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ABSTRACT 

 
This paper presents a nonlinear model of an inversion-

based generalized cross-spring pivot (IG-CSP) using the beam 
constraint model (BCM), which can be employed for the 
geometric error analysis and the characteristic analysis of an 
inversion-based symmetric cross-spring pivot (IS-CSP). The 
load-dependent effects are classified in two ways, including 
structure load-dependent effects and beam load-dependent 
effects, where the loading positions, geometric parameters of 
elastic flexures, and axial forces are the main contributing 
factors. The closed-form load-rotation relations of an IS-CSP 
and a non-inversion-based symmetric cross-spring pivot (NIS-
CSP) are derived with consideration of the three contributing 
factors for analyzing the load-dependent effects. The load-
dependent effects of IS-CSP and NIS-CSP are compared when 
the loading position is fixed. The rotational stiffness of the IS-
CSP or NIS-CSP can be designed to increase, decrease, or 
remain constant with axial forces, by regulating the balance 
between the loading positions and the geometric parameters. 
The closed-form solution of the center shift of an IS-CSP is 
derived. The effects of axial forces on the IS-CSP center shift are 
analyzed and compared with those of a NIS-CSP. Finally, based 
on the nonlinear analysis results of IS-CSP and NIS-CSP, two 
new compound symmetric cross-spring pivots are presented and 
analyzed via analytical and FEA models. 

Keywords: Compliant cross-spring pivot; load-dependent 
effects; loading positions; center shift; nonlinear analysis 
 
1. INTRODUCTION 

A compliant generalized cross-spring pivot (G-CSP) 
consists of two flexure sheets, including the symmetric cross-
spring pivot (S-CSP) [1]–[4] and the asymmetric cross-spring 
pivot. It can provide rotational motions with its rotational center 
at the intersection of the two flexure sheets. We classify the G-
CSP as shown in Fig. 1.  

The S-CSP is our focus in this paper, which has been widely 
studied[5]–[8], including the non-inversion-based (traditional) 
symmetric cross-spring pivot (NIS-CSP) and the inversion-
based cross-spring pivot (IS-CSP). The beam constraint model 

(BCM) [9]–[11], pseudo-rigid-body model (PRBM) [2,12], 
numerical approaches [13], and finite element analysis (FEA) are 
commonly used for modelling nonlinearities of such compliant 
mechanisms. The BCM is accurate enough when the deflection 
of an elastic flexure is in an intermediate range. A number of 
closed-form models of compliant mechanisms based on the 
BCM have been derived for quickly analyzing parameters and 
for providing design insights, such as the work by Hao et al.[14] 
and Zhao et al.[9]. In this paper, our analysis is based on the 
BCM and FEA verification. We derive the nonlinear analytical 
model of an inversion-based generalized cross-spring pivot (IG-
CSP). This model can be used for the geometrical error analysis 
of the IS-CSP due to machining imperfections, and the nonlinear 
analytical model of an IS-CSP can be derived quickly. This is the 
first motivation of our paper. 

 

 
FIGURE 1: The categories of the generalized cross-spring pivot. 

 
Axial loads can lead to strong nonlinearities of the compliant 

mechanisms, motivating Zhao et al., along with other 
researchers, to have further analyzed the load-dependent effects 
of the NIS-CSP. Also the effects of the geometric parameters and 
bearing-direction loads on the rotational stiffness have been 
detailed in Refs.[15]–[19]. However, the loading position of 
bearing-direction loads is another important factor contributing 
to the load-dependent effects, and there are no reported papers 
investigating the loading-position effects on the rotational 
stiffness of the S-CSP, which is the second motivation of our 
work.  
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In this paper, load-dependent effects are divided into two 
categories, namely: 1) structure load-dependent; and 2) beam 
load-dependent effects. Here, the loading positions, geometric 
parameters of the sheets, and axial forces are three main 
contributing factors to such load-dependent effects, indicatively 
explained in Fig. 2.  

 

 

 
FIGURE 2: Load-dependent effects: (a) a compressive load (P) acting 
on the rigid rod; (b) a compressive load (P) acting on an inversed 
compliant mechanism;(c) the inversed compliant mechanism rotating at 
a small angle with P on the top of the motion stage; (d) demonstrating 
the equivalent stiffness Keff of Fig. 2(c); (e) P acting at the bottom of the 
motion stage; and (f) demonstrating the equivalent stiffness Keff of 
Fig.2(e)  
 

The structure load-dependent effects can be explained as 
follows. In Fig. 2(a), a rigid rod connects with a constant 
torsional spring (stiffness denoted by K) on the ground, and a 
compressive axial force (denoted by P) acts on the free end of 
the rod. If the rod tilts, the effective rotational stiffness of the 
mechanism (denoted by Keff) can be expressed as Keff = K  ̶ PLr 

under a small angle assumption. Keff decreases with the increase 
of P and Lr (the rod length). The beam load-dependent effects 
can be explained as follows. Let ∆K denote the rotational 
stiffness error correction term due to the beam load-dependent 
effects, whose absolute value depends on the geometric 
parameters of the flexure. When a tensile axial force acts on the 
free end of an elastic beam, the resulting rotational stiffness of 
the beam (i.e. K’=K+∆K) increases with the increase of the 
tensile axial force, i.e., ∆K>0; When a compressive axial force 
acts on the free end, K’ decrease with the increase of the 
compressive axial force, i.e. ∆K<0 [20].  

Keff of the inversed compliant mechanism is a collective 
result of the structure and beam load-dependent effects. L’ (or 
L’’) and K’ contribute to the structure and beam load-dependent 
effects, respectively. In Figs. 2(b) to (d), when P acts at the top 
of the motion stage of an inversed compliant mechanism, the 

effective rotational stiffness can be expressed as Keff = K’  ̶ PL’ 
=(K+∆K)  ̶ PL’ under a small angle assumption. When ∆K>PL’, 
Keff increases with the axial loads; when ∆K =PL’, Keff keeps 
constant with the axial loads; when ∆K < PL’, Keff decreases with 
the axial load. When a compressive force acts on the top of the 
inversed compliant mechanism, Keff can increase, decrease, or be 
constant. Similarly, in Figs. 2(e) and (f), if P acts at the bottom 
of the motion stage, Keff = K’+PL’’ = (K+∆K) +PL’’ under a 
small angle assumption, which means Keff can only increase with 
a compressive axial force. The equilibrium between structure 
and beam load-dependent effects of the inversed compliant 
mechanism is important for the stiffness control, which is the 
third motivation of our paper. 

Keff decreasing to quasi-zero [21] (i.e., first-order buckling 
in the rotation direction) should be avoided in a compliant 
mechanism. When a compressive axial/bearing-direction force 
acts on the NIS-CSP, the rotational stiffness can increase, 
decrease, or be constant, which relates to its geometric 
parameters and the axial forces [15], but the possibility of 
increasing rotational stiffness is relatively low. However, when a 
compressive axial force acts on the IS-CSP, the possibility of 
increasing rotational stiffness rises, thus leading to a higher 
possibility of avoiding buckling, which is the fourth motivation 
of our paper. Therefore, by combining the NIS-CSP and IS-CSP 
in a parallel arrangement, we propose a novel compound S-CSP 
whose rotational stiffness being insensitive to the axial load (i.e. 
no first-order buckling), which is robust to second-order 
buckling in the bearing direction. 

Zhao et al. [9] derived the closed-form center shift model of 
a NIS-CSP and designed several novel compound NIS-CSPs to 
reduce the center shift. They analyzed the effects of geometric 
parameters on the center shift and obtained the parameters 
combination that can produce the smallest possible shift. The 
effects of the axial forces on the center shift of the NIS-CSP with 
these special parameters are detailed in Ref. [9]. Bi et al. [17] 
also analyzed axial load effects of a cartwheel flexure pivot. It is 
worth analyzing the effects of the axial forces on the S-CSP 
center shift with general parameters and comparatively evaluate 
center shifts of NIS-CSP and IS-CSP. This is the inspiration of 
another novel compound S-CSP with the NIS-CSP and IS-CSP 
arranged in series, whose center shift is minimized significantly. 

We briefly summarize these motivations as follows.  
(1) The nonlinear analytical or closed-form models of an IG-

CSP based on BCM have not been reported. The nonlinear 
models are greatly needed for analyzing the geometrical errors 
and quickly deriving the analytical models of an IS-CSP. For 
instance, such relations may be used to optimize devices such as  
the knee rehabilitation oriented joint presented in [22]. 

(2) There is lack of investigations concerning the rotational 
stiffness of S-CSPs with respect to different loading positions. 

(3) Problems concerning the equilibrium between structure 
and beam load-dependent effects, which controls the stiffness of 
an inversed compliant mechanism, shall be further analyzed. 

(4) The analysis of loading-dependent effects and center 
shift of the IS-CSP and the NIS-CSP inspires us to propose two 
new compound S-CSPs with improved performances. 
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This paper is organized as below. Section 2 derives the 
nonlinear analytical model of the IG-CSP based on BCM, which 
can reduce to the closed-form model of the S-CSP. In Section 3, 
the load-rotation relation of an IS-CSP is derived, and the effects 
of the loading positions, geometric parametric, and the axial 
forces on the rotational stiffness are analyzed. The equilibrium 
between structure and beam load-dependent effects of the IS-
CSP are analyzed for rotational stiffness regulation. The load-
dependent effects of an IS-CSP and a NIS-CSP are compared. 
The closed-form center shift of an IS-CSP is derived, and the 
effects of the axial forces on the center shift of the IS-CSP are 
analyzed, which are also compared with those of a NIS-CSP. 
Section 4 presents two new compound S-CSPs, and each design 
consists of an IS-CSP and a NIS-CSP: design I is a parallel 
mechanism whereas design II is a serial mechanism. The 
conclusions are drawn in Section 5.  
 
2. THE NONLINEAR ANALYSIS OF AN IG-CSP WITH 

TWO SHEETS 
In this section, the normalization-based analytical model of 

an IG-CSP is derived, followed by a closed-form load-rotation 
relation of the IG-CSP under a small angle assumption. The IG-
CSP can be modelled as two flexure sheets connected in a 
parallel arrangement. In line with Ref. [9], the analytical center-
shift model of the IG-CSP is derived. The right-handed 
coordinate system and right-handed rule are used throughout this 
paper. 

 
2.1 Normalization-based analytical model 

The normalized analytical model of an IG-CSP is derived as 
below. The two sheets in the IG-CSP are numbered as, sheet 1 
and sheet 2, respectively. The local coordinate systems of the two 
sheets are denoted as o1-x1y1z1 and o2-x2y2z2 with their origins 
locating at their free ends. Li, Ti, and Ui denote the length, 
thickness, and width of sheet i (i = 1 or 2) along the xi, yi, and zi-
axes, respectively. U1=U2 and T1=T2 are required throughout this 
paper. External actual loads: Fxi, Fyi, and Mzi act at the origin, oi. 
Fxi and Fyi denote pure forces along the xi and yi axes, 
respectively; Mzi denotes the pure moment about the zi-axis. 
Sheet 1 with a local coordinate system o1-x1y1z1 is shown in Fig. 
3.  

 
FIGURE  3: The definitions of sheet 1: (a) the sheet geometry, and 
(b) the local coordinate system and loads acting at the free end. 

 
All translational displacements and length parameters are 

divided by L1 (we assume that L1 is longer than L2 of the IG-
CSP). Forces and moments are divided by EIz1/L1

2 and EIz1/L1, 
respectively [23], where Iz1 denotes the cross-section moment of 
inertia about the z1-axis and can be expressed as U1T1

3/12, and E 
is Young’s Modulus of the material. Therefore, for sheet i (i=1 

or 2), we use fxi and fyi to denote normalized forces, mzi to denote 
normalized moments, dxi and dyi to denote normalized 
displacements; zi to denote a rotational angle. The analytical 
models of the two sheets are shown in Eqs. (1) - (2) based on the 
BCM in [20]. 
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where, d=12/(T/L1)2; i=1 or 2, and r1=1; r2=L2/L1. 
 

The IG-CSP is described in Fig. 4. O-XYZ denotes the 
global coordinate system of the IG-CSP, which locates at the 
motion stage with the Y-axis passing through the rotation center 
in the non-deformed configuration. The independent normalized 
parameters to define the IG-CSP include r2, α1, α2, 1, and h. The 
first four ones are independent geometric parameters, and the last 
one h is a vertical vector pointing from the free end of the sheet 
to the loading position. The absolute value of h is denoted by h, 
which relates to the loading position. h is equal to H/L1, where H 
denotes the vertical distance between the free end of the sheet 
and the loading position. If h follows the direction of the Y-axis, 
h replaces h in the equations of this paper; otherwise,  ̶ h replaces 
h. 2 can be derived from the equation 1cos(1) = 2r2cos(2). 
We use fxs, fys, and mzs to denote the normalized loads of the IG-
CSP acting at the origin, O, and use dxs, dys, and θzs to denote the 
normalized displacements and rotational angle of the IG-CSP’s 
motion stage (at point O).  

 

 
FIGURE 4: The description of the IG-CSP: (a) normalized geometric 
parameters and loads, and (b) the normalized displacements.  
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The compatibility conditions can be described as Eqs. (3) 
and (4) (derivation details can be seen in Ref. [14]).  

 
 [dx1,dy1,θz1]T=Rz1(Rz3S1 ̶ S1)+[dxs, dys, θzs]T  (3) 
 [dx2,dy2,θz2]T=Rz2(Rz4S2 ̶ S2)+[dxs, dys, θzs]T  (4) 
where, S1 and S2 denote the coordinates of the points S1, S2 (Fig. 
4) with regard to the global coordinate system, and are 
represented as follows. S1=[1sin(1), −h,0]T, S2=[−2r2sin(2),  
−h,0]T. Rzj (j=1, 2, 3 or 4) is a rotational matrix about the Z-axis, 

which is designated as z1

cos sin 0

sin cos 0

0 0 1

R
j j

j j
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 
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. 1=/2−1, 

2=/2+2, 3=θz1, and 4=θz2. 
 

The load-equilibrium conditions of the motion stage in the 
deformed configuration can be expressed Eq. (5) (See details in 
[14]).  
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rotation of the motion stage, and Si
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Given the independent parameters and three loading inputs 

(fxs, fys, and mzs), the outputs of the motion stage (dxs, dys and θzs) 
are solved by the Eqs. (1) through (5). These solutions refer to 
analytical models in this paper. 

In order to derive the closed-form rotations (Eq. (7)) of the 
IG-CSP, we use Eq. (6) to simplify the results of dy1 and dy2 [9], 
[17], and use small-angle approximations to derive the closed-
form rotational angle of the IG-CSP (Eq. (7)). The small-angle 
approximations are based on sin(θzs)≈θzs and cos(θzs)≈1 while 
other higher orders associated with θzs are neglected. 

 
 dy1=λ1θzs and dy2=r2λ2θzs (6) 
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where A1 through A6 are the expressions of the independent 
geometric parameters and the loading position, as elaborated in 
Eq. (8). 
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An FEA model of an IG-CSP is built in COMSOL 5.0. We 

assume the sheets are elastic and the motion stage is rigid. The 
maximum meshing size of the sheets is 0.814 (mm). The material 
is Aluminum: Young’s modulus E=69109 (Pa); Poisson’s ratio 
v=0.33 and density is 2700 (kg/m3). Let us consider an example 
to evaluate the accuracy of the analytical and closed-form 
models of the IG-CSP. We fix L1, L2, U, T, 1, 1, and 2 at 50 
(mm), 30 (mm), 5 (mm), 0.5 (mm), 0.5, /4, and /6. A series of 
rotations range from 0 to 0.3 (rad) with a 0.02 (rad) step are 
prescribed on the rotational center of the IG-CSP. The results for 
the analytical, FEA, and the closed-formed models are illustrated 
in Fig. 5. When −0.3 (rad) < θzs < 0.3 (rad), the maximum error 
between analytical and FEA models is less than 5%; when −0.1 
(rad) < θzs< 0.1 (rad), the maximum errors between the analytical 
and FEA models, closed-form and FEA models are less than 
1.5% and 5%, respectively. 
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FIGURE 5: Comparisons of rotations for the analytical, closed-form 
and FEA models: (a)−0.3(rad)<θzs<0.3(rad), and (b)−0.1(rad)<θzs 

<0.1(rad). 
 

2.2 The center shift model 
Dx and Dy denote the normalized center shift along the X-

axis and Y-axis, respectively. The normalized center shift based 
on the point S1 can be derived as Eq. (9). 

 
 x x1 1 y1 1 1 1 zs 1 1sin cos sin( ) sinD d d            (9a) 

 y x1 1 y1 1 1 1 1 1 zscos sin cos cos( )D d d             (9b) 

 
Similarly, the center shift based on the point S2 can also be 

derived as Eq. (10). 
 

 x x2 2 y2 2 2 2 2 2 2 2 zssin cos sin sin( )D d d r r             (10a) 

y x2 2 y2 2 2 2 2 zs 2 2 2cos sin cos( ) cosD d d r r             (10b) 

 
From Section 2.1, we have the outputs of the motion stage 

with given loading conditions and substituting these results into 
Eqs. (3) - (4) to obtain dxi and dyi (i=1 or 2). Then Dx and Dy are 
solved from Eqs. (9) or (10). We use the same example in Section 
2.1 to verify the accuracy of the center shift, the comparison of 
center shift between the analytical and FEA models are shown in 
Fig. 6. The maximum errors of Dx and Dy are 1.7% and 5.2%, 
respectively. 

 

 
FIGURE 6: The comparison of the center shift between the analytical 
and FEA models: (a) Dx, And (b) Dy. 
  
3. THE NONLINEAR ANALYSIS OF THE IS-CSP 

In this section, the closed-form load-rotation relations of an 
IS-CSP and a NIS-CSP are derived, respectively. Then we 
analyze the effects of the geometric parameters, loading 
positions, and axial forces on the rotational stiffness of the IS-
CSP. The load-dependent effects of an IS-CSP and a NIS-CSP 
are compared.  

 
3.1 Load-rotation relation 

The closed-form load-rotation relation of the IS-CSP is 
expressed as Eq. (11) by substituting r2=1, 1=2=, 1=2=, 
into Eq. (7). ,  and h are the independent parameters of the IS-
CSP.  

 
xs xs zs

zs 2 2 2
ys

15cos (cos )

( 18 18 15 cos 15 cos 2) 120 cos (3 3 1)

f f m

f

  


       
 


       

h

h  (11) 

 
In addition, the description of the NIS-CSP is shown in Fig. 

7. The analytical model of a NIS-CSP is derived as below. 
Similar to the derivation in Section 2.1, we use Sni to replace Si, 
Rzni to replace Rzi (i=1 or 2). Sni denotes the free ends of the 
sheets in a NIS-CSP. Sni denotes the coordinates of the point Sni 
relative to the global coordinate system after only the rotation of 
the motion stage. Sn1=[−sin(),−h,0]T, and Sn2=[sin(), 
 −̶h,0]T. Rzni denotes the rotational matrix about the Z-axis,

zn

cos sin 0

sin cos 0

0 0 1

R
i i

i i i

 
 

 
   
  

 . δ1=−π/2−α and δ2=−π/2+α. The 

closed-form load-rotation relation of the NIS-CSP is expressed 
as Eq. (12),  

xs xs zs
zs 2 2 2

ys

15cos ( cos )

(18 18 15 cos 15 cos 2) 120cos (3 3 1)

f f m

f

  


       
  


      

h

h
 (12) 
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FIGURE 7: The description of a NIS-CSP. 

 
3.2 Load-dependent effects 

Kzm denotes the rotational stiffness due to the moment mzs of 
an IS-CSP, which is expressed as Eq. (13) by rearranging Eq. 
(11). The rotational stiffness due to the bending force fxs can be 
discussed in a similar way. 

 

 2
zm m ys 8(3 3 1)K A f       (13) 

where Am=−2(92−9+1)/(15cos)−cos+h=Amgeo+h. Amgeo 
denotes the value of Am due to the geometric parameters. h 
denotes the value of Am due to the loading positions.   
 

Am is an expression of the independent geometric parameters 
(beam load-dependent effects) and loading positions (structure 
load-dependent effects). If Am = 0, Amfys = 0, fys has less effect on 
Kzm when a compressive axial force (fys <0) acts on the IS-CSP. 
Meanwhile if Am>0, Amfys < 0, Kzm decreases with fys, and vice 
versa. To analyze the effect of fys on Kzm, it is necessary to 
analyze the signs of Am when , α, and h take different values.  

Am only relates to the geometric parameters, i.e. Am=Amgeo, 
when h is equal to 0. Amgeo of an IS-CSP and a NIS-CSP are 
shown in Fig. 8, when  and α range from 0 to 1 and 0 to /2, 
respectively. When the geometric parameters of the IS-CSP are 
in the B region, Amgeo>0, the IS-CSP can be regarded as a non-
inversed compliant sheet as Kzm decreases with a compressive 
fys. When the geometric parameters of the IS-CSP are in the C 
region, Amgeo<0, the IS-CSP can be regarded as an inversed 
compliant sheet. We can draw similar conclusions for a NIS-CSP 
operating in the D and E regions. In this way, if the geometric 
parameters are specifically given, Amgeo can be determined from 
Fig. 8.  

 
FIGURE 8: The effects of  and  on Amgeo of (a) an IS-CSP, and (b) 
a NIS-CSP. 

On the other hand, the sign of Am depends on the dominant 
position of Amgeo and h as Am=Amgeo+h. When  and α are 

specifically given in the C region, Amgeo is determined and less 
than 0, and Kzm increases with a compressive fys for the beam 
load-dependent effects (Amgeofys>0). Under this condition, we 
analyze the structure load-dependent effects in C region. yj (j=1, 
2,…,or 7) denotes loading positions along the Y-axis as shown in 
Table 1 and Fig. 9(a). When the loading positions move from y1 
to y6, Am= Amgeo+h, and Kzm decreases with a compressive fys for 
the structure load-dependent effects (hfys<0). If h > −Amgeo, i.e., 
Am>0, the structure load-dependent effects dominate Kzm. If h < 
−Amgeo, i.e., Am<0, the beam load-dependent effects dominate 
Kzm. If h = −Amgeo, i.e., Am= 0, the equilibrium between structure 
and beam load-dependent effects is balanced, so when  and α 
are specified, the load-dependent effects can be reduced 
significantly by regulating the loading positions. When the 
loading positions move from y6 to y7, Am = Amgeo−h, and Am is 
always less than 0. Kzm increases with a compressive fys for both 
the beam and structure load-dependent effects. The equilibrium 
of beam and structure load-dependent effects in other regions can 
be analyzed similarly.  

Moreover, if the loading position fixes at y6, the region 
where Am<0 for an IS-CSP is increased. When the compressive 
axial forces (fys<0) act on the IS-CSP, the region where Amfys>0 
is increased, which means that the possibility of increasing Kzm 
rises. When the IS-CSP and NIS-CSP share the same , , and 
h, the absolute values of Am are equal and the signs of Am are 
opposite. 

The effects of yj (j=1, 2,…,or 7) on Am of an IS-CSP are 
shown in Fig. 9(b) and Fig. 10. =1/2± 5 /6 are two roots of 92  ̶
9+1=0 (Eq. (13)). In Fig. 9(b), when the loading positions range 
from y1 to y7, the curves representing Am=0 are enclosed 
gradually following the arrows’ direction. The possibility of the 
geometric parameters are on the curve representing Am=0 can be 
increased. When the axial forces act on the rotational center (y4) 
and  is 1/2  ̶ 5  /6 or 1/2+ 5  /6, Am is equal to 0 without 
depending on . In Fig. 10, when the loading positions range 
from y1 to y7, the region where Am<0 is increased. If h of y1 is 
large enough, Am is always greater than 0, which means that Kzm 
decreases with a compressive fys. Similarly, if h of y7 is large 
enough, Am is always smaller than 0, which means Kzm increases 
with fys. When h is specified, the load-dependent effects can be 
reduced significantly by taking any geometric parameters on the 
curve representing Am=0. 
 
TABLE 1: The examples of loading locations yj (j=1,2…or, 7), and 
∆1=20(mm)/L, ∆2=10(mm)/L. 

yj 1 2 3 4 5 6 7 

h y2+∆1 cos 
0.5(y2

+y4) 
cos 

0.5(y4

+y6) 
0

y6+
∆2 

h h     ̶ h 
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FIGURE 9: The effects of the loading positions on Am of an IS-CSP: 
(a) the loading positions, (b) the curves representing Am=0.  
 

 

 

 

 
FIGURE 10: The effects of the loading positions on Am of an IS-CSP: 
(a) y1, (b) y2, (c) y3, (d) y4, (e) y5, (f) y6, and (g) y7.  
 

To verify Kzm varying with the sign of Am when fys<0, we 
take four cases of IS-CSPs to compare Kzm between the 
analytical and the FEA models. Table 2 lists the independent 
parameters of Am (, , h, h), the signs of Am, and the predictions 
of the load-dependent effects. The geometric parameters (, ) 
of Cases 1 and 2 are the same while the loading positions (h) of 

Cases 1 and 2 are y4 (the rotational center) and y6, respectively. 
In Cases 3 and 4, the load-dependent effects of Case 2 can be 
reduced by regulating the loading position or the geometric 
parameters, respectively. When L is constant at 30(mm), θzs 
ranges from ̶ 0.1 (rad) to 0.1 (rad), Kzm for the four cases are 
shown in Fig. 11. The load-dependent effects of the predictions, 
analytical model, and FEA model are consistent. The maximum 
error of Kzm between the analytical and FEA models is 1.2%. 

 
TABLE 2: Parameters of IS-CSPs (‘↓, ↑, or c’ denote that ‘Kzm 
decreases, increases, or remains constant with fys’, respectively). 

Cases   h h Am Kzm 
1 

0.5 
π/6 

cos cos >0 ↓ 
2 0 0 <0 ↑ 
3 | Amgeo | ̶ Amgeo 0 c 

4 
54.735 π 

/180
0  0  0  c 
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FIGURE 11: Kzm of: (a) case 1, (b) case 2, (c) case 3, and (d) case 4. 
 
3.3 The closed-form model of the center shift 

We derive the closed-form center shift of an IS-CSP 
referring to the method that Zhao et al. [9] have introduced. 

Dx is derived as Eq. (14) for any values of λ. When λ is 
smaller than 0.5, the closed-form Dy can be directly derived from 
Eq. (6) as shown in Eq. (15), because the accuracy of Eq. (6) is 
highly acceptable. When λ is greater than 0.5, an accurate Dy 
with a more complex form is shown in Eq. (16) (derivation 
details can be seen in Ref.[9]), as the accuracy of Eq. (6) is 
compromised slightly. Besides, we do not discuss the center shift 
for the bending force fxs, and assume fxs is equal to 0 in this 
section. 
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We use an example to evaluate the center shift between the 

closed-form and FEA models of an IS-CSP. L, U, T,  and  are 
constant at 30 (mm), 5 (mm), 0.5 (mm), /6, and 0.5 respectively. 
A series of prescribed rotations, ranging from  ̶ 0.1 (rad) to 0.1 
(rad) and Fys=0 (N), act on the rotational centre of the IS-CSP. 
In Fig. 12, the maximum errors of Dx and Dy between closed-
form and FEA models are 1.77% and 1.85%, respectively.  

 

 
FIGURE 12: The center shift of the closed-form and FEA models: (a) 
Dx, and (b) Dy. 
 

Comparing the coefficients of 92−9+1 and fys in Eqs. (14) 
-(16), 92−9+1 is a dominant item for both Dx and Dy. When 
92−9+1=0, Dx and Dy decrease significantly, and the axial 
force has less effect on Dx but a more significant effect on Dy  
as illustrated in Figs. 13(a) and (b). Zhao et al. reached the same 
conclusions in their research [9].  

When 92  ̶ 9+1≠0, the axial force does not influence both 
Dx and Dy significantly, and it is worth minimizing Dy because 
Dy is approximately ten times larger than Dx. For example, when 
λ is 0.4 or 0.7, the results of the center shift are shown in Figs. 
13(c) - (f). We compare the center shifts between an IS-CSP and 
a NIS-CSP. The geometric parameters of Fig. 12 are used for 
both an IS-CSP and a NIS-CSP. A series of prescribed rotations, 
ranging from −0.1 (rad) to 0.1 (rad) and an axial force of −1 (N), 
act on their rotational centers. Their center shifts are compared 
as shown in Fig. 14. Note that Figs. 14(a) and (b) share the same 
legend. When an IS-CSP and a NIS-CSP are under a same 
rotational angle, the absolute values of their center shifts are 
close, and directions are opposite.  
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FIGURE 13: The effects of fys on Dx and Dy of the closed-form 
models: (a) Dx when  is 1/2+ 5 /6, (b) Dy when  is 1/2+ 5 /6, (c) Dx 
when  is 0.4, (d) Dy when  is 0.4, (e) Dx when  is 0.7, and (f) Dy 
when  is 0.7. 
 

 

 
FIGURE 14: The center-shift comparison between an IS-CSP and a 
NIS-CSP: (a) Dx, and (b) Dy. 

 
4. DESIGN OF THE COMPOUND S-CSP 

In this section, we present two novel compound S-CSPs, 
including a parallel design and a serial design, and each design 
consists of an IS-CSP and a NIS-CSP, whose geometric 
parameters are the same correspondingly. They are regarded as 
two basic units, and each design can be modelled as the two basic 
units connected in a parallel (or serial) arrangement. The 
analytical models of an IS-CSP and a NIS-CSP are referred to 
Sections 2.1 and 3.1, respectively. O1-X1Y1Z1 and O2-X2Y2Z2 

denote the local coordinate systems of the IS-CSP and NIS-CSP, 
respectively. Os-XsYsZs denotes the global coordinate system of 
each design. Their origins locate at the rotation center, so the 
displacements with regard to the global coordinate system are 
the center shift of each design.  

We evaluate the characteristics by the analytical and FEA 
models, and fix L, U, T,  and  for each design, which are 30 
(mm), 5 (mm), 0.5 (mm), /6, and 0.5, respectively. 
 
4.1 A parallel design: Design I      

Inspired by Ref. [24] and Sections 3.2, the description of 
design I is shown in Fig. 15(a). The rotational stiffness of design 
I can be insensitive to axial forces when an applied moment is 
constant. The additional benefit of this design lies in the 
minimized center shift. The analytical model of design I is 
derived as follows. The compatibility conditions and load-
equilibrium equations are illustrated in Eqs. (17) and Eq. (18). 
dxsDI, dysDI, and θzsDI are solved with given fxsDI, fysDI, and mzsDI. 

 
 dxsDI=dxs1=dxs2   
 dysDI=dys1=dys2  (17) 
 θzsDI=θzs1=θzs2 

  
 fxsDI=fxs1+dxs2   
 fysDI=fys1+fys2 (18) 
 mzsDI=mzs1+mzs2   
where, fxsDI, fysDI, mzsDI, fxs1, fys1, mzs1, fxs2, fys2, and mzs2 denote the 
normalized loads of the design I, IS-CSP, and NIS-CSP, 
respectively, as shown in Figs. 15(b) and (c). dxsDI, dysDI, θzsDI, 
dxs1, dys1, θzs1, dxs2, dys2 and θzs2 denote the normalized 
displacements and rotation angles correspondingly. 
 

 

 
FIGURE 15: Descriptions of the design I: (a) a 3D model, (b) the 
global coordinate system, and (c) the local coordinate systems (‘CS’ 
denotes a compressive sheet, ‘TS’ denotes a tensile sheet). 
 

Similar to the discussion in Section 3.2, the load-dependent 
effects of design I depend on Am of design I (denoted by AmDI in 
this section). AmDI approximates the result of adding each CSP’s 
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Am when the two CSPs are arranged in parallel to form design I, 
i.e., AmDI ≈ ‘Amgeo+h of IS-CSP’ + ‘Amgeo+h of NIS-CSP’. 
Because the centre shifts of two individual CSPs move in the 
opposite direction, and the actual rotational stiffness of design I 
(denoted by KzmDI) is larger than the simple stiffness addition of 
two individual CSPs (i.e., load-stiffening effect). ‘Amgeo+h of IS-
CSP’ refers to Eq. (13), and ‘Amgeo+h of NIS-CSP’ can be 
derived from Eq. (12). Amgeo of IS-CSP is always counteracted 
by that of the NIS-CSP when they have the same geometric 
parameters. Therefore, the load-dependent effects of design I due 
to geometric parameters almost disappear. However, h of the two 
CSPs are not always counteracted with each other. The load-
dependent effects of design I due to loading positions are 
analyzed as follows.  

The rotations of design I obtained from the analytical and 
FEA models under different loading positions and axial forces 
are shown in Fig. 16. Lcy denotes a directional distance between 
the rotational center and the loading position, where Lcy >0 and 
Lcy <0 mean that the loading positions are above and below the 
rotational center, respectively. Lcy ranges from 30 (mm) to −30 
(mm) with a −10 (mm) step. FysDI ranges from −4 (N) to 4 (N) 
with a 0.5 (N) step acting on the loading positions, and MzsDI is 
kept unchanged at 0.04 (Nm). The maximum error between 
analytical and FEA models is 2.5%. 

When |Lcy|≤20 (mm), the maximum error of θzsDI between 
|FysDI| = 4 (N) and FysDI=0 is 5.0%. However, when |Lcy| = 30 
(mm), the maximum error of θzsDI between |FysDI|=4 (N) and 
FysDI=0 is 7.7%. With the same MzsDI, axial forces influence θzsDI 
slightly within a specified |Lcy| but they affect θzsDI significantly 
if |Lcy| is large enough.  

 
 

 
FIGURE 16: The effects of loading positions and axial forces on θzsDI 
with MzsDI = 0.04 (Nm): (a) above the rotational center (Lcy >0), and (b) 
below the rotational center (Lcy <0). 

 
We use AmDI to explain how θzsDI varies with FysDI in Fig. 16. 

When |Lcy|=0 or 20 (mm), AmDI, and the predictions of KzmDI and 
θzsDI, corresponding to different FysDI, are illustrated in Table 3. 
When the loading position is the rotational center (i.e., Lcy=0), 
Am of one CSP is counteracted by that of the other CSP, leading 
to AmDI≈0. Therefore, KzmDI and θzsDI remain constant with 
different FysDI. When Lcy=20 (mm), AmDI>0, so KzmDI decreases 
and θzsDI increases under a compressive FysDI. When Lcy=−20 
(mm), KzmDI and θzsDI can be similarly analyzed.  
 

TABLE 3: Load-dependent results of design I when |Lcy|=20 (mm) or 0 (mm). (‘↓, ↑, or c’ denote that ‘Kzm of design I decreases, increases, or remains 
constant with FysDI’, respectively. ‘+’ denotes ‘FysDI >0’, and ‘−’ denotes ‘FysDI <0’.) 

Lcy (mm) CSP Amgeo h of each CSP Am of each CSP AmDI FysDI KzmDI θzsDI 

0 
IS −0.24 λcos(α)=  0.43  0.19 

0 
− c c 

NIS  0.24 −λcos(α)= −0.43 −0.19 + c c 

 20 
IS −0.24 λcos(α)+Lcy/L=  1.10  0.86 

 1.33>0 
− ↓ ↑ 

NIS  0.24 −λcos(α)+Lcy/L=  0.23  0.47 + ↑ ↓ 

−20 
IS −0.24 λcos(α)+Lcy/L= −0.23 −0.47 

−1.33<0 
− ↑ ↓ 

NIS  0.24 −λcos(α)+Lcy/L= −1.10 −0.86 + ↓ ↑ 

4.2 A serial design: Design II    
Inspired by Section 3.3, design II has a small center shift as 

shown in Fig. 17(a), and the compatibility conditions and the 
load-equilibrium equations of the analytical model are illustrated 
in Eqs. (19) and (20), respectively. dxsDII, dysDII, and θzsDII are 
solved with given fxsDII, fysDII, and mzsDII. 

 
 dxsDII=dxs2+dxs1cos(θzs2)−dys1sin(θzs2)  
 dysDII= dys2+dxs1sin(θzs2)+dys1cos(θzs2) (19) 

θzsDII= θzs1+θzs2 

 
 fxsDII=fxs1cos(θzs2)−fys1sin(θzs2)  
 fysDII= fxs1sin(θzs2)+fys1cos(θzs2)  
 fxs2=fxs1cos(θzs2)−fys1sin(θzs2) (20) 
 fys2= fxs1sin(θzs2)+fys1cos(θzs2) 

mzsDII=mzs1= mzs2 
where, fxsDII, fysDII, and mzsDII denote the normalized loads of the 
design II as shown in Figs. 17(b) and (c). dxsDII, dysDII, and θzsDII 
denote the normalized displacements and rotation angles 
correspondingly. 
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FIGURE 17: Descriptions of design II: (a) a 3D model, (b) the global 
coordinate system, and (c) the local coordinate systems. 
 

When FxsDII =0, FysDII =−0.5(N), MzsDII ranges from 0.001 to 
0.015 (Nm), the results between analytical and FEA models are 
shown in Fig. 18. The maximum errors of dxsDII, dysDII, and θzsDII 
are 5.7%, 4.7%, and 1.67%, respectively. The center shift along 
the X-axis and Y-axis of the design II are reduced by 10 and 100 
times, respectively, compared with those of an S-CSP (Fig. 14). 

 

 

 

 
FIGURE 18: The results of analytical and FEA models of the design 
II with FysDII=−0.5(N): (a) dxsDII, (b) dysDII, and (c) θzsDII. 

Figure 19 illustrates the performance differences between 
designs I and II. When the rotational angle is fixed at 0.04 (rad) 
acting on the motion stage, the center shifts of the FEA models 
of design I and II are as follows: dxsDI=1.02×10−17, 
dysDI=−4.17×10−18, dxsDII=7.60×10−7, and dysDII=1.52×10−8. The 
magnitudes of the center shift of design I are much smaller than 
those of design II. However, when the moment is fixed, design 
II’ rotational range is much larger than that of the design I. 
Design II is an ideal candidate for the application requiring the 
rotational ranges with a minimized center shift. On the other 
hand, the rotational stiffness of design I with any λ can be 
insensitive to axial loads, when MzsDI is fixed. If the axial forces 
act on the rotational center (Lcy=0), the loading positions and 
axial forces do not influence θzsDI. If the axial forces do not act 
on the rotational center, axial forces can influence θzsDI slightly 
within specified loading positions.  
 

 
FIGURE 19: Center-shift and rotational-range comparisons between 
designs I and II. 
 
5. CONCLUSIONS 

The closed-form model of an IG-CSP based on BCM is 
derived, along with the closed-form load-rotation relation of the 
IS-CSP. We take the axial force (fys), geometric parameters, and 
the loading positions into consideration of the load-rotation 
relation of the S-CSP for analyzing the load-dependent effects.  

The load-dependent effects include the beam load-
dependent effects and the structure load-dependent effects. The 
rotational stiffness can increase, decrease, or remain constant 
with the axial forces (fys) depending on the equilibrium of the 
beam load-dependent effects and the structure load-dependent 
effects. The coefficient of fys of the S-CSP load-rotation relation 
is Am, which is an expression of geometric parameters (, ) and 
the loading positions (h). The load-dependent effects can be 
designed by regulating the positive or negative sign of Amfys. In 
other words, the equilibrium between the structure and beam 
load-dependent effects can be controlled by regulating ,  and 
h. If an IS-CSP and a NIS-CSP are subjected to the same 
geometric parameters, axial loads, and loading positions, the 
absolute values of Am are equal and the signs of Am are opposite. 

 The closed-form center shift of the IS-CSP is derived and 
verified by analytical and FEA models. 92  ̶ 9+1 is a dominant 
term of the closed-form center shift solution. When 92  ̶ 9+1 is 
not equal to 0, the axial forces have less effect on Dx and Dy. 
When an IS-CSP and a NIS-CSP have the same geometric 
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parameter (required 92  ̶ 9+1≠0) and are subjected to the same 
loading conditions, their absolute values of the center shift are 
close and their directions are opposite correspondingly. 

Based on the above nonlinear analysis, two compound S-
CSPs are proposed. When the applied moment is constant, the 
loading positions and axial forces can slightly influence the 
rotational stiffness of design I. Compared with an S-CSP, design 
II enlarges the rotations and minimizes the center shift along the 
X-axis and Y-axis by 10 and 100 times, respectively. In the 
future, the load-dependent effects and the effects of the axial 
forces on the center shift of the IG-CSP will be discussed.  
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