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An Efficient Selection-Based kNN Architecture for Smart Embedded
Hardware Accelerators

Hamoud Younes, Ali Ibrahim, Mostafa Rizk, Maurzio Valle, Member, IEEE
K-Nearest Neighbor (kNN) is an efficient algorithm used in many applications e.g. text categorization, data mining, and predictive

analysis. Despite having a high computational complexity, kNN is a candidate for hardware acceleration since it is a parallelizable
algorithm. This paper presents an efficient novel architecture and implementation for a kNN hardware accelerator targeting modern
System-on-Chips (SoCs). The architecture adopts a selection-based sorter dedicated for kNN that outperforms traditional sorters in
terms of hardware resources, time latency, and energy efficiency. The kNN architecture has been designed using High-Level Synthesis
(HLS) and implemented on the Xilinx Zynqberry platform. Compared to similar state-of-the-art implementations, the proposed
kNN provides speedups between 1.4× and 875× with 41% to 94% reductions in energy consumption. To further enhance the
proposed architecture, algorithmic-level Approximate Computing Techniques (ACTs) have been applied. The proposed approximate
kNN implementation accelerates the classification process by 2.3× with an average reduced area size of 56% for a real-time tactile
data processing case study. The approximate kNN consumes 69% less energy with an accuracy loss of less than 3% when compared
to the proposed Exact kNN.

Index Terms—Embedded Implementation, Hardware Accelerators, K-Nearest Neighbor, Approximate Computing, Tactile Sensing,
Real-time Processing, Energy Efficiency, High Level Synthesis, FPGA

I. INTRODUCTION

MODERN System-on-Chips (SoCs) are designed with
heterogeneous architectures to support a variety of

computationally intensive tasks in many application domains
such as IoT systems, industrial automation, robotics, etc. These
systems could consist of multi-core processors, or specialized
hardware such as Graphics Processing Units (GPUs) and
Field Programmable Gate Arrays (FPGAs). The latter is used
for accelerating complex operations and performing tasks
concurrently compared to traditional processors.
K-Nearest Neighbor is a supervised classification algorithm
used in a variety of applications such as pattern recognition,
computer vision and machine learning [1]. However, kNN
imposes significant computational workload since it has a
linear scalability with the size of the dataset and the number
of classes [2]. For embedded implementations, such workload
demands significant memory requirements with high latency
and power consumption [3], which makes kNN hardware
acceleration a necessity. kNN algorithm involves independent
operations e.g. the distance computation between a point A
and point B is independent of that between points A and C,
and kNN doesn’t require the sorting of the entire distance
vector to find the K-Nearest Neighbors. Such characteristics
could be exploited to reduce the computational complexity
of the algorithm using a pipelined architecture and tweaking
the sorting process. Another solution for complexity reduction
could be the use of Approximate Computing Techniques
(ACTs). Approximate computing is the idea of reducing the
accuracy to an acceptable limit to save energy, memory, and
execution time without affecting the applications’ overall qual-
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Fig. 1. Approximate Computing Techniques (ACTs)

ity [4]. Compared to Exact Computation Techniques (ECTs)
i.e. performing arithmetic operations following the IEEE-754
and IEEE-854 standards for floating-point operations [5], the
challenge of using ACTs is to maintain the approximation error
acceptable with respect to the target quality of service (QoS)
[6]. ACTs can be divided into two categories as shown in Fig-
ure 1: Processing-oriented and Data-oriented [6]. Processing-
oriented techniques consist of “Computation Skipping” and
“Computation Approximation”. The former technique involves
removing some processing tasks (e.g. image compression,
encoding, etc.). The latter one replaces computationally in-
tensive blocks with approximate ones that implements the
same mathematical operations. Data-oriented techniques tar-
get dataset modifications as “Dataset Reduction” and “Data
Format Modification”. Dataset Reduction aims at decreasing
the number of processed samples through Downsampling and
Downscaling. Downsampling includes adjusting the sampling
frequency of a processing block or truncating the size of an
acquired sample. Downscaling reduces the dimension of the
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data by adjusting the matrix or vector size for vector-based
applications. As for Data Format Modification, it changes
the data from floating-point to fixed-point representation to
simplify the involved arithmetic operations.”
Approximate computing can lead to significant improvements
from algorithmic to circuit level. Authors in [7] have pre-
sented an assessment of the different approximate computing
techniques applied at the circuit, architecture, and algorithmic
levels. Applying ACTs on supervised learning algorithms at
the algorithmic level has been the focus of Younes et. al in
[8] with a case study on the kNN algorithm. Authors reported
that approximate kNN offers a computation boost in terms of
2× speedup compared to Exact kNN.

To design a hardware accelerator for the kNN algorithm, an
efficient architecture is proposed in this paper. The architecture
introduces novel sorting process dedicated for kNN accom-
panied with several design optimizations. Moreover, ACTs
are incorporated to further enhance the performance of the
embedded implementation. For the rest of the paper, the term
”performance” is used to report the characteristics of a kNN
hardware implementation in terms of area, time latency, power
consumption, and energy per classification. While, the term
”quality” reflects the highest classification accuracy that a
kNN architecture could achieve.

The main contributions of this paper could be summarized
as follows:

• It proposes the design and implementation of a selection-
based sorter (Selector) for the K-Nearest Neighbor (kNN)
algorithm. The proposed selector overcomes similar state
of the art solutions by reducing the occupied hardware
area by up to 48% while providing a speedup up to 4.5×.

• It presents a novel kNN architecture that outperforms
similar state of the art solutions in terms of occupied
hardware area, time latency, and energy consumption.
When validated on a touch modality classification, the
proposed kNN achieves a speedup between 1.4× and
875× with 41% to 94% less energy consumption and
12% to 94% average hardware area reduction.

• It applies algorithmic level ACTs on the proposed ar-
chitecture to improve its performance: the results show
a 56.4% average area reduction, a speedup by 2.3×,
and an energy reduction of about 69%. For a touch
modality classification problem, an accuracy degradation
of 2.6% was reported using the proposed approximate
architecture.

• It demonstrates the feasibility of the implemented system
for real-time touch modality classification when validated
on Xilinx Zyqnberry platform. The proposed exact and
approximate kNNs consume 6 µJ and 1.9 µJ respectively.

The rest of the paper is organized as follows: Section II
reports on some of the efficient implementations of kNN
presented in the literature. Section III explains the design and
the high-level synthesis of the proposed selection-based kNN
architecture. Also, it describes the selector integration into
exact and approximate kNN classifiers. Section IV presents
an overview of the tactile data processing case study and the
experimental setup used to asses the quality of the proposed

architecture. This Section also highlights the implementation
tools and methodology with emphasis on the adopted design
optimization techniques. Section V provides a performance
analysis for the FPGA implementation of both the exact and
approximate kNN classifiers. Also, a comparison with similar
works from the literature is conducted. Section VI concludes
the paper highlighting some future works.

II. STATE-OF-THE-ART

Several architectures have been proposed in the literature
for implementing the kNN algorithm on hardware platforms.
One of the first architectures and implementations is presented
in [9]. The architecture is based on a neural network with
SIMD-style architecture, which imposed excessive response
time while performing complex operations. Authors in [10]
designed flexible IP cores based on linear array architecture
for the FPGA implementation of the kNN algorithm. The
cores achieved a very high throughput when validated on
a medium size FPGA device, very large size classification
problems, and with thousands of reference data vectors. A
novel dynamic partial reconfiguration (DPR) architecture of
the kNN algorithm is presented in [11]. The architecture is
characterized by an efficient reconfiguration time for different
values of K. Speedups between 68× and 76× were recorded
when compared to General Purpose Processor (GPP) imple-
mentation. Pu et. al designed a kNN-specific bubble sort
algorithm to take advantage of the FPGA parallel pipeline
structure using OpenCL [12]. The overall implementation
showed an enhanced performance compared to conventional
GPU implementations. Authors in [13] adopted a Bitonic
sorting algorithm to implement the kNN algorithm on both
FPGA and GPU. Using OpenCL coding style and some HLS
directives, the results showed that an FPGA implementation
could be comparable to a GPU in terms of execution time.
Another HLS based implementation has been reported in
[2]. With a reduced number of comparators in the sorting
process and by utilizing the memory-mapped AXI4-Master
Interface of the Xilinx ZC706 FPGA board, a 35.1× speedup
over a GPP based implementation is noticed. In [14], several
architectures are presented, where each one adopt a single
or multiple HLS optimization directives. Speedups between
3.8× and 58× could be achieved while using the quick
sort algorithm and the BCW 9 dataset. Both hardware and
software designs using Xilinx MicroBlaze platform were used
to verify the bubble sort based architecture of the kNN algo-
rithm in [15]. The hardware design achieved 127× speedup
compared to its software counter counter-part. To reduce the
impact of the memory-access constraint in kNN classification
problems, an HLS based kernel is proposed in [16]. The kernel
employs two data access reduction methods: low precision data
representation and principal component analysis based filtering
(PCAF). The kernel performed to an equivalent 56-thread CPU
server while greatly reducing external memory-accesses.

A common characteristic of the most existing efficient kNN
architectures is the use of the conventional sorting algorithms
without optimizations for the kNN algorithm. The efficiency
of these algorithms is affected by the: i) need to sort all the
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vector’s elements, ii) large number of required comparators,
and iii) increased complexity/latency for large vector size. In
this work, we propose a kNN architecture that avoids such
sorting algorithms and adopts a selection-based one with a re-
configurable division ratio for complexity and latency trade-
offs (see Section III.C). Moreover, existing kNN implemen-
tations focus on acceleration gains compared to CPU-based
implementations. This work reports a detailed comparison with
FPGA-based kNN implementations that sheds the light on
different implementation strategies and their effect on the kNN
performance.

III. K-NN PROPOSED HARDWARE ARCHITECTURE

A. k-Nearest Neighbor Algorithm Overview

The kNN algorithm classifies an input sample according to
the class of the majority of K-nearest samples. For an input
sample, the kNN classifier 1) calculates the distance between
the input sample and all the samples in the training set Ti ∈
T , 2) sorts the distances in ascending order, and 3) selects
an output class based on the minimum distance towards K
neighbors. The three main considerations for kNN are:

• The number of nearest neighbors K. A 1-NN classifier
is naı̈ve, while a large value of K might result in over-
fitting. Thus, the value of K is determined using a trade-
off between accuracy and complexity.

• The distance metric could be Chebyshev, Manhattan,
Cosine, Euclidean, etc [17].

• The sorting algorithm could be bubble, select, quick, etc
[18].

B. Selection-based kNN Architecture

The block diagram of the proposed hardware architecture
is shown in Figure 2. The “kNN Classifier” block has been
designed in HLS (coded in C++), whereas the other blocks
are existing IP blocks embedded in Vivado. The SDRAM
memory is used to store the training set, which is more suitable
than the Block RAM (BRAM) of the FPGA for platforms
with limited number of BRAMs or applications with large

datasets. The AXI Interconnect IP handles the read and write
operations from and to the memory. It adopts an AXI smart
connect IP to use one AXI port for 1) writing to the data
acquisition block and 2) reading the classification result from
the class determination block. The Zynq processing system
IP is the main block of the design which uses a processor
system reset IP to drive all blocks with a common clock
and reset signals. The kNN HLS IP starts operating once
the Data acquisition block receives the training samples. To
reduce the access overhead imposed by DRAM, we fetch the
samples in bursts to reduce the number of memory accesses.
Such technique has shown its efficiency in [13] and [19].
First, the distance between a testing sample and all training
samples is performed. Then, the K minimum distance valus
are determined using the proposed selector (see subsection C),
and finally a class is assigned for the testing sample using the
class majority of the samples corresponding to the K minimum
distance values.

C. Nearest Neighbors Selector

The proposed architecture aims to replace the conventional
sorter block with a “Selector” which finds the K-minimum
distances without sorting the entire vector [20] as depicted in
Algorithm 1. While coding the selector in HLS, the minimum
K-distance values are saved in the same vector to be sorted,
thus decreasing the memory footprint.

The selector operations can be detailed in three steps:
• Step 1: The distance vector V of size S is divided

into two vectors V 1 and V 2. The suitable division ratio
(a%:b%) is determined via a software simulation. Start by
decreasing the size of V until the classification accuracy
drops to obtain the value of a. Hence, b = S − a.

• Step 2: K-registers are initialized with a maximum value
(e.g. 1000). Each distance value V 1[i] is compared to
the content of register 1. If it is smaller, V 1[i] occupies
the register, and the old content in register 1 is shifted
to register 2. Then, the content in register 2 is shifted to
occupy register 3. Consequently, the content in register i
is shifted to occupy register i+1. Else, V 1[i] is compared

Fig. 2. The Proposed Hardware Architecture
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Algorithm 1: Nearest Neighbors Selector
Input: Vector V with size S, Division ratio a:b,

Number of neighbors K
Output: V with the K-minimum elements at the first

K indices
S1← a× S/100
for i←K to S1 do

if V [i] <= V [0] then
V [K − 1]← V [K − 2]
...
V [0]← V [i]

else if V [i] <= V [1] then
V [K − 1]← V [K − 2]
...
V [1]← V [i]

...
else if V [i] <= V [K − 1] then

V [K − 1]← V [i]

for j ←S1 to S do
if V [j] >= V [K − 1] then

break
else

if V [j] < V [K − 2] then
...
if V [j] < V [0] then

V [0]← V [j]
else

V [1]← V [j]
else

break

to the next register, and so on. At the end of step 2, the
K minimum distance values are saved in the K registers
in the order min1 < min2 < ..... < minK.

• Step 3: Each distance value V 2[i] is compared to the
highest minimum i.e. minK as shown in Figure. 3 (K=3).
If it is larger, the minimums obtained from V 1[i] are not
updated and a new value of V 2 is fetched. Else, V 2[i] is
compared to the other minimums to reach a register to
occupy. Once V 2[i] occupies a register, the old value of
that register is shifted to occupy the register of the next
minimum.

The advantage of this architecture compared to the one
presented in [14], is that if V 2[i] is greater than minK, step 3
will not be executed. Thus, the K minimum distances are the
output of step 2. This will result in a reduced selection time
for hardware implementations. Moreover, the architecture in
[14] selects the K minimum distances in a single step, which
imposes hardware complexity and increased time latency for
large datasets. While in the proposed architecture, the selection
is performed in two smaller steps with a high probability that
the third step will not be executed (V 2[i] > minK).
Although the proposed selector finds the K-nearest neighbors
without sorting the entire vector, a comparison with two sorters
reported in the literature, i.e. QuickSort [12] and Bitonic Sorter

Fig. 3. Sorting Process Step 3 (K=3): Dashed Line (new value), Solid Line
(old value), Colored Lines (concurrent operations)

[21], has been carried out. In general:

• Bitonic sorting is a recursive algorithm that sorts a
Bitonic sequence in a parallel operating fashion. A
Bitonic sequence is a sequence of M elements in which
L elements out of M are sorted in ascending form, and
the other M −L elements are sorted in descending order
[22]. If the sequence is not Bitonic, an additional task
is imposed before the ability to sort the vector. The
proposed selector can operate on any vector form.

• QuickSort selects one of the elements in the sequence to
be the pivot and divides the sequence into two sequences
one with all elements less than the pivot while the other
contains all the elements greater than the pivot. The
process is recursively (add more burden on the hardware)
applied to each of the sub sequences. QuickSort has a
worst-case complexity of O(n2) when the given sequence
is sorted; this resembles the best-case scenario for the
proposed selector as it will select the K minimums faster
(the minimums occupy the first K registers). Then all the
comparisons fail thus no shift operations are performed.
Consequently, step 3 is not executed at all.

• The number of comparators required by the selector
depends on the number of neighbors K, while it depends
on the size of the vector N in the case of Bitonic and
QuickSort. In machine learning applications, usually, it
is valid that K (the number of Nearest Neighbors in
kNN) � N (size of training vector). Given that the
selector doesn’t sort the complete vector, the number of
comparisons is decreased.

Both the sorters presented in [12],[21], and the selector

TABLE I
HLS SYNTHESIS RESULTS OF DIFFERENT SORTERS

Sorter FF LUT Clock Cycles
Proposed Selector 84 176 15 (division ratio 6:4)

[12] 106 226 17
[21] 123 514 96
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have been coded in C++ using Vivado HLS. The distance
vector V has been used as a testing vector for the three
implementations. In this paper, the best K value and division
ratio were determined to be 3 and 6:4 (for the case study
presented in section IV.B) i.e. there is a need to sort only
60% of the vector and step 3 can be aborted without affecting
the selection process accuracy. The obtained synthesis results
for finding the three minimum numbers in V are presented in
Table I. Results show that the selector occupies less hardware
area than the implementations of both sorters. Specifically, an
average reduction of 21.4% and 48.7% is reported compared
to the sorters in [12] and [21] respectively. Concerning the
time latency of the sorting process, the selector is faster than
the sorter in [21] by 4.5×. Compared to the sorter in [12]
that adopts one of the fastest sorting algorithm (QuickSort),
the performance depends on the selection of the division ratio
in step 1 and the number of neighbors K. In fact, if all the
minimum numbers are located in V2, or if the required value
of K is very large; the selector is now sorting all the elements
of V resulting in a slower sorting process. Hence a speedup of
±1.2× (for 6:4 and 5:5 ratios respectively) has been observed
for the given task.

D. Approximate kNN Blocks

In [23], we have presented a complete assessment of using
algorithmic level ACTs on a kNN classifier. The assessment
included the degradation in accuracy to the gain in memory
and execution time on Intel i7 CPU. In [8], the studied
techniques have been formulated into a general approach that
has been tested for the FPGA implementation of two machine
learning classifiers. The reported approach has been adopted
in this paper where a trade-off between the classifiers perfor-
mance and quality has been considered. The trade-off resulted
in our selection for the ACTs presented in the proposed
approximate kNN architecture. All the adopted techniques
belong to the data-oriented approximate computing category
[8]. The adopted ACTs are Dataset Reduction (Downsampling
(DS) and Downscaling (DSc)), and Data Format Modification
(DFM). DS means varying the signal sampling frequency
during signal acquisition. Since tactile data used in this work
are from an already available dataset, the sampling frequency
can’t be changed. As a consequence, DS is applied offline on
the dataset by reducing the number of samples. DSc is applied
by adjusting the sample size as shown in subsection IV.A.
DFM reduces the sample resolution. This can be achieved
through the use of fixed-point or mixed precision instead of
floating-point data representation. In this paper, fixed-point
representation is adopted, and the precision is determined as
a trade-off between resolution (32, 24, 16, and 8-bit) and
classification accuracy.” The approximate kNN classifier starts
operating once the Data Acquisition block receives the training
samples (after DS/DSc has been applied offline) from the
memory. Then, the same steps performed by the kNN HLS
IP are executed.

IV. SELECTION-BASED KNN IMPLEMENTATION AND CASE
STUDY

A. Case Study: Tactile Data Processing for Electronic Skin
Systems

Electronic skin system is an artificial system developed to
mimic human skin behaviour or to implement intelligent tasks
in applications such as robotics, prosthetic, etc. Intelligence
involves the use of learning algorithms for tactile data pro-
cessing in tasks such as surface texture, object compliance,
touch modality, etc. [24], [25]. Touch modality classification
allows the integration of gesture-based actions to be performed
by robots or humans with prosthetic hands. For a medical
purpose of caring for patients with mild mental impairment; a
humanoid equipped with artificial skin has been trained to dis-
criminate between nine touch modalities (scratch, tickle, rub,
etc.) [26]. Recognition rates up to 96.7% has been achieved
using four machine learning algorithms including kNN, SVM,
DT, and Logitboost. Authors in [27] and [23] have adopted
a touch modality classification problem that involves three
patterns: brushing a paint brush, rolling a washer, and sliding
a finger on 4 × 4 tactile sensory array. SVM and Extreme
Learning Machine (ELM), kNN, and Deep CNN based on
transfer learning have been chosen as learning algorithms. A
classification accuracy of 90%, 89.8%, and 76.9% has been
recorded respectively.

In this paper, the kNN algorithm is adopted for the design
of an embedded tactile data processing architecture due to the:
1) high level of parallelization of the kNN algorithm, which
makes it adequate for hardware acceleration, 2) high classi-
fication accuracy with a reduced computational complexity
compared to state-of-the-art algorithms operating on the same
task [28], [29], and 3) ability of complexity reduction without
affecting the application quality using approximate computing
techniques [23].

The dataset collected in [30] has been selected for the
validation of the proposed kNN architecture. The experimental
setup is shown in Figure 4 and can be described as follows:

• Dataset: The dataset contains records for the two touch
modalities performed by 70 participants. Each modality
was recorded from a 4 × 4 tactile sensor for 10 sec-
onds at 3 kHz sampling frequency. Thus, each raw data
sample can be modeled in the form of a tensor of size
4×4×30,000. The touch modalities were performed on
both the horizontal and vertical directions for two trials,
resulting in a dataset of 840 samples.

• Simulation Software: An open-source machine learning
simulation tool called “Weka” has been used [31]. Weka
involves a collection of learning algorithms that can be
applied to a pre-defined dataset or invoked from a Java
code. The tool has options for classification, clustering,
regression, etc.

• Classification Task: the binary problem “Sliding a finger”
vs “Washer Rolling”. For Weka simulation an Attribute-
Relation File Format (ARFF) file is required. Thus, a
header describing the features and the possible output
class of each sample is added to the original tactile
dataset.
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Fig. 4. Experimental Setup

• kNN Characteristics: A 10-fold cross-validation simula-
tion using the Weka tool has been carried to determine the
best value of K. The adopted distance between two tactile
samples T1 and T2 is the squared euclidean distance
written as:

d(T1, T2) =

16∑
0

(TXij − TXmn)
2 (1)

where TXij and TXmn are the taxels inside a 4 × 4
tactile sample.

• Classification Metric: The kNN algorithm has been as-
sessed by calculating the classification accuracy i.e. the
ratio of correctly classified samples to the total number
of available samples.

The ARFF file was loaded into Weka and classification using
kNN is performed. A kNN classifier with 3-nearest neighbors
resulted in the highest classification accuracy of 89.8%. This
result was achieved based on a model selection approach.
Based on the best kNN model obtained, a novel efficient kNN
architecture is proposed in this paper. Furthermore, approx-
imate computing techniques have been applied to enhance
the overall performance of the proposed architecture without
affecting the quality of the application.

The best obtained kNN model with K=3 is referred to as
Exact kNN. As for Approximate kNN, it employs the follow-
ing techniques to the Exact architecture: 1) Downsampling
which applies an approximate window on the touch modality,
where only the data that corresponds to the interval [a,b]
seconds is considered. First, the interval [a, b] is selected
such that 0.1 < a � 1 and 9.5 < b < 10. Then, the
values of a and b are varied, while calculating the classification
accuracy. The interval [3.5, 7] provided the highest accuracy

among others. Thus, each modality tensor can be written as
φ = 4×4×10, 500 (touch readings that belong to the interval
[3.5, 7] seconds), and 2) downscaling which reduces the tensor
size to φ = 4 × 4 × 1, where the last dimension is the mean
of the 10,500 readings according to the equation:

mean =

∑
TXij

10500
(2)

where TXij is the individual taxel inside the 4×4 tactile sam-
ple. Figure 5 shows the initial and obtained touch modalities
after applying DS and DSc.

It is worth mentioning that the tensor representation of data
has been adopted by [30] since it preserves the initial structure
of the data, which is still valid after applying approximate
computing techniques. This is evident in Figure 5 (b), (c)
where the two touch modalities can still be differentiated. For
both the Distance Calculation and Nearest Neighbor Selection
blocks, the operations are implemented in 24-bit fixed-point
representation with a < 6, 18 > precision. The adopted
precision is based on a trade-off between complexity and
classification accuracy.

B. Hardware and Software Design Tools

The Zynqberry TE0726-03M [32] was adopted for imple-
mentation. Zynqberry is a small-sized platform in the form
of a Raspberry Pi compatible System-on-Chip (SoC) module
integrating a Xilinx Zynq-7010 with a 512 MB SDRAM
memory. The Zynq SoC has a hybrid structure of combining a
dual-core ARM Cortex-A9 processor as a Processing System
(PS) and an FPGA as Programmable Logic (PL) in a single
SoC. Moreover, for comparison purposes, the architecture has
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Fig. 5. Touch Modalities: (a) Rolling with DS, (b) Rolling after DSc, (c) Sliding after DSc, * Window

been also implemented on the Virtex-7 FPGA and the NVIDIA
GTX 1650 GPU.

As for the software tools, Vivado HLS 2018.3 and Vivado
2018.3 were used. Vivado HLS allows the design of an
embedded system on FPGA using a high-level programming
language such as C and C++ compared to traditional hardware
description languages (HDL). The use of HLS decreases the
FPGA development time and effort. Also, it offers a set of
optimization directives that can be used to enhance the design
performance. Once the design is completed, it can be exported
as a Register Transfer Level (RTL) Intellectual Property (IP)
block. The latter is imported into Vivado and can be connected
to the processing system (PS) via built-in IPs; thus, it is
possible to obtain the hardware resources, time latency, and
power consumption of the whole design.

C. Implementation Methodology

Once the whole design code is completed in HLS and design
optimizations are applied, a co-simulation is performed. This
simulation runs both the C++ and the RTL simulations together
to verify a matching output. Then, the design is exported as
an IP block. The latter is imported into Vivado 2018 and
connected to the Zynq processor and other IP blocks as seen
in Figure 2. First, a behavioral simulation is performed to
verify the functionality of the design. Then, synthesis and
place and route occur to finalize implementation. At this point,
the generated report contains the occupied area percentage
(BRAM, DSPs, etc.) and the number of clock cycles passed
to generate an output. Concerning power consumption estima-
tion, Vivado offers two methods: Vector-based and Vector less.
This estimation can be performed at any stage between post-
synthesis to post routing. For a credible estimation, a post-
implementation functional and timing simulation is used to
generate a Switching Activity Interchange File (SAIF) to be
used for a vector-based estimation post-routing.

D. Design Optimization

Targeting the real-time functionality on a small-sized plat-
form such as Zynqberry, the proposed architecture has been
optimized to ensure an acceptable balance between time
latency and hardware requirements. This has been achieved
with several design optimizations as shown in Fig. 6. Such

optimizations are facilitated with the use of Vivado HLS
directives [33] as depicted in Algorithm 2. These optimizations
are summarized as follows:

Algorithm 2: kNN Design Optimization
#pragma HLS ARRAYMAP
variable=Distance Instance=AllPatterns horizontal
variable=Modality Instance=AllPatterns horizontal
/* M: nb of features */
function UDC(T1, T2):
for i←0 to M do

#pragma HLS UNROLL factor=4
Execute (1)

/* Tactiles: trainingset, q: testing
point */

/* N: nb of training points */
for i←0 to N do

#pragma HLS INLINE
#pragma HLS UNROLL factor=6
Distance[i]= UDC(p, Tactiles[i])
Modality[i]=Tactiles[i][16]

/* K: nb of Neighbors */
NearestNeighbors=Selector(K, Modality)
for i←0 to K do

#pragma HLS UNROLL
if NearestNeighbors[i] == 1 then

modality1count++
else

modalitycount2++

1) BRAM Resources Reduction: The BRAM size is 18K
in the FPGA, if many arrays have a size less than 18K,
it is better to combine them into a single array. Since
kNN is a supervised algorithm, the class of each query
must be known. Thus, we can benefit from this directive
to combine the “Distance” and “Modality” arrays into
a single array as shown in Figure 6(a). Thus, when
the selector block finds the three minimum neighbors,
the class of each selected neighbor is available at the
same instant. This process is referred to as ”Array Map”
where the horizontal option means that the two arrays
are combined into a single array with more elements
(see Algorithm 2).
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Fig. 6. Design Optimization: (a) BRAM Resources Reductions, (b) Unrolled Class Determination, (c) One Unrolled Distance Calculation (UDC) Block, (d)
Complete Unrolled Distance Calculation

2) Parallelization: To exploit the capabilities of the FPGA,
the operations of the distance calculation and the class
determination blocks are executed in parallel with a
small unroll factor. In HLS terms this is known as ”Un-
rolling”, where unrolling a loop creates multiple copies
of its body in the RTL design, which allows some or all
of its iterations to occur in parallel. This optimization
has been applied to (1) denoted as Unrolled Distance
Calculation (UDC) and the Class Determination blocks
leading to accelerating the calculation and output class
decision. However, executing all the operations in par-
allel leads to a high power consumption and increased
resource requirements. To avoid the negative impact of
unrolling on the hardware cost and power consumption,
the loops are partially unrolled (unroll factors of 4 and
6) as it is shown in Algorithm 2, and the design is
implemented at an operating frequency of 100 MHz
which is lower when compared to similar work [21].
Each touch modality sample has 16 features, thus an
UNROLL factor equals to 4 is used. This means that the
distance between each 4 features is calculated in a single
time interval as shown in Figure 6(c). Similarly, Figure
6(d) shows how the UDC block is used to calculate
the distance between the testing sample and all training
samples. An UNROLL factor equals to 6 is used, thus
112 timing intervals are required to finish all the distance
calculations for a training set size of 80%. The distance
from a testing sample to (80 ∗ 840/100) = 672 training

samples is calculated in batches of 6 calculations per
timing interval i.e 672/6 = 112 intervals. As for Class
Determination, since K = 3 and we have a binary
classification, the process could be fully unrolled as
shown in 6(b).

3) Function Inline: The inlined function is treated as a
part of the calling function that is calling it rather
than a separate entity. This optimization is applied for
the distance calculation function. Thus, whenever the
classification function is called, the distance calculation
is executed within it and it no longer appears as a
separate level of hierarchy in the RTL design. Thus
improving the overall latency of the classification task.

V. IMPLEMENTATION RESULTS AND ASSESSMENT

The performance and quality of the proposed exact and ap-
proximate implementations are assessed on the touch modality
classification problem mentioned in section IV. The assess-
ment involves three case studies: (1) Proposed Exact kNN
versus approximate kNN, (2) Exact kNN on FPGA versus
GPU, and (3) Exact kNN versus similar works. For cases
(1) and (3), the time latency T is calculated according to the
equation:

T = N × 1/fmax (3)

where N is the number of clock cycles obtained in post-
implementation reports and fmax is the maximum operating
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frequency the design can achieve. The Joule per classification
energy E is calculated as:

E = T × P (4)

where T is the time latency and P is the dynamic power
consumed by the programmable logic (PL) of the Zynqberry
reported by Vivado i.e the power consumed by the simulated
kNN architecture to compute a classification of an input
sample (excluding the static power of the processing system
(PS) as it is device dependent).

For case (2), Exact kNN architecture has been coded
using Python language running inside the CUDA computing
platform. The GPU power estimation was obtained using
NVIDIA System Managment Interface (NVSMI). The latter
is a command utility that can be issued on any Python
development environment with the CUDA libraries imported
[34].

Case 1: Exact versus Approximate kNN
The implementation results on Zynqberry of the proposed

Exact and Approximate kNN are shown in Table II. Exact
kNN occupies 12% of the hardware resources, consumes
0.236 W, and classifies an input sample within 25.7 µs.
The obtained time latency verifies the real-time classification
of a touch modality in less than 400 ms [35]. Applying
downsampling and downscaling have decreased the input
size from 4× 4× 30, 00 (a 10s sample) to 4× 4× 1 (a 3.5s
sample) offering a 65% reduction in data size. Such reduction
led to a significant decrease in the hardware resources and
time latency. Using the 24-bit fixed-point representation
instead of 32-bit floating-point one provides a 25% reduction
in the word length of data exchanged between the different
blocks of the kNN architecture and the complexity of
the arithmetic computations. Consequently, the dynamic
power consumption has been reduced. Thus, the proposed
approximate kNN offers an average hardware resource
reduction up to 56.4%, by accelerating the classification of a
test sample by 2.3× with an energy reduction of about 69%
compared to the proposed Exact kNN. For the whole design,
an accuracy degradation of 2.6% is reported. The proposed
approximate kNN provides real-time classification of touch
modalities with a reduced time latency of 11.2 µs. These
results motivate the use of approximate computing techniques.

Case 2: Exact kNN on FPGA versus GPU

TABLE II
IMPLEMENTATION RESULTS OF THE PROPOSED EXACT AND

APPROXIMATE CLASSIFIERS ON ZYNQBERRY

Implementation Exact Approximate
Classification Accuracy 89.8% 87%

Frequency (MHz) 100
BRAM 4 4

DSP48E 10 4
FF 3493 1612

LUT 2825 1264
Time Latency (µs) 25.7 11.2

Dynamic
Power Consumption (W) 0.236 0.164

TABLE III
EXACT KNN PERFORMANCE ON FPGA AND GPU

Exact kNN
Time (FPGA/GPU) 25.7µs/80ms

Energy (FPGA/GPU) 6µJ/1.13J
Time Ratio 0.00032

Energy Ratio 5.37E-6

Using the CUDA platform and NVSMI tool, the GPU
implementation of Exact kNN provided a classification time
of 80 ms while consuming 14.12W for the touch modality
classification problem. Table III shows a comparison between
the FPGA and GPU implementations in terms of execution
time and energy consumption. The results are significantly in
favor of the FPGA, where the acceleration of the proposed
kNN architecture on FPGA could be achieved with a fraction
of the energy consumed using GPUs. This can justified due to
two possible reasons:

• GPUs use DRAM for the communication between the
different blocks of the kNN architecture (referred to
as kernels) [36], which is slower than using a hybrid
structure as proposed in Figure 2 where BRAMs are used
to communicate between different blocks and DRAM is
used only for dataset storage.

• The proposed kNN architecture exploits the parallelism
capabilities of the FPGA. Thus, the ”if-then-else” con-
ditions are executed in parallel. On the other hand, the
”then” and ”else” parts are executed serially on GPUs
resulting in a significant time latency increase. Such issue
is known as ”thread divergence” [37].

Case 3: Comparison with similar works
Comparing two kNN implementations is not a straight

forward task due to the large number of differences such as:
the number of nearest neighbors (K), dataset size (N ), number
of features per sample (f ), development environment (HLS or
HDL), hardware device used, etc. To achieve a fair comparison
with Exact kNN, three similar architectures have been selected.
These three architectures have been chosen such that they all
have:

• Used HLS for development since the comparison with an
HDL implementation is not feasible.

• Achieved a high acceleration gain (i.e speedup) with
respect to equivalent CPU-based kNN implementation,
so the architecture resembles an efficient accelerator.

• Used similar (and different) values of K, N , and f to
generalize the comparison.

TABLE IV
TESTBENCH IMPLEMENTATION SETTINGS FOR THE EXACT KNN AND

THREE SIMILAR ARCHITECTURES

Architecture S1 [14] S2 [15] S3 [21]
K 10 3 5
N 699 150 300×103

f 9 4 2
Dataset BCW 9 Iris Weather

Device AVNET
ZedBoard Virtex-7 Virtex-7

Frequency (MHz) 100 100 240
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Table IV presents the existing implementation settings for
the three architectures. Denote by Si =[Ki, Ni, fi, Dataseti]
the settings used in the first [14], second [15] and third
implementation [21] respectively. Exact kNN is implemented
using the settings Si i.e the proposed kNN architecture is
implemented and validated using the testbench reported in
each architecture. The implementation results are shown in
Table V with the original implementation results of each
architecture.

kNN-S1 achieves a 12.3× classification speedup with 94%
less energy consumption while requiring a 61% less hardware
resources compared to the kNN presented in [14]. This is
due to two main reasons: 1) the selector used on kNN-S1

is an enhanced version of the one used in [14] where the
division factor plays a key role in decreasing the sorting time
as presented in section IV.C, and 2) the aim of the kNN
architecture in [14] is to attain the highest speedup possible for
real-time embedded applications. This has been accomplished
by combining the UNROLL, PIPELINE, and DATAFLOW
directives. Such directives are known for speedup gains due to
the level of parallelism introduced at the expense of a notice-
able increase in the hardware resources. The latter was not an
issue when using the relatively large FPGA in the ZedBoard
platform. Meanwhile, in kNN-S1 only the UNROLL directive
is used with an unrolling factor that balances the speedup and
complexity for the target application, while achieving more
speedup with the use of the selector.

When compared to the kNN implementation in [15], kNN-
S2 provides a huge acceleration gain of 875× with 94%
less required hardware resources. Such gain is due to the
design choices adopted by the authors in [15] such as: 1)
using the euclidean distance metric, which compared to (1),
has an added complexity due to the square root operation,
2) applying the normalization of the data on-chip, which
presents a complexity overhead, and 3) performing the sorting
operation using a single comparator and multiple BRAMs to
compare each pair of data points, this process is very slow
compared to the proposed selector. Although no power/energy
details were provided for the kNN in [15], kNN-S2 is expected

to be more efficient due to the 90% reduction in the number
of DSPs.

The implementation requirements of kNN-S3 exceeds the
capacity of the FPGA fabric in Zynqberry and thus the design
couldn’t be routed to achieve the 240MHz operating frequency.
Thus, for comparison reasons only, kNN-S3 is implemented
on the target device used in [21] i.e Vertix-7 knowing that
implementing kNN on Zynqberry has achieved the real-time
and low power consumption demands for the target touch
modality application as reported in Table II. kNN-S3 offers
a speedup of 1.4× with 41.5% and 12.3% reduction in
hardware resources and energy per classification respectively.
Such results are justified with the lower number of FF and
LUTs required by kNN-S3. This is expected since the kNN
in [21] uses the Bitonic sorter, which is outperformed by the
proposed selector as shown in Table I. Compared to kNN-
S1 and kNN-S2, the gain achieved by kNN-S3 is relatively
lower since the kNN in [21] exploits the high optimization
capabilities of OpenCL for extensive computations and large
datasets.

VI. CONCLUSION

This paper introduces an efficient novel architecture for
the hardware acceleration k-Nearest Neighbor algorithm using
a selection-based sorter. The architecture has been coded in
HLS, synthesized, and routed on the Zynqberry platform.
Two efficient implementations were provided based on exact
and approximate computing. The implementations exploit the
parallelism nature of the kNN algorithm along with the use
of ACTs to achieve real-time classification with relatively
low power consumption. Compared to similar state-of-the-
art work, the proposed Exact kNN offers acceleration gain
between 1.4× and 875× with lower energy per classifica-
tion between 41% and 94% depending on the used settings.
Compared to GPU-based implementations, the proposed kNN-
FPGA implementation offers efficient and faster classification
for the target application. Such results pave the way towards
embedding intelligence using a small-sized platform such as
the Zynqberry for applications with low power and real-

TABLE V
IMPLEMENTATION RESULTS COMPARISON

Architecture kNN-S1 [14] kNN-S2 [15] kNN-S3 [21]
Device Zynqberry Virtex-7

Frequency (MHz) 100 240
BRAM 4 - 4 293 500 512

DSP 7 9 5 47 12 12
FF 2002 9484 827 - 21677 23892

LUT 1607 8845 1407 - 11416 11838
Time Latency (ms) 22×10−3 0.27 12×10−3 10.5 0.88 1.24

Energy per
classification (mJ) 4.84×10−3 70×10−3 - - 1.86 3.17

Average Resources
Reduction (%)* 61% 94% 12.3%

Speedup 12.3x 875x 1.4x
Energy Reduction (%) 94% - 41.5%

Classification Accuracy (%) 96.2% 93.3% 86.5%

* Calculated for the available resources only e.g. reduction in BRAM and DSP for kNN-S2

compared to [15], i.e. Reduction = (BRAM-Reduction + DSP-Reduction)/2, where BRAM-
Reduction= 100(1-4/293) and DSP-Reduction= 100(1-5/47).
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time requirements. The implementation on different hardware
platforms, under different settings, and operating on different
dataset size, verifies the efficiency of the proposed selection-
based kNN architecture. Future work will involve the inves-
tigation of the use of circuit-level approximate computing
techniques that are reported to permit noticeable gains in the
performance of machine learning hardware implementations.
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