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Abstract
Introduction: This study aimed to investigate the relation-
ship between the choroidal circulation and glaucoma, as-
sessing macular choroidal thickness (MCT) as a predictive 
value of glaucomatous visual field damage. Methods: Twen-
ty primary open-angle glaucoma patients were recruited. 
Patients underwent 2 SS-OCT scans: one with DRI OCT (Top-
con) and the other with PLEX Elite 9000 (Zeiss). Standard OCT 
parameters were acquired by DRI OCT, while MCT was man-
ually measured in 5 points on Plex ELITE 9000 images. The 
relationship among MCT, standard OCT parameters, and vi-
sual field indices was evaluated. Pearson’s r correlation was 
calculated to evaluate these relationships. Reproducibility of 
measurements was analyzed. Results: MCT measurements 
showed a good intra- and interobserver repeatability. A neg-
ative correlation appeared between MCT and BMI (r = −0.518, 
p = 0.023). Mean deviation showed a statistically significant 
correlation with MCT measured at subfoveal and at 1,000 μm 
nasally (r = 0.50, p = 0.03, and r = 0.52, p = 0.023). A correla-
tion was found between the 2 MCT (Zeiss vs. Topcon) mea-
surements and between MCT and peripapillary choroidal 

thickness (r = 0.944 and r = 0.740, p < 0.001, respectively). 
Conclusions: A good intra- and interobserver reproducibility 
was found. MCT showed a weak predictive value of glauco-
matous visual field damage. A significant correlation was 
found between MCT and BMI. © 2021 The Author(s)

Published by S. Karger AG, Basel

Introduction

Primary open-angle glaucoma (POAG) is a multifac-
torial chronic, progressive, optic neuropathy character-
ized by typical structure-function changes. Progressive 
retinal ganglion cell loss in the macula, peripapillary, and 
optic disc area is typical of this disease [1, 2]. The exact 
mechanical and/or vascular pathophysiology of glauco-
ma remains unclear [3]. It has been also hypothesized that 
impaired choroidal structure and function are involved 
in the glaucomatous optic neuropathy, since the choroi-
dal vasculature supplies the prelaminar portion of the op-
tic nerve head (ONH) [4–8]. An association between cho-
roidal morphology and glaucoma was found in previous 
histological studies, in which the authors showed thinner 
choroidal layer in glaucomatous eyes than in nonglauco-
matous ones [9–11], even if it is unclear whether this find-
ing represents a risk factor or a consequence of the dis-
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ease. Furthermore, in those histological studies, there was 
some bias such as a small number of patients, the fixation 
method of the histological samples, the delay between 
death and fixation that may induce artifacts, and no data 
for other factors now known to influence choroidal thick-
ness (CT) including age and axial length (AXL) [9, 12, 13]. 
Also, ethnicity could be related to the CT, but most of the 
published studies do not outline the race of the included 
patients which is possible to suppose just reading the af-
filiation of the study, but it could be also wrong.

The development of a new generation of high-penetra-
tion OCT devices, a modified version of spectral-domain 
optical coherence tomography (SD-OCT), makes OCT 
be able to improve choroidal assessment and to measure 
the living choroid into normal and pathological process-
es. However, the choroidal-scleral boundary may be dif-
ficult to identify, and the choroidal segmentation soft-
ware is not readily available, so the assessment of CT has 
often relied on manual measurements at localized points 
[14–17]. These SD-OCT devices are based on an alterna-
tive approach to image acquisition, known as swept-
source OCT (SS-OCT), and allow for a better viewing of 
deeper ocular structures including the choroid, besides a 
segmentation software enables to separate the different 
retinal layers and the choroid.

The relationship between different types of glaucoma 
and CT by using SD-OCT and SS-OCT is still under in-
vestigation. In some studies, no difference was found for 
peripapillary or macular choroidal thickness (PCT and 
MCT, respectively) between OAG patients and normal 
controls in most of the OCT studies, and no relationship 
between CT and glaucoma severity was reported [8, 18–
25]. However, some other studies have found thinning of 
PCT or MCT in OAG patients [26–29]. Hirooka et al. [30] 
reported a relationship between CT and glaucoma sever-
ity especially in the nasal region 3 mm from the fovea, 
which is close to the peripapillary choroid, and it might 
affect the ONH blood supply [31, 32]. The aim of the pres-
ent study is to assess interobserver reproducibility and 
intraobserver repeatability of MCT measurements, to 
compare 2 SS-OCT measurements of CT, and to evaluate 
MCT as the predictive value of glaucomatous visual field 
damage.

Methods

This was a clinical retrospective study, and it was approved by 
the regional ethics committee (CER Liguria: 144/2021). All meth-
ods used were carried out according to the criteria set by the Dec-
laration of Helsinki and by EGS guidelines for the clinical practice 

useful for following up patients with glaucoma. Informed consent 
was obtained from all the participants.

Starting from June 7, 2019, and going backward, we included 
the first 20 Caucasian POAG consecutive eligible eyes seen at the 
Eye Clinic of the University of Genoa. The more affected eye was 
analyzed according to mean deviation (MD) and pattern standard 
deviation (PSD) values. POAG patients were defined as those with 
an intraocular pressure (IOP) elevated without treatment, ONH 
with characteristic glaucomatous damage and/or retinal nerve fi-
ber layer changes, glaucomatous visual field defects, and an open 
anterior chamber angle on gonioscopy [1].

The inclusion criteria for all subjects were to have no history of 
retinal or optic disc diseases (for example, diabetic retinopathy, mac-
ular degeneration, and optic neuritis), a normal anterior chamber, a 
clinical diagnosis of POAG at least 1 year before the study, a last 
follow-up visit within 1 month before the OCT analysis, and an ear-
ly to moderate glaucoma damage at visual field [1]. The exclusion 
criteria were to be younger than 18 years old, a refractive error >−6 
or 4 diopters of sphere or ±3 diopters of cylinder, to have a history of 
ophthalmic diseases that could affect the interpretation of the visual 
field, and a history of ocular trauma or of glaucoma surgeries.

Standard automated perimetry was performed within 6 months 
of the image acquisition using the Humphrey Field Analyzer II, 
program 24-2 Swedish Interactive Threshold Algorithm Standard 
(Carl Zeiss Meditec, Inc., Dublin, CA, USA). Visual fields were 
considered reliable if fixation losses or false-negative errors were 
<33% and false-positive errors <15%. MD and PSD were used, and 
the mean sensitivity of superior and inferior hemifield was calcu-
lated for each visual field print-out.

Data of the last follow-up visit were recorded and included 
medical history, BMI, water intake in the previous 2 hours, sys-
tolic blood pressure (SBP), diastolic blood pressure (DBP), num-
ber of glaucoma medications used, best-corrected visual acuity 
(using a Snellen chart at 4 m), spherical equivalent (SE), slit-lamp 
biomicroscopy, IOP measurement (using a calibrated Goldmann 
applanation tonometer), gonioscopy, dilated fundus examination, 
cup-to-disc ratio (using a 90D lens), central corneal thickness 
(CCT), AXL, CT, retinal nerve fiber layer thickness (RNFLT), and 
ganglion cell-inner plexiform layer thickness (GCIPLT).

All eyes were imaged by using deep range imaging (DRI) OCT 
Triton, SS-OCT (Topcon, Oakland, NJ, USA), and Swept-Source 
OCT-A PLEX Elite (Carl Zeiss Meditec Inc.), providing uniform 
scanning sensitivity which allow superior visualization of the vitre-
ous and choroid in the same scan. Poor quality SS-OCT images, 
defined as those with signal strength ≤40, were not considered and 
retaken.

The Topcon DRI OCT uses a multi-modal SS-OCT with a laser 
source of 1,050 nm and operates at 100,000 A-scans per second. 
All eyes were imaged using the 3D Wide Scan (12 mm × 9 mm) 
with the scan centered on the posterior pole through dilated pupils. 
All DRI OCT images were obtained by a single and well-trained 
technician. SS-OCT segmentation software (version 9.11; Topcon, 
Inc., Tokyo, Japan) was used to identify the limits of the choroid 
and to determine CT. The data were exported using the manufac-
turer’s OCT-Batch (version 9.1.10) utility.

Topcon DRI OCT Analysis
After segmentation analysis, peripapillary RNFLT and PCT 

were measured at a 3.4-mm diameter peripapillary circle centered 
on the optic disc and then divided into 6 and 12 sectors, and the 
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thickness of each single sector was calculated automatically. Mean 
RNFLT and mean PCT were calculated for each sector. Further-
more, MCT and GCIPLT were calculated automatically by using 
the software in 6 sectors.

The Swept-Source OCT-A PLEX Elite is a swept laser OCT, 
utilizing a central wavelength of 1,040- to 1,060-nm sources and a 
scanning of 100,000 A-scans per second. Its axial and transverse 
resolutions are approximately 6 μm and 20 μm, respectively. HD 
spotlight 1 (10–100×) scan generates a single high-definition scan 
at a depth of 3.0 mm with 100 B-scans, each composed of 1,024 A-
scans. All HD spotlight 1 scans were centered on the fovea. No im-
age analysis is present on this device for the moment.

Zeiss PLEX Elite 9000 OCT Analysis
All PLEX Elite images were exported to Joint Photographic Ex-

pert Group (jpeg) format and analyzed using ImageJ software 
(http://imagej.nih.gov/ij/; provided in the public domain by the 
National Institutes of Health, Bethesda, MD, USA). The CT was 
segmented manually from the outer border of the retinal pigment 
epithelium to the choroidal-scleral interface. A spatial scale was 
defined to present measurement analysis in micrometer; the 
straight-line selection tool was used to make a line that corre-
sponded to a known distance of 1,000 μm measured on a PLEX 
Elite 9000 image using the OCT scale bar.

We measured the CT on horizontally orientated OCT sections 
at the subfoveal region, at 1,000 μm and 2,000 μm nasal to the fovea 
and at 1,000 μm and 2,000 μm temporal to the fovea (Fig. 1), as in 
other published studies [30, 32]. Since the spatial aspect ratio of 
PLEX Elite 9000 is 2:1, each CT measurement was divided by two 
[33]. To assess the interobserver reproducibility of the measure-
ments, 4 independent observers (M.M., F.R., A.P., and C.A.C.) 
manually measured MCT, while for intraobserver repeatability, 1 
observer (F.R.) repeated each measurement 3 times.

Statistical Analysis
The statistical analyses were performed using SPSS 21.0 (SPSS, 

Inc., Chicago, IL, USA). For descriptive analysis, number, percent-
age, mean, standard deviation, median, minimum, and maximum 

values were obtained. The average values of the MCT measured by 
the observer who repeated each measurement 3 times were used to 
compare measurements of the 2 different devices and to evaluate 
the relationship between MCT and the other variables.

Pearson’s correlation analysis was conducted to examine the 
relationship between the measured variables. The relationships be-
tween MCT assessed through PLEX Elite 9000 and possible con-
founding factors including age, gender, race, diabetes mellitus, sys-
temic hypertension, BMI, water intake in the previous 2 hours, 
SBP, DBP, OPP, SE, IOP, AXL, CCT, visual field MD, visual field 
PSD, and mean superior and inferior hemifield sensitivity were 
investigated. The evaluation of the relationships between MCT as-
sessed through Plex Elite 9000 and any OCT parameters (GCIPLT, 
RNFLT, PCT, and MCT) obtained using DRI OCT Triton was also 
evaluated.

Coefficient of variation (CoV) was used to analyze the interob-
server and intraobserver variability. CoV was calculated using the 
following formula: CoV% = (SD/mean) × 100. A CoV exceeding 
about 30% is often indicative of problems in the data or that the 
experiment is out of control.

Results

Demographic and Clinical Characteristics of the Study 
Population
The present study included 20 eyes of 20 patients affect 

by POAG. The mean age was 74.15 ± 8.39 (±standard de-
viation) (range 56–87 years) with a BMI of 27.82 ± 5.01 
kg/m2. Eight patients (40%) were females. Eighteen (90%) 
patients were Caucasian, while 2 (10%) were Latin Amer-
ican. Three patients had diabetes mellitus and 13 systemic 
hypertension (SBP was 134.25 ± 14.07, DBP 78.5 ± 10.01 
mm Hg, and MAP 95.5 ± 11.11). The water intake in the 
previous 2 hours was approximately 142.5 ± 185.16 mL.

143 μm 
141 μm 

148 μm 
147 μm 

91 μm 

1000 μm 1000 μm 1000 μm 1000 μm

Scan: 1

PLEX® Elite

Fig. 1. An image from Plex ELITE 9000 scan of the macula exported to ImageJ. The choroid was delineated over 
4 mm by 5 marked locations, centered on the fovea. The outer margin of the RPE was considered the anterior 
margin of the choroid, and the CSI was the posterior margin of the choroid. RPE, retinal pigment epithelium; 
CSI, choroidal-scleral interface.
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Table 1. Pearson’s correlations between MCT assessed using PLEX Elite 9000 and possible confounding factors

Mean MCT 2,000 μm  
temporal 
to the fovea

1,000 μm  
temporal 
to the fovea

Subfoveal 1,000 μm  
nasal 
to the fovea

2,000 μm nasal 
to  
the fovea

Age
Pearson’s r −0.39 −0.30 −0.38 −0.43 −0.41 −0.29
p value 0.1 0.21 0.11 0.07 0.08 0.23

Race
Pearson’s r 0.107 0.073 0.070 0.118 0.131 0.110
p value 0.664 0.765 0.777 0.631 0.594 0.654

Gender
Pearson’s r −0.372 −0.377 −0.377 −0.389 −0.389 −0.240
p value 0.117 0.111 0.112 0.100 0.100 0.322

Diabetes mellitus
Pearson’s r −0.244 −0.201 −0.221 −0.322 −0.183 −0.209
p value 0.315 0.410 0.363 0.179 0.454 0.391

Hypertension
Pearson’s r 0.102 0.197 0.139 0.126 0.077 −0.068
p value 0.678 0.418 0.571 0.607 0.754 0.782

BMI
Pearson’s r −0.518* −0.477* −0.511* −0.445 −0.497* −0.532*
p value 0.023 0.039 0.025 0.056 0.031 0.019

Water intake in the previous 2 hours
Pearson’s r 0.005 0.096 0.069 −0.053 −0.010 −0.069
p value 0.984 0.697 0.779 0.831 0.967 0.780

Glaucoma drugs, n
Pearson’s r 0.229 0.259 0.184 0.226 0.167 0.266
p value 0.346 0.284 0.451 0.353 0.494 0.271

IOP
Pearson’s r −0.305 −0.399 −0.334 −0.246 −0.262 −0.215
p value 0.204 0.090 0.162 0.309 0.278 0.376

SE
Pearson’s r 0.095 0.158 0.227 −0.007 0.034 0.045
p value 0.700 0.518 0.350 0.978 0.890 0.856

AXL
Pearson’s r −0.026 −0.168 −0.124 0.107 0.021 0.007
p value 0.916 0.492 0.614 0.663 0.934 0.977

CCT
Pearson’s r −0.099 0.068 −0.062 −0.013 −0.180 −0.287
p value 0.688 0.782 0.801 0.958 0.462 0.234

Cup-to-disc ratio
Pearson’s r −0.063 −0.054 0.011 −0.073 −0.139 −0.041
p value 0.799 0.826 0.964 0.767 0.571 0.867

SBP
Pearson’s r −0.144 −0.081 −0.104 −0.153 −0.217 −0.110
p value 0.557 0.742 0.672 0.531 0.371 0.655

DBP
Pearson’s r −0.146 −0.098 −0.058 −0.119 −0.229 −0.197
p value 0.550 0.690 0.814 0.629 0.345 0.418

Mean BP
Pearson’s r −0.147 −0.081 −0.123 −0.123 −0.190 −0.174
p value 0.549 0.742 0.616 0.616 0.437 0.476

Diastolic OPP
Pearson’s r −0.246 −0.223 −0.128 −0.219 −0.323 −0.287
p value 0.310 0.360 0.600 0.369 0.178 0.233

Systolic OPP
Pearson’s r −0.086 −0.198 −0.038 −0.108 −0.172 −0.069
p value 0.726 0.999 0.878 0.659 0.480 0.779

Mean OPP
Pearson’s r −0.074 0.026 −0.039 −0.065 −0.133 −0.130
p value 0.764 0.916 0.874 0.793 0.586 0.596

BMI, body mass index; SE, spherical equivalent; BP, blood pressure; OPP, ocular perfusion pressure. * p value <0.05. 
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Eight eyes were right and 11 were pseudo-phakic. 
Mean IOP was 15.35 ± 2.8 mm Hg, mean CDR was 0.8 ± 
0.12, and mean CCT was 530.2 ± 40.1 um. The MD was 
−6.52 ± 6.39 dB, and the mean PSD was 6.23 ± 3.95. The 
mean superior hemifield sensitivity was 21.51 ± 5.18 dB 
while in the inferior sector was 21.05 ± 7.26 dB.

Reproducibility
Macular choroidal measurements had good intraobserv-

er repeatability (CoV = 2.86% ± 0.49), while the interob-
server reproducibility was higher (CoV = 11.51% ± 1.28).

Correlation with Possible Confounding Factors
Mean MCT and each MCT measurement evaluated 

from images acquired using Swept-Source OCT-A PLEX 
Elite 9000 showed a significant negative correlation with 
BMI, except the subfoveal one which showed only a ten-
dency to be significant (r = −0.445, p = 0.056). By contrast, 
all the CT measurements were not significantly correlated 
with other possible confounding factors including age, 
gender, race, diabetes mellitus, systemic hypertension, 
water intake in the previous 2 hours, SBP, DBP, OPP (sys-
tolic, diastolic, and mean), SE, IOP, AXL, and CCT (Ta-
ble 1).

Correlation with Visual Field Indices
When correlation between PLEX Elite 9000 CT and 

visual field indices (MD and PSD) and mean superior and 
inferior hemifield sensitivity was analyzed, there was only 
a statistically significant correlation for MCT when mea-

sured at the subfoveal area and at 1,000 μm nasal to the 
fovea measurements and MD (r = 0.50, p < 0.05, and r = 
0.52, p < 0.05, respectively) (Table 2).

Correlation with OCT Parameters
When the relationship between PLEX Elite 9000 MCT 

and DRI OCT Triton OCT parameters such as GCIPLT, 
RNFLT, PCT, and MCT was calculated, only a positive 
statistically significant correlation was found between the 
2 MCT measurements and between MCT and PCT (r = 
0.944, p < 0.01, and r = 0.740, p < 0.01, respectively) (Ta-
ble 3).

Discussion

Since the choroid is a dynamic ocular structure, CT 
can change due to several factors [31], such as age, IOP, 
BP, refractive errors, and AXL. A thinner choroid is as-
sociated with older age, higher IOP, higher myopia, thick-
er CCT, and longer AXL [31, 32], while a thicker choroid 
to a higher diastolic perfusion pressure, a lower IOP, and 
male sex [32]. Furthermore, CT also varies on a diurnal 
basis [32], and a significant increase in CT happens dur-
ing the water drinking test in POAG [31].

The glaucoma vascular theory attributes the optic neu-
ropathy to intraneural ischemia for the hypoperfusion of 
the optic disc at the level of lamina cribrosa [34, 35]. Since 
the blood supply of the prelaminar portion of the ONH 
comes from the peripapillary choroid branches, several 

Table 2. Pearson’s correlations between MCT assessed using PLEX Elite 9000 and visual field parameters

Mean MCT 2,000 μm  
temporal 
to the fovea

1,000 μm  
temporal 
to the fovea

Subfoveal 1,000 μm  
nasal 
to the fovea

2,000 μm  
nasal to  
the fovea

MD
Pearson’s r 0.438 0.318 0.271 0.497* 0.518* 0.454
p value 0.061 0.185 0.262 0.030 0.023 0.051

PSD
Pearson’s r 0.121 0.168 0.207 0.078 0.028 0.100
p value 0.621 0.493 0.395 0.750 0.909 0.684

Mean superior hemifield sensitivity
Pearson’s r 0.054 0.068 −0.070 0.033 0.120 0.130
p value 0.827 0.782 0.777 0.893 0.625 0.597

Mean superior hemifield 
sensitivity

Pearson’s r 0.124 0.116 0.116 0.199 0.187 0.041
p value 0.613 0.636 0.636 0.413 0.442 0.866

* p value <0.05.
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studies are being conducted to investigate the relation-
ship between the choroidal circulation and glaucoma. In 
glaucomatous eyes, histologic and imaging (i.e., ultraso-
nography) studies on CT, as a marker of choroidal blood 
flow, have produced inconsistent findings [9, 12, 36]. The 
development of methods to measure CT in vivo has given 
a new boost to research in new directions for both normal 
and pathological processes, showing conflicting results 
[8, 18–29].

In this study, 2 different OCT devices were used and 
compared. The PLEX Elite 9000 OCT, although without 
a built-in analysis software, showed good images easy to 
analyze with an external program. A good intraobserver 
repeatability and interobserver reproducibility were 
found. Furthermore, an excellent correlation between the 
2 SS-OCT measurements (p < 0.01) was found for CT 
measurements (Table 3), while no other correlation was 
found between CT and other OCT parameters such as 
RNFLT and GCIPL (Table 3).

In this study, mean MCT measured (193.45 μm ± 
95.22 μm) was thinner when compared with results of 
other studies among healthy individuals, in particular 
Ruiz-Medrano et al. [37] showed that mean MCT was 
229.7 ± 66.1 μm in subjects older than 60 years. Further-
more, MCT was not correlated with any possible con-
founding factors, except with BMI (r = −0.518; p < 0.05).

To the best of our knowledge, this is the first study 
evaluating the relationship between BMI and CT in 
POAG patients. Yilmaz et al. [38] reported that higher 
BMI was associated with thinner choroids in healthy in-

dividuals, while Dogan et al. [39] showed that the MCT 
of the morbidly obese subjects was statistically thinner 
than that of the nonobese subjects. By contrast, another 
study [40] revealed in an obese group significant choroi-
dal tissue thickening subfoveally and at areas 500 μm tem-
poral, 500 μm nasal, and 1,500 μm nasal to the fovea (all 
p < 0.05) and reported a positive correlation between BMI 
and CT changes.

Furthermore, in the present study, we found a weak 
positive correlation between MCT and MD visual field: 
in particular, only the subfoveal and the nasal point at 
1,000 μm from the fovea measurements were correlated 
with MD. Due to the p values and the number of correla-
tions studied in Table 2, we could also hypothesize that 
this result could be obtained just for chance. The lack of 
correlation between CT and VF could be also related to 
the horizontal OCT scan we performed in this study, and 
a vertical OCT scan could have shown a better correlation 
to the visual field. In several other studies, no correlation 
between CT and glaucoma visual field progression was 
found in OAG [18, 21, 23, 41–47]. In particular, Nakaku-
ra et al. [41] found no significant difference between 
POAG and normal subjects for MCT measured by SS-
OCT, and besides this was not a significant predictive fac-
tor. In another study, also Karaca et al. [42] showed sim-
ilar results for MCT and PCT between healthy and POAG 
eyes with different severity of visual field defect. When 
macular and/or peripapillary CT was correlated with vi-
sual field MD, no significant correlation was found in 
glaucomatous patients [21, 28, 44].

Table 3. Pearson’s correlations between MCT assessed using PLEX Elite 9000 and OCT parameters assessed using 
DRI OCT Triton

Mean MCT 2,000 μm 
temporal 
to the fovea

1,000 μm 
temporal 
to the fovea

Subfoveal 1,000 μm 
nasal 
to the fovea

2,000 μm 
nasal to the 
fovea

Total RNFL
Pearson’s r 0.014 −0.077 −0.107 0.035 0.125 0.089
p value 0.955 0.754 0.662 0.886 0.611 0.717

Total PCT
Pearson’s r 0.740*** 0.498* 0.596** 0.814*** 0.764*** 0.800***
p value <0.001 0.030 0.007 <0.001 <0.001 <0.001

Total GCIPL
Pearson’s r 0.148 0.080 0.064 0.168 0.245 0.134
p value 0.545 0.744 0.796 0.493 0.312 0.585

Total MCT
Pearson’s r 0.944*** 0.840*** 0.909*** 0.970*** 0.915*** 0.801***
p value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

* p value <0.05. ** p value <0.01. *** p value <0.001.
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In different studies using SS-OCT, Song et al. [45] and 
Zhang et al. [18] showed no correlation between PCT or 
MCT and MD in glaucomatous eyes. Also, the Beijing Eye 
Study 2011 [46] could not find any association between 
subfoveal CT and MD in patients affected by glaucoma, 
including OAG, primary angle-closure glaucoma, and 
secondary angle-closure glaucoma.

Different results were reported by Park et al. [43] who 
found a PCT thinning in OAG and pre-perimetric glau-
coma patients relative to normal controls; PCT was re-
lated to disc area, AXL, and age, but not with glaucoma 
severity (MD) in OAG. Lin et al. [47] reported that in all 
the glaucoma subjects of their study, PCT was not sig-
nificantly correlated with white-on-white MD (p > 0.05), 
but a significant correlation with blue-on-yellow MD (p 
< 0.05) was found. Furthermore, in early glaucomatous 
eyes, PCT showed significant correlations with white-on-
white MD and blue-on-yellow MD (p < 0.05).

The current study has some limitations. A small num-
ber of eyes were measured, making it difficult to make the 
results generalizable for all eyes. Furthermore, a control 
group was not used, and the manual segmentation of 
MCT could have reduced the accuracy of the CT assess-
ment, although the CoV was good. Besides, we did not 
evaluate the relationship between IOP-lowering drugs 
and CT, even if in a recent study IOP values were related 
to CT [48].

Conclusion

Our study showed a strong correlation between CT 
and BMI. Further studies are needed with a larger num-
ber of patients to evaluate whether MCT would be a use-
ful marker to aid in evaluation for glaucoma detection 
and progression.
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