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Abstract In this work an optimization approach for defining loading plans for trains
in seaport container terminals is presented. The problem consists in defining the
assignment of containers of different length, weight and value to wagon slots of a
train, in order to maximize the total value loaded on the train and to minimize
unproductive movements, both in the stacking area and of the crane during the
loading process. Due to the difficulty in solving this problem for real scenarios, a
MIP heuristic solution approach based on a randomized matheuristics is proposed.
Computational results are presented and discussed, showing the effectiveness of the
proposed heuristic solution method.
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1 Introduction

The landside transport planning represents a crucial process in seaport container
terminals for its impact on congestion and pollution and for the stronger rules
imposed to terminals regarding the time spent by import and export containers in
the stacking areas. Container terminals have to reach automation and efficiency in
their whole organization. Optimization methods have been applied to the decision
problems arising in many processes in container terminals, as shown in the surveys
by Steenken et al. (2004) and Stahlbock and Voss (2008). This chapter presents an
optimization approach for defining loading plans for trains.
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Some research studies focus on train load planning problems in landside inter-
modal terminals. Bostel and Dejax (1998) propose some models and heuristics for
container allocation problems on trains arising in rail-rail terminals with rapid
transfer yards. Corry and Kozan (2006, 2008) face the problem of assigning con-
tainers to train slots considering, in their second work, different types of containers
and loading patterns and minimizing the weighted sum of number of wagons and
equipment working time. They propose metaheuristics, such as local search and
simulated annealing, to solve the problem in practical applications. Only in a
more recent work Bruns and Knust (2012) consider real weight constraints for
wagons.

Studies on the Train Load Planning Problem (TLPP) arising in seaports started with
Ambrosino et al. (2011) that, inspired by Bruns and Knust (2012), extended their
models for a sequential train load by including the reshuffles in the stacking area, a
crucial aspect in maritime container terminals. A more general train loading model, not
imposing sequential loading but allowing also unproductive movements of the crane,
is presented in Ambrosino et al. (2013) and in Ambrosino and Siri (2014). In the first
work this general model is used for comparing different train loading policies and
stacking strategies. In the second work different models are analyzed to identify the
most suitable one for solving real problems in maritime container terminals (i.e.,
providing good and applicable solutions in an acceptable CPU time). Due to the
difficulty in solving the model presented in Ambrosino and Siri (2014) for real
scenarios, this chapter proposes a Mixed Integer Programming (MIP) heuristic
approach consisting in a Randomized Neighborhood Search (RANS) algorithm firstly
introduced by Anghinolfi and Paolucci (2011) and successfully applied to different
logistic problems by Ambrosino et al. (2011) and by Anghinolfi and Paolucci (2014).

The chapter is organized as follows. Section 2 introduces the problem and its
mathematical formulation. Section 3 describes the MIP heuristic approach, Sect. 4
reports the experimental results and conclusions are drawn in Sect. 5.

2 Problem Definition and Mathematical Formulation

The considered problem is inspired by a real case of an Italian port. The TLPP
considers only one train at a time and, assuming shuttle trains directed to an inland
port, neglects the destination of containers. Containers are characterized by length,
weight and a priority value reflecting their importance. Containers that must be
loaded on trains are stored in stacks of different heights in a specific stacking area
close to the railway yard. From there, they are moved near the tracks with trailers and
finally loaded on a train by a crane. Each train is composed of a set of wagons of
different types, i.e., with different length and weight capacity, different possible
configurations in terms of number and length of slots and weight capacity of each
slot (more details are given in Ambrosino and Siri (2014)). The assignment of
containers to wagon slots accounts for length and weight constraints.

The crane usually starts loading the train from the first wagon and goes on along
the train without changing direction. Consequently, reshuffles may occur when the
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crane needs to load on the currently served wagon a container that is located below
other containers in a stack. Another possibility, which allows to reduce reshuffles in
the yard, is that the crane proceeds to the next wagon leaving a slot free, and it moves
back later if a suitable container for such slot becomes available on the top of a stack;
this latter movement represents an unproductive operation of the crane.

Unproductive operations, i.e., reshuffles in the stacking area and unproductive
moves of the crane, represent a cost for the terminal and slow down the loading
operations. For this reason, when dealing with the TLPP, they must be minimized.
Moreover, the load plan should be realized in order to maximize the train utilization; in
this chapter this goal is achieved by maximizing the total value of loaded containers.

The MIP formulation proposed in Ambrosino and Siri (2014) for solving the
TLPP described above is here briefly reported. First of all, let us introduce the
notation used in the multi-objective MIP model.

Let C denote the number of containers in the stacking area, W the number of
wagons of the train and S the number of train slots. For each container i¼ 1,. . .,C, wi

is the weight (expressed in tons), λi the length (i.e., 200 or 400), πi the value. As for the
length, containers are stored in homogeneous stacks of 200 or 400. The relative
position of containers in the stacks is given by γi,j , i, j 2 {1,. . .,C}, where γi,j ¼ 1
if container i is over container j in a stack, and γi,j ¼ 0 otherwise. Let Q represent the
height of the stacks (i.e., the maximum number of tiers). For each wagon ω ¼ 1,. . .,
W, Sω is the subset of slots, Bω the subset of weight configurations, and ϖω the
weight capacity. Moreover, Bs,ω is the subset of weight configurations for slot s of
wagon ω, μs the length of slot s (i.e., 200 or 400), ρs the position of slot s in the train
(expressed in TEUs) with respect to the first slot of the first wagon, δb,s the weight
capacity of slot s in the weight configuration b, and Ω the weight capacity of the
train. When loading the train, the maximum number of loading operations (T ) is
equal to the TEU capacity of the train, which corresponds to loading only 200

containers. The actual number of operations executed depends on the cargo compo-
sition (number of 200 and 400 containers loaded) and it is equal to the number of
containers loaded on the train, that is not greater than T.

Finally, α and β are, respectively, the unitary reshuffling and crane movement
costs.

The decisions are related to:

• The choice of a configuration b for each wagon ω (variables fω,b 2 {0,1},
ω ¼ 1,. . .,W, b 2 Bω );

• The assignment of a container i to a slot s at operation t (variables xi,s,t 2{0,1},
i ¼ 1,. . ., C, s ¼ 1,. . ., S, t ¼ 1,. . .,T ); obviously, container i can be assigned to
slot s only if λi ¼ μs .

The number of reshuffles is accounted by means of variables yi,j 2 {0,1} defined
for i, j 2 {1,. . .,C} such that γi,j ¼ 1 then, yi,j ¼ 1 if container i is reshuffled to load
container j. Variables zt� 0, t¼ 2,. . .,Tmodel the unproductive distance traveled by
the crane due to operation t; assuming the crane initially positioned over the first
wagon (e.g., on the left end of the train), zt equals the distance in TEUs covered
backward by the crane (e.g., from right to left) between operation t – 1 and t. Finally,
technical variables ut � 0, t ¼ 2,. . .,T are introduced for not computing the return of
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the crane to its starting position after the last loading operation as an unproductive
movement. The adopted MIP formulation is the following:
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The objective function (1) minimizes a weighted sum of costs corresponding to
reshuffles in the stacking area and unproductive crane movements, and maximizes
the total value of the loaded containers. Constraints (2)–(4) regard the assignment of
containers to train slots. Thanks to (2), each container can be assigned at most to one
slot; constraints (3) require that at most one container-slot assignment is done for
each operation, and (4) guarantee that at most one container can be loaded in each
slot. Constraints (5)–(8) impose weight restrictions. In particular, for each wagon, a
given weight configuration must be chosen, as imposed by (5), and constraints (6),
(7) and (8) represent the weight capacity constraints for each slot, each wagon and
for the whole train, respectively. Constraints (9)–(11) ensure that the reshuffling
variables yi,j and the variables zt and ut related to the crane movement are correctly
computed. It is important to remember that container i is re-handled if, when
operation t is executed, a container j, located in the stacking area under i, is loaded
on the train while container i has not yet been loaded. Thus, in constraints (9), if, for
a pair of containers i and j such that γi,j ¼ 1, j is loaded before i, the left hand side
assumes a positive value, forcing variable yi,j to be positive; note that the second term
in the right hand side of (9) is used for not considering the loading of i as a cause of
reshuffling if container j is not loaded on the train.

2.1 A Simple Initialization Heuristics

Since in some test cases it has been observed that the MIP solver hardly finds a first
feasible solution different from the trivial one (which corresponds to load nothing on
the train), a simple procedure to generate a non trivial starting solution has been
designed. Such a procedure assigns one container per wagon so that unproductive
movements of the crane, as well as reshuffles in the storage area, do not occur. The
procedure considers the wagons in sequence and iteratively scans the top of the
stacks of containers in the stacking area searching for a container compatible (i.e., for
length and weight) with the available slots on the current wagon. Whenever such a
container is found, it is removed from the stack and assigned to the relevant wagon
slot and the next wagon is considered. If a container compatible with the current
wagon is not found, the wagon remains empty and the procedure goes on to consider
the next wagon. Then, the initial solution loads a number of containers equal to the
number of wagons in the best case, while it loads nothing (trivial feasible solution) in
the worst case. Anyway, in the experimental tests, the worst case never occurs when
applying the initialization heuristics.

3 The MIP Heuristic Solution Approach

Constraints (2)–(4) and (7) of the TLPP model are typical constraints of the
Generalized Assignment Problem, which is a classical combinatorial optimization
problem known to be NP-hard. Thus also the TLPP is NP-hard. Due to the difficulty
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in solving this model, the solution approach based on the RANS heuristics intro-
duced by Anghinolfi and Paolucci (2011) is here described and applied to the TLPP.

The RANS heuristics is a simple iterative search algorithm that starts from a first
feasible incumbent solution xc for the original MIP problem and iterates the follow-
ing three steps until the maximum time limit is reached:

1. Variables fixing by random choices. A partially fixed MIP sub-problem is defined
by fixing the values of a subset of k randomly selected binary and integer vari-
ables equal to the ones in xc. The parameter k is initialized equal to the 10% of
total number of binary and integer variables.

2. Local search. The sub-problem is solved by a MIP solver fixing tmip as maximum
allowed time. The tmip parameter is set equal to max{Tmin , 2 � trel}, where
Tmin ¼ 30 s and trel is the time needed to solve the linear relaxation of the original
problem. If a new best solution is found, the incumbent xc is updated.

3. Parameter adjustment. If a new best solution is found in at most tmip /2, then k is
increased as k ¼ k�1.1; otherwise k is reduced as k ¼ k�0.9 and a new iteration
starts.

RANS operates at the higher level as an iterated local search: steps 1 and 3 define
the area in the solution space that is explored in step 2 by a local search. The solution
neighbourhood used by RANS is randomly defined by hard fixing a subset of
incumbent variable values. The dimension of such neighbourhood is controlled by
k that is adjusted depending on the experienced difficulty in solving sub-problems
(if the condition in step 3 is verified, the sub-problem is considered easily solved). In
this way the exploration is terminated in a reasonable short time and the choice of the
initial value of k becomes not critical. The self-tuning mechanism used for k makes
also the choice of the Tmin value not critical, since it allows reducing the
neighbourhood size so that the sub-problems can be easily solved. This kind of
self-tuning used for k is similar to the adaptation of the fraction of variables to be
hard fixed in the mutation phase of the polishing MIP heuristics (Rothberg 2007).

4 Experimental Analysis

The proposed approach has been evaluated by considering 30 instances, randomly
generated with reference to a real Italian case study. These instances are divided in
six groups (A,. . .,F) that differ for the number of containers stored in the yard
(30-40-50) and for the height of the stacks in the yard (Q ¼ 4 or 6). In each instance,
60% of containers are 200 long. 200 containers have a π value equal to 10, 15 or
20, randomly assigned with equal probabilities, whereas these values are doubled for
400 containers. 200 container weights, expressed in tons, are uniformly distributed in
U[6, 24], whereas 400 container ones in U[10, 30]. Containers are stored in stacks in
accordance with their length. The train is composed of 15 wagons and its maximum
load is 900 tons. The wagon composition of the train is randomly generated
assuming three types of wagons with different maximum weight, available slots
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and number of alternative configurations. The train capacity (T ) ranges from 33 to
42 TEUs. In the computational tests α and β are fixed to 5 in order to better represent
the real operative scenario, in which the cost of these unproductive movements is
almost equivalent. It is important to note that these weights have to be defined having
in mind that the main aim is to load the train; some preliminary tests for tuning these
weights have been executed.

RANS has been implemented in C++ on a 2.4GHz Intel Core 2 Duo E6600, 4GB
RAM notebook, and Cplex 12.5 is the MIP solver used.

Table 1 shows the dimensions of the instances in terms of number of variables
and constraints of the proposed model and the values of the objective function
obtained by the MIP solver for different CPU time limits, i.e., 600 s, 1200 s,
1800 s, 3600 s and 14,400 s.

From Table 1 it is apparent that the objective (1) cannot assume values strictly
greater than zero, as these are dominated by the trivial zero-cost solutions
corresponding to not loading any container on the train. For shorter computational
times the MIP solver was not able to find a solution different from the trivial one for
several instances and even after 4 h of computation only the zero-cost solution was
found for instance 26.

Figure 1 shows the behaviour in time of the three components of the objective
function produced by the MIP solver together with the trend of the optimality gap for
the six groups of instances.

The trend of the most relevant objective, i.e., the value of the loaded containers, is
non-decreasing, whereas a non-monotonic trend can be observed for the cost of
reshuffling and of unproductive movements of the crane. This is due to the fact that a
possible increase in such components may lead to an improvement of the overall
objective. This is also confirmed by the behaviour of the optimality gap that is
monotonically decreasing in time. However, the considered instances appear diffi-
cult to solve since the gap for most of the instance groups is quite high even after 4 h
of computation.

Table 2 compares the average results obtained by RANS over 5 runs with the ones
of the MIP solver, fixing for both methods a maximum computation time which
ranges from 600 to 3600 s.

Table 2 provides the percentage deviations of the results of RANS (computed as
100�(RANS_obj –MIPsolver_obj)/|MIPsolver_obj|) aggregated for the six groups of
instances and, in the last row, shows the average percentage deviations over all the
set of instances. Table 2 clearly shows the effectiveness of RANS, which was able to
find better solutions even with a short computation time. Then, Table 3 summarizes
the percentage deviations of the RANS results after 10 min with respect to the MIP
solver ones for all the different available computation times. Here the values in bold-
face denote a prevalence in the average of RANS over the MIP solver, and it is easy
to note that only for three instance groups and after 4 h of computation the MIP
solver provided better results.

Further tests investigated the quality of the solution generated by the initialization
heuristics and the possible benefits of this initialization for the MIP solver. Table 4
shows the percentage deviations of the MIP solver and RANS results with respect to
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the initial solution, pointing out that, although quite simple, the initialization heu-
ristics produced average results better than the ones of the MIP solver after half an
hour of computation for groups B and F, and even after an hour for groups D and E.

Table 5 provides an overall comparison of the RANS results after 600 s with the
ones produced after 1 h by the MIP solver with and without the heuristics starting
solution initialization. The columns of Table 5 show the average values for the six
groups of instances for the loaded value (L ), the number of reshuffles (R), the
number of unproductive crane movements (U ) and the percentage TEU occupancy
on the train (O). In addition, Table 5 shows, for the initialized MIP and the RANS,
the percentage deviation of the objective values from the MIP solver ones (D). The
heuristics initialization produced an overall benefit in the objective function
results obtained by the MIP solver, even if there is a worsening both in the overall

Table 1 The MIP solver results

Instances Variables Constraints 600 s 1200 s 1800 s 3600 s 14,400 s

1 53,154 373 –100 –370 –415 – 477.5 –517.5

2 36,059 362 –295 –600 –627.5 –665 –642.5

3 25,807 318 –470 –515 –515 –555 –555

4 38,969 351 –237.5 –270 –280 –407.5 –597.5

5 33,190 340 –300 –397.5 –502.5 –520 –510

6 30,772 372 –232.5 –140 –140 –505 –505

7 62,400 438 0 –190 –110 –150 –470

8 36,092 394 –120 –195 –390 –467.5 –530

9 33,386 383 –497.5 –502.5 –550 –565 –565

10 55,185 394 –77.5 –80 –315 –307.5 –375

11 29,125 356 –552.5 –605 –605 –605 –605

12 47,991 389 –280 –505 –510 –552.5 –552.5

13 40,909 367 –330 –450 –515 –405 –405

14 31,108 367 –550 –610 –610 –610 –610

15 55,617 378 0 –125 –142.5 –402.5 –457.5

16 55,651 414 –100 –100 –110 –337.5 –557.5

17 48,026 425 –130 –130 –130 –192.5 –540

18 48,294 403 0 –60 –65 –225 –535

19 55,644 403 0 –97.5 –115 –377.5 –430

20 51,762 436 –85 –205 –210 –210 –407.5

21 48,210 368 –50 –180 –302.5 –530 –530

22 59,534 379 –262.5 –300 –362.5 –415 –585

23 83,495 401 0 –200 –260 –277.5 –492.5

24 69,455 401 0 0 –285 –370 –297.5

25 100,716 467 –40 –40 –40 –150 –447.5

26 65,817 438 0 0 0 0 0

27 63,887 449 0 –70 –400 –440 –422.5

28 59,968 460 –80 –80 –302.5 –412.5 –375

29 64,633 471 –100 –100 –247.5 –367.5 –520

30 51,120 438 –225 –225 –267.5 –557.5 –562.5
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loaded value and in the percentage occupancy of the train. On the other hand, the
average RANS results are the best for the overall objective, the loaded value and
train occupancy, paying this with a worse value for the two less important objectives.
Finally, note that the 5% confidence interval for the average percentage deviations of
RANS results in 600 s from MIP solver results in 1 h is [–66.49%, –14.29%],
whereas from the initialized MIP solver is [–36.85%, –20.33%], thus denoting that in
both cases RANS produced, on average, statistically significant better results.

Although the dimensions assumed for the yard in the previous experimental
analysis are representative of the real case study used as reference, two final tests
were performed in order to evaluate the ability of the proposed method to scale for
larger yards. Therefore, two additional scenarios, denoted byMedium (M) and Large
(L), respectively characterized by 100 and 500 containers in the yard, were randomly
generated. The MIP model for scenario M includes 167,395 variables and 635 con-
straints, whereas the one for scenario L presents 675,887 variables and 2046
constraints. Table 6, analogously to Table 5, shows the comparisons between the

Table 2 Percentage devia-
tions between RANS and MIP
solver results

Groups 600 s 1200 s 1800 s 3600 s

A –137.40 –33.80 –24.24 –6.36

B –175.09 –175.19 –116.62 –46.76

C –40.33 –69.34 –56.65 –15.63

D –360.29 –370.59 –346.60 –113.16

E –814.71 –446.06 –340.59 –97.51

F –400.86 –459.51 –92.18 –35.51

Averages –285.28 –245.25 –165.25 –53.07

Table 3 Percentage deviations of the RANS results after 600s w.r.t. the MIP solver results

Groups 600 s 1200 s 1800 s 3600 s 14,400 s

A –137.40 –30.55 –20.32 –1.55 7.91

B –175.09 –153.31 –94.21 –28.09 14.35

C –40.33 –60.66 –47.65 –7.55 –4.62
D –360.29 –349.76 –315.58 –86.61 5.06

E –814.71 –459.69 –345.90 –89.69 –19.48
F –400.86 –463.37 –85.75 –25.97 –19.45
Averages –285.28 –237.98 –153.84 –40.39 –2.13

Table 4 Percentage devia-
tions of the initialization heu-
ristic solutions w.r.t. the MIP
solver and RANS results

Groups

MIP Solver RANS

600 s 1200 s 1800 s 3600 s 600 s

A –44.97 17.78 24.14 35.55 35.82

B –100.65 –87.40 –49.89 2.51 24.57

C 9.68 10.62 17.36 34.61 38.93

D –190.41 –177.10 –156.76 –20.52 37.34

E –428.49 –202.15 –134.66 –3.38 42.86

F –227.92 –260.22 –19.62 19.29 36.44

Averages –142.23 –108.21 –54.40 11.07 35.99
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results obtained for the two new scenarios by the MIP solver (with and without
initialization) in 3600 s and RANS in 600 s. The greater difficulty in finding good
solutions for these new scenarios is highlighted by the low train occupancy levels
obtained by the MIP solver. Better results are produced when the solver started from
the solutions generated by the initialization heuristics, even if the final levels of
occupancy of the train capacity are still quite unsatisfying. Note that the improve-
ment obtained in 1 h by the MIP solver with respect to the starting solutions are only
3.70% for scenario M and 33.44% for scenario L. On the other hand, even for these
larger cases, RANS shows its ability to find high quality results in an acceptable
short time, in particular being able to exploit all the available train load capacity.

5 Conclusions

This chapter discusses a solution approach based on a MIP heuristics to the MIP
model proposed for the train load planning problem at seaport terminals. Such
heuristics performs a randomized iterative local search exploring a sequence of
solution neighbourhoods by defining and solving MIP sub-problems. Experimental
tests performed on a set of random instances, generated with reference to a real
terminal context, showed the difficulty in solving the presented MIP model and the
effectiveness of the proposed heuristic method to find good solutions in an accept-
able computation time.
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