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We have previously demonstrated that, in rested subjects, extensive practice in a motor
learning task increased both electroencephalographic (EEG) theta power in the areas
involved in learning and improved the error rate in a motor test that shared similarities
with the task. A nap normalized both EEG and performance changes. We now ascertain
whether extensive visual declarative learning produces results similar to motor learning.
Thus, during the morning, we recorded high-density EEG in well rested young healthy
subjects that learned the order of different visual sequence task (VSEQ) for three one-
hour blocks. Afterward, a group of subjects took a nap and another rested quietly.
Between each VSEQ block, we recorded spontaneous EEG (sEEG) at rest and assessed
performance in a motor test and a visual working memory test that shares similarities
with VSEQ. We found that after the third block, VSEQ induced local theta power
increases in the sEEG over a right temporo-parietal area that was engaged during the
task. This local theta increase was preceded by increases in alpha and beta power over
the same area and was paralleled by performance decline in the visual working memory
test. Only after the nap, VSEQ learning rate improved and performance in the visual
working memory test was restored, together with partial normalization of the local sEEG
changes. These results suggest that intensive learning, like motor learning, produces
local theta power increases, possibly reflecting local neuronal fatigue. Sleep may be
necessary to resolve neuronal fatigue and its effects on learning and performance.

Keywords: learning, fatigue, homeostasis, visual learning, resting state EEG

INTRODUCTION

Intense learning and acquisition of novel experiences leave local traces in the brain activity that are
evident at rest, after the performance, in the areas that were specifically involved in the learning-
related processes. Such traces emerge in the spontaneous electroencephalogram during rest as local
power increases in the theta range (Vyazovskiy et al., 2011b; Hung et al., 2013; Bernardi et al., 2015;
Nelson et al., 2021). As global theta power surge during resting state can be considered as a marker
of sleep need (Akerstedt and Gillberg, 1990; Cajochen et al., 1995, 1999; Vyazovskiy and Tobler,
2005), it is likely that the local theta increases represent neuronal tiredness caused by the local,
cumulative cellular costs of synaptic plasticity associated with learning (Vyazovskiy et al., 2011b;
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Hung et al., 2013; Bernardi et al., 2015; Nelson et al., 2021). In fact,
theta power increases locally after training in a specific task, in
the areas involved in the learning, in both sleep-deprived subjects
(Hung et al., 2013; Bernardi et al., 2015, 2016) and animals
(Vyazovskiy et al., 2011b), but also in well rested subjects (Nelson
et al., 2021). Indeed, spontaneous EEG (sEEG) recordings in well
rested subjects showed power increases in the theta band (4–
8 Hz) over a frontal cluster of electrodes after intensive learning
with a visuo-motor adaptation task (Nelson et al., 2021). In
agreement with the previous work in sleep-deprived subjects, the
frontal theta increase may represent local sleep, defined as slow
wave activity occurring locally in the awake brain (Huber et al.,
2004), and induced by these areas engagement in learning- and
plasticity-related processes (Hung et al., 2013; Bernardi et al.,
2015). In fact, such a local increase was not present after a
motor task lacking the learning component; it was associated with
an increased error rate during tests involving the same motor
regions, and it was reduced only after a nap and not by quiet wake.

In the present study, we ascertain in well-rested subjects
whether intensive learning in a declarative task produces effects
similar to those of the motor learning task both on the resting
sEEG and on the performance of a test that shared task
characteristics. We also determined whether a nap can reduce
both local theta power increases and performance deterioration.
To induce intensive declarative learning, we used a visual
sequence task (VSEQ) where subjects learned the order of
spatial sequences of targets. This task, which does not have any
motor component, engages visual spatial attention and working
memory (Ghilardi et al., 2003, 2009; Moisello et al., 2013) and
is associated with EEG activity of the frontal and posterior
parietal areas mostly in the right hemisphere (Moisello et al.,
2013). The EEG pattern during the VSEQ task likely reflects
encoding of new information, access to memory storage and
activation of memory traces, in agreement with the results of
studies on cognitive and semantic memory formation (Klimesch
et al., 1993, 1997, 2011; Klimesch, 1997; Bastiaansen et al., 2002).
Importantly, after learning for 20–30 min the order of a single
sequence of targets in VSEQ, the post-task sEEG displayed a
power increase in the alpha range over temporo-parietal regions
where power changes occurred during the task (Moisello et al.,
2013). Based on the results of the study with intensive visuo-
motor learning (Nelson et al., 2021), one should expect a local
increase of theta power with more than 1 h of performance in
the VSEQ task. Also, the local theta power increase should be
accompanied by a rise in performance errors in tests involving
the neural circuits fatigued by VSEQ learning and should be
abolished by subsequent sleep. Therefore, during the morning
hours, we recorded EEG in a group of well rested subjects during
extended performance of VSEQ in three one-hour blocks and
during the sEEG at rest after each block. We also assessed their
performance in two brief tests performed at the end of each block:
mem, a test that, like VSEQ, involves attention/spatial working
memory and the activity of fronto-occipito-temporal areas; and
mov, an arm reaching test that does not encompass learning
components and that mainly requires the activity of sensori-
motor areas (Perfetti et al., 2010; Moisello et al., 2015; Nelson
et al., 2017; Tatti et al., 2019). We finally ascertained whether, as

it occurred for motor learning (Nelson et al., 2021), sEEG and
performance changes were restored by a 90-min nap but not by
an equivalent period of quiet wake.

MATERIALS AND METHODS

Subjects
We tested 32 right-handed healthy participants (age range: 19 –
35 years, mean ± SD = 23.8 ± 4.2 years, 16 women). All
subjects did not have any history of sleep or medical disorders
and were asked to maintain consistent bed rise times and 7–
8 h/night sleep and fill daily a sleep diary for 1 week before
the experimental session. Moreover, they were asked to abstain
from alcohol and caffeine-containing beverages starting the night
before and throughout the experiment. Subjects were trained in
the task and tests (see below) in the weeks before the experiment.
The study was approved by the local Institutional Review Board
(CUNY IRB 307402 2016) and all the subjects signed and IRB-
approved consent form.

Experimental Design
Subjects arrived at the lab by 8 am and were fitted with hd-
EEG cap (256 channels, HydroCel Geodesic Net). Data collection
started around 9 am and lasted until 3 pm (Figure 1A). Subjects
were then seated in front of a screen and underwent a baseline
recording that included 2-min sEEG with eyes opened and two
tests, mem and mov (see section “Task and Tests”).

After the baseline, they performed VSEQ, where subjects were
asked to learn visual sequences for 45 min, followed by a 2-min
recording of sEEG with eyes open and by two tests, mem and mov.
Each complete testing block lasted for about 1 h. At the end of the
three complete blocks, 31 of the 32 subjects had lunch and were
randomly assigned to one of two groups: nap (N = 14) or quiet
wake condition (N = 17). The nap group was asked to sleep for
90 min; the quiet wake group was asked to rest with eyes closed
while listening to a series of guided meditation and audiobooks
for 90 min. After this 90-min period, the subjects in both groups
performed a final block with sEEG, mem, mov and VSEQ. The
final block was performed within fifteen-thirty minutes after the
end of either the nap or the quiet wake.

Task and Tests
VSEQ: Subjects were asked to learn 12-element spatial sequences
presented on a screen (Ghilardi et al., 2003, 2009; Moisello et al.,
2013; Steinemann et al., 2016) in 45-min blocks (Figure 1B).
Twelve equidistant targets were displayed on the screen. Every
1.5 s one target randomly blackened for 300 ms in repeating
sequences of twelve, with a target appearing only once in a
sequence. A verbal report of the sequence order was collected
every three complete presentations (i.e., a “set”) of the sequence.
The same sequence was presented in repeated sets until fully
learned, then a new one was presented. The learning rate for
each block was computed as the average of the number of sets
required to learn an individual sequence, an index of meta-
learning, or “learning how to learn” sequences. The main point of
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FIGURE 1 | Experimental design, task, and tests. (A) Participants started the experiment at 9 am with baseline recordings of hd-EEG activity during 2 min of
spontaneous EEG (sEEG), motor (mov) and memory (mem) tests. Then, subjects underwent three 45-min blocks of VSEQ task, each followed by sEEG, mov and
mem. At the end of the morning, after a lunch break, a subset of subjects took a nap for 90 min, while the others quietly rested for the same amount of time.
A further block of was performed 15–30 min after the rest. (B) VSEQ visual sequence learning task in which participants learned 12-element sequences continuously
for 45 min. The same sequence was repeated until subjects reached full score. (C) mem is a visual working memory test without learning component. Instructions
were to memorize a sequence, to hold it in memory for 10 s and then to report it, before moving to the next one; the test consisted in 16 sequences. (D) mov is a
test of reaching movements without adaptation with 24 possible targets located at 4, 7, or 10 cm from the center in eight directions, that randomly appear on the
screen every 3 s.

this repetitive learning was to involve the same circuits for long
time, while keeping the subjects engaged in the task.

mem: Subjects were asked to memorize a target sequence, to
hold it in memory for 10 s after the presentation of the last target
in the sequence, to report verbally the order of the sequence and
to be ready for the next sequence (Figure 1C). A circular array of
eight targets equidistant from a central point (4 cm) was present
in the center of the screen. Targets were white circle outlined in
black. After three warning flashes, the 5–6 elements sequence was
presented with one target blackened for 250 ms followed by the
others at 1-s intervals. Then, for 10 s the screen blanked (holding
time) followed by the appearance of colored target array for
15 s (report time). Sixteen different sequences were presented for
each of the four blocks. The outcome was the number of correct
sequences per block. This test, which involves attention/spatial
working memory, requires the activity of frontal and occipito-
parietal areas like VSEQ (see: Supplementary Material and
Supplementary Figures 1, 2).

mov: In this planar upper-limb reaching test, a target appeared
on a screen in non-repeating, unpredictable order at 3-s interval
together with a central starting point. Targets were at three
different distances (4, 7, and 10 cm) and eight directions (45◦

separation). Subjects were asked to perform out and back
overlapping movements, reaching for targets as soon and as
fast as possible, but without anticipating or guessing the target
position (Figure 1D). We excluded from the analysis movements
whose parameters exceed 1.5 standard deviation of the mean. We

computed the percentage of correct movements for each block.
As previously reported, mov mainly involves the activation of the
sensori-motor areas (Ghilardi et al., 2000, 2003; Perfetti et al.,
2011; Tatti et al., 2019, 2020).

In general, the two tests lasted for less than 5 min and were
designed to verify the effects of intensive repetitive learning in
short tests, one involving similar circuits (mem) and the other
involving also areas not engaged in the task such as the motor
areas (mov).

EEG Recordings and Analyses
During the whole experiment we recorded hd-EEG (Net Amp
300 amplifier and Net Station 5.0 software) maintaining the
impedance of each channel below 50 k�. The sampling frequency
of the EEG signal was 250 Hz and the signal was referenced
to the vertex Cz. The EEG signal was filtered using a Finite
Impulse Response filter (FIR) between 1 and 80 Hz and a
Notch filter centered at 60 Hz. Then, the recording was divided
into 4-s epochs and visually examined to remove artifactual
epochs and channels. Additionally, we applied Independent
Component Analysis (ICA) with Principal Component Analysis
(PCA)-based dimension reduction (Jung et al., 2003) in order
to remove blinks, eye movements and motion-related signals.
Afterward, channels previously removed were interpolated using
spherical spline interpolation and electrodes located on the
face and neck were removed from the analyses. This results
in 180 channels which were averaged referenced before being
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analyzed. All the preprocessing steps were processed using
EEGLAB toolbox for Matlab (Delorme and Makeig, 2004). After
the preprocessing, due to low-quality of the signal, we excluded
the recordings of three subjects from the analysis of the EEG
recorded during the VSEQ task.

We first computed power-spectral representations using the
fast-Fourier transform function of FiedlTrip toolbox for Matlab
(Oostenveld et al., 2011). Task-related EEG signal was normalized
by the total EEG power of the 45-min session within five
frequency ranges: Slow Wave Activity (SWA) or Delta: 1 – 4 Hz;
Theta: 4.5 – 8 Hz; Alpha: 8.5 – 13 Hz; Beta: 13.5 – 25 Hz; Gamma:
25.5 – 35 Hz; while sEEG was normalized (i.e., subtracted and
divided) by the baseline, i.e., the average across all the electrodes
of the first sEEG recording at the beginning of the experiment in
each frequency band.

We then determined: (i) practice-related activity, defined as
the topographical EEG difference between the last and first
learned sequences of VSEQ1; (ii) sEEG differences of morning
blocks (sEEG1, 2, and 3) compared to the baseline (sEEG0).
By using cluster-based non-parametric permutation testing (see
Statistical Analysis), we identified clusters of electrodes showing
significant differences between the two conditions, that we used
as mask to determine personalized Regions of Interest (ROI). In
fact, for each subject, we selected the electrode with the highest
theta power in sEEG3 and its six closest neighbors within the
sEEG3 clusters in order to assess differences between the nap and
the quiet wake group, after the rest period.

Electroencephalographic data recorded during the nap and the
quiet rest period were scored to detect signs of sleep using an
open source Matlab toolbox (Mensen et al., 2016). Specifically,
we scored 30-s epochs of EEG recording, according to standard
guidelines (Iber et al., 2007). Transition from wakefulness (W)
to stage N1 were associated with the disappearance of rhythms
such as posterior alpha oscillations (8–10 Hz) and slow rolling
eye movements. K complexes and sleep spindles marked the
transition to N2. The transition and maintenance of N3 was
determined by occurrence of >75 µV slow waves for more
than 20% of the epoch. No REM sleep was detected in our
recording. Sleep scoring was performed on classical derivations
from the 10–20 montage (F4, F3, C4, C3, P3, P4, O1, O2), with a
mastoid reference.

Statistical Analysis
Within group differences in performance indices were evaluated
between two time points and tested with two-tailed paired t-tests
since all the difference distributions did not significantly deviate
from normal distribution (p values > 0.1), as tested by Shapiro–
Wilks tests (SW), followed by Kolmogorov Smirnov tests. In the
following description, for each test we report p value for SW
tests. We first compared learning rate at baseline to that at the
end of the morning in the VSEQ task (VSEQ1 vs. VSEQ3, SW:
p = 0.36) as well as test performance in mov (correct movements,
mov3 vs. mov0, SW: p = 0.40) and mem (correct sequences,
mem3 vs. mem0, SW: p = 0.63). This approach was also used
to verify the within-group effects, for the nap and quiet wake
groups separately, of a nap and quiet wake on task (learning rate
in VSEQ3 vs. VSEQ4, SW: nap group: p = 0.61, quiet wake group:

p = 0.47); to compare test performance (mov3 vs. mov4, SW: nap
group: p = 0.35; quiet wake group: p = 0.72; and mem3 vs. mem
4 SW: nap group p = 0.48; quiet wake group: p = 0.30) and also
to ascertain the effect of sleep on sEEG4 (SW nap group: delta or
SWA: p = 0.28; theta: p = 0.41; alpha: p = 0.22; beta: p = 0.41; SW
quiet wake group: delta p = 0.13; theta p = 0.34; alpha p = 0.32;
beta p = 0.14).

EEG changes have been assessed through cluster-based non-
parametric permutation testing. Specifically, nearest neighbor
channels were determined via triangulation with three as the
minimum number of significant channels for inclusion in a
cluster. The reference distribution was created using Monte Carlo
method with 10,000 random iterations and a critical alpha of 0.05
was used at the cluster level (Maris and Oostenveld, 2007).

Paired t-tests with Bonferroni correction for multiple
comparisons were also used to compare spectral differences
between sEEG0 and sEEG3 in the 5 frequency ranges. For all
significant results with t-tests, we also computed effect sizes
with Cohen’s d. Pearson coefficients (with Bonferroni corrections
when appropriate) were used to explore possible correlations
between: (1) performance measures and sEEG changes; (2)
local power changes occurring during VSEQ1 and in the sEEG;
(3) sEEG power changes after nap and sleep parameters; (4)
performance changes and sleep parameters.

RESULTS

Extensive Learning in a Visual Sequence
Learning Task Produces Performance
Changes and Leaves a Local Trace in the
sEEG
In the three morning blocks of VSEQ, subjects learned an average
of 27.35 (±SD. 1.24) 12-element visual sequences. Learning
rate improved in that the average number of set presentations
required to learn a single sequence significantly decreased from
3.02 ± SD. 0.79 in VSEQ1 to 2.63 ± SD. 0.74 in VSEQ3 (N = 32,
two-tailed t-test: t(31) = 4.08, p = 0.0003, 95% CI: [0.15, 0.45],
Cohen D = 0.93). These results suggest that subjects improved
their skill in sequence acquisition with practice, in agreement
with previous results (Marinelli et al., 2017).

We then determined the EEG correlates of practice in
sequence learning by comparing the recordings obtained in
the sets of the last sequence (average number of sets ± SD:
3.02 ± 1.20) and the sets of the first sequence (3.24 ± 1.56)
of VSEQ1. We focused on VSEQ1 in order to minimize the
effects of fatigue that might have accumulated across blocks.
Cluster-based non-parametric permutation analysis (see section
“Materials and Methods”) in the 1–55 Hz broad band did not
show any significant clusters of power change. However, when we
performed cluster analysis using conventional partition bands,
we found a significant increase in both the beta (Hz, N = 29,
mean ± SE: 10 ± 3%, cluster t = 18.86, p = 0.008) and gamma
ranges (N = 29, mean ± SE: 14 ± 4%, cluster t = 35.39, p = 0.009)
in a cluster of electrodes over the right temporo-parietal region
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FIGURE 2 | T-maps of the comparison between the last and first VSEQ1
sequences learned by the participants (A) and between sEEG activity
recorded after each VSEQ block and sEEG0 baseline recording (B) in five
frequency ranges. Black dots highlighted significant clusters of electrodes
(p < 0.05, non-parametric cluster-based permutation testing).

(Figure 2A) that is usually active during visual working memory
tasks (Berryhill and Olson, 2008).

To ascertain whether VSEQ learning left a broad band (1–
55 Hz) trace in the sEEG at the end of the morning, we compared
sEEG3 and sEEG0 with cluster analysis. This analysis revealed
a significant power increase in a set of electrodes over the right
temporo-parietal area (mean ± SE: 26 ± 8%, cluster t = 47.24,
p = 0.005, Figure 3). Such local increase was significant in
the frequency ranges from theta to beta (from 4.5 to 25 Hz,
Figure 3). Separate analyses for theta, alpha and beta frequency
ranges (Figure 2B) confirmed that this increase involved a similar
cluster of electrodes over the right area shown in Figure 2 (theta:
mean ± SE: 44 ± 11%, cluster t = 39.89, p = 0.008; alpha:
62 ± 15%, cluster t = 165.73, p = 0.002; beta: 37 ± 10%, cluster
t = 73.17, p = 0.004). We then asked whether these changes
were already and equally present during sEEG1 and sEEG2.
Power increased over the same area, but in a smaller cluster,
in alpha range in both sEEG1 (28 ± 6%, cluster t = 122.24,
p = 0.002) and sEEG2 (27 ± 11%, cluster t = 43.75, p = 0.004)
and in beta range only in sEEG2 (20 ± 7%, cluster t = 28.93,
p = 0.003; Figure 2B). Another cluster of power increase confined
to the alpha range was found over a left temporo-parietal area
area in sEEG1 (29 ± 6%; cluster t = 105.51, p = 0.002) and
sEEG3 (36 ± 9%; cluster t = 119.45, p = 0.002; Figure 2B)
but not in sEEG2, despite an average power increase of 33%,
probably because of greater inter-subject variability (S.E. 11%).
No significant clusters were found for the theta band in either
sEEG1 and sEEG2, suggesting that the local theta power increase
occurred only after a substantial power buildup in alpha and
beta frequencies.

This conclusion is supported by the finding that theta
power increase in the sEEG3 cluster moderately and positively
correlated with the local power increases in both alpha range
(r = 0.61, p = 0.0002, 95% CI for r [0.33, 0.79]; Supplementary
Figure 3) and beta range (r = 0.71, p = 0.000005, 95% CI for r
[0.49, 0.85]; Supplementary Figure 3) during sEEG2 singly and
in combination (from 8 to 25 Hz, r = 0.73, p = 0.000002, 95% CI
for r [0.52, 0.86]; Supplementary Figure 3).

The local increase in sEEG3 power in the theta range
could signal the occurrence of neuronal OFF periods that has
been associated to fatigue of the neural circuits involved in
learning (Vyazovskiy et al., 2011b). In that case, after intensive
VSEQ training, performance should deteriorate in mem, a
working memory test sharing neural circuits and characteristics
with VSEQ (Supplementary Figures 1, 2). Indeed, that was
the case as the number of correctly reported sequences after
VSEQ3 in mem3 slightly but significantly decreased compared
to mem0 at baseline (mean ± SD: mem0: 12.81 ± 2.0; mem3:
12.03 ± 2.6; two-tailed t-test: t(31) = 2.054, p = 0.048, 95% CI:
[0.01, 1.56], Cohen D = 0.40). The performance deterioration
was specific to mem, as it did not occur in mov3, a motor
test with little or no involvement of attention and spatial
working memory (% correct movements: mov0: 80.67 ± 6.90%;
mov3: 80.42 ± 8.95%; t(31) = −0.349, p = 0.85, 95% CI:
[−1.67, 1.21]).

Altogether, these results suggest that intensive repetitive VSEQ
training leaves a local trace to areas involved in the learning
process and is associated with performance deterioration in a
homologous test but not in a test involving other brain areas.
Interestingly, intensive VSEQ learning also led to increases in
subjective scores of tiredness (N = 32, Baseline: 3.69 ± 1.96;
post VSEQ3: 5.62 ± 2.34, t(31) = −4.40, p = 0.0001, 95% CI
[−2.84, −1.04], Cohen D = 0.78) but not of sleepiness (N = 32,
Baseline: 4.62 ± 2.00; post VSEQ3: 5.00 ± 2.12, t(31) = −0.907,

FIGURE 3 | Power differences between sEEG3 and sEEG0 considering the
electrodes highlighted in the topography. Lines indicate mean across all
subjects (filled lines) and standard error of the mean (dotted lines). The
topography is the result of the comparison between sEEG3 and sEEG0 in the
entire spectrum (1–55 Hz). Black dots highlighted significant clusters of
electrodes (p < 0.05, non-parametric cluster-based permutation testing).
Bottom: results of the Paired t-tests with Bonferroni correction.
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FIGURE 4 | Local mean power difference between sEEG4 and sEEG3
considering the personalized ROI in the quiet wake (A) and nap (B) group.
Dotted lines indicate standard error of the mean. Bottom: results of the Paired
t-tests computed for four frequency ranges.

p = 0.37, 95% CI [−1.22, 0.47]) and boredom (N = 32, Baseline:
4.22 ± 2.11; post VSEQ3: 4.87 ± 2.00, t(31) = −1.96, p = 0.06,
95% CI [−1.34, 0.27]).

A 90-min Nap Restores Performance in
Mem and Improves Learning Ability in
VSEQ
The results of the sleep scoring of the EEG signal during the
90-min rest period are reported in Supplementary Tables 1, 2.
Briefly, the nap group slept on average 56 min (± S.E. 6), with
most of the time spent in N2 and N3, thus suggesting that, in this
group, sleep was consolidated and deep. Despite the instructions
given to stay awake to the subjects in the quiet awake group, a few
subjects reached N2 for a brief period of time (6 ± 2 min).

We first ascertained whether performance in the two tests,
mem and mov, and in VSEQ improved after the 90 min
of quiet rest and sleep. While performance in mov did not
change significantly after the nap (mov3: 81.59 ± 4.69%; mov4:
80.38 ± 7.40%, t(11) = 0.46, p = 0.66, 95% CI: [−4.65, 7.08]),
we found significant improvements in the nap group when
comparing mem4 to mem3 (mean ± SD: mem3: 11.83 ± 2.37;
mem4: 13.25 ± 1.96; t(11) = −3.137, p = 0.009, 95% CI: [−2.41,
−0.42], Cohen D = 0.91). The positive effects of the nap were also
extended to the ability to learn sequences during VSEQ. Indeed,
the number of repetitions required to learn a sequence in the task
slightly decreased in VSEQ4 compared to VSEQ3 after the nap
(VSEQ3: 2.70 ± 0.72, VSEQ 4: 2.49 ± 0.63, t(11) = 2.64, p = 0.023,
95% CI: [0.35, 0.38], Cohen D = 0.76).

No performance changes were found after the quiet wake
period in both mem4 (mem3: 12.31 ± 1.93; mem4: 12.54 ± 2.47;
t(11) = −0.349, p = 0.733, 95% CI: [−1.67, 1.21]) and mov4
(mov3: 82.58 ± 7.19%; mov4: 80.13 ± 10.73%, t(11) = 0.072,
p = 1.23, 95% CI: [−1.93, 6.82]), as well as in the VSEQ4 learning
rate (VSEQ3: 2.61 ± 0.48, VSEQ 4: 2.73 ± 0.53, t(11) = −0.96,
p = 0.36, 95% CI: [−0.39, 0.15]).

We then assessed possible relationship between performance
improvements and SWA and theta power (from 1 to 8 Hz
frequency) during sleep. Such analyses did not yield significant
results between mem improvements and 1–8 Hz power of N2 and

N3 combined (N = 12; r = 0.41, p = 0.19). Nevertheless, we found
robust correlations between mem4 performance improvement
and the power of the 1–8 Hz frequency range only during N3,
in that the greater the 1–8 Hz frequency power during N3 the
greater the increase of correct sequences in mem4 compared to
mem3 both in the right cluster defined by the increased theta
power in sEEG3 (N = 8, r = 0.857, p = 0.006595%, CI: [1.72,
9.38]) and across all electrodes (r = 0.947, p = 0.00035, 95%, CI:
[3.16, 6.39]). Improvements of learning efficiency in VSEQ4 was
moderately correlated with local theta power measured during
N2 and N3 combined, in that the greater theta power during N2
and N3 the faster the learning in VSEQ4 compared to VSEQ3
(N = 12, r = 0.623, p = 0.030, 95% CI: [−0.72, −0.04]).

We finally computed the local power change in sEEG4
compared to sEEG3 in the right cluster of electrodes where theta
power increase in sEEG3 was maximal. In the nap group, such
comparison revealed a decrease in sEEG4 of theta frequency
(t = −2.41, p = 0.031, 95% CI [−96.4%; −5.4%], Cohen’s
D = 0.645). No significant changes were found in the other
frequencies with the exception of a small mean decrease of SWA
power (t = −2.21, p = 0.046, 95% CI [−69.9%; −0.8%], Cohen’s
D = 0.59; Figure 4). In the awake group, no significant power
changes were found across frequencies including (t = −1.01,
p = 0.33; 95% CI [−24.5 8.69], Cohen’s D = 0.25) and theta
(t = −1.38, p = 0.19; 95% CI [−68.8%; 14.5%], Cohen’s D = 0.30;
Figure 4).

DISCUSSION

The present study shows that extensive declarative learning in
well-rested subjects leaves a local trace over the brain regions
involved in the task. This trace consists of a local power increase
that, after three practice blocks, involves the theta frequency
range. In parallel, learning rate in the VSEQ task increased, while
performance in a test, mem, that shares some processes and
neural substrates with VSEQ decayed. Performance in both the
learning task and the working memory test improves after a nap
but not after an equivalent period of quiet wake and the degree of
improvement correlates to the local theta power occurring during
the nap. Also, after the nap, local sEEG changes were partly
renormalized. Altogether, these results first, suggest that, like
motor learning, declarative learning produces local sEEG changes
that may reflect neuronal fatigue, but, unlike motor learning, the
significant theta power increase occurs in a cluster of electrodes
over a right temporo-parietal area instead of left frontal region
(Nelson et al., 2021). Second, they confirm that sleep may be
necessary to resolve neuronal fatigue and its effects on learning
and performance.

Extensive Learning in a Visuo-Spatial
Declarative Task Is Associated With
Local Power Increases of Beta and
Gamma During the Task
Visual sequence task and mem were characterized by similar
topographical activation (Supplementary Figures 1, 2), have
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common attentional and working memory processes with similar
spatial attributes and declarative characteristics related to order
acquisition. However, while in mem the emphasis is mostly on
encoding, with focused attention and working memory with
sequences presented only once at a fast rate, in VSEQ, the focus
is more on a continuous learning of complex sequences, one
after the other, across several reiterations, thus requiring constant
encoding and retrieval processes.

The initial phase in both VSEQ and mem encompasses
attending for the target appearance, directing visual attention,
processing a spatial position to then encode it. The efficiency of
the spatial working memory buffer is crucial, in both VSEQ and
mem, for linking one target’s position to that of the others and,
in VSEQ only, for correctly predicting each target appearance
and for checking the accuracy of each prediction in subsequent
reiterations. Theta synchronization occurs in the early encoding
phases of information and is considered as a hallmark of the
cortico-hippocampal interplay at the cortical end (Sederberg
et al., 2003; Pignatelli et al., 2012; White et al., 2013). Accordingly,
in both VSEQ and mem, theta and alpha power modulation
over centro-frontal and posterior regions, especially on the right
hemisphere, occur during sequence learning [(Moisello et al.,
2013), see also Supplementary Figure 1].

In VSEQ, we also found evidence of meta-learning or
increased ability in “how to learn sequences.” Indeed, despite
the training before the experiment, learning efficiency improved,
with fewer sets needed to learn a sequence in VSEQ3 compared
to VSEQ1. This suggests an enhancement of the use of active
encoding processes primarily involving spatial working memory.
The increased power in the beta and gamma bands over the
temporo-parietal area during the learning block supports this
conclusion in agreement with previous findings about gamma
frequency activity in this area (Kaiser and Lutzenberger, 2005;
Crone et al., 2006; Womelsdorf and Fries, 2006; Jerbi et al.,
2009) also during visual working memory tasks (Baddeley, 1992;
Smith and Jonides, 1997; Berryhill and Olson, 2008). Indeed,
the temporo-parietal area can be considered as a hub where
both spatial and object-related characteristics are processed and
maintained. The simultaneous processing of both the “where”
and the temporal order information is essential for successful
VSEQ performance. Furthermore, the prevalent activity of the
right hemisphere is in line with the results of imaging and
electrophysiological studies (Moisello et al., 2013) and with the
notion that spatial working memory tasks predominantly activate
areas in the right hemisphere (Milner, 1971; Grafton et al., 1992;
Jonides et al., 1993; McIntosh et al., 1994; Fink et al., 1996; Haxby
et al., 1996; Ghilardi et al., 2000).

Extensive Visual Sequence Learning
Produces a Local Trace in the sEEG
Over these same electrodes showing beta and gamma increases
during the task, we found a progressive local increase of alpha
and beta power in the sEEG recorded during resting state, with
a later involvement of theta power after VSEQ3 (Figure 2).
The increase in the alpha range after VSEQ1 is in accordance
with previous results where the same 16-element sequence

was learned over twenty-thirty minutes (Moisello et al., 2013).
Interestingly, the local increase of theta power at rest, after the
third block of VSEQ was positively correlated to the earlier
increases of both alpha and beta power over the same electrodes,
suggesting that the involvement of lower frequencies occurs only
after extending activity and a substantial build-up of higher
frequency power. Indeed, the local increase in theta power is in
agreement with the results of sleep deprivation studies (Hung
et al., 2013; Bernardi et al., 2015), where local theta increases
occurred with less intensive training only after 24 h of wake,
as well as in well rested subjects after extensive motor learning
(Nelson et al., 2021). Global increase of theta power during rest
is an established hallmark of sleep need in both humans and
animals, with EEG power in the 5–8 Hz range increasing globally
with the time spent awake and predicting the SWA level in
subsequent sleep (Akerstedt and Gillberg, 1990; Cajochen et al.,
1995, 1999; Vyazovskiy and Tobler, 2005; De Gennaro et al.,
2007). Local, as opposed to global, increases of sEEG theta power
have been found over areas previously involved in learning in
both animals (Vyazovskiy et al., 2011b) and humans (Hung et al.,
2013; Bernardi et al., 2015) after 20–24 h of wake and, more
recently, in well rested subjects after extensive learning in a visuo-
motor adaptation task (Nelson et al., 2021). Increases of theta
power during rest are likely expression of activity-related synaptic
“overload” that, in turn, may cause neuronal instability and thus
represent a sort of off-line signal (Klimesch, 1999; Vyazovskiy
et al., 2011a). The preceding local increases in the alpha and beta
range may thus reflect phenomena that bring to the build-up
of synaptic overloading, such as increased neuronal firing and
energy consumption (Ghilardi et al., 2021).

In summary, although parsimoniously it may simply reflect
the massive changes in sEEG3, this local increase of theta power,
or “local sleep,” could be interpreted as evidence of learning-
related neuronal tiredness, in agreement with the conclusions
of studies in rodents (Vyazovskiy et al., 2011b; Rodriguez
et al., 2016) and in intracranially implanted epileptic subjects
(Nir et al., 2017).

Prolonged Visual Sequence Learning
Causes Performance Deterioration Only
in Specific Tests
Across the morning blocks, we observed two apparently
conflicting phenomena: on one side, an improvement in
the learning rate during VSEQ; on the other, a weakened
performance in mem, a test sharing some characteristics and
neural basis with VSEQ as discussed above. With repetitive
practice and training, effective learning occurs when reliance
on controlling mechanisms decreases with a shift toward
automatization (Ghilardi et al., 2000; Marinelli et al., 2017). As a
consequence, performance in a specific task usually improves and
becomes faster and more precise (Ghilardi et al., 2000; Marinelli
et al., 2017). At the neuronal level, this is usually associated with
disengagement of the control-related brain areas and, in parallel,
with an increased engagement of the areas that were selectively
involved in the specific task (Ghilardi et al., 2000; Marinelli
et al., 2017) and likely with relative growth of local synaptic
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weight. In this scenario, if the activity of these areas is needed
in a different and successive test, delayed or attenuated spiking
responses of individual cortical neurons expressed by wake local
slower theta activity might occur because these neurons are
already fully committed and cannot be further engaged, thus
inducing performance lapses. This has been directly shown by
the results of intracranial recording studies in awake humans
during extended wakefulness where local, regionally specific,
increases of frequencies lower than 10 Hz of the depth EEG
corresponded to degraded single unit activity, increased theta
activity of the surface EEG and performance errors (Nir et al.,
2017). It is thus plausible that performance in the well-practiced
VSEQ improved across blocks, while errors increased in mem,
the test that shared visual working memory processes and neural
basis with VSEQ. Finally, the fact that there were no notable
changes across blocks in the performance of a motor test that
relied more on somatosensory and motor circuits further suggests
that performance deterioration is test- and task-specific.

Altogether, the present results indicate that extended
wakefulness or sleep deprivation are not necessary conditions
for performance decline, as continuous practice in a visual
working memory task, VSEQ, in well rested young subjects can
cause not only local theta power increases but also performance
deterioration in a test, mem, that shares similarities with the task.

A 90-min Nap Renormalizes sEEG and
Improves the Ability to Learn
Our study shows that a nap restored mem performance and
increased VSEQ learning ability, in agreement with studies
showing that that even a short period of sleep improve learning
indices (Mednick et al., 2003; Huber et al., 2004; Kvint et al., 2011;
Lo et al., 2014; van Schalkwijk et al., 2017) and renormalized the
local increase of theta power induced by extensive learning in
agreement with previous studies (Nelson et al., 2021). Although
quiet wake could be considered as a hybrid condition, since some
of the participants assigned to this condition briefly reached N1
and N2 stages, we did not find either significant performance
improvement or sEEG renormalization in the quiet wake group.
In addition, we found that post-nap performance improvements
were related to the nap characteristics and, in particular, strong
correlation was found with low frequency power during N3 stage,
but not when measured in N2 and N3 combined. Thus, it is
possible that low frequency activity in N3 may be fundamental
for performance improvement, although it is difficult to draw
firm conclusions because of the small sample examined and
the limited time of the nap. Nevertheless, N3 stage seems
to play an important role in memory consolidation (Rasch
et al., 2007; Diekelmann et al., 2009; Scullin, 2013) for motor
learning (Huber et al., 2004), but also for other type of learning
(Stickgold et al., 2000; Suzuki et al., 2012), including episodic
memory tasks (Harand et al., 2012). Specifically, improvement
in episodic memory correlated with hippocampal activity during
N3 (Harand et al., 2012). Thus, the relationship we found
between low frequency power in N3 and post-nap performance
improvement suggests the occurrence during N3 of a process of
renormalization in areas connected to the hippocampal circuit

(Sederberg et al., 2003; Pignatelli et al., 2012; White et al.,
2013).

In summary, the present findings of decreased low frequency
power after a nap with improved VSEQ learning rate and
performance restoration in mem are in agreement with the results
obtained in subjects that took a nap after extensive learning with
a visuo-motor task (Nelson et al., 2021). The need for sleep to
restore EEG and performance further suggests that such changes
were triggered by the cellular costs of increased synaptic strength
induced by learning above and beyond the costs of neuronal
activity per se, consistent with previous work (Hung et al., 2013;
Tononi and Cirelli, 2014; Bernardi et al., 2015; Nelson et al.,
2021).
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