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The Lightning Power Electromagnetic Simulator
for Transient Overvoltages (LIGHT-PESTO) Code:

An User-Friendly Interface With the
MATLAB-Simulink Environment
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Massimo Brignone , Member, IEEE, and Federico DelfinoAQ1 , Member, IEEE

Abstract—The protection of power lines from lightning tran-1

sients is a crucial issue that has involved the efforts of many2

researchers around the world. The need of relying on a precise3

method for the computation of the overvoltages waves travelling4

on the transmission lines is fundamental when the possible occur-5

rence of flashovers has to be evaluated. The overvoltages behavior6

is directly related to the complexity of the power systems: as7

a consequence, a tool able to take into account this factor8

has a strong importance in the research framework. This let-9

ter presents the Lightning Power Electromagnetic Simulator for10

Transient Overvoltages (LIGHT-PESTO) code, which is based11

on an interface of a previous developed algorithm for the12

computation of lightning transients on a power line with the13

MATLAB-Simulink environment. The proposed interface allows14

the user to set in an easy and intuitive way the main parameters15

related to the lightning channel, to the overhead transmission16

lines, to the ground and to the surrounding power system.17

Index Terms—Lightning, power systems protection, numerical18

tools.19

I. INTRODUCTION20

L IGHTNING transients can seriously affect the reliabil-21

ity of the transmission and distribution lines [1]. When22

we deal with them, two main causes of damage can be dis-23

tinguished: direct lightning events (i.e., when the lightning24

directly hits the power system) and indirect lightning events25

(i.e., when the lightning hits the ground close to the power26

system). The first category, even if extremely dangerous, is27

less frequent, while the second one is much more common28

and represents the typical source of damage for power systems29

characterized by low voltage rating (such as distribution lines).30

From the computational point of view, the effect of direct31

events can be easily computed placing a current source in32

parallel with the lightning channel impedance in the strik-33

ing point, while the indirect ones requires the solution of the34
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Maxwell’s equations for the computation of the electromag- 35

netic (EM) fields and the solution of the field-to-line coupling 36

problem. 37

Despite the high number of possible solutions, based on ana- 38

lytical [2]–[6] or numerical approaches [7]–[10], if one needs 39

to take into account the complexity of the power system, he has 40

to rely on the numerical methods. Among them, the bench- 41

mark is represented by LIOV [7], [9], a numerical method 42

based on the solution of the Agrawal’s equations [11] through 43

a second-order FDTD approach. 44

In [10], the authors proposed a numerical approach based 45

on the Agrawal’s coupling model interfaced with PSCAD- 46

EMTDC able to: i) “account for the complexity of a real- 47

istic distribution network”, ii) “automatic distinguish between 48
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indirect and direct strikes”, iii) “account for the power network49

pre-contingency conditions in a numerically efficient way”.50

Such approach has been validated in [12], [13].51

The approach was initially based on the computation of52

the EM fields through the adoption of a database contain-53

ing EM fields generated from a current with a specified54

time domain waveform with unitary peak at different dis-55

tances. Such approach fails from a computational point of56

view when one aims at accounting for the front time effect57

because one database should be constructed for any consid-58

ered front time value. For what concerns the Finite-Difference59

Time-Domain (FDTD) coupling model, the approach proposed60

in [10] was initially based on the update of the current at line61

extremities through the adoption of an extrapolation technique.62

According to [14], such approach can fail when the line length63

is comparable to the space step.64

In this letter the authors present the updating of the code65

in [10]. The update involves: a) the implementation of analyt-66

ical expressions for the lightning EM fields with any channel-67

base current and b) the implementation of the characteristic68

method for the update of the current at line extremities.69

Moreover, in this letter the code is interfaced with the70

well-known MATLAB-Simulink environment. The interface71

has been developed using the MATLAB App Designer and72

allows the external user to easily set i) the lightning parame-73

ters, such as the channel-base current data, the channel height74

and the propagation speed, ii) the ground data (permittivity75

and conductivity) and iii) the power system parameters, with76

the possibility of considering multiple lines not only in parallel77

but connected through some discontinuities points.78

This letter is organized as follows: Section II recalls the79

main assumptions and the main characteristics on which the80

code is based, Section III presents the graphical interface and81

finally Section IV is dedicated to the conclusions.82

II. THE CODE83

The first issue to be considered is the distinction84

between direct and indirect events. The code distinguishes85

among them according to the conventional electrogeometric86

model (EGM) [15]. If a direct event is detected, as previously87

recalled, it can be simulated basically with the injection in the88

striking point of a current source which can be represented by89

the channel-base current function in parallel with a suitable90

resistance accounting for the lightning channel. On the other91

hand, when an indirect event is detected the interaction of the92

lightning with the transmission line is much more complicated93

and is based on two separated phases: A) the EM fields compu-94

tation and B) the field-to-line coupling based on the Agrawal’s95

equations.96

A. The EM Fields Computation97

The field-to-line coupling equations need as input the98

knowledge of the radial and vertical electric field that illu-99

minate the line.100

As in [16] the computation of the EM fields are per-101

formed analytically with any channel-base current, using the102

TL model [17] for the return stroke channel model. Their103

computation requires as input the return stroke channel height, 104

the return stroke velocity, the channel-base current waveform 105

(including the peak value) and the characteristics of the soil 106

(permittivity and conductivity). It is important to note that 107

the soil dependence is taken into account with the so-called 108

Cooray-Rubinstein approximation [18], [19]. 109

The points at which the radial and vertical electric field 110

must be evaluated to be inserted in the coupling equations 111

are automatically determined from the knowledge of the line 112

coordinates, line discretization and of the striking point. Due 113

to the analytical solution provided the procedure is extremely 114

fast and can be evaluated wherever the power system is placed. 115

B. The Field-to-Line Coupling 116

As proposed in [10], the field-to-line coupling is based on 117

the second-order FDTD scheme of the Agrawal model. It 118

receives as input the EM fields and provides as output the 119

update of the voltages and of the currents in the internal points 120

of the line. 121

Concerning the line terminations, as well as the disconti- 122

nuities points, the update of the current cannot be achieved 123

through the FDTD scheme since they represent the domain 124

boundaries. As a consequence, differently from [10], their 125

update is obtained through a scheme based on the characteris- 126

tic method proposed in [14]. Such approach avoids numerical 127

instability related to the possible low ratio between the space 128

step and the line length without any reduction in the precision 129

of the computation. 130

The spatial step and the time step are chosen according to 131

the well-known Courant stability condition for second order 132

FDTD schemes [10]. 133

An important novelty of the proposed coupling scheme con- 134

sists of the treatment of discontinuities/line terminations char- 135

acterized by a very high impedance (such as the surge arresters 136

in their first part of the V−I characteristic). According to [10], 137

if no solution is adopted, some numerical oscillations can 138

appear. LIGHT-PESTO adopts the solution proposed in [10] 139

where the device located at the point of interest is posed in 140

parallel with an impedance and a current generator such that 141

the total impedance viewed from the terminals is equivalent 142

to the previous one, but avoiding the numerical oscillations 143

(see [10] for details). 144

III. THE INTERFACE 145

The interface with the MATLAB-Simulink environment 146

has been obtained through the App Designer provided by 147

Mathworks. 148

The graphical interface allows the user to set easily all the 149

parameters of the lightning current, ground and lines. 150

Moreover, as shown in Fig. 1, the graphical interface pro- 151

vides the side view, the top view and the 3D view of the 152

area where the line is located and where the stroke occurs. 153

A. Lightning Current Parameters 154

As shown in Fig. 2, the user can set the stroke coordinates, 155

the channel height, the return stroke speed and the channel- 156

base peak current. 157
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Fig. 1. LIGHT-PESTO main view.

Fig. 2. LIGHT-PESTO lightning parameters.

Moreover, six different channel-base models have been158

implemented for sake of completeness. Three of them are159

related to the well-known Heidler’s model [20], while the160

other three refers to the ones proposed in [21]–[23]. Focusing161

on the Heidler’s model, the user can set the typical first stroke162

waveform, the typical subsequent stroke waveform made by163

a sum of two Heidler’s functions or a different Heidler’s wave-164

form evaluated from the main lightning parameters according165

to [24]. According to the corresponding papers, when we deal166

with the last four channel-base functions, it is possible to set167

the equivalent front duration (τd30/90), the total charge, the168

time to half-value and the maximum derivative.169

B. Ground Parameters170

The ground can be assumed as a Perfect Electric171

Conductor (PEC) or it can have a finite ground conductivity172

Fig. 3. LIGHT-PESTO ground parameters.

and permittivity, assignable in the corresponding text boxes 173

(Fig. 3). 174

C. Simulation Details 175

The duration of the simulation as well as the time step (dt) 176

can be set in an independent way (Fig. 4). Consequently, the 177

space step (dx) is automatically computed according to the 178

Courant stability condition and to the characteristic method for 179

the update of current at the line terminals [14]. The number 180

of lines illuminated by the lightning stroke can be set in this 181

input window. 182

D. Lines Parameters 183

In this mask (Fig. 5), each line can be set independently 184

according to its geometrical and electrical data. In particular, 185

the user can define the coordinates of the line, the number 186

of conductors, the diameter, the distance from the y-axis and 187

the height. Moreover, a checkbox denotes if such conductor is 188

a shield wire or not. 189

In addition to this, the user can decide where the voltage 190

and current time-domain waveforms will be measured. 191
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Fig. 4. LIGHT-PESTO simulation parameters.

Fig. 5. LIGHT-PESTO line parameters.

Fig. 6. LIGHT-PESTO discontinuities parameters.

The two buttons called “Start Line” and “End Line” open192

the Simulink interface where the user has the possibility to193

characterize the boundary conditions at the beginning and at194

the end of the line.195

The possibility of considering discontinuities (Fig. 6) along196

the line (surge arresters, laterals, etc) is provided by inserting197

the desired number of them in the discontinuities mask. By198

opening the mask with the “Set” button, it is possible to define199

the location, the number of conductors and which of them are200

involved. As for the line terminations, in this window through201

the button “Design”, the user shall define the electrical circuit202

connected to the considered discontinuity.203

E. Simulation and Results204

The simulation can be easily launched by clicking on the205

“Run” button and the results appear in the corresponding206

window (Fig. 7).207

Fig. 7. LIGHT-PESTO results.

For each line, the interface provides the voltage and the 208

current time-domain waveforms calculated on each conductor 209

in the desired point and the maximum voltage occurred on the 210

line during all the simulation. 211

The computational time is strictly related to the hardware 212

used for the simulations. However, on a Microsoft Windows 213

10 PC equipped with 16 GB of RAM and Intel Core i7- 214

2600 CPU at 3.4 GHz, the required time to compute the 215

effects of a single lightning stroke on the power system is 216

about 3 seconds. 217

IV. CONCLUSION 218

This letter presents a new user-friendly interface between 219

a numerical code and the MATLAB-Simulink environment for 220

the computation of the lightning transients on a power system. 221

The work focused on presenting the main characteristics and 222

assumptions on which the numerical code is based and on the 223

graphical interface provided to the external user, which allows 224

him/her to easily set the lightning parameters, the ground 225

parameters and the power system details. As a conclusion, 226

the proposed interface can be useful when the protection of 227

the electric infrastructures requires suitable and user-friendly 228

instruments able to consider the complexity of the surrounding 229

power system. 230
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