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Abstract: One of the goals of person re-identification systems is to support video-surveillance operators and forensic investigators
to find an individual of interest in videos acquired by a network of non-overlapping cameras. This is attained by sorting images
of previously observed individuals for decreasing values of their similarity with a given probe individual. Existing appearance
descriptors, together with their similarity measures, are mostly aimed at improving ranking quality. We address instead the issue
of processing time, which is also relevant in practical applications involving interaction with human operators. We show how a
trade-off between processing time and ranking quality, for any given descriptor, can be achieved through a multi-stage ranking
approach inspired by multi-stage classification approaches, which we adapt to the re-identification ranking task. We analytically
model the processing time of multi-stage system and discuss the corresponding accuracy, and derive from these results practical
design guidelines. We then emprically evaluate our approach on three benchmark data sets and four state-of-the-art descriptors.

1 Introduction

Person re-identification is the computer vision task of recognizing
an individual over a network of video surveillance cameras with
non-overlapping fields of view [1]. One of its applications is to sup-
port surveillance operators and forensic investigators in retrieving
videos showing an individual of interest, given an image as a query
(probe). To this aim, the video frames or tracks of all the individ-
uals (template gallery) recorded by the camera network are ranked
in order of decreasing similarity to the probe, to allow the user to
find the occurrences (if any) of the individual of interest hopefully in
the top positions. This is a challenging task in typically surveillance
videos, due to low image resolution, unconstrained pose, illumina-
tion changes, and occlusions, which do not allow to exploit strong
biometrics like face. Clothing appearance is therefore the most
widely used cue; other cues like gait and anthropometric measures
have also been investigated. Most of the existing techniques are
based on defining a specific descriptor of clothing appearance (typi-
cally including color and texture), and a specific similarity measure
between a pair of descriptors (evaluated as a matching score) which
can be either manually defined or learnt from data [1–5].

The main focus of existing work in this field is to attain a high
ranking accuracy. Processing time is an issue which has received
much less attention so far, instead (to our knowledge, only in [6–8]),
despite its relevance in practical applications involving interaction
with human operators, like the ones mentioned above. Many of the
existing similarity measures (either hand-crafted or learnt from data)
are indeed rather complex, and require a relatively high processing
time, e.g., [3, 5, 9, 10]. On the other hand, in real-world applications
the template gallery can be very large, and even if the processing
time for a single matching score is low (e.g., the Euclidean distance
between fixed-length feature vectors [5]), evaluating the matching
scores for all the templates can be time-consuming.

One possible solution to reduce processing time is to reduce the
complexity of a given descriptor and/or of the associated similar-
ity measure; however, this is likely to reduce ranking accuracy as
well. A known approach in the pattern recognition field, in particular
for supervised classification systems, to trade a lower classifica-
tion accuracy for a lower processing time, is to use a multi-stage
architecture (e.g., [11, 12]). Inspired by this approach, in this paper
we investigate whether and how a multi-stage architecture can be
exploited to attain an analogous trade-off between ranking accuracy

also in person re-identification systems. In particular, we focus on
attaining such a trade-off for any single, given descriptor, with no
constraint on the descriptor itself. Since existing multi-stage solu-
tions cannot be directly applied to person re-identification, which
involves a ranking problem rather than a classification one, we
first provide a formalization of multi-stage ranking systems: we
develop an analytical model of their processing time, and discuss
the behaviour of the corresponding ranking accuracy. Based on these
results we propose practical design criteria for multi-stage person re-
identification systems, considering applications requirements given
in terms of a constraint on the maximum allowed processing time.

The main contribution of this work is the extension of the
multi-stage architecture used in pattern classification to person re-
identification (using any given descriptor and similarity measure),
by formalizing the underlying multi-stage ranking problem and by
studying the resulting accuracy-time trade-off; this also allow us to
suggest practical design criteria. This work extends our preliminary
work [13] in the analytical model of the behaviour of multi-stage re-
identification systems, in the design criteria, and in a wider empirical
investigation.

This paper is structured as follows. We first summarize related
work in Sect. 2. In Sect. 3 we formalize multi-stage ranking
problems and develop design criteria for multi-stage person re-
identification systems. In Sect. 4 we evaluate their effectiveness on
three benchmark data sets, using four state-of-the-art descriptors.

2 Related work

In this section we first describe existing multi-stage approaches to
classification problems. We then summarize person re-identification
techniques aimed at reducing processing time in the computation of
matching scores, and/or based on a multi-stage ranking approach.

2.1 Multi-stage classification approaches

The multi-stage approach is used since a long time in pattern clas-
sification systems. For instance, in [14] a cascade of classifiers was
proposed to attain a trade-off between classification accuracy and
the cost of feature acquisition, e.g., for medical diagnostics appli-
cations: each classifier uses features that are more discriminant, but
also more costly [14] than previous classifiers. The goal is to assign
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an input instance (e.g., a medical image) to one of the classes (e.g.,
the outcome of a diagnosis) with a predefined level of confidence,
using features (e.g., medical exams) with the lowest possible cost; if
a classifier but the last one does not reach the desired confidence
level, it rejects the input instance (i.e., withholds making a deci-
sion), and sends it to the next stage. This approach has later been
exploited to attain a trade-off between classification accuracy and
processing time, e.g., in handwritten digit classification [11, 15, 16].
A similar approach is used in the well-known algorithm of [12] for
designing fast object detectors: it consists in detecting and discarding
background regions of the input image as quickly as possible, using
classifiers based on features fast to compute; this allows focusing
the attention on regions more likely to contain the object of inter-
est, using classifiers based on more discriminative features that also
require a higher processing time.

2.2 Reducing processing time in person re-identification

To our knowledge, the issue of processing time has been explicitly
addressed so far in the context of person re-identification only in [6–
8]. Only in [7] the proposed solution is a multi-stage system: the first
stage selects a subset of templates using a descriptor which is built
upon a bag-of-words feature representation and an indexing scheme
based on inverted lists, and requires a low processing time for com-
puting matching scores; the second stage ranks only the selected
templates using a different, more complex descriptor based on mean
Riemann covariance. Differently to our approach, in [7] only two
stages are considered, and only a subset of templates is ranked by
the whole system, possibly losing the correct identity. Moreover,
a different, specific descriptor is used in each stage, whereas our
approach can be applied to any descriptor, and uses different ver-
sions of the same descriptor at each stage. In [6] we proposed a
dissimilarity-based approach to design descriptors made up of bags
of local features, possibly extracted from different body parts. It
consists in finding a set of M representative local features (called
prototypes) from all individuals of the template gallery, and in repre-
senting each template and probe image as a vector ofM dissimilarity
values between the corresponding bag of local features and the tem-
plates. This allows the matching score to be computed as a distance
between feature vectors, rather than using a more complex similarity
measure between bags of local features. Contrary to the multi-stage
approach proposed in this paper, the one of [6] can be applied to
descriptors made up of bags of local features. The method of [8]
reduces processing time in the specific multi-shot setting (when sev-
eral images per individual are available), and for specific descriptors
based on local feature matching, e.g., interest points. It first filters
out irrelevant interest points, then it builds a sparse representation of
the remaining ones.

2.3 Multi-stage re-identification systems

Multi-stage re-identification systems have already been proposed by
some authors. Their aim is however to improve ranking accuracy,
without taking into account processing time [17–21]. In [17] the first
stage uses returns the operator the 50 top-ranked templates; if the
probe identity is not among them, a classifier is trained to discrim-
inate the probe image from other identities, and is used to re-rank
the remaining templates. In [18] person re-identification is addressed
as a content-based image retrieval task with relevance feedback, for
settings where several instances of a probe can be present in the tem-
plate gallery; accordingly, the aim is to increase recall. In each stage
(i.e., iteration of relevance feedback) only the top-ranked templates
are shown to the operator, then his feedback is exploited to adapt the
similarity measure for the probe at hand, and the remaining tem-
plates are re-ranked. A similar multi-stage strategy was proposed
in [19] for reducing the operator’s effort in analyzing the template
images: in each stage only the top-ranked templates are presented to
the operator, who is asked to select a “strong negative” (i.e., a differ-
ent individual whose appearance is most dissimilar to the probe), and
optionally a few “weak negatives”; a post-rank function is then learnt

based on this feedback and on the probe image, and the remain-
ing templates are re-ranked in the next stage. A similar, two-stage
approach was proposed in [20]: the operator is asked to label some
pairs of locally similar and dissimilar horizontal image regions in
the top-ranked templates, and this feedback is exploited to re-rank
all templates. Another two-stage approach was proposed in [21],
to improve the ranking provided by a given first-stage descriptor: a
small subset of the top-ranked templates is re-ranked by the second
stage, by a different descriptor that uses a manifold-based method
with three specific low-level features.

3 Multi-stage re-identification systems

As pointed out in Sect. 1, existing multi-stage approaches to classifi-
cation problems, aimed at trading classification accuracy for the pro-
cessing time, cannot be directly applied to person re-identification,
which involves a ranking problem. As the main contribution of this
work, in this section we develop a specific formulation of multi-stage
ranking problems focused on trading ranking accuracy for process-
ing time in person re-identification systems, for any given descriptor
and similarity measure. In particular, we first develop an analytical
model of processing time and discuss the behaviour of the corre-
sponding ranking accuracy measured using the CMC curve. Based
on these results we also propose practical design criteria.

3.1 Problem definition and notation

Let D denote a given descriptor, m(·, ·) the corresponding similar-
ity measure between a pair of images, t the processing time for
computing it, T and P the descriptors of a template and probe
image, respectively, and G = {T1, . . . ,Tn} the template gallery.
For a given probe P, a standard re-identification system computes
the matching scores m(P,Ti), i = 1, . . . , n, and returns the list
of template images ranked in order of decreasing values of their
score. Ranking accuracy is typically evaluated using the CMC curve,
defined as the probability that the correct identity is within the first
r ranks, for r = 1, . . . , n. By definition, the CMC curve increases
with r, and equals 1 for r = n.

In this paper we consider application scenarios characterized by
strict requirements on the processing time for obtaining the ranked
list of templates, e.g., due to real-time constraints. In particular,
we consider requirements expressed by the constraint t ≤ tmax,
where tmax is an application-specific value. Many existing appear-
ance descriptors attain a high recognition rate at the expense of
a high complexity, which results in a relatively high value of t,
e.g., [3, 5, 9, 10]. Moreover, even if t is relatively low, when the
gallery set size is very large an even lower tmax value may be
required. Focusing on the case when a given descriptor D exhibits
a satisfactory ranking accuracy, but does not meet the constraint
t ≤ tmax, in the next section we propose a multi-stage ranking
approach capable of trading a lower ranking accuracy for a lower
processing time.

3.2 A multi-stage ranking approach for person
re-identification

Let us first discuss the case of a two-stage ranking system. Con-
sider a given descriptor, that we denote as D2, and assume that it
exhibits a satisfactory ranking accuracy (CMC curve) but a too high
processing time, t2 > tmax, as explained above. Our approach is
based on modifying D2, by changing its parameters, into a descrip-
tor D1 that exhibits a lower processing time t1 < tmax. Usually
this can be attained only at the expense of a lower accuracy, i.e.,
the CMC curve of D1 (denoted as CMC1) lies below that of D2
(CMC2). If CMC1 is not satisfactory for the application at hand,
D1 and D2 can be combined into a two-stage system to meet the
constraint on processing time, attaining at the same time a CMC
curve better than CMC1. To this aim, for a given probe, first all n
templates are ranked using D1, then the n2 top-ranked ones are re-
ranked using D2, for a given n2, with 1 < n2 < n. The resulting
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average processing time per probe, t1−2, is given by:

t1−2 =
1

n
tD1

+ t1 +
n2
n
t2 , (1)

where also the the time tD1
for computing the descriptor D1 of

the probe is taken into account (the same descriptor can be com-
puted offline for templates, and is therefore not considered). Note
that the impact of such an overhead time reduces as the overall num-
ber of templates to be ranked increases. From Eq. (1), the constraint
t1−2 ≤ tmax translates into:

n2 ≤ n
(tmax − t1)

t2
−
tD1

t2
. (2)

1 2 3 4 5 6

1 2 3 4 5 6

...

114 115 116 117 118

Fig. 1: Two examples of the ranked list of templates produced by
a descriptor D2 and by a less accurate version of it, D1, for a given
probe (the correct identity is marked in green). Left: the correct iden-
tity is in the top ranks, and is ranked higher by D2. Right: the correct
identity has a low rank, and is ranked identically by both descriptors.

Consider now the resulting CMC curve, denoted by CMC1−2.
To make an analytical derivation of its behaviour possible, at least
to some extent, we disregard the general case when CMC1 and
CMC2 cross in one or more points, and consider only the case
when CMC1(r) < CMC2(r) for ranks r ≤ r∗, and CMC1(r) =
CMC2(r) for r > r∗, for a given rank r∗ ≤ n, as in the example
of Fig. 3. In other words, when D2 gives a rank between 1 and r∗ to
the template of the correct identity, the rank given by D1 is on aver-
age lower; when D2 gives a rank between r∗ and n, instead, the rank
given by D1 is on average the same (see the example in Fig. 1). In the
limit cases of n2 = 1 and n2 = n, it is easy to see thatCMC1−2 =
CMC1 and CMC1−2 = CMC2, respectively. For 1 < n2 < n,
the above assumption implies that CMC1−2 lies between CMC1
and CMC2, and approaches CMC2 as n2 increases. This can be
proven as follows. First,CMC1−2(r) = CMC1(r) for all r ≥ n2,
since for any r ≥ n2 the correct identity is among the r top ranks of
the two-stage system, if and only if it is among the r top ranks of D1.
Second, since the n2 top-ranked templates by D1 are re-ranked by
the more accurate D2, it follows that CMC1−2(r) ≥ CMC1(r)
for r < n2. An example of this behaviour is reported in Fig. 3 for
two different values of n2.

To sum up, for two-stage systems a trade-off between processing
time and ranking accuracy can be attained by values of n2 that satisfy
constraint (2): the higher n2, the higher the resulting processing time
and ranking accuracy.

The above results can be generalized to multi-stage systems with
N > 2, using the original descriptor in the last stage as DN , and
different versions of D in the previous stages as D1,. . . ,DN−1, char-
acterized by increasing ranking accuracy and increasing processing
time, t1 < t2 < . . . < tDN

, with t1 < tmax (see Fig. 2). Denoting
by ni the number of matching scores computed by the i-th stage,
under the constraint:

n1 = n > n2 > . . . > nN > 1 , (3)

the corresponding average processing time t1−N is:

t1−N =
1

n

N−1∑
i=1

tDi
+ t1 +

N∑
i=2

ni
n
ti . (4)
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Fig. 2: Scheme of the proposed multi-stage ranking approach.
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Fig. 3: Example of CMC curves of two-stage systems. Light blue:
first-stage; dark blue: second-stage; r∗ is the rank from which their
CMC curves become identical; light and dark green: two-stage
systems corresponding to different values of n2.

Accordingly, the constraint t1−N ≤ tmax can be rewritten as:

N∑
i=2

niti ≤ n(tmax − t1)−
N−1∑
i=1

tDi
. (5)

Note that constraint (2) is a particular case of (5) for N = 2.
Assuming that the CMC curves of any pair of adjacent stages,

CMCi andCMCi+1, exhibit the same behaviour considered above
(see Fig. 3), by the same arguments above it follows that the
CMC curve of the multi-stage system, CMC1−N , lies between
CMC1 and CMCN . In particular, in the limit cases when ni = 1,
and ni = n for every i > 1, we obtain CMC1−N = CMC1, and
CMC1−N = CMCN , respectively. Moreover, CMC1−N (r) =
CMC1(r) for r ≥ n2. In general, for increasing values of
n2, . . . , nN , CMC1−N gets closer to CMCN .

Accordingly, for a generic multi-stage system a trade-off between
processing time and accuracy can be attained when the ni’s sat-
isfy constraints (3) and (5); the higher n2, . . . , nN , the higher the
resulting processing time and ranking accuracy.

3.3 Design criteria

Designing a multi-stage re-identification system according to the
above approach requires to choose the number N of stages, the
descriptors D1, . . . , DN−1, and the number of templates n2 > . . . >
nN to be re-ranked at each stage, under constraints (3) and (5). The

IET Research Journals, pp. 1–7
c© The Institution of Engineering and Technology 2015 3



best solution, among the ones that satisfy such constraints, is the one
that maximizes ranking accuracy. However it cannot be analytically
found, and finding it empirically by evaluating all possible choices is
clearly impractical, since the three choices above are interrelated and
many possible solutions may even exist. In the following we discuss
each choice separately, and suggest practical, though suboptimal,
design criteria.

Descriptors. Consider first the problem of developing differ-
ent versions DN−1, . . . , D1 of a given descriptor D, exhibiting a
decreasing ranking accuracy and a decreasing processing time. This
can be attained by suitably modifying the parameters of D. However
existing descriptors can be very complex and contain several param-
eters. Moreover, only an empirical evaluation is usually possible of
the impact of any parameter on ranking accuracy; for instance, the
relative behaviour of the CMC curves of any two descriptors depends
on the data at hand: see, e.g., the CMC curves of the original and of
the first-stage SDALF descriptor on the VIPeR and ETHZ1 data sets,
in Fig. 4. To define a practical design criterion we propose to subdi-
vide descriptors into two main categories: fixed-size feature vectors
(e.g., [5, 10]), and descriptor with variable size (e.g., [3]). For fixed-
size feature vectors, an unsupervised feature reduction technique like
PCA can be used. The suitability of PCA to person re-identification
tasks is witnessed to its use in the pre-processing step of gBiCov [5].
For descriptors with variable size we suggest to modify the param-
eter that has the highest impact on processing time; for instance, in
SDALF descriptor [3] such a parameter is the number of “blobs” of
its MSCR component (see Sect. 4.1). Once a single parameter has
been chosen (either the feature set size for the former category of
descriptor, or a descriptor-specific parameter for the latter category),
its value for each stage (but the last one) can be set according to the
corresponding processing time, with the only constraint is that the
left-hand side of inequality (5) is positive, which amounts to:

t1 < tmax −
1

n

N−1∑
i=1

tDi
. (6)

As a simple guideline, one should set t1 to be no more than half the
above upper bound. In particular, if a descriptor-specific parameter
is modified, the resulting processing time may need to be empir-
ically evaluated. Instead, if the feature set size is changed, the
resulting reduction in processing time can be simply considered as
proportional to the reduction in feature set size for common dis-
tance measures used for fixed-size feature vectors, like Euclidean
and cosine distance.

Number of templates to be re-ranked at each stage. Assuming
that N and DN−1, . . . , D1 have already been chosen, the choice
of n2, . . . , nN can be discussed separately for N = 2 and N > 2.
For two-stage systems, the single value of n2 has to be chosen under
constraint (2). In this case the best trade-off between processing time
and ranking accuracy can be identified a priori: it is attained when
the second stage re-ranks the highest possible number of templates,
which leads to:

n2 =

⌊
n
(tmax − t1)

t2
−
tD1

t2

⌋
. (7)

In the case N > 2, constraints (3) and (5) define a convex
polyhedron in the N − 1-dimensional space, and the feasible solu-
tions are all the points n = (n2, . . . , nN ) with integer coordinates
belonging to such a polyhedron. However, among these solutions
it is not possible to identify a priori the one that maximizes rank-
ing accuracy. One can only discard the dominated solutions: if a
solution n′ = (n′2, . . . , n

′
N ) is dominated by a different solution

n′′ = (n′′2 , . . . , n
′′
N ), i.e., n′2 ≤ n′′2 , . . . , n′N ≤ n

′′
N , then n′ can be

discarded, since each of its stages (but the first one) re-ranks a lower
or identical number of templates than the corresponding stage of n′′,
and consequently its ranking accuracy will be lower. Instead, for any
pair of non-dominated solutions n′ and n′′, if n′i < n′′i for some
i, then some j exists such that n′j > n′′j ; this means that their rel-
ative ranking accuracy can be evaluated only empirically, which is
impractical if the number of non-dominated solutions is high.

To avoid such problems, we consider a simpler, though poten-
tially suboptimal criterion for multi-stage systems with N > 2: we
consider values of n2, . . . , nN such that, beside satisfying con-
straints (3) and (5), the number of templates between two consec-
utive stages is reduced by a same amount α < 1, i.e.:

ni = bαni−1c, i = 2, . . . , N . (8)

It is now easy to see that ranking accuracy is maximized by choosing
the maximum value of α that satisfies constraints (3) and (5), which
can be found by a simple line search.

Number of stages. Taking into account the design criteria sug-
gested above, we suggest to limit the choice of the number of stages
to two or three, to avoid a time-consuming empirical evaluation of
more alternatives. In practice, for a two-stage system one can set the
parameter of D1 such that t1 < 1

2

(
tmax − 1

n tD1

)
(see above); for a

three-stage system one can set the parameter of D1 and D2 such that
t1 <

1
2

[
tmax − 1

n (tD1
+ tD2

)
]
, and t2 about twice t1. Then the

choice between a two- and a three-stage system can be made based
on an empirical comparison of the corresponding ranking accuracy.

4 Experimental evaluation

We evaluated our approach on three benchmark data sets and four
state-of-the-art appearance descriptors. We designed two- and three-
stage systems as suggested by our design criteria.∗

We used the VIPeR, i-LIDS and ETHZ data sets. VIPeR [2] is
a challenging dataset for person re-identification; it contains two
images of 632 individuals from two camera views, with pose and
illumination changes, cropped and scaled to 128× 48 pixels. i-
LIDS contains 476 images of 119 pedestrians taken at an airport
hall from non-overlapping cameras, with pose and lightning varia-
tions and strong occlusions. ETHZ contains three video sequences
of a crowded street from two moving cameras; images differ in size
and exhibit illumination changes, scale variations, and occlusions.
We used only the first sequence “SEQ. #1” (ETHZ1) which contains
the largest number of pedestrians (83), and 4,857 images in total.
We rescaled the images of i-LIDS and ETHZ1 to the same size of
128× 48 pixels as in VIPeR, to get a similar processing time.

4.1 Descriptors

We used the SDALF, gBiCov, LOMO and MCM descriptors. gBi-
Cov and LOMO are fixed-size descriptors: according to our sug-
gested design criteria we obtained faster and less accurate versions
of each of them by using PCA. SDALF and MCM have not a fixed
size, instead: we chose ad hoc parameters to modify as described
below. Since our aim was not to fine-tune these descriptors to max-
imize their performance on each data set, we chose the parameter
values by preliminary experiments, and used the same versions of
each descriptor for all data sets.

SDALF† [3] subdivides body into four parts: left and right,
torso and legs. Three kinds of features are extracted from each
part: maximally stable color regions (MSCR), i.e., elliptical regions
(blobs) exhibiting distinct color patterns (their number depends on
the specific image), with a minimum size of 15 pixels; a 16×
16× 4-bins weighted HSV color histogram (wHSV); and recurrent
high-structured patches (RHSP) that characterize texture. A specific
similarity measure is defined for each feature; the matching score is
computed as their linear combination. In our experiments we did not
use RHSP, due to its relatively lower performance. The parameter
that mostly affects the processing time for computing the match-
ing score turns out to be the blob size used in MSCR. We obtained
faster and less accurate versions of SDALF by increasing the mini-
mum MSCR blob size to 65 and to 45 for the first and second stage,

∗The source code of our experiments is available at https://github.

com/bahramlavi/MultiStageRanking
†Source code: http://www.lorisbazzani.info/sdalf.html
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Table 1 Average processing time ti (in sec.) for computing one matching
score in the i-th stage, for each of the four descriptors. Note that the original
descriptor is used in the last stage.

SDALF gBiCov LOMO MCM

two-stage system t1 2.08 0.0003 0.0008 0.060

three-stage system
t1 1.60 0.0002 0.0003 0.051

t2 2.08 0.0003 0.0008 0.060

last stage t 9.44 0.040 0.037 27.40

respectively (which reduces the number of blobs). We also modi-
fied the wHSV histogram by reducing the corresponding number of
bins of to 3× 3× 2 and to 8× 8× 3, given that this is a very easy
parameter to change.

gBiCov∗ [5] is based on biologically-inspired features (BIF)
obtained by Gabor filters with different scales over the HSV color
channels. The resulting images are subdivided into overlapping
regions of 16× 16 pixels; each region is represented by a covari-
ance descriptor that encodes shape, location and color information.
BIF and covariance descriptors are concatenated, and PCA is used
to reduce its dimension to a predefined value. We obtained differ-
ent versions of gBiCov by reducing its dimension to 5 for two-stage
systems, and to 2 and 5 for three-stage systems.

LOMO† [10] extracts an 8× 8× 8-bins HSV histogram and two
scales of the Scale Invariant Local Ternary Pattern histogram (char-
acterizing texture) from overlapping windows of 10× 10 pixels;
it then retains one only histogram from all windows at the same
horizontal location, obtained as the maximum value among all the
corresponding bins. These histograms are concatenated with the
ones computed on a down-sampled image. A metric learning method
is used to define the similarity measure. We used PCA to reduce the
dimension of the LOMO descriptor to 20 for two-stage systems, and
to 5 and 20 for three-stage systems.

MCM‡ [9] subdivides body into torso and legs, and extracts
80 randomly positioned image patches from each part. Each patch
is represented by a 24× 12× 4-bins HSV histogram. Artificial
patches are also generated to improve robustness to illumination
changes, by changing the brightness and contrast of the original
patches in the RGB color channel. The similarity measure is the
average k-th Hausdorff distance between the set of patches of each
pair of corresponding body parts, where k was set to 10 in [9]. The
number of patches is the parameter that mostly affects processing
time for computing similarity scores. We obtained different versions
of MCM by reducing the number of patches to 10 and to 20 for the
first and second stage, respectively. Similarly to SDALF, we also
reduced the corresponding number of bins of the HSV histogram to
3× 3× 2 and 12× 6× 2.

4.2 Experimental setup

For each descriptor D we designed two- and three-stage systems;
for the sake of simplicity we used the same version of D to imple-
ment D1 in two-stage and D2 in three-stage systems. As in [3], for
each data set we repeated our experiments on ten different subsets
of individuals, using one image of each individual as template and
one as probe, and reported the average CMC curve over the ten runs.
We used an Intel Core i5 2.6 GHz CPU. We considered three dif-
ferent values of tmax defined as a fraction of the processing time
of the original descriptor used in the last stage, tmax = βtN , for
β = 0.3, 0.4, 0.5.

∗Source code: http://vipl.ict.ac.cn/members/bpma
†http://www.cbsr.ia.ac.cn/users/scliao/projects/lomo_xqda/
‡The source code is available upon request to the authors.

Table 2 Number of templates processed at each stage for each descriptor and
data set, and for the different values of β.

Descriptor Data set
Two-stage systems Three-stage systems

β=0.3 β=0.4 β=0.5 β=0.3 β=0.4 β=0.5

n n2 n2 n2 n2 n3 n2 n3 n2 n3

SDALF

VIPeR 316 25 57 88 84 22 120 45 150 71

i-LIDS 119 9 21 33 31 8 45 17 56 26

ETHZ1 83 7 15 23 22 5 31 11 39 18

gBiCov

VIPeR 316 92 124 156 170 91 197 123 221 154

i-LIDS 119 35 47 59 64 34 74 46 83 58

ETHZ1 83 24 33 41 44 23 51 31 58 40

LOMO

VIPeR 316 88 120 151 167 88 194 119 218 150

i-LIDS 119 33 45 57 63 33 73 44 82 56

ETHZ1 83 23 31 40 43 22 51 31 57 39

MCM

VIPeR 316 94 126 157 172 93 199 125 222 156

i-LIDS 119 35 47 59 64 34 74 46 83 58

ETHZ1 83 25 33 41 45 24 52 32 58 40

4.3 Results

The average processing time for computing one matching score at
each stage, evaluated on VIPeR, is reported in Table 1. Similar pro-
cessing times were observed in the other data sets, due to the use of
the same image size. Note that processing time of MCM cannot be
compared to the one of the other descriptors, since MCM was imple-
mented in C# and the other descriptors in Matlab. Note also that the
original MCM descriptor has a much higher processing time than its
versions used in the first and (for three-stage systems) second stage,
with respect to the other descriptors: this is due to the use of the
Hausdorff distance as similarity measure, which makes the process-
ing time proportional to the square of the number of patches (see
Sect. 4.1).

The number of templates processed at each stage, chosen accord-
ing to the proposed design criterion, is reported in Table 2. The
average CMC curves are shown in Figs. 4 and 5, respectively for
two- and three-stage systems.

Note first that, since we did not fine-tune the different versions of
each descriptor to each data set, in some cases the first and last stages
turned out to exhibit very similar CMC curves, and therefore the
CMC curve of the corresponding multi-stage systems is similar to
both. For instance, this is the case of SDALF and MCM on VIPER,
in two-stage systems (Fig. 4). Also in this cases the processing time
is nevertheless lower than the one of the original descriptors.

In all the other cases the trade-off between the ranking accu-
racy and the processing time (given by tmax) of multi-stage systems
clearly emerges; see, e.g., the CMC curves of SDALF on ETHZ1,
both in two- and in three-stage systems. In particular, note that in
the top ranks the CMC curve of these multi-stage systems is almost
identical to the one of the corresponding original descriptor; it then
decreases, starting from a rank that depends on the specific data set
and descriptor, up to becoming identical since rank n2 to the CMC
curve of the first stage. Moreover, for a given data set and descrip-
tor, the CMC curve of the corresponding multi-stage system worsens
as tmax decreases, i.e., as n2 (and, for three-stage systems, n3)
increases. We point out that this behaviour agrees with the one that
we derived analytically in Sect. 3.2, and then exploited in Sect. 3.3 to
define the proposed design criterion. The above results provide evi-
dence that multi-stage re-identification systems designed according
to our approach can attain an effective trade-off between processing
time and ranking accuracy.
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Fig. 4: CMC curves of two-stage systems. Black: first stage; blue: second stage (original descriptor); red, pink, and cyan: two-stage systems
with β = 0.3, 0.4, 0.5, respectively. Enlarged version of plots with very close CMC curves are shown for better visualization.

4.4 Data sets

5 Conclusions

We proposed a multi-stage ranking approach for person re-
identification, aimed at trading a lower processing time for a lower
ranking accuracy for any given appearance descriptor. Our approach
is inspired by the well-known multi-stage classification architecture
used in pattern recognition systems, which we adapted to ranking
problems by developing an ad hoc analytical model of the trade-off
between their ranking accuracy and processing time. We also sug-
gested practical design criteria based on our analytical model, and
carried out a first empirical investigation on benchmark data sets
and state-of-the-art descriptors. Multi-stage re-identification systems
can be useful in practical applications that involve interaction with
human operators and are characterized by very large template gal-
leries and/or complex descriptors, requiring strict constraints on
processing time. They can be useful also in application scenarios
when the operator cannot or does not want to scan all the ranked tem-
plate images (e.g., in real-time settings): in this case, only the subset
of templates ranked by the last stage can be returned to the operator.
If needed, the attainable trade-off between processing time and rank-
ing accuracy can be improved, with respect to our suggested design
criteria, by fine-tuning the different system parameters discussed
in Sect. 3.3, at the expense of an additional effort to empirically
evaluate the different alternatives.
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Fig. 5: CMC curves of three-stage systems. Black: first stage; green: second stage; blue: third stage (original descriptor); red, pink, and
cyan: three-stage systems with β = 0.3, 0.4, 0.5, respectively. Enlarged version of plots with very close CMC curves are shown for better
visualization.
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