÞ ¼
1

2
ρū2ðζÞbλαcαu ð13Þ

f 0
αðζ; tÞ ¼

X
ε

f 0
αεðζ; tÞ ¼

X
ε

f̄αεðζÞε � ðζ; tÞ ð14Þ

f̄αεðζÞ ¼
1

2
ρū2ðζÞbλαcαεIεðζÞð1þ δεuÞ ð15Þ

where ρ = density of air; λx ¼ λy ¼ 1; λθ ¼ b; and cαε ¼ α, εth
element of 3 × 3 aerodynamic matrix the rows of which refer to the
loading components α ¼ x; y; θ and the columns refer to the tur-
bulence components ε ¼ u; v;w

½c� ¼

2
64
cd ðc 0

d − clÞ cosϕ ðc 0
d − clÞ sinϕ

cl ðcd þ c 0
lÞ cosϕ ðcd þ c 0

lÞ sinϕ
cm c 0

m cosϕ c 0
m sinϕ

3
75 ð16Þ

where cd, cl, and cm = drag, lift, and torsional moment coefficients;
c 0
d, c

0
l, and c 0

m = angular prime derivatives; Iu ¼ σu=ū, Iv ¼ σv=ū,
and Iw ¼ σw=ū = turbulence intensities, where σu, σv, and σw =
standard deviations of u 0, v 0, and w 0; ε� ¼ u� ¼ u 0=σu, v� ¼
v 0=σv, and w� ¼ w 0=σw; Σε = sum of three terms with indices
ε ¼ u; v;w; and δεu = Kronecker’s delta. Because f 0

α is a linear
function of ε� [Eq. (14)], like ε�, f 0

α also is a stationary Gaussian
process, and its CPSD is

z

y

Y

Z

l

H
O

o

φ

Fig. 1. Structural model and reference systems (X, x entering the page).
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Sfαðζ; ζ 0; nÞ ¼
X
ε

f̄αεðζÞf̄αεðζ 0ÞS�εεðζ; ζ 0; nÞ ð17Þ

S�εεðζ; ζ 0; nÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S�εðζ; nÞS�εðζ 0; nÞ

p
Cohεεðζ; ζ 0; nÞ ð18Þ

where S�εε, S�ε , and Cohεε = CPSD, PSD, and coherence function
of ε�. Using the turbulence model proposed by Solari and Piccardo
(2001)

S�εðζ; nÞ ¼
dεLεðζÞ=ūðζÞ

½1þ 1.5ndεLεðζÞ=ūðζÞ�5=3
ð19Þ

Cohεεðζ; ζ 0; nÞ ¼ exp

�
− 2ncεljζ − ζ 0j
ūðζÞ þ ūðζ 0Þ

�
ð20Þ

where du ¼ 6.868; dv ¼ dw ¼ 9.434; Lε = integral length scale of
ε turbulence component in x-direction; and cε = exponential decay
coefficient of ε along z. Eq. (19) is used in the applications, but may
be replaced by any other PSD. Eq. (20) is instead functional to the
following developments, but neglects the imaginary part of the
CPSD (ESDU 1991), as is typical of all the literature about gust
buffeting.

The preceding formulation involves the indices α and ε with the
aim of providing the alongwind, crosswind, and torsional actions
due to the three turbulence components. If the analysis includes
only the alongwind force due to longitudinal turbulence, the indices
α ¼ y, z, and ε ¼ v, w disappear, whereas the indices α ¼ x and
ε ¼ u can be omitted, making the treatment easier.

Generalized Equivalent Spectrum Technique

Consider the PSD of the kth modal wind loading in the α direction.
Substituting Eqs. (17) and (18) into Eq. (12), it follows that

SfαkðnÞ ¼ l2
X
ε

f̄2αεðζ̄αkÞS�εðζ̄αk; nÞ

×
Z

1

0

Z
1

0

Cohεεðζ; ζ 0; nÞψαkðζÞψαkðζ 0Þdζdζ 0 ð21Þ

where ζ̄αk is a suitable value of ζ (Solari 2018). In the case of hori-
zontal structures (Fig. 1, ϕ ¼ π=2), the terms evaluated in ζ̄αk are
independent of ζ, and Eq. (21) is rigorous.

The generalized equivalent spectrum technique replaces the ac-
tual multivariate turbulent field with an equivalent monovariate
process, leading to a PSD of the modal wind loading [the first load-
ing in Piccardo and Solari (1998b)] that best approximates the ac-
tual PSD. This consists of assuming Cohεε ¼ 1 and replacing S�ε
with the PSD of the reduced equivalent turbulence

S�ε;eqðnÞ ¼ S�εðζ̄αk; nÞχαkεðnÞ ð22Þ
Accordingly, Eq. (21) becomes

SfαkðnÞ ¼ l2F2
αk

X
ε

f̄2αεðζ̄αkÞS�εðζ̄αk; nÞχαkεðnÞ ð23Þ

where Fαk = participation coefficient; and χαkε is a frequency filter
that plays the role of an aerodynamic admittance. By virtue of
Eq. (20)

Fαk ¼ B0fψαkg ¼
Z

1

0

ψαkðζÞdζ ð24Þ

χαkεðnÞ ¼ C0fψαk; καkεðnÞg ¼ Jfψαk; καkεðnÞg
B2
0fψαkg

ð25Þ

where J = joint acceptance function; and καkε = reduced frequency

Jfψαk; καkεðnÞg

¼
Z

1

0

Z
1

0

expf−καkεðnÞjζ − ζ 0jgψαkðζÞψαkðζ 0Þdζdζ 0 ð26Þ

καkεðnÞ ¼
ncεl

ūðζ̄αkÞ
ð27Þ

The aerodynamic admittance coincides with the joint accep-
tance unless the constant B2

0 is obtained from the conceptualization
of the structure as slender linelike in the framework of quasi-steady
theory.

The operator C0fh; ηg and the aerodynamic admittance χαkε
have the following properties:
1. For hðζÞ ¼ 1, B0 ¼ 1 whereas C0 is given by (Vellozzi and

Cohen 1968):

C0f1; ηg ¼ C

�
η
2

�
ð28Þ

where C is an operator defined as

Cfωg ¼ 1

ω
− 1

2ω2
ð1 − e−2ωÞ for ω > 0; Cf0g ¼ 1 ð29Þ

2. For η equal to zero, C0fh; 0g ¼ 1;
3. For η tending to infinite, the tail of C0 is given by (Davenport

1977)

C0fh; ηg ¼ 1

kη
; k ¼ 1

2

B2
0fhgR

1
0 h

2ðζÞdζ ≤ 1

2
ð30Þ

where k = equivalent correlation factor, where k ¼ 1=2 for
hðζÞ ¼ 1; and

4. For η ¼ 0, C0 has horizontal tangent and monotonically de-
creases as η increases.
In the class of structures with regular modes that do not change

sign, C0 can be approximated with excellent precision as (Piccardo
and Solari 1998b)

C0fh; ηg ¼ Cfkηg ð31Þ
Piccardo and Solari (1998b) evaluated k by an empirical ap-

proach that provided results almost coincident with the values
furnished by Eq. (30).

Enhanced Equivalent Spectrum Technique

The generalized equivalent spectrum technique provides a robust
and simplified framework to determine the wind loading and re-
sponse of slender structures with modes that have constant sign.
To extend this formulation to arbitrary modes, the enhanced equiv-
alent spectrum technique herein is formulated. It retains the defi-
nition of the PSD of the modal force given by Eq. (23), but replaces
Eqs. (24) and (25) with the following expressions:

Fαk ¼ B�fψαkg ¼
Z

1

0

jψαkðζÞjdζ ð32Þ

χαkεðnÞ ¼ C�fψαk;καkεðnÞg ¼ Jfψαk;καkεðnÞg
B2�fψαkg

ð33Þ

Unlike B0 [Eq. (24)], B� [Eq. (32)] involves the presence of
jψαkj instead of ψαk and is called the generalized participation co-
efficient. The advantage of this change is apparent with regard to
structures with skew-symmetric modes with respect to ζ ¼ 1=2: the
modulus prevents the denominator of Eq. (33) from being null and
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Eq. (23) from being undetermined. Because the new formulation
identifies itself with the formulation related to modes that do
not change sign, namely B� ¼ B0 and C� ¼ C0, the generalized
equivalent spectrum technique may be regarded as a particular case
of the enhanced equivalent wind spectrum technique. The defini-
tion of ζ̄αk in inclined or vertical structures with complex modes
calls for further study.

The operator C�fh; ηg and the aerodynamic admittance χαkε
have the following properties:
1. For ψαkðζÞ ¼ 1, B� ¼ B0 ¼ 1 whereas C� ¼ C0 is given by

Eqs. (28) and (29);
2. For n ¼ 0

χαkεð0Þ ¼
B2
0fψαkg

B2�fψαkg
≤ 1 ð34Þ

where χαkεð0Þ ¼ 1 for vibration modes with constant sign;
3. For n ¼ 0, χαkε has horizontal tangent; however, unlike C0, the

monotonic decrease of χαkε ¼ C� as η increases no longer is
guaranteed for modes that change sign; and

4. For n tending to infinity, the tail of χαkε is given by (Davenport
1977)

χαkεðnÞ ¼
1

k�αkκαkεðnÞ
; k�αk ¼

1

2

B2�fψαkgR
1
0 ψ2

αkðζÞdζ
≤ 1

2
ð35Þ

where k�αk ¼ 1=2 for ψαkðζÞ ¼ 1.
Fig. 2 shows the CFS of Eqs. (32) and (33) given by MATLAB

version 2019a software for 17 mode shapes ψαk; it also provides
χ0 ¼ χαkεð0Þ [Eq. (34)], the κm ¼ καkε value for which χαkε has a
relative maximum, the relative maximum χmax of χαkε, and k� ¼
k�αk [Eq. (35)]. Modes are classified into three families (Davenport
1977), Type A, B, and C modes.

Type A modes do not change sign. For Modes 1–5, χ0 ¼ 1 and
χαkε monotonically decreases as n, κ increases following the trend
of Eq. (35) [Fig. 3(a)]. For χαkε ¼ C� ¼ C0, Eq. (31) provides a
CFS of aerodynamic admittance where k ¼ k�.

Type B modes are skew-symmetric with respect to the struc-
ture midpoint, and, more generally, all modes for which B0 ¼ 0
[Eq. (24)]. For Modes 6–12, χ0 ¼ 0, and χαkε initially increases
as n;κ increases, reaches the maximum χmax for κ ¼ κm, then de-
creases with the trend of Eq. (35) [Fig. 3(b)].

Type C modes have intermediate shapes and change sign one or
more times with or without a regular pattern. For Modes 13–17,
χαkε is intermediate between those associated with Type A and
B modes [Fig. 3(c)]. χ0 [Eq. (34)] provides a measure of how much
a Type C mode approaches a Type A (χ0 ¼ 1) or B (χ0 ¼ 0) mode.

In other words, as noted by Hansen and Krenk (1999), Type A,
B, and C modes give rise to different trends of χαkε in the low and
medium range of καkε; on the other hand, as shown by Eq. (35)
and Fig. 3(d), in the high-frequency range, all the χαkε diagrams
have the same slope when drawn as a function of the logarithm
of καkε.

In terms of the aerodynamic admittance growth when the re-
duced frequency increases, a preliminary but partial interpretation
is provided by energy cascade with regard to two elementary struc-
tural schemes: a simply supported monospan beam and a simply
supported double-span beam. The former has a Type A sinusoidal
Mode 2 and the highly coherent large eddies in the low-frequency
range cause the maximum displacement. The latter has a Type B
sinusoidal Mode 6 in which large eddies cause a self-balanced con-
dition that nullifies displacement. Therefore, it is reasonable that
the maximum displacement in a span is attained when eddies acting
on that span have a diameter d (proportional to ū=n) comparable
with the span length. This interpretation, however, does not clarify

the issue of the wind loading on the contiguous span, in which
the eddy phase shift plays a key role: if eddies are in phase, dis-
placement is nullified; if eddies act counterphase, they cause the
maximum displacement. Unfortunately, energy cascade depicts tur-
bulence in a single point, without considering the phase shift of
eddies in different points. This issue was studied by Solari and
Martín (2020).

Furthermore, neglect the quasi-steady theory, even in structures
with Type A modes may involve aerodynamic admittances greater
than unity (Davenport 1961, 1964) due to eddy separation. Several
studies debated this issue with regard to bridge deck sections
(Diana et al. 2001; Hatanaka and Tanaka 2002; Han et al. 2010).
In these cases, however, analyses call for experimental or CFD sim-
ulations based on a wide range of methods that often lead to differ-
ent results, thereby introducing other sources of uncertainties.
Furthermore, making recourse to experimental or CFD simulations
calls for fixing the structural shape, limiting the generality of the
solutions. From this point of view, studying aerodynamic admit-
tance in the framework of quasi-steady theory aims to provide so-
lutions, which at present are not available in literature, that may
represent a general starting point for research which disregard
quasi-steady theory.

Interpretations and Solutions

Based on the enhanced equivalent spectrum technique, this section
provides some interpretations that clarify the trend of aerodynamic
admittance and a solution that simplifies its evaluation.

Class of Symmetric and Skew-Symmetric Modes

Consider the modal shape

ψαkðζÞ ¼ ψ̄αkðζÞ for ζ ∈ ½0; 1=2� ð36aÞ

ψαkðζÞ ¼ sψ̄αkð1 − ζÞ for ζ ∈ ð1=2; 1� ð36bÞ
where ψ̄αk does not change sign for ζ ∈ ½0; 1=2�; s ¼ 1 and s ¼ −1
correspond respectively to symmetric modes (Type A Modes 1, 2,
and 3 in Fig. 2) and skew-symmetric modes (Type B Modes 6, 7, 8,
and 9 in Fig. 2) with regard to ζ ¼ 1=2 [Fig. 4(a)].

The stretched mode ψ
_

αkðζÞ ¼ ψ̄αkðζ=2Þ corresponds to stretch-

ing ψ̄αk [Fig. 4(b)]. Therefore, ψ
_

αk does not change its sign for
ζ ∈ ½0; 1� and belongs to Type A modes. For example, Modes 2
and 4 are the stretched counterparts of half the Modes 6 and 7,
respectively.

Substituting Eq. (36) into Eqs. (32) and (33), these latter become

Fαk ¼ B0

n
ψ
_

αk

o
ð37Þ

χαkεðnÞ ¼
1

2
C0

�
ψ
_

αk;
καkεðnÞ

2

�
þ s
2
D2

0

�
ψ
_

αk;
καkεðnÞ

2

�
ð38Þ

where D0 is an operator defined as

D0

n
h
_
; η
o
¼

R
1
0 expf−ηζgh_ðζÞdζ

B0

n
h
_o ð39Þ

The first term on the right-hand side of Eq. (38) provides the
contribution to χαkε of the on-diagonal terms in the shaded areas
of the integration domain in Fig. 4(c). The second term gives the
contribution to χαkε of the off-diagonal terms in the unshaded areas.
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Type No. k for 0,1 kF k C* 0 m max k*

A 1 1 1
2

2 2
1 e 1 0 1 1

2

2 sin 2 2 2 2 3 2

22 2

2 2

4

e 1 0 1
2

4

3 1
1 cos 2

2
1

2

4 4 2 3 5 4

22 3

32 32 20 3 32
4

4 4

e 1 0 1 1

3

4 1

2

2

4

6 3 2 6 1
4

3

e 1 0 1 3

8

5 2 1

3

3

6

120 20 3 5 2 60 2 2
9

15

e 1 0 1 5

18

B 6 sin 2 2 2 2 2 3 2

22 2

8 4 8

4 4

e 0 4.22 0.240
2

4

7 2 1 1

2

22

4

2 12 3 6 2
4

3

e 0 3.40 0.273 3

8

8 cos 2 222

22 2

2 2

4

e 0 3.48 0.263
2

4

9 1 for 
1

0
2

,

1 for 
1

1
2

,

1 2

2
6 2 2 8 /e e 0 3.80 0.191 1

2

10 sin 4 2 2 3 22

22 2

16 2 32

4 16

e 0 10.43 0.107
2

4

11 sin 6 2 36 2 72

4 36

e 0 16.76 0.069
2

4

12 sin 8 2 64 2 128

4 64

e 0 23.06 0.051
2

4

C 13 1
sin 2 for 

1
0

2
,

2
1 1

4

22 2

22 2

4

4 2 2 3

8

3 4 4

2 3 22

2 3 22

2 2

2 2 2 224 2 4e

0.179 2.79 0.333 0.321

1
2

2
for 

1
1

2
,

296 4 4 2e

3 2 24 6 37 4 2

2 4 2 3 6 2 316 12 3 32 24 3

14

4 2 2

2 3

2 3 45 5 8 1 5. . 0.3026 Numerical integration 0.194 2.60 0.274 0.344

15 sin 3 2 9 2 18

4 9

e 1

9
7.24 0.148 4

16 sin 5 2 25 2 50

4 25

e 1

25
13.60 0.084 4

17 sin 7 2 49 2 98

4 49

e 1

49
19.91 0.059

2 3 22

22 2
2

2 3 22

22 2
2

2 3 22

22 2
2

4

Fig. 2. Values and expressions of Fαk, χαkε ¼ C�, χ0, κm, χmax, and k� for noteworthy mode shapes, where κ ¼ καkεðnÞ.
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The presence of stretched modes with constant sign in Eqs. (38)
and (39) makes B� ¼ B0 and C� ¼ C0.

The operator D0

n
h
_
; η
o

has the following properties:

1. For h
_ðζÞ ¼ 1, B0 ¼ 1 [Eq. (24)], whereas D0 [Eq. (39)] is

given by

D0f1; ηg ¼ D

�
η
2

�
ð40Þ

where D is an operator defined as

Dfωg ¼ 1

2ω
ð1 − e−2ωÞ for ω ≠ 0; Df0g ¼ 1 ð41Þ

2. For η ¼ 0, D0

n
h
_
; 0
o
¼ 1; and

3. For η ¼ 0, D0 has horizontal tangent; in addition, it is a mon-
otonic decreasing function of η.
Fig. 5 shows the CFS of Eq. (39) for Type A Modes 1–5, where

h
_ðζÞ ¼ ψ

_

αkðζÞ ≥ 0. Fig. 6 shows the diagrams of D0, confirming
that, whereas C0 has an upper tail similar for any mode shape
[Eq. (35) and Fig. 3(d)], the upper and lower tails of D0 depend
strictly on the mode. Then, CFS of D0 and C0 [Eq. (31)] are
not easy to obtain.

The joint properties ofD0 andC0 clarify two remarkable proper-
ties of Eq. (38).

Fig. 3. Diagrams of χαkεðnÞ as a function of κ ¼ καkεðnÞ for different mode shapes ψαk: (a) Type A modes; (b) Type B modes; (c) Type C modes; and
(d) all modes on a bilogarithmic scale (solid lines = Type A modes; dashed lines = Type B modes; and dotted lines = Type C modes).

1/2

1

1 ζ

ζ

ζ′

ψαk ψαk

ψαk

ψαk

ζ
(a)

(b)

1/2 1

1/2

1

(c)

Fig. 4. (a) Symmetric (s ¼ 1) and skew-symmetric (s ¼ −1) mode
shapes ψαk; (b) stretched mode; and (c) integration domain.
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For n ¼ 0, χαkεð0Þ ¼ ð1þ sÞ=2. Thus, coherently with Fig. 2,
χαεkð0Þ ¼ 1 for s ¼ 1 (symmetric modes), whereas χαεkð0Þ ¼ 0
for s ¼ −1 (skew-symmetric modes).

For n tending to infinity, the tail of Eq. (38) is given by Eq. (35),

in which the k�αk value associated with the stretched mode ψ
_

αk is
given by Fig. 2 for the pertinent Type A mode. Because Eq. (35) is
independent of s, the tail of χαkε is the same independently of
whether the mode is symmetric or skew-symmetric. Similarly to
Hansen and Krenk (1999), this aspect also may be interpreted par-
tially by energy cascade and the randomness of high-frequency
eddies. A better interpretation was given by Solari and Martín
(2020).

Class of Mixed Symmetric and Skew-Symmetric Modes

Consider an arbitrary mode ψαkðζÞ, where ζ ∈ ½0; 1�. It can be ex-
pressed as

ψαkðζÞ ¼ ψðeÞ
αk ðζÞ þ ψðoÞ

αk ðζÞ ð42Þ

where ψðeÞ
αk and ψðoÞ

αk = symmetric (even) and skew-symmetric (odd)
parts of ψαk with regard to ζ ¼ 1=2, respectively. This representa-
tion exists and is unique for any mode. In this section, however, the

use of Eq. (42) is limited to modes ψðeÞ
αk and ψðoÞ

αk that do not change
sign for ζ ∈ ½0; 1=2� and ζ ∈ ½1=2; 1�. For example, the algebraic
sum of the Type A symmetric Mode 2 and the Type B skew-
symmetric Mode 7 provides a Type C intermediate mode.

Substituting Eq. (42) into Eq. (33), the latter becomes

χαkεðnÞ ¼
½FðeÞ

αk �2
2F2

αk

�
C0

�
ψ
_ðeÞ
αk ;

καkεðnÞ
2

�
þD2

0

�
ψ
_ðeÞ
αk ;

καkεðnÞ
2

��

þ ½FðoÞ
αk �2

2F2
αk

�
C0

�
ψ
_ðoÞ
αk ;

καkεðnÞ
2

�
−D2

0

�
ψ
_ðoÞ
αk ;

καkεðnÞ
2

��

ð43Þ

where ψ
_ðeÞ
αk ðζÞ ¼ ψ̄ðeÞ

αk ðζ=2Þ and ψ
_ðoÞ
αk ðζÞ ¼ ψ̄ðoÞ

αk ðζ=2Þ = stretched
counterparts of half the symmetric and skew-symmetric modes
[Figs. 4(a and b)], respectively; Fαk is the B0 operator [Eq. (24)]
applied to Eq. (42); and FðeÞ

αk and FðoÞ
αk are defined as

FðeÞ
αk ¼ B�

n
ψ
_ðeÞ
αk

o
and FðoÞ

αk ¼ B�
n
ψ
_ðoÞ
αk

o
ð44Þ

The joint properties ofD0 andC0 clarify two remarkable proper-
ties of Eq. (43).

For n ¼ 0

χαεkð0Þ ¼
h
FðeÞ
αk

i
2

F2
αk

ð45Þ

For n tending to infinity, the tail of Eq. (43) is provided by the
first Eq. (35) in which

k�αk ¼
1�

FðeÞ
αk

�
2

kðeÞαk F
2
αk

þ
�
FðoÞ
αk

�
2

kðoÞαk F
2
αk

ð46Þ

where kðeÞαk and kðoÞαk ¼ k�αk values associated with stretched modes

ψ
_ðeÞ
αk and ψ

_ðoÞ
αk , respectively, provided by Fig. 2 for the pertinent

Type A mode.
For example, considering the sum of the Modes 2 and 7

mentioned above, from Eq. (24), Fαk ¼ 0.835; from Fig. 2,

FðeÞ
αk ¼ 2=π, FðoÞ

αk ¼1=2, kðeÞαk ¼4=π2, and kðoÞαk ¼3=8. Therefore,
χαεkð0Þ ¼ 0.581, and k�αk ¼ 0.418.

Fig. 5. Expressions of D0 for noteworthy Type A modes, where
η ¼ καkεðnÞ=2.

Fig. 6. Diagrams ofD0 as a function of η ¼ καkεðnÞ=2 for noteworthy Type A modes: (a) positive η values on logarithmic scale; and (b) negative and
positive η values.
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Eqs. (45) and (46) give some clarification concerning the shape of
the aerodynamic admittance of Type C modes [Fig. 3(c)]. For both
n ¼ 0 [Eq. (45)] and n tending to infinity [Eq. (46)], χαkε can be
interpreted as a weighted average of the χαkε functions associated
with symmetric Type A and skew-symmetric Type B modes. How-
ever, the weights of this average are not constant, but depend on the
reduced frequency (Solari and Martín 2020).

Arbitrary Modes

Consider an arbitrary mode ψαkðζÞ. The ζ ∈ ½0; 1� domain is sep-
arated into a set of subdomains ζ ∈ ½ζi−1; ζi� [Fig. 7(a)], where i ¼
1; 2; : : : ;N ≥ 2 is the order number, and Δi ¼ ζi − ζi−1 is the
length within which the mode is regular and does not change sign.

Fig. 7(a) depicts the main situations. According to Fig. 7(b), ψ
_ðiÞ
αkðuÞ

is the piecewise mode, where u ¼ ðζ − ζi−1Þ=Δi ∈½0; 1�, corre-
sponding to stretch ψαkðζÞ for ζ ∈ ½ζi−1; ζi�; thus, ψ

_ðiÞ
αk does not

change sign in u ∈ ½0; 1�, and belongs to Type A modes.
Consider Eq. (26) and evaluate the double integral over the do-

main ζ; ζ 0 ∈ ½0; 1� as the sum of the integrals on the subdomains
depicted by Fig. 7(c). Eq. (33) may be rewritten

χαkεðnÞ ¼
XN
i¼1

h
FðiÞ
αk

i
2

F2
αk

C0

n
ψ
_ðiÞ
αk;ΔiκαkεðnÞ

o

þ 2
XN
i¼2

Xi−1
j¼1

expf−καkεðnÞðxi−1 − xj−1Þg

×
FðiÞ
αkF

ðjÞ
αk

F2
αk

D0

n
ψ
_ðiÞ
αk;ΔiκαkεðnÞ

o
D0

n
ψ
_ðjÞ
αk ;−ΔjκαkεðnÞ

o
ð47Þ

FðiÞ
αk ¼ ΔiB0fψ

_ðiÞ
αkg ð48Þ

The single sum in Eq. (47) provides the contributions to χαkε of
the on-diagonal terms in the shaded areas of the integration domain

in Fig. 7(c). The double sum provides the contributions to χαkε of
the off-diagonal terms in the unshaded areas.

The joint properties of D0 and C0 clarify two remarkable char-
acteristics of Eq. (47).

For n ¼ 0

χαkεð0Þ ¼
XN
i¼1

h
FðiÞ
αk

i
2

F2
αk

þ 2
XN
i¼2

Xi−1
j¼1

FðiÞ
αkF

ðjÞ
αk

F2
αk

ð49Þ

Thus, χαkεð0Þ ¼ 1 for modes with constant sign, and χαkεð0Þ < 1
for modes that change sign.

For n tending to infinity, the tail of Eq. (47) is provided by the
first Eq. (35), in which

k�αk ¼
1P

N
i¼1

�
FðiÞ
αk

�
2

F2
αk

· 1

kðiÞαkΔi

ð50Þ

where kðiÞαk ¼ k�αk value associated with stretched mode ψ
_ðiÞ
αk pro-

vided by Fig. 2 for pertinent Type A mode, where k�αk = weighted

average of kðiÞαk values of its piecewise component Type A modes.
In this framework, aerodynamic admittance can be recon-

structed and interpreted as an ensemble of contributions due to
the piecewise subdivision of any arbitrary mode into stretched regu-
lar modes with constant sign.

Closed-Form Solution

The mathematical and conceptual complexity of this matter makes
it difficult to obtain a general CFS of the aerodynamic admittance,
which is as simple and precise as that derived by Piccardo and
Solari (1998a) for Type A regular modes. Despite this, Eq. (47)
can be developed in analytical form.

Consider any Type B or C mode, and divide the structural do-
main ζ ∈ ½0; 1� into N ≥ 2 subdomains within which the piecewise
modes are regular and do not change sign (Fig. 7). Thus, the piece-
wise stretched modes relating to each i ¼ 1; : : : ;N subdomain can
be modeled by Type A regular modes. Therefore, substituting the
corresponding C0 ¼ C� (Fig. 2) and D0 (Fig. 5) operators into
Eq. (47), a rigorous χαkε is obtained if the selected Type A modes
rigorously match the actual piecewise stretched modes; an approxi-
mate solution is found if they approximate the actual modes or the
rigorous expression of C0 are replaced by Eq. (25). In any case, the
reduced frequency κ should be scaled by the appropriate sign and
length Δ.

For example, dividing Mode 6 into two piecewise stretched
Modes 2 provides a rigorous solution when using the rigorous
expressions of C0 and D0; the solution is approximate when
evaluating C0 with Eq. (25). The application of this method to
Mode 14 calls for a preliminary approximation described in the
section “Structure 2—Steel Chimney.”

Fig. 8 compares the rigorous expressions of χαkε given by
Eq. (33) for Modes 6, 10, 14, and 15 (solid lines) and Eq. (47)
(dashed lines) applied as follows: (1) the actual mode is separated
into piecewise stretched regular modes; (2) each of these is approxi-
mated by the closest Type A mode; and (3) C0 is evaluated with
Eq. (25), whereas D0 is obtained from Fig. 5.

Fig. 8 and other diagrams not reported here show that this
method provides excellent approximations with errors that do not
exceed a few percent for Type B modes and 10% for Type C modes.
In addition, it is easy to apply for modes with a few changes of sign.
On the other hand, it becomes laborious for more complex modes
and does not allow a clear conceptual interpretation of the link

(a)

(b)

(c)

Fig. 7. (a) Three typical arbitrary modes ψαk; (b) stretched mode ψ
_ðiÞ
αk

over u ∈ ½0; 1�; and (c) integration domain of Eq. (26).
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between aerodynamic admittance and the mode shape. Both of
these limitations were overcome by Solari and Martín (2020)
through POD.

Applications

To study the efficacy of the aforementioned methods, two structural
test cases were analysed: (1) an l ¼ 90-m-long pedestrian steel
footbridge [Fig. 9(a), Type B, Mode 6] consisting of a horizontal
deck and an arch that sustains the deck by hangers; and (2) an
l ¼ 100-m-tall steel chimney constrained to a nearby building at
81 m height [Fig. 9(b), Type C, Mode 14]. The 10-min mean wind
speed had a logarithmic profile, and the turbulent field was mod-
eled by Eqs. (18)–(20). Table 1 summarizes the main design param-
eters. The dynamic response was evaluated by Eqs. (3)–(12),

10-2 10-1 100 101 102 103

0.05

(b)(a)

(d)(c)

0.1

0.15

0.2

κ
10-2 10-1 100 101 102 103

κ
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Fig. 8. Rigorous [Eq. (33), solid lines] versus approximate [Eq. (47), dashed lines] diagrams of χαkε: (a) Mode 6; (b) Mode 10; (c) Mode 14; and
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Fig. 9. Structural scheme and modal shape: (a) pedestrian footbridge;
and (b) steel chimney.
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determining aerodynamic admittance by the rigorous Eq. (33) and
the CFS of Eq. (47). This solution aimed to furnish simplified and
possibly precise evaluations but, even more, to clarify the shape of
aerodynamic admittance and its dependence on design parameters.

Structure 1—Pedestrian Footbridge

The crosswind fluctuating load in the vertical direction y is due to
the longitudinal and vertical turbulence components, u 0 and w 0.
Fig. 10 shows the aerodynamic admittances and the PSD of the
modal force. Solid lines correspond to the rigorous solution, and
dotted lines correspond to the CFS. As is typical of skew-symmetric
modes, aerodynamic admittances were null at the zero frequency
and their maximum was well below unity. The modal force was
due mainly to longitudinal turbulence.

Table 2 lists the main parameters of the vertical displacement for
z ¼ l=4 due to the first vertical Mode 6. The CFS was applied
through Eq. (47) by separating the actual mode into N ¼ 2 piece-
wise half-sine modes that rigorously resembled the original mode,

and were Δ1 ¼ Δ2 ¼ 1=2, Fð1Þ
yk ¼ Fð2Þ

yk ¼ 1=π, Fyk ¼ 2=π, and

kð1Þyk ¼ kð2Þyk ¼ 4=π2.
The CFS provided almost exact results. As is typical of skew-

symmetric modes, the background response was small and the res-
onant response prevailed regardless of structural flexibility.

Structure 2—Steel Chimney

The alongwind fluctuating load is due to the longitudinal turbu-
lence. Fig. 11 shows the aerodynamic admittance and the PSD

Table 1. Main parameters of structure test cases

Parameter Description Structure 1 Structure 2

ϕ (deg) Structure inclination (Fig. 1) π=2 0
H (m) Structure height above ground (Fig. 1) 7.1 0
l (m) Structure length (Fig. 1) 90 100
b (m) Structure width 5.4 2.8
m (kg=m) Mass per unit length 170,000 675
α Displacement direction y x
ψα1 Mode shape Mode 6 Mode 14
nα1 (Hz) Fundamental frequency 1.227 0.56
mα1 (kg) Modal mass 7,650,000 191,893
ξα1 Damping ratio 0.0036 0.0064
ū (m=s) Mean wind speed 18 28
T (s) Mean wind speed averaging period 600 600
z̄ (m) Reference coordinate — 50
z0 (m) Roughness length 1 0.3
Iu Longitudinal turbulence intensity 0.3 0.2
Iw Vertical turbulence intensity 0.075 —
Lu (m) Longitudinal integral length scale 40 130
Lw (m) Vertical integral length scale 4 —
cu Longitudinal decay coefficient 10 10
cw Vertical decay coefficient 6.5 —
cd Drag coefficient — 0.7
cl Lift coefficient −0.35 —
cd þ c 0

l Drag plus prime derivative of lift coefficients 6.5 —
f̄αu (N=m) Quantity defined by Eq. (15) for ε ¼ u −229.63 384.16
f̄αw (N=m) Quantity defined by Eq. (15) for ε ¼ w 533.08 —
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Fig. 10. Pedestrian footbridge: (a) aerodynamic admittances; and
(b) PSD of the modal force.

Table 2. Displacement parameters of Structure 1 for z ¼ l=4

Parameter Equation Rigorous Approximate Error (%)

ȳ (m) (6) −0.4823 × 10−4 −0.4823 × 10−4 —
σBy1 (m) (8) 0.2484 × 10−4 0.2429 × 10−4 −2
σRy1 (m) (9) 0.1071 × 10−3 0.1049 × 10−3 −2
σy (m) (7) 0.1099 × 10−3 0.1077 × 10−3 −2
νy (Hz) (10) 1.196 1.195 —
gy (4) 3.785 3.785 —
ȳmax (m) (3) −0.4642 × 10−3 −0.4559 × 10−3 −2
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of the modal force. Solid lines correspond to the rigorous solution,
dotted lines to the CFS. As is typical of intermediate modes, the
aerodynamic admittance was well below unity over the whole fre-
quency range, so it quite uniformly eroded the harmonic content of
the modal force.

Table 3 lists the main parameters of the alongwind displacement
for z ¼ l due to the first longitudinal Mode 14. The CFS was ap-
plied by separating the actual mode in N ¼ 2 piecewise modes
that resembled the original mode in an approximate way: the i ¼
1 piecewise mode was intermediate between Modes 2 and 3, and
the i ¼ 2 piecewise mode was intermediate between Modes 4 and
5. The C0 and D0 operators in Eq. (47) were evaluated for each
piecewise mode as the mean of the related operators, and were

Δ1 ¼ 0.81, Δ2 ¼ 0.19, Fð1Þ
xk ¼ 0.217, Fð2Þ

xk ¼ 0.079, Fxk ¼ 0.296,

and kð1Þxk ¼ 0.369, kð2Þxk ¼ 0.326.
Despite the preceding approximations, the CFS gave rise to al-

most negligible errors.

Conclusions and Prospects

In a series of papers published in the 1960s on the dynamic along-
wind response of SDOF systems, Davenport merged rigorous and
elegant formulations with physical and engineering interpretations.
This was facilitated by the fact that the partial correlation of the
oncoming turbulence causes an aerodynamic admittance which,
based on energy cascade, decreases with increasing frequency of
eddies and with increasing structure size.

The situation is different when structural loading and response
involve vibration modes that change sign. This projects the problem
into a framework that usually precludes the derivation of simple
solutions and makes the problem treatable only numerically. This
prevents interpreting the physical, conceptual, and engineering
meaning of aerodynamic admittance.

This paper investigated the role of arbitrary mode shapes on the
aerodynamic admittance of structures subjected to gust buffeting in
the alongwind, crosswind, and torsional directions. Analyses were
restricted to slender structures and single modes. The formulation
was based on quasi-steady theory and neglected as usual the imagi-
nary part of the turbulence cross-spectrum in order to establish a
simple background that may represent the basis for future studies
which remove simplifying hypotheses.

The fundamentals of the generalized equivalent spectrum tech-
nique were reviewed, stressing its property of being applicable
only to structures with a fundamental regular mode that does
not change sign. A new method, referred to as the enhanced equiv-
alent spectrum technique, was formulated which is applicable to
structures with arbitrary modes and contains the generalized equiv-
alent spectrum technique as a particular case. Special emphasis was
given to the dependence of aerodynamic admittance on the mode
shape.

Aerodynamic admittance was investigated for a broad class of
modes. Based on their trend and on Davenport’s intuitions, they are
classified into three families, Type A, B, and C modes. Type A
modes do not change sign and give rise to classical aerodynamic
admittances that decrease as the frequency increases. Type Bmodes
are skew-symmetric with respect to the structure midpoint and give
rise to aerodynamic admittances that are null at the zero frequency,
increase up to a maximum as frequency increases, then decrease
and tending to zero. Type C modes have intermediate shapes and
lead to intermediate trends.

That aerodynamic admittance decreases as frequency increases
for Type A modes whereas it has a relative maximum for Type B
and C modes is a watershed for the physical interpretation of the
problem and the formulation of simple solutions.

Based on energy cascade, the maximum load related to modes
with constant sign is due to large eddies with a low frequency con-
tent, whereas for modes that change sign it is reasonable that the
maximum load occurs for eddies the frequency of which corre-
sponds to a diameter with half the wavelength in which the mode
has constant sign. However, energy cascade depicts turbulence at a
single point, without giving any information about the phase shift
of eddies at different points; thus, it does not clarify the role of the
load on contiguous half wavelengths, where the mode has oppo-
site sign.

Focusing on simple solutions, this paper dealt with arbitrary
modes by dividing the structural domain into subdomains in which
piecewise modes are regular and do not change sign. This allowed
derivation of a solution based on the application of classical meth-
ods to each subdomain. This solution is precise and simple for
modes that change sign a limited number of times; on the other
hand, it becomes more and more laborious as mode complexity
increases.
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Fig. 11. Steel chimney: (a) aerodynamic admittance; and (b) PSD of
the modal force.

Table 3. Displacement parameters of Structure 2 for z ¼ l

Parameter Equation Rigorous Approximate Error (%)

x̄ (m) (6) −0.00323 −0.00323 —
σBx1 (m) (8) 0.00225 0.00235 þ4

σRx1 (m) (9) 0.00495 0.00495 —
σx (m) (7) 0.00544 0.00548 þ1

νx (Hz) (10) 0.510 0.506 −1
gx (4) 3.554 3.552 —
x̄max (m) (3) 0.0226 0.0227 —
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These limitations were overcome by Solari and Martín (2020)
through POD, which leads to physical interpretations from
which a simple-closed form solution of aerodynamic admittance
derives.

Data Availability Statement
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