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Introduction

Cosmology is the field of Physics which studies the Universe as a whole. Our ancestors
were already asking themselves profound questions about the cosmos thousands of years ago.
However, the birth of Modern Cosmology is quite recent, dating back to the second decade
of the twentieth century, after Albert Einstein published his theory of General Relativity. At
first the Universe was thought to be static: Einstein himself was convinced that the Universe
should have been static. However, in 1929 Edwin Hubble discovered that it was expanding :
in particular, he observed that the light coming from distant galaxies was redshifted in a way
proportional to the distance of the galaxy itself. This discovery paved the way to the theory
of the Big Bang, according to which the whole Universe expanded from a hot dense plasma to
everything we can observe today.

The Big Bang paradigm got consolidated later in 1964, when Penzias and Wilson observed
for the first time the Cosmic Microwave Background radiation (CMB). This radiation is made
up of the photons that were once tightly bound with protons and electrons in the primeval
plasma, when the Universe was hot and dense. With the expansion the Universe got pro-
gressively colder, until ∼ 380 000 years after the Big Bang it was cold enough to allow the
formation of the first atoms. At this time the photons coming from the primeval plasma – not
having enough energy to break the atoms – decoupled and started to free-stream across the
Universe, forming what we observe today as the CMB.

Later in 1998 another important discovery in the field of Cosmology was made. From the
observation of type Ia Supernovae, research groups led by Riess [1] and Perlmutter [2] obtained
the first evidence that the Universe expansion is accelerating. This was also the first strong
evidence for the possible existence of a cosmological constant (Λ), which is the simplest model
of dark energy, a particular form of energy which can drive cosmic acceleration through its
negative pressure.

These observations helped to build and establish the ΛCDM model, which nowadays is
currently accepted as the Standard Model of Cosmology. According this model, about 68% of
the energy content of the Universe is made up of dark energy in the form of a cosmological
constant, about which we know nothing at microscopic level. The remaining 32% is made by
non-relativistic matter. About 5% is ordinary (baryonic) matter made of protons, neutrons
and electrons, and 27% is dark matter. The name “dark” comes from the fact that it does not
interact via the electromagnetic force, but only through gravity. Except for this, nothing else
is known about dark matter. Thus, the 95% of the Universe seems to be made of something
whose physical nature is not known yet.

One of the greatest successes of the ΛCDM model is the high accuracy with which it
predicts the power spectrum of the CMB temperature fluctuations. The Planck satellite [3],
operating between 2009 and 2013, provided the highest resolution map of the CMB sky. The
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INTRODUCTION

mission data analysis [4] showed an astonishing agreement between the observations and the
theoretical prediction from ΛCDM.

Despite being consistent with the observations, the ΛCDM model presents also various
problems. It does not explain what dark energy and dark matter are. About the former we
only know that it has a negative pressure which drives the current cosmic acceleration. About
the latter we only know that it is almost non-relativistic and that it keeps galaxies and clusters
of galaxies together with its gravitational pull.

In order to tackle these and other open questions, new observations are coming in the next
years. One of these is Euclid , an ESA medium class mission which will launch a satellite by
the end of 2022, and which is the context of this thesis. The Euclid mission will observe about
one third of the sky, performing one of the largest galaxy surveys ever made and probing the
last 10 billion years of the Universe expansion history.

The main cosmological probes for which Euclid is designed are weak lensing (WL) and
galaxy clustering (GC). By weak lensing it is meant the slight deformation of the images
of galaxies due to density fluctuations of the intervening matter distribution, either dark or
baryonic. Through weak lensing measurements it is possible to probe the matter distribution
which sources it. Galaxy clustering consists instead in studying the statistical properties of the
distribution of galaxies, which is not random. In particular, it contains an oscillating pattern
which is an imprint of the sound waves that were propagating in the primeval plasma of baryon
and photons, which was permeating the Universe before the CMB photons decoupled. This
pattern are the Baryon Acoustic Oscillations (BAO), and their length scale can be inferred
from the galaxy distribution. Moreover, the galaxy distribution can also be used to trace the
underlying dark matter field, being so-called biased tracers of the dark matter distribution,
which cannot be observed directly.

Euclid will study these probes with two instruments: the Visible Imager (VIS) and the
Near-Infrared Spectro-Photometer (NISP). With VIS Euclid will obtain high resolution images
of 1.5 billion galaxies for weak lensing measurements. With the NISP instrument in photo-
metric mode it will measure the photometric redshifts of the same galaxies observed with VIS.
In the spectroscopic mode NISP will instead measure the spectroscopic – which are about 50
times more accurate than the photometric ones – redshifts of 20 million Hα-emitting galaxies.
Thus, Euclid will produce two galaxy samples: a photometric sample and a spectroscopic
sample. In this sense, the galaxy clustering probe can be subdivided in two: photometric
galaxy clustering (GCph) and spectroscopic galaxy clustering (GCsp). GCsp and the so-called
Euclid 3 × 2pt statistics, composed by WL, GCph and their cross-correlation, represent the
two main probes of Euclid .

During the three years of my PhD at the University of Genoa, I had the opportunity to
work in two complementary areas of Euclid . In the first half of my PhD I worked on image
simulations needed for the validation of the official spectroscopic data reduction software of
Euclid . In fact, in order to accurately measure the redshifts of the Hα-emitter galaxies of
the Euclid spectroscopic sample, their one-dimensional spectra have to be extracted from the
two-dimensional dispersed images acquired by NISP in spectroscopic mode. In this sense,
a software which performs a data reduction – from images to 1D intensity-vs-wavelength
spectra – is needed. In Euclid there is a specific Organisation Unit (OU-SIR) in charge of the
development of a data reduction software, the SIR Pipeline. In order for the mission to reach
the expected performances in the spectroscopic channel, the SIR Pipeline must satisfy specific
requirements. Therefore, it needs to be validated before the launch with simulations of the
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INTRODUCTION

real data which will be acquired by NISP during the mission. The extraction of the spectra is
in fact affected by several sources of systematic errors, and the effect of each of these must be
accurately assessed. For this reason a wide and varied set of simulations is needed, together
with full control on every detail of the simulation.

In this context I have developed a software which produces these simulations, built on top
of the official Euclid spectroscopic simulator developed by OU-SIM. I added the possibility
to easily customise all settings of a given simulation, mainly the instrumental noise effects
and the input catalogue of the sources, together with their theoretical spectra. I also built
a unified end-to-end pipeline which automates the run of the SIR Pipeline on the simulated
images, allowing to perform a direct comparison between the input theoretical spectra and
the output extracted ones. At the moment of writing, the software I have developed is being
used by OU-SIR as the main tool for carrying out the validations. There are also plans for
applying it to perform specific simulations for the Legacy Science groups, like the AGN and
Galaxy Evolution teams.

In the second half of my PhD, as a member of the Work Package (WP) Likelihood of the
Galaxy Clustering Science Working Group (GC-SWG) of Euclid , I performed the first Euclid
cosmological parameter forecast which includes the correlations between GCsp and the 3×2pt
statistics. The data analysis of the survey needs in fact to be accurately planned: with this
purpose pre-launch forecasts of the expected scientific performances are needed to help this
planning process. In a previous Euclid forecast – the IST:F [5] – it has been shown that
the inclusion in the analysis of the correlation between WL and GCph significantly improves
the constraints on the cosmological parameters. In my work I extended the IST:F including
also the two correlations between GCsp and GCph and between GCsp and WL, in order to
understand their impact of the foreseen constraints given by Euclid . The results here presented
show that these correlations may not affect the constraints as much as the XC(WL,GCph)
studied in the IST:F [5]. However, in the next future some extensions of my work will be
studied in order to take a final decision on whether including or not these correlations in the
official Euclid data analysis.

Thesis outline

This thesis is structured as follows.
In Chapter 1 I present the framework of Modern Cosmology. Starting from a brief recall

of the homogeneous Universe, I introduce the basics for studying inhomogeneities in linear
perturbation theory. Finally, I give an overview of cosmological observations and the ΛCDM
model.

In Chapter 2 I give a general overview of the Euclid mission. I describe the scientific
objectives and the consequent accuracy requirements. Then I summarise the structure of
the Euclid spacecraft, giving also technical details about the VIS and NISP instruments.
After that I describe the survey and the observational strategy, and finally I briefly present
the organisation of the mission. In this last section an overview of the Euclid Science Ground
Segment is given, along with a schematic description representation of the Processing Functions
(PFs) and Organisation Units (OUs) and their tasks.

In Chapter 3 I present my work in the context of spectroscopic image simulations. I give
an introduction on slitless spectroscopy and I describe the structure and requirements of the
SIR Pipeline. Then I introduce the official Euclid simulations produced by OU-SIM, with a
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focus on TIPS, the official spectroscopic simulator. Then I describe the main features of the
software I have written for OU-SIR, motivating the need for the specific simulations it can
produce. Finally I report some test cases in which my software was used to for validating the
SIR Pipeline.

In Chapter 4 I present the forecast I have done to include the correlations between GCsp

and WL,GCph. I describe the formalism of harmonic power spectra which I have used to
compute these correlations, also summarising the Fisher matrix technique in this specific
context. Finally I report and discuss the results of the analysis, quantitatively assessing the
impact of the aforementioned correlations on cosmological parameter constraints.
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Chapter 1

Modern Cosmology

In 1929 Edwin Hubble discovered that our Universe is not static, but it is expanding. Hubble
first observed that the light coming from distant galaxies is redshifted, which today we recog-
nise as a sign of the wavelength stretching due to the expansion of space. In this chapter I
present the fundamental concepts needed to understand the main cosmological observations,
together with the ΛCDM model, which is the nowadays accepted concordance model describing
the Universe.

The chapter is structured as follows: in Sec. 1.1 I describe the homogeneous and isotropic
Universe, which is the starting point in Cosmology and describes the cosmos as a whole
on the largest scales. In Sec. 1.2 I report the various distance definitions that are used in
Cosmology, and that do not necessarily coincide between themselves since our Universe is not
static. In Sec. 1.3 I present the cosmological linear perturbation theory, which is employed as
a main tool for analysing cosmological data-sets. In Sec. 1.4 I briefly describe some of the most
important cosmological observations that have been carried out in the years. Finally in Sec. 1.5
I summarise the characteristics and parameters of the Concordance Model of Cosmology,
ΛCDM, together with its open problems and possible extensions.

Unless otherwise specified, in this chapter I am following Dodelson [6] and Carroll [7],
adopting units such that

} = 1, c = 1, kB = 1 . (1.1)

1.1 The homogeneous and isotropic Universe

When observed at very large scales, our Universe appears homogeneous and isotropic. This
is a very strong statement, and it means that the Universe looks the same to any observer,
independently of the direction at which he/she is looking at and the location where he/she
happens to be. This is generally stated as the Cosmological Principle. Moreover, at cosmo-
logical and astronomical scales the only relevant interaction is gravity, which is described by
Einstein’s General Theory of Relativity (GR). According to GR, space-time can be modelled
as a manifold, and gravity is a manifestation of the curvature of this manifold. The geometry
of space-time is encoded in the metric tensor gµν , the solution of Einstein equations:

Gµν + Λgµν = 8πGTµν . (1.2)

1



1.1. THE HOMOGENEOUS AND ISOTROPIC UNIVERSE

On the left hand side there is the Einstein tensor Gµν ≡ Rµν− 1
2Rgµν , with Rµν being the Ricci

tensor and R the Ricci scalar. Λ is the cosmological constant, and it was first introduced by
Einstein to allow for a static Universe. On the right hand side there is the energy-momentum
tensor Tµν , representing the energy content of the Universe, and G is the Newton gravitational
constant. Einstein equations have a beautiful physical interpretation, given by John Wheeler:

Space-time tells matter how to move; matter tells space-time how to curve.

This sentence synthesizes the profound meaning of Einstein’s theory. In other words the left
hand side of Einstein equations represents the geometry of space-time, since it contains only
the metric tensor and its derivatives with respect to the coordinates. The right hand side
contains instead the physical energetic content of the Universe, represented by the energy-
momentum tensor. An equation linking these two entities states that the space-time geometry
is influenced by the mass and the energy of physical bodies embedded in it (“matter tells
space-time how to curve”). In turn the bodies trajectories are influenced by space-time curved
geometry (“space-time tells matter how to move”).

1.1.1 The FLRW Universe

Einstein’s equations are ten non-linear coupled differential equations, and for this reason they
are almost always very difficult to solve. A commonly adopted strategy is to assume a par-
ticular form of the solution gµν , depending on a few functions of the space-time coordinates,
and then substitute back this form into the equations and solve for these functions. To study
the Universe at large scales, the metric can be assumed to be homogeneous and isotropic. At
present time, the length scale above which the Universe is homogeneous is about 100Mpc [8],
which is about one hundredth of the observable Universe radius.

In the homogeneous Universe, it can be shown that the solution is the Friedman-Lemaître-
Robertson-Walker (FLRW) metric [7]

ds2 = −dt2 + a2(t)

[
dr2

1− kr2
+ r2dΩ2

]
. (1.3)

Here t is the cosmic time and a(t) is the scale factor, whose dynamical evolution captures the
expansion of physical distances due to gravity. The scale factor conventionally is defined in
such a way that a(t0) = 1, with t0 being the present cosmic time (today). The quantity k is
the spatial curvature and can assume three values: −1, 0, +1. A FLRW Universe with k = −1
is named open; if k = +1 the Universe is said to be closed ; finally a Universe with k = 0 is
said to be flat. For later convenience we introduce the conformal time

η(t) ≡
∫ t

0

dt′

a (t′)
, (1.4)

in terms of which the FLRW metric takes the form

ds2 = a2(η)

[
−dη2 +

dr2

1− kr2
+ r2dΩ2

]
. (1.5)

Using the FLRW metric it is possible to evaluate the LHS of Einstein equations. It is also
necessary to characterise the RHS through a model of the energy-momentum tensor of the

2



CHAPTER 1. MODERN COSMOLOGY

energy content of the Universe which is coherent with the hypotheses of homogeneity and
isotropy leading to FLRW metric. In particular it is assumed that at very large scales, where
Eq. (1.3) holds, the energy content of the Universe can be modelled [7] as a simple superposition
of non-interacting perfect fluids in thermodynamical equilibrium:

Tµν =
∑
i

T iµν =
∑
i

[Pigµν + (Pi + ρi)UµUν ] . (1.6)

In the above equation P is the pressure of the fluid, ρ its energy density and Uµ its four-
velocity. The perfect fluids are assumed to be at rest with respect to a reference frame which
is comoving with the coordinates grid. In this frame the four-velocity of the fluid is simply
given by

Uµ = (1, 0, 0, 0) . (1.7)

Moreover, P and ρ depend only on the cosmic time t, under the homogeneity assumption.
Now substituting the FLRW metric Eq. (1.3) into the Einstein equations, together with the
perfect fluid energy-momentum tensor Eq. (1.6), we get the so called Friedman equations

H2 =
Λ

3
+

8πG

3

∑
i

ρi −
k

a2
(1.8)

Ḣ =− 4πG
∑
i

(Pi + ρi) +
k

a2

where we introduced the Hubble parameter H ≡ ȧ
a , with H(t0) ≡ H0 being called the Hubble

constant. Another equation holding is the covariant conservation of the energy-momentum
tensor

∇µTµν = 0 , (1.9)

whose component with ν = 0 leads to

ρ̇i + 3H (ρi + Pi) = 0 . (1.10)

The three equations Eq. (1.10) and Eq. (1.8) are not all independent, due to the Bianchi
identity

∇µGµν = 0 , (1.11)

which is a purely geometrical identity holding for the metric tensor, and assures the consistency
of the Einstein equations with the energy-momentum conservation Eq. (1.9).

It is physically interesting to rewrite the first Friedman equation introducing the dimen-
sionless density parameters Ωi(t)

Ωi(t) ≡
8πG

3H2(t)
ρi . (1.12)

With this definition the first Friedman equation becomes∑
i

Ωi(t) +
Λ

3H2(t)
− k

a2H2(t)
= 1 (1.13)

3



1.1. THE HOMOGENEOUS AND ISOTROPIC UNIVERSE

It is therefore possible to treat the cosmological constant and the curvature as perfect fluids,
with the following identifications

ΩΛ(t) =
Λ

3H2(t)
=⇒ ρΛ ≡

Λ

8πG

Ωk(t) = − k

a2(t)H2(t)
=⇒ ρk ≡ −

3k

8πGa2(t)

(1.14)

And this allows us to rewrite the first Friedman equation in the compact form∑
i

Ωi(t) = 1 . (1.15)

where now the sum also runs over the spatial curvature k and the cosmological constant Λ.

1.1.2 The physical components of the Universe

Within the perfect fluid model on a FLRW space-time there are three unknowns to solve for,
i.e. ρ(t), P (t), a(t), but only two independent equations. It is therefore necessary to impose an
equation of state, a constitutive link between ρ and P . The equation of state clearly depends
on the nature of the fluid itself: the simplest model is a linear relation between the pressure
and the energy density

P = wρ . (1.16)

Using this equation of state, Eq. (1.10) can be solved for ρ as a function of a:

ρi = ρi,0a
−3(1+wi) . (1.17)

Here the subscript 0 denotes the quantity evaluated at present time t0. Despite of its simplicity,
Eq. (1.16) is able to effectively model the behavior of physically relevant perfect fluids. In what
follows I list the species populating the cosmic inventory in the Standard Cosmological Model,
i.e. ΛCDM.

Cold Matter Cold matter comprises all the non-relativistic components in the Universe,
such as baryons and cold dark matter. These are characterised by an energy density contri-
bution dominated by the rest energy, for which the pressure is negligible:

Pm = 0 =⇒ wm = 0 . (1.18)

Therefore the energy density of cold matter scales as a3 with the Universe’s expansion

ρm ∝ a−3 . (1.19)

This can be intuitively understood thinking the cold matter perfect fluid as a gas of massive
particles in an expanding spherical box (the Universe) with radius proportional to a(t). Since
particles are non-relativistic, their energy is almost entirely given by their mass. Therefore
the energy density is the mass volume density, which scales as the inverse of the volume of the
sphere, proportional to a3. From this reasoning Eq. (1.19) follows.
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CHAPTER 1. MODERN COSMOLOGY

Radiation Radiation stands for relativistic particles, for which the energy is mainly given
by their momentum. Radiation therefore includes photons and relativistic neutrinos. For
radiation the equation of state is

Pr =
1

3
ρr, wr =

1

3
. (1.20)

This result can be derived starting from the energy-momentum tensor of electromagnetic field

TµνEM = FµλF νλ −
1

4
gµνF λσFλσ . (1.21)

This tensor is trace-less gµνT
µν
EM = 0, and imposing this condition on the perfect fluid energy-

momentum tensor we get the equation of state Eq. (1.20). Substituting this into Eq. (1.16)
leads to

ρr ∝ a−4 . (1.22)

For photons, this result can be explained with an argument similar to the one used for Cold
Matter. In addition to the volume scaling a−3 of the number density photons have an energy
which is inversely proportional to their wavelength, which in turn scales as a(t). This explains
the additional a−1 factor: it is simply due to a redshift of the photons wavelength which occurs
as the Universe expands.

Cosmological Constant As we see from equation Eq. (1.14) the cosmological constant
contribution is like the one of a perfect fluid with a constant energy density. Therefore from
equation Eq. (1.16) it follows

PΛ = −ρΛ . (1.23)

If the energy density is imposed to be positive definite the pressure of the cosmological constant
becomes negative. Indeed it can be seen from Eq. (1.8) that in a Universe dominated by a
cosmological constant the scale factor grows exponentially

a(t) ∝ eHt , (1.24)

where H is the Hubble parameter, which is constant in a Λ-dominated Universe. The cosmo-
logical constant is the simplest model of dark energy, which is a still unknown physical entity
composing the major part of the Universe and which pushes the accelerated expansion of the
Universe with its negative pressure.

Putting together all the results obtained until here it is possible to write an evolution
equation of the Hubble parameter in the homogeneous Universe with a cosmological constant

E2(a) ≡ H2(a)

H2
0

=
√

Ωm,0 a−3 + Ωr,0 a−4 + ΩΛ,0 + Ωk,0 a−2 , (1.25)

where the notation Ωi,0 ≡ Ωi(t = t0) has been introduced.
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1.1.3 Epoch of matter-radiation equality

We have seen in the previous section that the density parameter of radiation falls of more
rapidly than the density parameter of cold matter. The contribution of radiation Ωr,0 today is
much smaller than the cold matter one Ωm,0, but in early Universe the situation was reversed.
This means that there has been a time when the two contributions were equal, which can be
quantified with the value of the scale factor aeq at that time. This epoch plays an important
role in the linear theory of structure formation, acting as a watershed for the behaviour of the
structure evolution between small and large scales. In this section I briefly derive the value of
aeq, following the treatment of [6].

The majority of the radiation contribution today is given by the Cosmic Microwave Back-
ground (CMB), composed by the photons which decoupled from matter about 380 000 years
after the Big Bang. The CMB can be modelled as a black-body radiation with a given tem-
perature T , in terms of which the energy density can be written:

ργ,0 =
π

15
T 4 . (1.26)

Combined measurements from WMAP and FIRAS give a temperature of T = 2.72548 ±
0.00057K [9], from which the photon density parameter today can be estimated

Ωγ,0h
2 = 2.45× 10−5 . (1.27)

Here h is the reduced Hubble parameter at present time

h ≡ H0

100 km s−1 Mpc−1 . (1.28)

The total radiation density parameter Ωr,0 must also include the relativistic neutrinos contri-
bution, which gives [6]

ρr,0

ρcr
=

4.15× 10−5

h2a4
≡ Ωr,0

a4
. (1.29)

The radiation density parameter today is about four order of magnitudes smaller than the
cold matter one

Ωr,0

Ωm,0
' 3× 10−4 (1.30)

where I have used the value Ωm,0 = 0.32 as measured by Planck [4]. Equating the RHS of the
above equation to the matter density parameter Ωm,0/a

3 yields the value of the scale factor
at the epoch of matter-radiation equality

aeq =
4.15× 10−5

Ωm,0 h2
. (1.31)

This can be translated into a value for the redshift zeq at the epoch of equality

1 + zeq = 2.38× 104 Ωm,0 h
2 . (1.32)

To conclude this section we note that if the amount of matter Ωm,0h
2 in the Universe today

goes up, the redshift at equality zeq also goes up. That is, the epoch of matter-radiation
equality happens earlier in a Universe with a larger matter content.
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CHAPTER 1. MODERN COSMOLOGY

1.2 Distances

Measuring distances in Cosmology requires particular attention to the definition of the distance
itself. In fact the physical distance between two objects increases with time because of the
Universe expansion, the so-called Hubble flow. All the distances definition in Cosmology can
be related to the comoving distance, which is defined to be unaffected by the Hubble flow, and
therefore remains fixed as the Universe expands. Also, since the physical distances depend on
the cosmological model, it is necessary to specify the cosmology within which to compute and
interpret them.

1.2.1 Redshift

The light coming from a distant source – e.g. a galaxy – undergoes a wavelength shift due to
the stretching of the three-dimensional space encoded in the scale factor a(t). Defining tem

and tobs the cosmic times of emission and detection of the light signal respectively, the ratio
of the wavelength at the two different times is given by

λobs

λem
=
a(tobs)

a(tem)
> 1 . (1.33)

Since the time of observation is the present time t0 and conventionally the scale factor is
normalised such as a(t0) = 1, the redshift z of the emitted light is given by

z ≡ λobs − λem

λem
=

1

a
− 1 , (1.34)

where a ≡ a(tem) is the scale factor at the generic time of emission. The above equation can
be inverted to relate a to z

a =
1

1 + z
. (1.35)

The redshift z of a celestial object can be directly measured, and its interpretation does not
depend on the assumed cosmological model. Instead the scale factor a(t) appearing in Eq. (1.3)
is the solution of the Friedman equations Eq. (1.8), therefore its functional dependence on
the cosmic time t is affected by the cosmological model. For this reason z is used as the
preferred “time variable” in Cosmology, using the one-to-one correspondence Eq. (1.35) to do
the appropriate transformations in the equations.

The Euclid mission, which is the context of this thesis work, will perform a galaxy redshift
survey of unprecedented size, covering an area of about one third of the sky in the redshift
range 0.001 < z < 2.5.

1.2.2 Comoving distance

The comoving distance quantifies the distance between two objects with respect to the comov-
ing coordinate grid (r, θ, φ). This coordinate grid expands with the Universe, and therefore
is unaltered by the Universe expansion. If two objects are at rest with respect to each other
they are said to have zero peculiar relative velocities, and their comoving distance stays fixed.
On the other hand their physical distance increases solely because of the Hubble flow. The

7



1.2. DISTANCES

comoving distance between a distant source emitting light at time t and us is defined as

χ ≡
∫ t0

t

dt′

a (t′)
=

∫ 1

a(t)

da′

a′2H (a′)
=

∫ z

0

dz′

H (z′)
. (1.36)

Physically the comoving distance between two objects is the maximum distance which can
be travelled by light when going from one object to the other. In particular the comoving
distance that light could have travelled from t = 0 is referred as the comoving horizon, and
it is given by the conformal time defined in Eq. (1.4). Since no information can exceed the
speed of light, two events separated by a comoving distance greater than η cannot be causally
related to each other.

1.2.3 Angular diameter distance

Despite being useful from a conceptual point of view, the comoving distance cannot be observed
directly. Thus cosmologists had to find other ways to define observable distances. A possible
way to determine distances is to measure the angular size θ of an object of known physical
size l. Since distances in Cosmology are always much bigger than the physical sizes of the
observed objects, the angular size θ of these objects is small. With this in mind the angular
diameter distance can be defined as

dA =
l

θ
. (1.37)

The comoving size of the object in a flat (Ωk,0 = 0) is l/a so the angle subtended can be
computed as θ = l/a

χ , thus producing

dA = aχ =
χ(z)

1 + z
. (1.38)

For a non-flat Universe the above expression can be generalised as

dA(z) =
1

(1 + z)H0

√
|Ωk,0|

Sk

(
H0

√
|Ωk,0|χ(z)

)
(1.39)

where Sk is a function whose expression varies depending on the spatial curvature k of the
FLRW metric Eq. (1.3):

Sk(χ) =


sinχ k = +1
χ k = 0
sinhχ k = −1

(1.40)

The angular diameter distance is used for example in measurements of gravitational lensed
quasar systems [10].

1.2.4 Luminosity distance

Another way to infer distances is to measure the light flux F coming from a distant source
of known luminosity, i.e. a standard candle. In a static Universe the flux F emitted from a
source of luminosity L located at distance d from the observer is

F =
L

4πd2
. (1.41)

8



CHAPTER 1. MODERN COSMOLOGY

This equation can be generalised [6] to the expanding Universe using the comoving distance

F =
La2

4πχ2(a)
, (1.42)

leading to the expression for the luminosity distance dL as a function of the redshift

dL(z) = (1 + z)χ(z) . (1.43)

The above definition holds only for the flat case. In a non-flat FLRW cosmology the formula
generalises to

dL(z) =
(1 + z)

H0

√
|Ωk,0|

Sk

[√
|Ωk,0|
H0

χ(z)

]
, (1.44)

The luminosity distance dL(z) can be measured, as well as the redshift z. This allows to fit
the experimental data with the relation Eq. (1.44) and therefore infer the best fit values of the
cosmological parameters. This has been done with Supernovae Ia, as reported in Sec. 1.4.2.

1.3 The inhomogeneous Universe

Our Universe appears homogeneous at very large scales, but as soon as we start zooming in at
smaller scales inhomogeneities arise. A representation of the results of the Sloan Digital Sky
Survey (SDSS) [11] is displayed in Fig. 1.1; each dot is a galaxy, and the maximum redshift
represented is z ∼ 0.15. The figure clearly shows that the distribution of the galaxies is not
uniform, but there are overdense and underdense spots. The inhomogeneities in the matter
distribution are the result of the evolution history of the Universe, starting from inflation
up to the present day. This evolution depends on the values of cosmological parameters, and
therefore there is information in the structure of the inhomogeneous Universe. Galaxy surveys,
like SDSS and Euclid, are a way to probe this structure, as they are aimed at mapping the
distribution of galaxies. In turn the galaxies trace the distribution of dark matter, in the
sense that they aggregate along the filaments of the cosmic web made by dark matter density
fluctuations. Therefore galaxy surveys can be used to infer the properties of the cold matter
distribution; more on galaxy survey will be discussed in Sec. 1.4.3. The equations controlling
the evolution of the structures in the Universe are coupled Einstein-Boltzmann equations. In
the regime where the inhomogeneities are assumed to be small one can keep only the linear
leading terms in the equations. In this section I briefly review the linear theory leading to the
relevant equations for growth of structures. The starting point is the perturbed FLRW metric

g00(x, t) = −1− 2Ψ(x, t)
g0i(x, t) = 0
gij(x, t) = a2(t)δij [1 + 2Φ(x, t)] .

(1.45)

The functions Ψ and Φ are the gravitational potential and the curvature perturbation respec-
tively, and both are assumed to be small in linear perturbation theory. This expression for the
metric corresponds to a particular gauge choice, i.e. the conformal Newton gauge, and con-
tains only scalar perturbations. However, since General Relativity possesses a gauge freedom,
different gauge choices describe the same physics, and thus the calculations can be carried out
after having fixed the gauge.
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1.3. THE INHOMOGENEOUS UNIVERSE

Figure 1.1: The SDSS’s map of the Universe. Each dot is a galaxy; the color is the g-r color
of that galaxy. Link: https://www.sdss.org/science/orangepie/

1.3.1 Boltzmann equations

Theoretical Cosmology is essentially an application of general relativity coupled with statistical
mechanics [6]. The only relevant long-range force is gravity, governed by Einstein equations
Eq. (1.2). Since Cosmology deals with the evolution of the Universe on large scales, it cares
about the collective, average behavior of matter, which is described by statistical mechanics.
The main equation of statistical mechanics is the Boltzmann equation, and its unknown is the
phase-space distribution function f(x,p, t). Given a small volume (∆x∆p)3 centred at (x,p)
in phase-space, the distribution function gives the number of particles enclosed in this volume

N(x,p, t) = f(x,p, t)

(
∆x∆p

2π

)3

. (1.46)

The generic form of the Boltzmann equation is the following

df

dt
= C[f ] . (1.47)

Essentially it encodes the conservation of the number of particles, considering also annihilation
and creation of particles in the relativistic limit with the collision term C[f ]. The derivative
on the LHS is a total derivative, which can expanded as

∂f

∂t
+

dxi

dt

∂f

∂xi
+
dp

dt

∂f

∂p
+
dp̂i

dt

∂f

∂p̂i
= C[f ] . (1.48)
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Here p indicates the module of the momentum of the particles, while p̂i is a unit vector which
represents the direction of propagation of the particles. The Boltzmann equation has to be
complemented with the equations of motion for the particles. In GR these are summarised in
the geodesic equation

dPµ

dλ
+ ΓµαβP

αP β = 0 , (1.49)

where Pµ ≡ dxµ

dλ is the comoving momentum, i.e. the momentum in the comoving reference
frame. Once the Boltzmann equation for a given species are solved, macroscopic quantities
can be computed. Macroscopic quantities include the energy momentum tensor

Tµν (x, t) =
gs√

−det [gαβ]

∫
dP1dP2dP3

(2π)3

PµPν
P 0

f(x,p, t) , (1.50)

and the pressure

P (x, t) = gs

∫
d3p

(2π)3
f(x,p, t)

p2

3E(p)
. (1.51)

For both quantities the factor gs represents the quantum degeneracy factor of the species
considered, which is typically given by the number of spin (or helicity) states. In what follows
I briefly report the Boltzmann equation for all the species of particle relevant for the expansion
history of the Universe.

Photons

As anticipated in Sec. 1.1.3, the majority of the radiation in our Universe is composed by the
CMB photons. At zero order the photons perfect fluid can be modelled as a Bose-Einstein gas
with corresponding equilibrium distribution function

f (0)(p) =
1

ep/T − 1
. (1.52)

From this Eq. (1.26) can be derived by integrating the photons energy against f (0)

ργ = 2

∫
d3p

(2π)3

p

ep/T − 1
=

8πT 4

(2π)3

∫ ∞
0

dx
x3

ex − 1
=

π

15
T 4 , (1.53)

where the dimensionless variable x ≡ p/T is introduced. Beyond the zeroth order the equi-
librium distribution function is slightly perturbed, and this can be done by introducing the
relative temperature fluctuation Θ(x, p̂, t)

Θ(x, p̂, t) ≡ δT (x, p̂, t)

T (t)
. (1.54)

With this definition the perturbed distribution function takes the following form

f(x, p, p̂, t) =

[
exp

{
p

T (t)[1 + Θ(x, p̂, t)]

}
− 1

]−1

. (1.55)

Note that here the temperature perturbation depends also on the position x in space and the
direction of propagation p̂. This goes in the direction of modelling the CMB perturbation on

11



1.3. THE INHOMOGENEOUS UNIVERSE

the sky observed by Earth today, which can be expressed as Θ (xEarth , p̂, t0). At first order
in Θ the distribution function can be expanded as

f(x,p, t) ' f (0)(p, t)− p∂f
(0)(p, t)

∂p
Θ(x, p̂, t) . (1.56)

Plugging in this expansion together with the geodesic equation Eq. (1.49) at linear order into
Eq. (1.48) leads to the left hand side of the Boltzmann equation for photons

df

dt
= −p∂f

(0)

∂p

[
Θ̇ +

p̂i

a

∂Θ

∂xi
+ Φ̇ +

p̂i

a

∂Ψ

∂xi

]
. (1.57)

The other physical ingredient needed for writing down the Boltzmann equation for photons is
a model for the collision term. Before the decoupling, the photons were interacting with the
electrons through Compton scattering

e−(q) + γ(p)↔ e−
(
q′
)

+ γ
(
p′
)
. (1.58)

The motion of the electrons can be treated as non-relativistic and with the same bulk velocity
ub of the baryons. It can be shown [6] that the collision term due to Compton scattering is
given by

C[f(p)] = −p∂f
(0)

∂p
neσT [Θ0 −Θ(p̂) + p̂ · ub] , (1.59)

where ne is the electron number density, σT = 0.665× 10−24 cm2 is Thomson cross-section
and Θ0 is the monopole moment of the temperature perturbation

Θ0(x, t) ≡ 1

4π

∫
dΩ′Θ

(
p̂′,x, t

)
. (1.60)

It is convenient to adopt the conformal time η as temporal variable and to represent equations
in Fourier space. The fluid velocity field of the baryons ub is assumed to be irrotational, which
in Fourier space means

uib =
(
ki/k

)
ub . (1.61)

With these assumptions, the photon perturbation equation becomes

Θ′ + ikµΘ + Φ′ + ikµΨ = −τ ′ [Θ0 −Θ + µub] . (1.62)

Here the prime denotes differentiation w.r.t. η, µ ≡ k·p̂
k is the cosine of the angle between the

wavevector k and the photon direction p̂, while τ is the optical depth

τ(η) ≡
∫ η0

η
dη′neσTa, τ ′ ≡ dτ

dη
= −neσTa . (1.63)

The optical depth quantifies the opacity of the electron gas to photons, and so it relates to
the photons mean free path. At late times, the free electron density is small, so τ � 1, while
at early times it is very large, then τ � 1. In Eq. (1.59) the angular dependency of the
cross-section has been neglected; if considered, it finally leads to the Boltzmann equation for
the photon perturbation

Θ′ + ikµΘ = −Φ′ − ikµΨ− τ ′
[
Θ0 −Θ + µub −

1

2
P2(µ)Θ2

]
. (1.64)
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In the above equation Pl(µ) is the l-th Legendre polynomial and Θl is the l-th multipole
moment of Θ

Θl(k, η) ≡ 1

(−i)l
∫ 1

−1

dµ

2
Pl(µ)Θ(µ, k, η) . (1.65)

Cold dark matter

In all viable models of structure formation, cold dark matter (CDM) plays an important
role in the growth of structure through its gravitational pull. Dark matter does not directly
interact with any of the other constituents in the universe, so there is no collision term in
the Boltzmann equation. Moreover its motion is non-relativistic, therefore the velocity can be
treated as a perturbation. Proceeding as for the photons, the LHS of Boltzmann equation for
non relativistic particles is

∂fc

∂t
+
p

E

p̂i

a

∂fc

∂xi
−
[
H + Φ̇ +

E

ap
p̂iΨ,i

]
p
∂fc

∂p
= 0 . (1.66)

The calculation then proceeds taking the first moments of the distribution function, which are
the number density

nc =

∫
d3p

(2π)3
fc , (1.67)

and the fluid bulk velocity

uic ≡
1

nc

∫
d3p

(2π)3
fc

pp̂i

E(p)
. (1.68)

Taking the first moment of Eq. (1.66) yields

∂nc

∂t
+

1

a

∂
(
ncu

i
c

)
∂xi

+ 3[H + Φ̇]nc = 0 . (1.69)

The CDM density contrast is introduced as a fluctuation from the homogeneous background
number density

nc(x, t) = n̄c(t) [1 + δc(x, t)] . (1.70)

Inserting this definition in Eq. (1.69) produces a zero order term and a first order term,
which should vanish separately. The equation for the zero order term is the known evolution
Eq. (1.19) of the background cold matter density

∂n̄c

∂t
+ 3Hn̄c =

d
(
n̄ca

3
)

dt
= 0⇒ n̄c ∝ a−3 . (1.71)

The first order term instead leads to an equation for the density contrast δc

∂δc

∂t
+

1

a

∂uic
∂xi

+ 3Φ̇ = 0 . (1.72)

Taking the second moment of Eq. (1.66) an equation for the fluid bulk velocity uc can be
obtained

∂ujc
∂t

+Hujc +
1

a

∂Ψ

∂xj
= 0 . (1.73)
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The fluid bulk velocity uc is assumed to be irrotational as the baryon velocity field

uic =
(
ki/k

)
uc . (1.74)

Going to Fourier space and using η as time variable the Boltzmann equations for CDM finally
become

δ′c + ikuc + 3Φ′ = 0 (1.75)

u′c +
a′

a
uc + ikΨ = 0 . (1.76)

Baryons

The next component of the universe that requires a set of Boltzmann equations are the elec-
trons and protons. These components are often grouped together and called baryons. Electrons
and protons are coupled by Coulomb scattering, and the rate of this interaction is much larger
than the Hubble parameter at each epoch of interest. This forces the electron and proton
density contrast to a common value

ρe − ρ̄e
ρ̄e

=
ρp − ρ̄p
ρ̄p

≡ δb , (1.77)

and analogously for the fluid velocities

ue = up ≡ ub . (1.78)

The procedure of taking moments of the LHS of Boltzmann equation to derive equations for
δb and ub proceeds just as in the case of CDM. However for baryons the Compton scattering
with photons must be taken into account. The equation coming from the first moment of
Boltzmann equation is completely analogous to the first equation of Eq. (1.75) for CDM

δ′b + ikub + 3Φ′ = 0 . (1.79)

This is because Compton scattering Eq. (1.58) preserves the number of particle, and this
cannot affect the first moment of Boltzmann equation, which is the continuity equation from
a fluid dynamics perspective. The first moment contains a collision term on the RHS instead

∂ujb
∂t

+Hujb +
1

a

∂Ψ

∂xj
=

1

ρb
F jeγ(x, t) . (1.80)

The second Boltzmann equation for baryons is obtained by evaluating the collision term, going
to Fourier space and employing the conformal time as usual

u′b +
a′

a
ub + ikΨ = τ ′

4ργ
3ρb

[3iΘ1 + ub] . (1.81)

14



CHAPTER 1. MODERN COSMOLOGY

Neutrinos

Finally, we turn to the remaining abundant species of particles, the neutrinos, with distribution
function fν(x,p, t). The procedure is analogous to the case of photons, since neutrinos are
relativistic in the early Universe. Neutrinos are fermions, so at equilibrium they follow the
Fermi-Dirac distribution function with temperature Tν(a)

f (0)
ν (p) =

1

e
p
Tν + 1

. (1.82)

It can be shown [6] that at zero order the temperature of the neutrino gas is related to the
the one of the photon gas by a simple constant

Tν
T

=

(
4

11

)1/3

. (1.83)

The perturbed neutrino distribution function is instead

fν(x,p, t) =

[
exp

{
p

Tv(t)[1 +N (x, p̂, t)]

}
+ 1

]−1

=

[
1−N (x,p, t)p

d

dp

]
f (0)
ν (p) ,

(1.84)

where N (x,p, t) the neutrino temperature fluctuation. It is well known from the observed
neutrino oscillations [12] that neutrinos are massive particles. Moreover during the epochs of
interest, that is, from neutrino decoupling onward, any non-gravitational interactions of neu-
trinos are negligible. Thus the appropriate Boltzmann equation is the collision-less Boltzmann
equation for massive particles

dfν
dt

=
∂fν
∂t

+
p

Eν(p)

p̂i

a

∂fν
∂xi
−
[
H + Φ̇ +

Eν(p)

ap
p̂iΨ,i

]
p
∂fν
∂p

= 0 . (1.85)

Inserting the form of the perturbed neutrino distribution function and switching to Fourier
space and conformal time

N ′(k, p, µ, η) + ikµ
p

Eν(p)
N −Hp ∂

∂p
N = −Φ′ − ikµEν(p)

p
Ψ , (1.86)

which is the first-order Boltzmann equation for neutrinos. It resembles the equation for photons
Eq. (1.64) apart from the absent collision term, and some factors of p/Eν(p) which becomes 1
when the neutrinos are relativistic.

Massive neutrinos Neutrinos are massive particles and there are three neutrino mass eigen-
states. A recent global analysis [13] of neutrino oscillations experiments gave the following
results for the mass-splittings

∆m2
21 = 7.39+0.21

−0.20 × 10−5 eV2

∆m2
31 = 2.525+0.033

−0.032 × 10−3 eV2 (NH)

∆m2
32 = −2.512+0.034

−0.032 × 10−3 eV2 (IH)

, (1.87)
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with NH and IH stand for normal hierarchy (m1 < m2 < m3) and inverted hierarchy (m3 <
m1 < m2) respectively. At least two neutrino states have a large enough mass for being non-
relativistic today, thus making up a small fraction of the dark matter of the Universe. For this
reason the more massive neutrinos contribute to the cold matter budget through a density
parameter

Ων,0 ≡
∑
mν

93.14h2
. (1.88)

Thus the first way in which massive neutrinos affect the growth of structures is entering the
Friedman equation Eq. (1.25) for the Hubble parameter, increasing the contribution of cold
matter Ωm,0. The second effect of the mass of neutrinos is to damp the growth of small-scale
structures. In fact neutrinos move fast, as they are not cold dark matter, and free-stream
out of high-density regions. Perturbations on scales smaller than the free-streaming scale are
therefore suppressed. An estimate of the neutrino free-streaming scale is given [6] by

kfs(a) ' 0.063hMpc−1

∑
mν

0.1eV

a2H(a)

H0
. (1.89)

The Katrin tritium decay experiment [14] provided the current estimate on the upper bound
for the absolute neutrino mass scale, yielding a limit of 1.1 eV at 90% CL.

1.3.2 Einstein equations

Boltzmann equations encode how the distribution of matter-energy is influenced by interac-
tions, after having modelled the collision term, and gravity, through the geodesic equation.
The influence of matter-energy on the metric is instead contained in the Einstein equations
Eq. (1.2), which can be expanded at linear order in the metric perturbations Ψ and Φ. The
procedure is straightforward, but computationally laborious. The Einstein tensor is defined as

Gµν = Rµν −
1

2
Rgµν , (1.90)

where Rµν is the Ricci tensor and R = gµνRµν is the Ricci scalar. The Ricci tensor is expressed
as

Rµν = ∂ρΓ
ρ
µν − ∂νΓρρµ + ΓρρλΓλµν − ΓλρµΓρλν , (1.91)

where Γµρσ is the Christoffel symbol, which is in turn given by

Γµρσ =
1

2
gµα (∂σgρα + ∂ρgσα − ∂λgρσ) . (1.92)

Inserting the metric Eq. (1.45) into Einstein equations gives rise to a zero order term and a
first order one. The zero order term is simply given by Friedman equations Eq. (1.8) with
k = 0, while the first order term is the one we need here. Two equations are needed, since
the metric perturbations are two. The first equation can be obtained by considering the 00
component

δG0
0 = 8πGδT 0

0 (1.93)

The Einstein tensor in Fourier space at linear order is

δG0
0 = −6HΦ,0 + 6ΨH2 − 2

k2Φ

a2
, (1.94)
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where the comma notation stands for the derivative Φ,α ≡ ∂Φ
∂xα . For the energy-momentum

tensor the 00 component is the total energy density, and inserting it and switching to Fourier
space and conformal time produces the first equation

k2Φ + 3
a′

a

(
Φ′ −Ψ

a′

a

)
= 4πGa2 [ρcδc + ρbδb + 4ργΘ0 + 4ρνN0] . (1.95)

The other equation can be obtained by projecting the purely spatial ij component with the
tensor

(
k̂ik̂

j − 1
3δ
j
i

)
which gives

k2(Φ + Ψ) = −32πGa2 [ργΘ2 + ρνN2] . (1.96)

This last equation tells that the two gravitational potentials Φ and Ψ are equal and opposite,
unless the photons or neutrinos exhibit a non-negligible quadrupole moment.

1.3.3 Initial conditions

The current most satisfying hypothesis about what generated the initial conditions for the
cosmological evolutionary equations is inflation. The term “inflation” indicates a period of
exponentially rapid expansion of the Universe, at the end of which the Universe expanded
by many orders of magnitude. Originally inflation was introduced to explain the horizon and
the flatness problem [15, 16]. In a few words, these problems consist in asking the reason
why the Universe is almost spatially flat and so homogeneous, even at scales that cannot have
been in causal contact. One of the experimental measurements of the Universe smoothness is
the CMB temperature fluctuation, which is treated briefly later in this chapter. Introductory
reviews about inflation can be found at [17] or at [6] chapter 7. The initial conditions set up
by inflation can be obtained by studying the Einstein-Boltzmann equations at early times,
when kη � 1. In this limit, the Boltzmann equations for radiation and cold matter become

Θ′0 + Φ′ = 0

N ′0 + Φ′ = 0

δ′c = −3Φ′

δ′b = −3Φ′ .

(1.97)

For Einstein equations, at early times radiation dominates; the 0-0 component Eq. (1.95)
becomes

3
a′

a

(
Φ′ − a′

a
Ψ

)
= 16πGa2 (ργΘ0 + ρνN0) . (1.98)

Combining it with the early times Boltzmann equation for radiation and the second Einstein
equation Eq. (1.96) and neglecting the quadrupole moment1 yields

Φ′′η + 4Φ′ = 0 . (1.99)

This equation can be solved with the ansatz [6] Φ = ηp, which produces two solutions: p = 0
or p = −3. The p = −3 mode is the decaying mode: if it is excited very early on, it will

1Neglecting the quadrupole moment means that Ψ = −Φ everywhere in the equations.
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quickly die out and have no impact on the Universe. The interesting solution is therefore the
one with p = 0, which inserted in Eq. (1.98) produces

Φ = 2Θr,0 . (1.100)

To go ahead the condition of adiabatic perturbations must be assumed:

δρs
ρs

=
δρ

ρ
(1.101)

which means that at early times the fractional density perturbations are the same for all
species. This hypothesis has been tested with the Planck mission [4]. Inserting this condition in
the Einstein Boltzmann equations leads to the following initial conditions for the overdensities
and the radiation monopoles

Φ (k, ηi) = 2Θ0 (k, ηi) = 2N0 (k, ηi) , (1.102)

and for the cold matter overdensities

δc (k, ηi) = δb (k, ηi) = 3Θ0 (k, ηi) =
3

2
Φ (k, ηi) , (1.103)

where ηi is the initial conformal time. For the fluid velocities of cold matter and dipole
moments of radiation analogous relations hold

Θ1(k, ηi) = N1(k, ηi) =
iub(k, ηi)

3
=
iuc(k, ηi)

3
= − k

6aH
Φ(k, ηi) . (1.104)

It is remarkable that the adiabatic condition Eq. (1.101) allows to obtain the initial conditions
on all perturbations from the value of the gravitational potential Φ alone. It is commonly
assumed that the primordial fluctuations of the field Φp are gaussian with zero mean 〈Φp(k)〉 =
0 and with given two-point function〈

Φp(k)Φ∗p
(
k′
)〉

= PΦp(k)(2π)3δ(3)
(
k − k′

)
. (1.105)

Here PΦp is the power spectrum of the primordial fluctuations. A common parameterisation
of the primordial power spectrum is the following

PΦp(k) = 2π2Ask
−3

(
k

kp

)ns−1

. (1.106)

In the above equation As is the scalar amplitude of the fluctuations, ns is the scalar spectral
index and kp is the pivot scale, which has to be fixed conventionally. The difference ns − 1
measures the deviation from scale invariance of the power spectrum. Here scale invariance
means that the dimensionless power spectrum ∆(k)

∆(k) =
k3P (k)

2π2
, (1.107)

does not depend on the scale k. Indeed it is clear from the above definition and from Eq. (1.106)
that if P (k) ∝ k−3 then ∆(k) does not depend on k.
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Figure 1.2: Linear evolution of Φ for modes of different scale in the fiducial ΛCDM cosmology.
The solutions have been obtained using CLASS and are normalised to the value of the potential
at early times. Source: [6]

1.3.4 Linear structure formation

In this section I briefly describe the linear structure evolution at late times, with the aim
to write down the commonly adopted parameterisation for the matter power spectrum. The
power spectrum P (k) is defined as the two-point correlation function in Fourier space

〈
δ(k)δ(k′)

〉
≡ (2π)3Pδδ(k)δ(3)(k − k′) , (1.108)

where δm = δc+δb is the total cold matter density contrast. The aim here is to obtain a form of
the power spectrum as a function of the scale k and the scale factor a (or the redshift z) as time
variable. In the linear theory the different scales k evolve independently, i.e. the evolutionary
differential equations for different k are decoupled. The linear evolution of the perturbations
breaks naturally into three stages: super-horizon evolution, horizon crossing, and sub-horizon
evolution, corresponding to three different regimes in which the equations can be solved with
specific approximations. The term “horizon” here refers to the comoving horizon defined in
Sec. 1.2, which is essentially the conformal time η. Early on, all of the modes are outside the
horizon (kη � 1) since η is small and the wavelengths of all the modes are bigger, then all
modes undergo the super-horizon evolution. At intermediate times the wavelengths of some
modes enter the horizon and the universe evolves from radiation domination (a � aeq) to
matter domination (a � aeq). At late times all the modes have entered the horizon and
therefore they evolve identically again. The different behavior according to the scale k of
the modes is shown Fig. 1.2. The small scale modes of Φ enter the horizon during radiation
domination, exhibiting a decaying behaviour. Large scale modes instead enter the horizon well
after aeq, during the matter domination epoch, and they remain constant. A moderate decay
characterises the intermediate scales, which enter the horizon around the matter-radiation
equality epoch. This guides us to split the dependency on k and a of the potential Φ into two
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Figure 1.3: Linear evolution of the dark matter overdensity δc, normalised to the early times
value. We see that small scales start to grow earlier, since they enter the horizon early and
therefore the gravitational collapse start early. Large scale overdensities start to grow only at
late times instead. At late times the growth is identical for all scales. Image taken from [6].

factors, which are the transfer function T (k) and the growth factor D(a)

Φ(k, a) =
3

5
Φp(k)T (k)

D(a)

a
. (1.109)

The evolution of the dark matter overdensity is depicted in Fig. 1.3 and it can be determined
from the evolution of Φ, using the late time no-radiation limit of Eq. (1.95)

k2Φ(k, a) = 4πGρm(a)a2δm(k, a) (a > alate , k � aH) . (1.110)

Inserting the zero order Friedman equation yields an expression for the matter overdensity

δm(k, a) =
2

5

k2

Ωm,0H2
0

Φp(k)T (k)D(a) . (1.111)

The transfer function contains all the information about early Universe interactions, and it is
conventionally set to T (k) = 1 for large scales, which enter the horizon at late times where
no other interaction takes place but the gravitational one. The growth factor encodes the late
time growth of structures, and it is proportional to the scale factor D(a) ∝ a during matter
domination. The fact that δm ∝ D(a) explains where the name “growth” comes from, since
it encodes the way the overdensity δm grows with the scale factor. Inserting Eq. (1.111) and
Eq. (1.106) in Eq. (1.108) finally yields a parameterisation of the linear power spectrum of the
matter density fluctuations

PL
δδ(k, a) =

8π2

25

As

Ω2
m,0

D2(a)T 2(k)
kns

H4
0k

ns−1
p

. (1.112)

Usually the scalar amplitude As is traded in favor of the σ8 parameter, defined as the standard
deviations of the cold matter perturbations evolved in linear theory up to present time at the
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scale of 8 h−1 Mpc

σ2
8 =

∫
dk

k

k3PL(k)

2π2
|WTH (kR8)|2 (1.113)

where WTH(x) = 3(sinx − x cosx)/x3 is the top-hat filter in Fourier space. In the linear
perturbation theory As is linearly proportional to the square of σ8, but the latter is preferred
in galaxy surveys since it is more directly measurable. An evolution equation for the growth
factorD(a) can be derived by considering the late time limit of the generalised Poisson equation
Eq. (1.95)

d2δm

da2
+
d ln

(
a3H

)
da

dδm

da
− 3Ωm,0H

2
0

2a5H2
δm = 0 . (1.114)

This equation in general has to be solved numerically; anyway in the late Universe, where only
matter and dark energy are relevant, an integral expression can be obtained

D(a) =
5Ωm,0

2

H(a)

H0

∫ a

0

da′

(a′H (a′) /H0)3 . (1.115)

If the the dark energy is not a cosmological constant, the above is not a solution of Eq. (1.114),
but there exists an empirical fitting for the logarithmic growth rate f(a)

f(a) ≡ d lnD(a)

d ln a
' [Ωm,0(a)]γ , (1.116)

where Ωm,0(a) ≡ 8πGρm(a)/3H2(a) is the time-dependent matter density parameter. The
exponent γ is named growth parameter and its value in ΛCDM is γ ' 0.55 [18]. In some
modified gravity (MG) theories γ has a different value instead, therefore by measuring it is
possible to test these MG theories gravity against ΛCDM. Regarding the transfer function
instead there exist analytical models which are valid only on certain regimes. However nowa-
days these models are not as useful as before, since the advent of fast and accurate codes for
numerical integration of the Einstein-Boltzmann equations like CAMB [19] and CLASS [20].
These codes have reached an agreement of 0.01% [20] and they can accurately compute the
power spectrum even introducing non-linearity effects, using recipes fine-tuned on cosmological
N-body simulations, such as HALOFIT [21], which is based on the halo model.

1.4 Observations

After having written down all the relevant equations to study the expansion history of the
Universe, we are now able to contextualise the most important cosmological observations. In
this section I am reporting about

• Cosmic Microwave Background (CMB);

• SuperNovae Ia;

• Galaxy and weak lensing surveys;

• Weak lensing surveys.
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Figure 1.4: The linear matter power spectrum as function of k for different values of the
redshift z in the fiducial ΛCDM cosmology. The vertical lines with the kNL label indicate the
scale at which the non-linearities arise. Source: [6].

Figure 1.5: Heatmap representing the evolution of the CMB measurements throughout the
years. Image taken from the plenary talk of Nabila Aghanim at the “28th Texas Symposium
on Relativistic Astrophysics”. Link to the presentation: https://indico.cern.ch/event/
336103/contributions/786561/
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Figure 1.6: Upper panel : Anisotropies of the CMB as measured by the Planck satellite (red
points); the function plotted is defined as D` ≡ `(` + 1)C`T

2
0 /2π. The blue line shows the

best-fit prediction from the ΛCDM model, with the initial conditions provided by inflation.
Lower panel : Difference between data and best-fit model. Image taken from [6]

1.4.1 CMB

As illustrated in Sec. 1.3.1, in the early Universe the photons were tightly coupled with baryons
through Compton scattering, forming a hot and dense plasma almost at thermodynamical equi-
librium. During the expansion the Universe got cooler and the interactions between photons
and baryons were progressively driven away from equilibrium. Photons decoupled completely
at z∗ ' 1100, approximately 380 000 years after the Big Bang, at the epoch of recombination.
This name comes from the fact that at that time the free protons and electrons started to form
neutral atoms, and the temperature of the photon gas was not sufficient to ionise these atoms.
Therefore after recombination the Universe became transparent to the photons, which started
to free-stream in the empty space, giving rise to what we call now the Cosmic Microwave
Background (CMB). The CMB photons conserved anyway the imprints of the interactions
taking place in the primeval plasma, becoming therefore a snapshot of the early Universe.

The first measurement of the CMB was done by Penzias and Wilson in 1965 [22]. With
the 20-foot horn-reflector antenna at the Crawford Hill Laboratory they detected an excess
temperature of about 3.5 K which was isotropic, unpolarised and free from seasonal variations.
As also confirmed in [23] Penzias and Wilson were observing a black body spectrum with that
temperature, which was the first evidence of the Cosmic Microwave Background Radiation.

However the CMB is not perfectly isotropic, as it was first observed by the COBE [24]
experiment in 1992, which detected fractional temperature fluctuations Θ, modelled as in
Eq. (1.54), with an order of magnitude of ∼ 10−5. Most of the physical information we can
extract from the CMB is contained in its angular temperature fluctuations. The cause for
these anisotropies resides in the density fluctuations which were once present in the primeval
baryon-photon plasma.
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These inhomogeneities got imprinted in the distribution of the photons, and turned into the
anisotropies we observe today as the photons free-streamed from the Last Scattering Surface.
Figure 1.5 shows the evolution of the measurements of the CMB anisotropies in the years,
showing three generations of instruments with increasing precision: COBE (1992), WMAP
(2003) [25], and Planck [4].

The most recent measurements of the CMB anisotropies are from Planck, and reached an
angular precision of 5’ [26]. The physical quantity used for quantifying the anisotropies is the
fractional temperature fluctuation Θ of the CMB photons gas defined in Eq. (1.54). Since
this quantity is observed as a function of the angles on the sky sphere, it is convenient to
decompose it on the spherical harmonics basis

Θ(θ, φ) ≡ δT (θ, φ)

T̄
=
∑
`

∑̀
m=−`

a`mY`m(θ, φ) (1.117)

The summary statistics employed by the data analysis are the angular power spectra, usually
called the C(`)’s

C(`) =
1

2`+ 1

∑̀
m=−`

|a`m|2 (1.118)

A plot of the CMB power spectrum is shown in Fig. 1.6; the agreement between the data
points taken by Planck and the best-fit model is quite impressive. From the CMB spectrum,
measurements of the cosmological parameters have been obtained [4], for example the Hubble
constant, which was found to be

H0 = (67.4± 0.5) km s−1 Mpc−1 (1.119)

1.4.2 Supernovae Ia

A supernova is a powerful and luminous stellar explosion, occurring at the end of the life cycle
of massive stars. Supernova may be some times brighter than its host galaxy, and this feature
makes them easy to spot. Moreover supernovae (SNe) can be used as standard candles [27],
since the mechanism generating a supernova is quite universal. This means that all SNe shine
with the absolute luminosity, and therefore they can be used as distance indicators.

Supernovae are found by repeatedly observing the same patches of the sky, and then
performing pixel-by-pixel subtractions of the CCD images obtained at different epochs. A
particular class of SNe has been employed as standard candle, the SuperNovae Ia. The su-
pernovae are classified by their spectra, and SNe Ia has the peculiar characteristic of having
Silicon (Si) emission lines, not present in other types of supernovae. The main observable for
SNe Ia measurements is the so called distance modulus µ, defined by

µ ≡ 5 log10

(
dL(z)

10 pc

)
, (1.120)

with dL being the luminosity distance defined by Eq. (1.44). From SNe Ia Riess et al. [1] in
1998 obtained the first evidence for the Universe accelerated expansion and the existence of a
cosmological constant. With the years the measurements of SNe got more refined, and always
Riess et al. [28] in 2019 measured the following value for the Hubble constant

H0 = (74.03± 1.42) km s−1 Mpc−1 . (1.121)
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Figure 1.7: Hubble diagram and contour plots from Riess et al [1].

This results in a 4.4σ tension with the Planck measurement Eq. (1.119) from CMB anisotropies.
This is one of the open problems of Modern Cosmology: the authors of [28] claim that their
measurement Eq. (1.121) provides a stronger evidence for Physics beyond the Standard ΛCDM
model. However there is not a common agreement in the community about the reasons of this
tension, and therefore to possible solutions to it.

1.4.3 Galaxy redshift surveys

In a galaxy redshift survey the angular positions and the redshift of galaxies are measured,
thus allowing to build a 3D map of the distribution of the galaxies themselves. The angular
positions are quite easy to measure, while the redshifts are more complicated. The galaxies
spectra are employed to measure the wavelength of prominent known emission lines; then by
comparing these wavelength to the rest frame ones in the laboratory an estimate of the redshift
is obtained.

Galaxy surveys can be classified mainly in two categories: spectroscopic and photometric.
In a spectroscopic survey the spectra of the observed galaxies are measured with an high wave-
length sampling, thus achieving high precision in the measurement of the redshift. However
this advantage comes with a cost: the procedure for obtaining the spectrum of a galaxy is
expensive, and this limits the number of sources whose redshifts are measured. In photometric
surveys the redshift determination is based on imaging instead of spectroscopy: the photome-
try of galaxies is taken in various optical filters with a broad wavelength range. These images
are then combined to construct a low resolution spectrum of the galaxy, and comparing it to
a known template spectrum the redshift is estimated. This allows to produce a larger galaxy
catalogue, since photometry is easier to obtain than spectroscopy, but at the cost of a bigger
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Figure 1.8: First strip of the CfA survey, showing a supercluster of galaxies. The shape of
the cluster resembles a standing man, and for this reason it is referred also as the “CfA Stick
Man”. Source: [29].

error on the redshift of the single source.
The first galaxy survey was the Center for Astrophysics Redshift Survey [30] (CfA), which

took place between 1977 and 1982, measuring the redshifts of about 2000 galaxies. Fig. 1.8
displays the results of the survey: the plot clearly shows that galaxies are not distributed
randomly but along filaments forming pattern.

The Sloan Digital Sky Survey [11] (SDSS) confirmed this pattern, as we see from one
of its sky maps in Fig. 1.1. Moreover with the Extended Baryon Oscillations Spectroscopic
Survey [31] (eBOSS), the SDSS allowed to probe the so called Baryonic Acoustic Oscillations
(BAO), which are an imprint of the early Universe left in the large scale structures we see
today.

As discussed in Sec. 1.3.1, early on the Universe was an hot and dense plasma of baryons
and photons, tightly coupled to each other via Compton scattering. The radiation pressure
was big enough to counter gravitational collapse, and the alternating dominance of pressure
and gravity was giving rise to acoustic oscillations in the primeval plasma. After the photons
decoupled at recombination epoch, these sound waves froze in the baryons fluid, and their
characteristic length scale became imprinted in the distribution of galaxies we observe today.
SDSS measured the galaxy radial correlation function and found a peak at a comoving distance
of about 100 h−1 Mpc, as reported in Fig. 1.9. SDSS was the first to observe that there is an
excess of galaxies separated by that distance. This distance can be predicted from theory to
be the length scale of the acoustic waves of the primordial baryon-photons fluid, and since it
is a comoving scale it is usually referred as a standard ruler for Cosmology.

An upcoming redshift galaxy survey is Euclid , a space-based mission which will measure
the photometric redshift of about 1.5 billion galaxies in the range 0.001 < z < 2.5, and the
spectroscopic redshift of about 50 million galaxies in the range 0.9 < z < 1.8. The next
chapter is devoted to a detailed description of the Euclid mission, which is the context of this
thesis work.
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Figure 1.9: Large-scale redshift-space correlation function of the SDSS luminous red galaxies
sample. The plots clearly shows that there is a peak around 100 h−1 Mpc, that has been
interpreted as the BAO length scale. [32]

1.4.4 Weak lensing surveys

One of the successful predictions of General Relativity is gravitational lensing, i.e. the de-
flection of light rays due to the propagation in an inhomogeneous gravitational field, and it
is encoded in the geodesic equation Eq. (1.49) for photons. Qualitatively we can distinguish
between two regimes of gravitational lensing: strong lensing and weak lensing.

In the strong lensing regime the lens is a single massive object, and its gravitational field
is intense enough to produce multiple images of the same source. By weak lensing instead we
mean the deflection of light rays emitted by distant sources, caused by the tidal gravitational
field produced by cosmological matter density fluctuations [33]. This effect is observed in
the distortion of the images of light-emitting galaxies, and this distortion is directly related
to the matter distribution projected along the line of sight. These image deformations can
be modelled as a statistical field named cosmic shear, which is sensitive to the distribution
of all matter, dark and baryonic, since lensing is a purely gravitational effect. Therefore,
cosmological parameters can be measured by exploiting this probe, in a so called weak lensing
survey, as it has been made in [34].

There have been various surveys since the first evidences [35–37] for weak lensing from
large-scale structures. The Canada–France–Hawaii Telescope Lensing Survey (CFHTLens) [38]
survey started in 2003 and lasted for 6 years, observing 154 square degrees of sky, creating a
catalogue of about 1.5 million galaxies with median redshift of 0.75. From analysis of CFHT
data, constraints [39] on cosmological parameters have been obtained, showing a tension [40]
with Planck in the Ωm,0 − σ8 plane. This tension has been shown to be relatively robust to
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Figure 1.10: Constraints on the three cosmological parameters σ8, Ωm,0, and w in a wCDM
cosmology from the analysis of DES Y1 [41] data, after marginalising over nuisance parameters.
With γt it is denoted the angular cross-correlation between weak lensing and galaxy clustering.

the choice of non-linear modelling, extension to the intrinsic alignment model, and inclusion
of baryons.

The Dark Energy Survey (DES) started in 2013 and ended in 2019, imaging 5000 square
degrees of the southern sky, using an extremely sensitive 570-Megapixel digital camera DE-
Cam, mounted on the Blanco 4-meter telescope at Cerro Tololo Inter-American Observatory.
The DES collaboration performed a combined analysis of galaxy clustering and weak lens-
ing, considering also their cross-correlation, extracting from the data tighter constraints [41]
on cosmological parameters than considering the probes as independent, as it is shown in
Fig. 1.10.

The Euclid mission will also perform a weak lensing survey measuring the shapes of about
1.5 billion galaxies in the visible range. In the context of my thesis, I performed a Fisher
forecast of the Euclid sensitivity to the cosmological parameters, by combining weak lensing,
photometric galaxy clustering, and spectroscopic galaxy clustering (see Chapter 4).

1.5 The Standard Model of Cosmology

The currently accepted cosmological model in the community is the so called Standard Model
of Cosmology, which is also referred to as the ΛCDM model. This model essentially describes
a flat Universe that is dominated today by non-baryonic cold dark matter (CDM) and a
cosmological constant (Λ), with initial perturbations generated by inflation in the very early
universe. In the previous section we have seen how the ΛCDM theoretical predictions can be
tested against cosmological observations. It is remarkable how accurately the CMB spectrum
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Fig. 1.6 is predicted by the ΛCDM, and how the need of a cosmological constant emerges to
explain the SNe Ia Fig. 1.7 observations, from which it came the first evidence of the late
Universe accelerated expansion. The cosmological parameters of ΛCDM are the following

• H0: the Hubble parameter at present time, also referred as the Hubble constant;

• Ωm,0: the cold matter density parameter at present time;

• Ωb,0: the cold baryonic matter density parameter at present time;

• σ8: the standard deviations of the cold matter perturbations evolved in linear theory up
to present time at the scale of 8 h−1 Mpc;

• ns: the scalar spectral index, quantifying the scaling exponent of the primordial pertur-
bations.

H0

[
kms−1Mpc−1

]
Ωm,0 Ωb,0h

2 σ8 ns

(67.36± 0.54) 0.3153± 0.0073 0.02237± 0.00015 0.8111± 0.0060 0.9649± 0.0042

Table 1.1: Base ΛCDM cosmological parameters as measured by Planck [4]. The uncertainties
are the 1-σ marginalised constraints, i.e. at 68% CL. For the baryon density Ωb,0 parameter
Planck reports the constraints only on the product ωb,0 ≡ Ωb,0h

2.

The values of these parameters as recently measured by Planck [4] are reported in Tab. 1.1.
Despite its success, the ΛCDM model has some problems: first of all we do not know

the physical nature of dark energy and dark matter, which together constitute the 95% of
the Universe energy content. Concerning dark energy, in the ΛCDM model it is theoretically
implemented as a cosmological constant (Λ), which is characterised by an energy density which
is constant in space and time.

Due to this characteristic, there has been the attempt to interpret Λ as the contribution
of the quantum zero-point energy, or vacuum energy, a concept which is comprised in Quan-
tum Field Theory. However when calculations are done to verify this hypothesis, the expected
vacuum energy density predicted by Quantum Field Theory turns out to be 120 orders of mag-
nitude [42] greater than the value coming from observations. This is known as the cosmological
constant problem, and it has not been solved yet.

There have been various attempts to model dark energy other than Λ, e.g. dynamical dark
energy models. A commonly employed dark energy model is the Chevallier-Polanski-Linder
(CPL) [43, 44] parameterisation

wDE(z) = w0 + wa
z

1 + z
, (1.122)

to which it corresponds the following analytical redshift evolution of the dark energy density

ρDE(z) = ρDE,0(1 + z)3(1+w0+wa) exp

[
−3wa

z

1 + z

]
. (1.123)

The extension of the ΛCDM model in which dark energy follows the CPL parameterisation
is usually referred as the w0waCDM model, since it is a minimal extension in which the only
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difference with respect to ΛCDM is that dark energy is parameterised by Eq. (1.122). In a
w0waCDM cosmology the redshift evolution of the Hubble parameter can be written in closed
form as

H(z) = H0

√
Ωm,0(1 + z)3 + ΩDE,0(1 + z)3(1+w0+wa) exp

(
−3wa

z

1 + z

)
+ Ωk,0(1 + z)2 .

(1.124)
Another issue of ΛCDM is the tension on the value of the Hubble constant H0; in the

previous section it has been explained that early Universe probes, such as the CMB spectrum
measured by Planck, give a value Eq. (1.119) which results in a 4.4σ tension with the one
Eq. (1.121) coming from late Universe probes, such as the SNe Ia. There is not yet a common
agreement about the reason for this tension: it can be due to unaccounted observational sys-
tematics or to new physics beyond ΛCDM. On the one hand the SNe Ia must be calibrated in
order to get a reliable measurement of H0, since it is degenerated with the absolute magnitude
of SNe. On the other hand the Planck analysis of the CMB spectrum is model dependent;
this means that different results may come out using a different cosmological model.

In the next chapters I will extensively talk about the Euclid mission, which could shed
new light on these aspects, and test the ΛCDM concordance model with more accuracy.
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Chapter 2

The Euclid Mission

Euclid is a space-based mission of the European Space Agency (ESA) aimed to investigate the
nature of dark energy and dark matter by observing the formation of large scale structures
over cosmological timescales [45, 46]. The mission is scheduled for launch by the end of 2022,
and the spacecraft will travel to the L2 Sun-Earth lagrangian point, where it will observe the
extra-galactic sky for approximately 6 years.

The Euclid survey will cover 15 000 deg2, which is about 36% of the sky, using two main
probes for constraining cosmological parameters: Weak Lensing (WL) and Galaxy Clustering
(GC). The former requires measuring the shapes and photometric redshifts of the galaxies, the
latter is based on the measurement of the three-dimensional distribution of galaxies through
their spectroscopic redshifts. For achieving these tasks Euclid will mount two instruments on
board: a visible imager (VIS) and a near-infrared photometer and spectrometer (NISP). With
VIS the shape deformations of 1.5 billion galaxies will be measured, adopting a 6 × 6 array
of 4k CCD detectors sensitive in the visible range. NISP will instead be equipped with 4× 4
HgCdTe detectors sensitive in the near-infrared range (900− 2000 nm), and it will operate in
two modes: photometric and spectroscopic. In photometric mode, it will employ three broad-
band filters to estimate the photometric redshifts of the galaxies imaged by VIS, in order to
maximise the information gain coming from the weak lensing survey using tomography, as we
will detail later. In spectroscopic mode, a grism, a dispersing element made by a prism with a
diffraction grating, will be used to observe the spectra of 50 million galaxies. Combining the
two main probes, Euclid will reach unprecedented precision in the measurement of fundamental
cosmological parameters.

In this chapter I am giving a description of the Euclid mission. The chapter is structured
as follows. In Sec. 2.1 I present the scientific goals of the mission. In Sec. 2.2 I report about the
structure of the satellite, giving some details about the VIS and NISP instruments. In Sec. 2.3
I describe the Euclid survey, detailing the observational strategy of a telescope pointing, also
outlining the scientific requirements for the main probes. Finally in Sec. 2.4 I give a description
of the management and the organisation of the mission.

2.1 Scientific objectives

Euclid has been conceived to measure the Universe expansion history and the growth of large-
scale structures with high precision and accuracy. The main scientific goals of the mission
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can be summarised in four topics, each being the parameterisation of a extension of the
Concordance ΛCDM model described in Sec. 1.5. Here I briefly describe each of them.

Dark Energy The equation of state of dark energy in ΛCDM is characterised by w = −1
at all redshifts, i.e. a cosmological constant. As explained in Sec. 1.5 a widely adopted way to
parameterise deviations from a cosmological constant is the CPL Eq. (1.122) parameterisation.
Euclid aims to measure w0 and wa with a precision of ∼ 0.01 and ∼ 0.1 respectively, corre-
sponding to a Figure-of-Merit 1 (FoM) of about 400, thus giving unprecedented constraints for
distinguishing the cosmological constant from a more complex dynamical dark energy model.

Modified gravity Another possibility for explaining the cosmic acceleration is a breakdown
of Einstein’s General Relativity (GR) on cosmological scales, which would be accompanied by
the need of theories alternative to GR, commonly referred as Modified Gravity (MG) theories.
In some of these models, deviations from GR are captured by a change in the growth of
structures in the Universe, quantified by the parameter γ introduced in Eq. (1.116), which
has a value of ∼ 0.55 in ΛCDM. Euclid will measure this parameter with a 1σ precision of
0.02, accurately testing the ΛCDM model, since any detected deviation from γ = 0.55 would
represent new physics beyond the concordance model.

Massive neutrinos Oscillation experiments have shown that neutrinos do have mass, de-
termining the mass-splitting between the energy eigenstates. However directly measuring the
absolute mass scale of neutrinos is extremely difficult for the current generation of particle
experiments such as Katrin [14].

As pointed out in Sec. 1.3.1 from a cosmological point of view massive neutrinos can be
considered warm dark matter. They are practically subject only to gravity and they are light;
for this reason they can free-stream out of dense regions. This yields to a small suppression in
the small scale matter power spectrum, whose scale is directly related Eq. (1.89) to the sum∑
mν of the neutrino masses, and therefore to the absolute neutrino mass scale. This effect will

observed by Euclid with a ∆mν < 0.03 eV accuracy, which is sufficient to distinguish between
normal and inverted mass hierarchy if the total mass

∑
mν will turn out to be < 0.1 eV.

Initial conditions In the concordance model the primordial spectrum of fluctuations re-
sulting from inflation is assumed to be gaussian and nearly scale invariant. Primordial non-
gaussianities are predicted also by the simplest inflationary models, and are quantified by the
fNL parameter. The scalar spectral index ns, defined in Sec. 1.5, quantifies instead the scale-
dependency of the primordial power spectrum, and scale invariance means ns = 1. Euclid
will measure fNL with an accuracy of ∼ 2%, which will be an improvement of the accuracy of
∼ 5% reached by Planck [4].

2.1.1 Main probes

Euclid will achieve the above scientific goals described above with a galaxy survey which is on
an unprecedented regime in terms of size. It will map the dark matter distribution through

1The Figure of Merit of a dark energy experiment is defined by 1/(∆w̃0×∆w̃a), where w̃0 and w̃a are linear
combinations of w0 and wa chosen such that they are uncorrelated [46].
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Figure 2.1: Summary of the Euclid mission from the “Euclid Definition Study Report” [46].
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Figure 2.2: Overview of the Euclid spacecraft (left) and Service Module (right) [45].

weak gravitational lensing by imaging with VIS about 1.5 billion galaxies, also providing
estimates of their photometric redshifts through near-infrared photometry, with a nominal
precision [46] of σph

z /(1 + z) ≤ 0.05. Even if weak lensing is a cumulative effect, depending on
all the matter along the line of sight, the knowledge of the photometric redshifts of the sources
allows to partially recover the three-dimensional information via the so called weak lensing
tomography [47]. This technique consists in slicing the redshift distribution of the sources in a
given number of redshift bins, thus partially reintroducing some information of the structure
along the line of sight. In [47] it is shown that even a crude tomography using two or three
redshift bins is sufficient to improve, by up to an order of magnitude, the measurements of
cosmological parameters coming from the weak lensing signal.

At the same time Euclid will perform a spectroscopic redshift survey with NISP, providing
the spectroscopy of 50 million galaxies in the redshift range 0.9 < z < 1.8, with a required
accuracy of σsp

z /(1 + z) ≤ 0.001 [46]. The spectroscopic redshifts will be measured via the
detection of the Hα emission line, which has a wavelength of λ ' 656.3 nm. The desired
redshift range 0.9− 1.8 corresponds to have a spectroscopic instrument sensitive in the range
1100−2000 nm, which is near-infrared (NIR). This justifies the need for a space mission, since
NIR light is completely absorbed by the atmosphere, so it would be impossible to probe this
range of the electromagnetic spectrum with an Earth-based experiment.

2.2 Spacecraft

The Euclid spacecraft can be subdivided in three main parts: a Service Module (SVM), a
Payload Module (PLM), including the telescope, and the Scientific Instruments. The overall
spacecraft envelope, which is depicted in the left panel of Fig. 2.2, has dimensions of 4.8 m
height and 3.74 m diameter. The SVM, shown in the right panel of Fig. 2.2, comprises the
spacecraft subsystems supporting the payload operation, hosts the warm electronics of the
payload, and provides structural interfaces to the PLM and the launch vehicle. The Sunshield,
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Figure 2.3: Overview of the Euclid PLM with the external baffle (left) and without it
(right) [45].

part of the SVM, protects the PLM from illumination by the sun and supports the photovoltaic
assembly supplying electrical power to the spacecraft. The PLM is designed around a three
mirrors anastigmatic Korsch Silicon Carbide (SiC) telescope feeding the two instruments, VIS
and NISP, as it is shown schematically in Fig. 2.4. The separation of the light between the
two instruments is performed by using a dichroic plate, which is located at exit pupil of the
telescope. Moreover the PLM provides mechanical and thermal interfaces to the instruments
(radiating areas and heating lines), and it is divided in two cavities, which are separated by
the base plate:

• The front cavity including the telescope primary and secondary mirrors as well as the
M2 refocusing mechanism and the associated support structure. This cavity is thermally
insulated by a baffle (see Fig. 2.3).

• The instrument cavity including the telescope folding mirrors, the tertiary mirror, the
dichroic splitter, the two instruments (VIS and NISP), the shutter and calibration source
for the VIS channel.

The PLM mechanical architecture is based on a common SiC baseplate which supports on
one side telescope M1 and M2 mirrors and on other side the other optics and the two instru-
ments. This architecture is well adapted to the selected thermal architecture with telescope
and instrument cavities both passively controlled at neighbour temperatures. The optical ac-
commodation on the baseplate consists in implementing two folding mirrors (FoM1 and FoM2)
at the entrance of the instrument cavity (between M2 and M3) to fold the optical beam in the
plane of the baseplate. A third folding mirror (FoM3) allows having the VIS instrument close
to an efficient radiative area.

2.2.1 VIS instrument

VIS [49] is the Visible Imager of Euclid : the core task of VIS is to enable Weak Lensing
measurements, which are possible by measuring in an accurate way the galaxy shapes. VIS is
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Figure 2.4: Functional view of the Euclid Payload Module (PLM) [45].

Figure 2.5: Units comprising VIS: Power and Mechanisms Control Unit and Command and
Data Processing Unit in the bottom right are in the Service Module, while the Focal Plane
Array, the Shutter and the Calibration Unit are in the Payload Module. Source [48].
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Figure 2.6: NISP view from [50].

sensitive in the visible range 550− 900 nm, and as shown in Fig. 2.5 it is composed by various
parts:

• The Focal Plane Array (VI-FPA), which consists in a matrix of 6 × 6 CCDs made by
4k×4k pixels. Each pixel is 12 µm square with an angular scale of 0.1 arcsec, and this
corresponds to a total field of view of 0.5 deg2.

• The calibration unit (VI-CU), which is designed to allow flat fields of the visible chan-
nel. This structure encloses a 12-LEDs panel illuminating a diffusing panel inside an
integrating sphere.

• The shutter mechanism, which is closed right after an observation ends, in order to
prevent direct light from falling onto the CCDs during the data processing phase.

• Two electronics units, one for the control and processing of instrument data, the other
for the control of the mechanisms and the power allocated to the instrument; the central
data processing unit receives data from CCDs and compresses the resulting large image
(24k×24k) in about 250 seconds; the power and mechanisms control unit switches the
shutter and the calibration unit on/off.

2.2.2 NISP instrument

NISP [50] is the Near-Infrared Spectrometer and Photometer, and it is designed to carry out
photometry and slitless spectroscopy in the near infrared. Its main components are:

• a filter wheel (NI-FWA), holding the three filters (Y, J and H bands) for the photometric
mode and performing the switching function between these. Each filter is 10 mm thick
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Figure 2.7: Plots of Figure-of-Merit for Galaxy Clustering and Weak Lensing (left panel), and
the combination (right panel) as a function of area, fixing the total survey time to 5 years.
There exists a sweet spot for the FoM resulting from the combinations of the main probes,
which is around 15 000 deg2. Source [46]

and 120 mm in diameter. The wheel is configured with five slots in order to integrate in
addition an open slot and a closed one.

• a grism wheel (NI-GWA), hosting the three grisms employed for dispersing light in
spectroscopic mode. It positions into the optical beam two kinds of grisms with different
passband coatings. The first type (Blue) transmits between 1100 nm and 1450 nm, while
the other (Red) is transparent between 1450 nm and 2000 nm. The 4 grisms are mounted
in two orientations: blue 0 deg, red 0 deg, blue 90 deg and red 90 deg.

• a focal plane (NI-DS), equipped with an array of 4×4 HgCdTe detectors made by
2048×2048 pixels sensitive in the near-infrared range 900 − 2000 nm. The size of the
focal plane is 16 cm× 16 cm, with a field of view (FoV) of 0.5 deg2, therefore each pixel
has an angular scale of 0.3 arcsec;

• the warm electronics unit (NI-WE), which is located in the Service Module and allows
the synchronous acquisition of the focal plane detectors, as well as in-flight data pre-
processing;

• a calibration unit (NI-CU), located close to the filter wheel.

2.3 The Euclid Survey

As pointed out in Sec. 2.1 Euclid aims to reach a FoM > 400 from the combination of weak
lensing and galaxy clustering. Weak lensing alone would favour smaller and deeper survey,
while the constraints from galaxy clustering improve when wider and shallower areas are
considered, as it is shown in the left panel of Fig. 2.7. When the combinations of the two
probes is considered, a sweet spot around 15 000 deg2 is found, as shown in the right panel of
Fig. 2.7.
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Figure 2.8: Schematic timeline of an observation sequence of one field. Each frame (blue)
starts with a simultaneous exposure of VIS and NISP in spectroscopic mode, followed by the
three NISP photometric exposures. The dither-to-dither slews and the field-to-field slew are
marked in red. Source: [46].

2.3.1 Observational sequence

The elementary observation sequence of the survey is named field. As it is illustrated in Fig. 2.8
each field is composed of four frames of the 0.54 deg2 common field of view, observed with
a dither step in-between. During each frame VIS and NISP carry out exposures of the sky
simultaneously; at the end of the last frame a slew to the next field is performed. As it can be
seen from Fig. 2.8, in the first 610 s VIS and NISP take data for weak lensing and spectroscopy
respectively. Then NISP photometric imaging follows, with integration times 88 s, 90 s and
54 s for filters Y, J, and H respectively. During the NIR photometry, VIS closes its shutter in
order to avoid disturbances coming from the movement of the filter wheel. There are multiple
reasons for which this dithering strategy has been designed. First, the focal planes of VIS and
NISP have gaps between the active surfaces of the detectors, and since the focal planes of the
two instruments have different layout these gaps do not coincide. As Fig. 2.9 shows the dither
movements are designed to cover the gaps and appropriately sample the field of view. Second,
this observation strategy also mitigates the impact of cosmetic defects and cosmic rays on
science data. Finally in the case of NISP spectroscopy, the four frames are used to measure
the spectra with two grism rotations to minimise source confusion due to overlapping spectra.

2.3.2 Weak lensing and the photometric survey

The gravitational lensing signal from large-scale structure represents a ∼ 1% change in a
galaxy ellipticity so, to extract a significant signal, a large number of galaxies are required. To
be useful for weak lensing, a galaxy must be sufficiently distant, to maximise the lensing effect
which is cumulative along the line of sight, and resolved, to allow for shape measurements. In
order to reach a FoM > 400 as detailed in the previous paragraph, the required number of
galaxies to be surveyed turns out to be at least 30 per arcmin2 [46]. Moreover, in order to
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Figure 2.9: Field coverage provided by the dither pattern for VIS (left) and NISP (right).
Deep red colours indicate the fraction of sky within a field covered with four frames, orange
with three frames, yellow-green with two frames and blue with only one. Source: [46].

fully exploit the weak lensing signal, the tomographic technique will be employed. For this
reason, estimates of galaxy redshifts are needed for the majority of sources used in the weak
lensing analysis.

The photometric redshift measurement relies on finding the best galaxy spectral template
match to the broad-band colours, and the accuracy depends on the number of filters and the
signal-to-nose ratio of the observations. In particular the required accuracy for the estimate of
the photometric redshifts is that the standard deviation with respect to the true (spectroscopic)
redshifts is σph

z /(1 + z) ≤ 0.05 [46].
The NIR photometry provided by Euclid data alone is not sufficient to achieve the required

photometric redshift accuracy and precision, thus additional ground-based data are required.
The survey area has to be imaged from the ground using the griz filters, which cover the full
wavelength range 420−930 nm and have overlap of less than 10%. Finally, the mean redshift in
each tomographic bin to be used is required to be known better than σ(〈z〉) < 0.002(1+z), and
must be unbiased. Therefore, the set of templates used to estimate the photometric redshifts
needs to be representative of the true galaxy spectra. These templates can be obtained from
ground-based spectroscopic observations of a sufficiently large (at least 1× 105) number of
galaxies, with a fraction of incorrect redshifts sufficiently small (less than 1× 10−4).

2.3.3 Spectroscopic survey

The constraints coming from the galaxy clustering (GC) improve with the number of galaxies
whose redshifts are observed, as it could be expected. The theoretical limit to GC performance
is the cosmic variance, which is due to the limited volume of the survey. In order to meet the
FoM requirements from the combination of galaxy clustering with weak lensing, Euclid will
employ slitless spectroscopy to obtain the spectroscopic redshifts for a minimum of 3500 galax-
ies per deg2, which yields a sample of 52.6× 106 galaxies over the total sky area (15 000 deg2)
covered. The requirement about the accuracy of the spectroscopic redshift measurement is
σsp(z)/(1 + z) < 0.001.

The main spectral feature that will be used for the measurement of the redshift is the
Hα line, which comes from the transition between the n = 3 and n = 2 energy levels of
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Figure 2.10: The top level photometric requirements from weak lensing for the Euclid survey.
Source [46].

hydrogen and has a wavelength of λ ' 656.3 nm. In particular the science requirement for
the number density of the galaxies in the spectroscopic sample translates into demanding for
the average effective Hα flux limit from a 1 arcsec diameter source to be lower than or equal
to 3× 10−16 erg cm−2 s−1 at 1600 nm. The flux limit2 is defined as the line flux for which the
signal to noise ratio is > 3.5. Because of the number and the size of the detectable spectra
in the field of view, a large number of spectra will be contaminated (or confused) by spectra
from other galaxies. This contamination leads to failures in the redshift measurement, which
means that not all detected spectra will allow to extract a reliable measurement of the redshift.
The two main parameters for determining the quality of the resulting galaxy catalogue are
completeness and purity. The completeness C is defined as the ratio between the number
Nmeas of the spectra with a detected Hα flux which is above the specified limit and the total
number Ntot of detected galaxies:

C =
Nmeas

Ntot
. (2.1)

The estimate of Ntot comes from the current knowledge of the spatial density and luminosity
function 3 of Hα emitting galaxies. The scientific requirement for the completeness of the
Euclid spectroscopic catalogue is to reach a completeness higher than 45% [46]. The purity
of the sample is instead defined as the fraction of correctly measured redshifts among the
measured ones. Let Ncorr the number of correct redshifts, then the purity p is given by the
ratio

p =
Ncorr

Nmeas
. (2.2)

A too low purity can reduce the ability of the survey to detect the BAO signal: the threshold
set for this parameter is p > 80%. To achieve the specified completeness and purity, NISP will
have to obtain multiple exposures of the same field of view at different dispersion directions.
This will be done to reduce the confusion originated from contaminated spectra, which is
intrinsic to the slitless technique. This is the reason why NISP will be equipped with more

2The flux limit is defined to be the lower limit above which all galaxies must be detected.
3The luminosity function of galaxies is defined as the distribution (histogram for simplicity) of the galaxies

against their luminosity.
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Figure 2.11: The top level requirements for galaxy clustering measurement from Euclid survey.
Source [46].

than one grism with different orientations. Together with spectroscopy, NIR imaging in the
photometric channel of NISP will be used to associate the spectra to the objects in the field
of view, in order to remove ambiguities with zero orders of the spectra themselves. The
NIR photometric counterpart of the field of view will also give the size the orientation of the
objects, with which the best extraction aperture 4 of the spectra can be determined, and will
also provide flagging of the contaminated spectra. In particular, NIR imaging in the H band
to a depth of AB magnitude < 24 will be sufficient to meet the needs of spectroscopy.

2.4 Mission organisation

The Euclid Ground Segment is in charge of managing the mission from the ground. It is split
into two blocks: the Operational Ground Segment (OGS) and the Science Ground Segment
(SGS). The OGS is managed entirely by ESA, and comprises the Mission Operations Centre
(MOC) and the ground stations network. The SGS instead is under the shared responsibility
of ESA and the Euclid Consortium, this last being the group of researchers in charge of data
processing, instrument operations, survey definition, and archiving, with the final aim to fulfill
the scientific goals of the mission. The main components of the Ground Segment, schematically
represented in Fig. 2.12, are:

• The Mission Operations Centre (MOC): it is located in ESOC, Darmstadt, and is in
charge of all mission operations planning, execution, monitoring and control of the space-
craft and ground segment operations;

• The Ground Stations: being part of ESA’s tracking network, they are under control
of the MOC at ESOC. The network is composed of 3 Deep Space antennas in New
Norcia (NNO), Western Australia, Cebreros (CEB), Spain, and Malargüe, Argentina,
which are used during Launch and Early Operations Phase (LEOP), the commissioning
phase and the routine mission. A small X-band antenna will also be available in New
Norcia (NNO) for first acquisition during LEOP. Some of the 15 m ESTRACK stations
in Kourou (KOU), French Guiana, and Maspalomas (MSP), will also be employed during
LEOP, if still available at the time. The ground stations will provide the communication

4The extraction aperture of a spectrum is the image window which will be used to convert the 2D spectrum
produced by the grism on the detector to the 1D spectrum needed for redshift measurement.
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Figure 2.12: Overview of the Euclid Ground Segment. Source: [45].

with the spacecraft during all mission phases post-launch in X-band on up- and down-
link. Two of the 35 m stations will undergo an upgrade for receiving Euclid’s 26 GHz
signal.

• The Science Operations Centre (SOC): it is located in ESAC, Villafranca, and has the
duty to plan scientific operations, monitor the performance of the payload using space-
craft and instrument files delivered by the MOC. It will also interface with the Euclid
Science Data Centres (SDC), in order to archive and distribute science data and to
furnish support for the scientific analysis.

• The Communications Network, which links the various remote centres and stations to
support the operational data traffic.

• The industrial prime contractor, in charge of providing the spacecraft and flight dynamics
databases together with onboard software images to the MOC.

2.4.1 Science Ground Segment

The Science Ground Segment (SGS) is composed mainly by two parts: the Science Operations
Center (SOC) and the Euclid Consortium. The SOC is managed by ESA, and interfaces with
the MOC. On the one hand the MOC provides raw telemetry and all the necessary information
to manage the mission from the scientific point of view; on the other hand the SOC provides
the MOC with information related to observation planning and instruments commanding. The
Euclid Consortium (EC) is the fraction of the Ground Segment (ECSGS) performing the data
processing, starting from the telemetries coming from the satellites down to the data products
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Figure 2.13: Functional decomposition of the Euclid Science Ground Segment (SGS).
Source: [45].

of the mission. The ECSGS is composed of a number of Science Data Centres (SDCs), in
charge of managing all science-driven data processing, from instrument data to simulations
and science products. In the EC are also present two Instrument Operation Teams (IOTs),
one for VIS and another one for NISP, whose task is to guarantee instrument maintenance
and operations. The two IOTs coordinates with each other, providing thus a single interface
between the ECSGS and the SOC. In Fig. 2.12 the SGS is represented by the box on the
lower-left corner: the Euclid Archive System (EAS) is at its heart, since it has been conceived
with the role of managing data in a centralised way for both the EC and the general scientific
community.

The scientific data processing of science data can be decomposed in ten Processing Func-
tions (PFs), representing self-contained processing units communicating through the EAS.
Fig. 2.13 schematically shows the interrelations between the various PFs, which are listed in
the following:

• LE1: it provides unscrambled telemetry data, the so-called level 1 data;

• VIS: it processes the visible imaging data from level 1 data to fully calibrated images;

• NIR: it produces the fully calibrated Near-Infrared images data, starting from LE1 data,
together with source lists, for quality check purposes and to allow spectra extraction;

• SIR: it is in charge of extracting sources spectra and fully calibrated spectral images,
starting from LE1 spectroscopic observations;
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• EXT: it ingests in the EAS all external data needed to complement Euclid data;

• SIM: it produces the simulations needed to test, validate and check the quality of the
whole pipeline;

• SPE: it measures spectroscopic redshifts from the SIR extracted spectra;

• PHZ: it estimates the photometric redshifts from the NIR imaging data;

• SHE: it measures shapes and ellipticities of galaxies from VIS imaging data;

• MER: it performs the merging of all information, providing stacked images and source
catalogues, aggregating photometric and spectroscopic data;

• LE3: it computes the high-level science data products, the so called Level 3 data, starting
from the fully processed shape and redshift measurements and any other possibly needed
Euclid data.

Each Processing Function is supported by an Organisation Unit (OU) that design algo-
rithms and prototypes starting from the input data of the PF, at the end comparing the results
of the processing with the original requirements. Once validated by the OU, the algorithms
are passed on to an SDC, which turns them in full-fledged Euclid pipeline elements. The SGS
also contains a SGS System Team (SGS ST) common to both SOC and ECSGS, which helps
the SGS to define the data processing philosophy, architecture and strategy. Among the tasks
of the SGS ST there are: writing code guidelines; producing tools to support software test and
integration; designing and implementing common software and the Euclid Archive System;
producing common Euclid Data Models, for efficient and smooth communication between the
PFs with a commonly adopted data format.

The whole Euclid pipeline periodically undergoes reviews and functionality checks, the so
called Scientific Challenges (SCs). This mechanism probes the status of the system, verifying
that it is practically feasible, scalable and able to be run smoothly in a distributed environment
with consistent results. The SCs are implemented in all SDCs, and at the moment of writing
this thesis the mission is going through Scientific Challenge 8 (SC8).

In my thesis work I have been a member of OU-SIM and OU-SIR. In particular I developed
a code for performing specific spectroscopic simulations for the validation of SIR algorithms,
starting from the official simulator provided by OU-SIM. The main contributions of this work
are described in Chapter 3.
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Chapter 3

Spectroscopic simulations for SIR
validation

The Euclid survey will perform the largest spectroscopic survey to date, collecting the spectro-
scopic redshift of 50 million galaxies. The surveyed volume will be about 500 times greater than
the one of the SDSS [11] and the redshifts measured will span the range 0.9-1.8. The instru-
ment devoted to spectroscopy measurements is NISP, described in Sec. 2.2, which will record
two-dimensional images of the spectra similar to the one shown in Fig. 3.1. The calibrated
one-dimensional spectra of the galaxies are extracted from these images. The extraction is
made by the SIR Processing Function, as explained in Sec. 2.4. The extracted spectra are then
passed to the SPE Processing Function, which measures the redshifts from the Hα emission
line.

Slitless spectra extraction is not straightforward, and a whole devoted team working on
it is needed. A software element is being written and tested specifically for this task, the
SIR Pipeline. The completeness Eq. (2.1) and purity Eq. (2.2) of the spectroscopic catalogue
strictly depend on the accuracy of the flux calibration of the spectra reconstructed by SIR.
The accuracy on the spectroscopic redshift measurement is instead strongly influenced by the
wavelength calibration of the extracted spectra. In order to guarantee the scientific quality of
the spectroscopic catalogue that Euclid will produce, the SIR Pipeline has specific requirements
to fulfill. A complex and detailed validation of the software must be performed before the
launch, and for this reason a wide variety of simulations is needed.

In this chapter I report the results of the work that I have done in the first part of my PhD. I
developed a software pipeline to perform automated and detailed validation of the SIR Pipeline,
in order to test the fulfillment of the scientific requirements above outlined. The chapter is
structured as follows: Sec. 3.1 briefly introduces the slitless spectroscopy technique employed
in Euclid . Sec. 3.2 describes the SIR Pipeline, the data reduction tool for spectra extraction.
Sec. 3.3 details how simulations are done by SIM, which the official Euclid PF devoted to
deliver simulated data to the SGS. In Sec. 3.4 I describe how the software I wrote works,
detailing the advantages of its implementation for the SIR validation procedures. Finally
Sec. 3.5 presents some of the test cases in which the code I developed has been successfully
used for performing such validations.
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Figure 3.1: Simulated slitless image of one of the 16 NISP detector. The axes are aligned with
the detector reference frame, while the sky coordinates are rotated because of the position
angle of the telescope. This frame is taken from an official OU-SIM simulation, and therefore
includes all instrumental effects available at the moment of production.

3.1 Slitless spectroscopy

3.1.1 Overview

The spectra of astrophysical objects can be used for multiple reasons. Detailed information
about the source can be inferred from its spectrum: its chemical composition, pressure, density,
and temperature. Information about the galaxy rotation speed and its radial velocity are also
contained in galactic spectra. In a galaxy survey, the spectra of the galactic sources are
employed for determining their redshifts. By identifying one or more spectral features, e.g.
an emission line with known wavelength, the redshift of the source can be estimated. As
explained in the previous chapter, in the Euclid survey the spectroscopic redshifts will be
measured through the identification of the Hα emission line.

The spectra of the sources can be measured through instruments called spectrometers.
In some surveys, the light coming from the celestial object can be observed through a long
narrow aperture, named slit, and in this case the instrument is a slit spectrometer. The main
advantage of using a slit spectrometer is the targeted nature of the observation: the slit allows
one to select the source to observe, avoiding contamination from other objects. However, when
the spectra of many multiple sources have to be recorded, using a slit may not be practically
possible. In this case another technique, named slitless spectroscopy, can be adopted.
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3.1.2 Features and systematics

The essence of slitless spectroscopy is that the “slits” (in analogy to slit or multi-slit spec-
troscopy) are defined by the position in the sky, the size, and the shapes of the sources. One
can consider that an object, whose light is dispersed in a slitless image, defines its own virtual
slit. The resulting spectral resolution is determined by the length of the spectrum in the
dispersion direction. The size of the object in the transverse-to-dispersion direction defines
instead the width of the slit.

For non-circular objects, a preferred axis, such as the major axis of a galaxy, can define
a tilted virtual slit. Since the positions of the virtual slits are set by the pattern of objects
on the sky, superposition of spectra may commonly occur. This cross-contamination happens
predominantly in the dispersion direction, as the spectra are many times longer than the target
along the dispersion direction. If a grism is used as the slitless dispersing element, then the
zeroth and higher orders present an additional source of contamination. Grisms are usually
designed in such way that the zeroth and higher orders have lower transmission than the
strongest order, which often is taken to be the (positive) first order.

A further characteristic of slitless spectroscopy is the sky background level: in fact, since
the maximum slit width is the detector size, the background level is many times larger than
for slit spectroscopy. In Euclid the main background light contribution will be given by the
zodiacal light, which is the light from the Sun scattered by interplanetary dust. Zodiacal
light’s intensity is maximum on the ecliptic plane, on which the Earth’s orbit lies. In order
to reduce as much as possible the zodiacal light, the Euclid survey is designed to give higher
priority to regions of the sky at higher ecliptic latitudes, where this background light is less
intense. Together with cross-contamination, the zodiacal light will be one of the dominant
noise sources, and therefore shall be accurately modelled in order to remove it. Maps of
the expected background light are available in the Mission Database (MDB), which is briefly
described in Sec. 3.3.2.

Another systematic effect which is present in slitless spectroscopy is given by the image
distortions. In general, distortions arise when the imaging scale of an optical system is not
uniform across the field of view (FoV), in particular for off-axis points. The distortions can be
mainly divided in two categories: astrometric and spectroscopic (or spectral). The astrometric
distortions [51] cause a non-linear mapping between the coordinates of the objects on the sky
and the corresponding ones on the field of view (FoV). Astrometric distortions are influenced
only by the opto-mechanical layout of the instrument and can be corrected with an optical
distortion model, which provides the mapping between sky coordinates and pixel coordinates
on the FoV.

Spectroscopic distortions cause the deviation of the spectra traces with respect to a straight
line aligned with the dispersion direction, and also a stretching or elongation of the spectra.
Thus the imaged spectra are not perfectly straight, and the relation between the pixel coordi-
nates along dispersion and the wavelength may be nonlinear. In order to correct for spectral
distortions it is necessary to provide a Curvature Model and an Inverse Dispersion Solution.
The Curvature Model parameterises the deviation of the spectra from straight lines, and it
is usually described by a low degree (≤ 2) polynomial [51]. The Inverse Dispersion Solution
provides instead the functional relation between wavelength and pixel coordinates along the
dispersion direction. As for the Curvature Model, the functional relation defining the In-
verse Dispersion Solution is described by a relatively low degree polynomial. The degree of
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Figure 3.2: Schematic illustration of the slitless dispersed images obtained by two orthogonal
grism orientations. Source [53].

the chosen polynomial depends on the grism used to obtain the data, and therefore on the
observations spectral resolution.

Finally, a knowledge and modelling of the detector is needed for dealing with slitless
spectroscopic data. As we outlined in Sec. 2.2 the NISP sensitive elements are semiconductor
H2RG detectors produced by Teledyne, and are arrays of 2048 × 2048 pixels [52]. They are
built using a Mercury Cadmium Telluride (HgCdTe) alloy, which is used in applications where
the highest performance IR detectors are required. Essentially these detectors convert the near
infrared photons coming from astrophysical sources into electron-hole pairs. The conversion
rate, called quantum efficiency (QE) can vary across the pixel matrix. Because of the non-
zero operational temperature, there exist a dark current in the detectors. Dark current is
basically made of thermally generated electron-hole pairs, which contribute as a noise to the
measured electric signal. HgCdTe detectors achieve the highest quantum efficiency and lowest
dark current of any IR detector material, and for this reason are employed in the Euclid
mission [52]. The readout noise is another source of contamination of the measured signal,
and is caused by the silicon read-out arrays used to digitise the signal. All the noise sources
have to be quantified by measurements on the instrument, and then implemented into the
models used to simulate the data. In Euclid , the team directed by the Instrument Scientist,
has the responsibility to make the connection between measurements and simulations. The
results of the analysis of the detector and the optical performances are ingested into the MDB,
in order to be available for simulations and science processing.

The number of galactic sources falling within a typical Euclid FoV is estimated to be
about 105, so slitless spectroscopy is the only way to measure so many galaxy spectra. As
said above, one of the main drawbacks of slitless spectroscopy is cross-contamination, which
may reduce the number of usable sources for redshift measurement up to a factor of 50%, as
mentioned in Sec. 2. The contamination issue can be solved by obtaining multiple exposures
of the same field of view (FoV) with different dispersion directions: two sources whose spectra

50



CHAPTER 3. SPECTROSCOPIC SIMULATIONS FOR SIR VALIDATION

overlap in one dispersion direction, will not overlap in the orthogonal direction. Combining
the information coming from orthogonally dispersed images can reduce confusion due to the
cross-contamination phenomenon.

3.2 The SIR Pipeline

In the Euclid mission, the SIR Processing Function (PF) is the function in charge of the
reduction of the NISP spectroscopic data. The NISP Level 1 data are pre-processed by NIR, in
order to flag bad or saturated pixels in a common way. Starting from these pre-processed NISP
frames, SIR produces one-dimensional spectra that are fully wavelength and flux calibrated,
and corrected for contamination from nearby objects. In this section I give an outline of the
structure of the SIR Pipeline, the software that is being used for performing such a task,
together with its scientific requirements.

3.2.1 Structure

The SIR PF is divided into two main Processing Element Blocks (PEBs): the pre-processing
PEB and the extraction PEB. The former has the task of removing most detector signa-
tures from the data. The latter is in charge of locating and extracting the spectra from the
NISP spectroscopic data, and to produce fully wavelength and flux calibrated one and two-
dimensional spectra. The steps composing the scientific pipeline, illustrated in Fig. 3.3, are
the following:

1. coarse and fine spectra location;

2. global background estimation and subtraction;

3. extraction of 2D spectrum;

4. estimation of wavelength-dependent pixel illumination and flat fielding;

5. two-dimensional spectrum wavelength assignment;

6. two-dimensional spectrum decontamination flagging;

7. one-dimensional spectrum extraction;

8. combination of spectra between different detectors and pointing;

9. final one-dimensional spectra production.

After the pre-processing and the location phase, the 2-D spectra extraction starts. This
procedure consists in cropping a small rectangular window of the whole image around each
spectrum. This window has a certain aperture, which is the width in the direction orthogonal
to dispersion. The aperture is one of the most critical parameters of the SIR pipeline, and its
value is chosen by maximising the signal-to-noise ratio. For this procedure, ad hoc simulations
are needed (see Sec. 3.5).

After the 2-D extraction, a re-sampling must be performed on the two-dimensional spec-
trum. This is necessary since all the extracted spectra have to be defined on the same common
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Figure 3.3: The block flow diagram of the SIR pipeline.
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wavelength range. However, the relation linking pixel intervals to wavelength intervals is not
uniform across the FoV, because of the spectroscopic distortions. Then each two-dimensional
spectrum has to be re-sampled to translate it into the desired wavelength range.

The SIR PF tasks end with the final one-dimensional spectra production. The SPE PF
successively executes the emission line fitting and the redshift determination. The final outputs
are the catalogues of the objects with fitted line wavelengths and redshift. The SIR PF has
some fundamental relations with other processing functions. Some of them are presented in
the list below:

• from LE1, it receives raw NISP spectroscopic frames and house- keeping data;

• with NIR, it shares the task of the pre-reduction of the NISP photometric and spectro-
scopic frames, and the definition of the data products resulting from this pre-reduction;

• from MER, it receives the photometric target catalogue to be used for the extraction of
spectra, and their de-contamination;

• from SPE, it receives requirements on the format of the extracted one-dimensional and
two-dimensional spectra, which is then be delivered to SPE for redshift measurement.
In validation phases, SPE returns measurements of line position and flux to SIR.

3.2.2 Scientific requirements

In parallel to the scientific pipeline, within the SIR processing function there are also a cali-
bration pipeline and a validation pipeline. The calibration pipeline is in charge of reducing the
calibration observations and of preparing the calibration data needed by the scientific pipeline.
The requirements to be fulfilled by the validation pipeline are contained in the “Euclid SGS
SIR Requirements Specification Document” [54]. The high-level architecture of the Pipeline
originates instead from the “Euclid SGS SIR Processing Function Validation Plan” [55], which
also defines the validation approach and the test cases. The validation process is divided into:

• software validation, i.e. the validation of the various processing elements that compose
the SIR PF;

• data validation, i.e. the validation of the SIR PF data products.

The validation process is evolving with time, and with the availability of different sets of data
to be used in the validation procedure. The scientific requirements of the SIR pipeline are
inherited from the mission scientific goals. The accuracy of the spectroscopic redshift mea-
surements, indeed, depends very strictly on the accuracy of the spectroscopic data wavelength
calibration. This in turn depends on the accuracy of the dispersion solution across the NISP
field of view. By requirement, the spectroscopic redshift accuracy of each detected galaxy shall
be better than

σz < 0.001(1 + z) (3.1)

Since the requirement on redshift accuracy must be satisfied for all z, it is enough to meet
the most stringent condition, i.e. σz < 0.001. The central wavelength of NISP spectra is
λ = 15× 103 Å, then:

σ∆λ < 15× 103 Å× 0.001 = 15Å (3.2)
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Since a pixel of the infrared NISP detector corresponds to 13.4Å, we obtain a σ∆λ ' 1.1 pixels.
Such error has to be shared between wavelength zero point and dispersion solution as specified
by the two following requirements contained in the requirements specification document [54]:

• “R-SIR-CAL-F-020 Wavelength Zero Point”: the SIR Cal PF shall be able to determine
the spectral wavelength zero point of any detected object to better than 0.63 pixels;

• “R-SIR-CAL-F-030 “Wavelength Dispersion Solution”: The SIR Cal PF shall use all
relevant calibration data to give a spatially varying wavelength solution across the field-
of-view, accurate to a level of 0.4 pixels (rms).

Also the flux of the extracted spectra must be accurately determined by calibration proce-
dures. Two requirements on the accuracy of the SIR PF follow from the scientific requirements
of completeness and purity of the spectroscopic galaxy sample explained in Sec. 2.3.3. In par-
ticular, the SGS requirements specification document [54] specifies that:

• “R-SIR-CAL-F-060 Instrument Response Stability (Survey)”: within the Wide Survey, a
spatially varying solution for the relative flux calibration shall be provided. The solution
shall be such that the relative flux at the flux limit of the sample, averaged over circles
of diameter 0.8 degrees, has a distribution with width less than 0.7% (rms).

• “R-SIR-CAL-F-070 Instrument Response Stability (FoV)”: Within each Wide Survey
field, the relative response of each NISP detector should be known, such that fluctuations
in the calibrated flux measurement between different detectors are smaller than 3% (rms)
at any given time during the survey.

3.3 OU-SIM Simulations

In order to validate the whole Euclid pipeline before launch, detailed and complete simulations
are needed. As described in Sec. 2.4 the Organisation Unit (OU) in charge of simulating Euclid
data is OU-SIM. The goal of SIM is to develop raw Science Ground Segment simulations in
a coordinated and coherent environment under the Science Data Centres framework for a
massive production and distribution [56]. As it is shown in Fig. 3.4, before the launch, SIM
provides all the necessary input raw data for the Euclid pipeline. These data are used by
the OUs in the SGS to develop and validate their algorithms. The OU-SIM developers have
written and are maintaining a software simulator for each Euclid observational channel, so
there are mainly 3 different simulators. One is for VIS, another one for NISP in photometric
mode (NISP-P) and the last one for NISP in spectroscopic mode (NISP-S). In this section we
describe how the simulations are done by OU-SIM, with a particular focus on the spectroscopic
channel.

3.3.1 The True Universe

All the instrument simulators in OU-SIM share a common input model of the Universe as it
will be observed by Euclid , which is named True Universe (TU). Essentially it consists in a
catalogue of astronomical sources, and it can be subdivided in two distinct catalogues: the star
catalogue and the galaxy catalogue. The former contains the Milky Way stars that we expect
to fall in the Euclid FoV. The latter collects the galaxies that are expected to be observed in
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Figure 3.4: Scope of SIM in the SGS. Courtesy of Santiago Serrano [56].

the survey. Clearly both these catalogues are built by using models and simulations, since the
currently available data are not sufficient to predict exactly what sources will be observed. In
this section I briefly describe the True Universe star and galaxy catalogues that are used as
an input for all the image simulators.

Star catalogue

Since Euclid will observe approximately one third of the whole sky, a wide stellar catalogue
is needed in order to provide a realistic foreground for the simulated images, since the most
interesting sources from the cosmological point of view are the galaxies. The stars that have
to be simulated are located in our host galaxy, the Milky Way. At the moment not even
the GAIA star catalogue [57] has enough stars for building a realistic stellar sky for Euclid
simulations. In fact the maximum AB magnitude that is expected to be reached by Euclid is
24, while GAIA reached a maximum magnitude of 20.

A synthetic model is therefore needed to simulate the faint stars that are expected to be
observed. The model that has been used is the Besançon model, which has been first developed
in [58]. Most free parameters of this model are first constrained using solar neighbourhood
data, and then extrapolations are made in order to predict the stellar population in more
distant zones of the galaxy. For the bright stars it is important to accurately simulate their
position, and for this reason the real data from the PICKLES catalogue [59] have been used.
Also the Drimmel 3D model [60] is employed to take into account interstellar extinction.

For each star in the catalogue there is a specific set of columns containing all the needed
pieces of information about the source. These columns can be essentially split into two main
categories: parameters and fluxes. The parameters include: the source id, which is a unique
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identifier for the source, the Right Ascension (RA) and Declination (DEC) coordinates, the
radial distance to the star and the apparent magnitude in the Vega system. The fluxes category
includes all the magnitudes of the source as observed from VIS and from NISP in the 3
photometric bans Y, J, H, together with the apparent magnitudes as are expected to be seen
from the ground-based (EXT) observatories.

The spectra of the stars are also needed for the spectroscopic image simulations, together
with the parameters listed above. A modified version of the Basel Spectral Energy Density
(SED) library [61] has been employed with this purpose. The library provides stellar spec-
tra templates, which are used to generate dispersed spectra as observed from NISP in the
spectroscopic channel.

The TU star catalogue is made available to the SGS through a specific Data Product 1

named DpdStarsCatalogProduct: this is an XML file and contains the references to all the
FITS files which make up the whole catalogue of sources, together with the coordinates of the
pointings where the sources are expected to be observed. The catalogue files are inserted into
the the Euclid Archive System (EAS), through which are accessible to the whole SGS.

Galaxy catalogue

The TU galaxy catalogue is built using the outputs of the Euclid Flagship simulation executed
by the Cosmological Simulations Science Working Group, which is the official cosmological N -
body simulation for Euclid [62]. This catalogue is essentially a table, with a specific set of
columns for each galaxy. Additional pieces of information are needed for including the galaxies
in the simulated images.

A morphology distribution based on [63] has been employed, in order to generate the
images (thumbnails) of the galaxies to be simulated. All OU-SIM simulators share a common
stamp library for generating galaxy thumbnails, which is based on the GalSim software [64],
and includes both intrinsic galaxy shapes and weak lensing effects. Currently the light profile
of the galaxies is based on a simple 2-Sersìc profile, but improvements and refinements to this
model are foreseen. A SED template library based on COSMOS data [65] is used to generate
the galaxy spectra to simulate the spectroscopic images, but some modifications have been
made.

The intrinsic extinction laws coming from the flagship simulation have been applied, and
a fixed set of emission lines has been added, with the line widths following the Tully-Fisher
relation [66]. Among the emission lines there is obviously the Hα line, since it is be the
main spectral feature used for measuring the spectroscopic redshifts. The calibration of the
abundance and distribution of Hα-emitting galaxies is based on [67]. Finally the redshift of the
source is applied to the galaxy spectrum, with both the cosmological and the peculiar velocity
contributions. As for the star catalogue, the columns of the galaxy catalogue can be split
into parameters and fluxes. The parameters include the source id, RA and DEC coordinates,
together with the apparent coordinates shifted by gravitational lensing. Also the fluxes of the
emission lines are present. Regarding the fluxes there is the same set of magnitudes that are
present in the star catalogue.

The galaxy catalogue is distributed through a DpdGalaxyCatalogProduct XML file, and
analogously to the star catalogue it contains the references to the FITS files which makes up

1A data product is an official file format for internal communication between the OUs, which is maintained
and versioned by the OUs themselves and the SGS System Team.
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the full table of galactic sources to be included in the simulations, which are accessible to the
SGS through the EAS.

3.3.2 Mission Database and survey definition

Together with the source catalogues, the simulations need also all the information regarding
the mission and the survey. The Mission Database (MDB) contains all the parameters of the
mission: the optical models for distortions and the instrument models are hosted in the MDB,
along with the dithering strategy and the maps of the background light. The MDB is a single
XML file, which almost always refers to the name of the files containing the specific pieces of
information. The MDB is a Data Product, and as such is versioned and updated multiple
times during each Scientific Challenge. For this reason, a dedicated team is maintaining it.

The survey definition is contained into an XML file which hosts the list of the pointings of
the telescope; for each pointing, the coordinates in the ecliptic system are reported, along with
the attitude of the telescope. The survey file is available through the EAS and it is versioned
and updated at each Scientific Performance Verification.

3.3.3 TIPS Simulator

TIPS (TIPS Is a Pixel Simulator) is the official OU-SIM code for simulating the NISP spectro-
scopic images to be used in the SGS. The software is mainly written in Python and simulates
the images for each detector of the focal plane for a given observation sequence. The inputs
for TIPS are essentially two:

• the True Universe catalogue for the specific pointing to be simulated;

• a corresponding catalogue of spectra for the sources to be simulated;

• the instrument configuration, specifying which instrumental and optical effects to include
in the simulation, together with the paths to instrument model data.

The TIPS pre-processing prepares the sky model input to provide a list of images to be
simulated. Each image simulation is then independent and could be run separately. The
model of sky sources is defined with a catalogue of objects and a catalogue of spectra. The
catalogue of object is derived from the True Universe catalogues for a given pointing and
contains, for each source: the position on the sky, the shape parameters and a reference to
a model spectrum in the catalogue of spectra. The model spectra can be given as input or
generated on the fly based on the SED templates described in Sec. 3.3.1.

Image simulation

The simulation of the images is done with a modified version of aXeSIM, an image simulator
developed initially for the Hubble Space Telescope [68]. For each source, aXeSIM computes the
contribution on the image through each dispersion order of the grism. AXeSIM allows defining
the PSF with an image, which is the best way of simulating for the performance analysis when
the instrument is finalised. However during the conception phase, exploring the performance
using a PSF image model is difficult, and a parametric model is often required. The simplest
way to model different energy distributions in the PSF is to use a double Gaussian profile,

57



3.3. OU-SIM SIMULATIONS

Les Houches - Advanced Euclid School - June 2020Santiago Serrano

the SIM pipeline SIM production

55

Science WGs

SIM PF 
development

  Mission DB

SIM Stellar 
catalogue

Flagship 
Catalogue

Reference Survey

Optical & Detector 
models

Euclid

VIS NISP SDC 
production

Simulated 
Frame X

EXT

EXT

Euclid Archive System

Simulation 
Planner

Simulation 
Request

X

Simulator

True Universe 
merge catalogues

Simulation 
Configuration

E.Jullo
F.Torradeflot

SGS ST

wrappers

True Universe 
libraries

X Channel Images 
DppXXXProductStar Catalogues 

DpdStarCatalogProduct
Galaxy Catalogues 
DpdGalaxyCatalogProduct

X Channel Images 
DppXXXProduct

VIS/NISP/EXT frame 
DpdXXXProduct

Figure 3.5: Schematic representation of the orchestration system designed by OU-SIM. Cour-
tesy of [56].

which can describe a wide variety of energy distribution with only three parameters. AXeSIM
also takes as input a distortion model to implement spectroscopic and astrometric distortions
for the spectra. The result of this first step of the simulation is an image without detector
noise, which is added a posteriori.

Detector simulation

The detector noises are added to the image computed above. The noises could be defined
either with a single number or with a map. With a single number, all pixels have the same
properties; with a map, different pixels may have different properties. The noise map model
is clearly more realistic. Maps of quantum efficiency, dark current, and readout noise can be
derived directly from the detector characterisation. In particular, the detector noise maps for
TIPS are contained in the MDB, which refers to the FITS file storing the maps for each of the
16 NISP detectors. The usage of maps also allows us to include more complicated noise, like
cosmic rays maps computed by another software.

The resulting output of each detector includes: a raw image, an error image, and a mask.
The mask is being used to identify the dead pixels and those hit by cosmic rays.

3.3.4 The SIM Pipeline

As detailed at the beginning of this section, OU-SIM has to provide raw Science Ground
Segment simulations for a massive production and distribution. For this reason a software
pipeline has been designed as schematically represented in Fig. 3.5. The main entry point of
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the pipeline is the so called Simulation Planner (SimPlanner), which is unique for all the three
simulators. The SimPlanner receives the following inputs:

• a simulation request, containing specific information about the configuration for the
simulation, comprising also the telescope pointings;

• the star and galaxy catalogue data products described in Sec. 3.3.1;

• the Mission Database (MDB);

• the survey definition file.

For each pointing the SimPlanner produces the specific configuration file for the particular
simulator, denoted by a generic X in Fig. 3.5, together with the TU for the particular sky
region observed in the simulation. This system also implements the dithering strategy, which
is described in the MDB, and accounts for uncertainty on the positioning of the telescope.
The production of simulations is done within a Science Data Centre (SDC), where it can be
parallelised.

After an official SIM pipeline run has finished, only the simulated raw images are ingested
into the EAS, while all intermediate products are not stored. The procedure just described
presents several advantages when dealing with massive production and distribution. Nonethe-
less, the procedure lacks an high level of control and flexibility which could be needed for some
particular validation procedures of the scientific software pipelines, like the SIR pipeline de-
scribed in Sec. 3.2, which uses simulated data as input. In the next section I report the results
of my work on the production of the high-control simulations needed for the SIR Pipeline
validation.

3.4 The SIR_SpectroSim_Runner software

The OU-SIM software pipeline orchestrates automatically the simulations production, making
the simulated images as realistic as possible, as reported in the last section. After having
chosen the telescope pointings to simulate, the software automatically selects all the sources
which are expected to be observed in the FoV from the star and galaxy catalogues, and includes
all the available detector noise effects from the MDB.

The simulations provided by OU-SIM are as realistic as possible, which implies that all the
systematic and cross-contamination effects are included. The input spectra used for generating
the simulated images are not stored as output files, since these are not official data products of
the SIM pipeline. It is therefore impractical or impossible to test the scientific SIR pipeline de-
scribed in Sec. 3.2 using the OU-SIM pipeline. However, spectroscopic simulations are needed
for the science performance verification, to test if OU-SIR fulfills its scientific requirements
and, from a more practical point of view, to spot bugs in the code. A step by step validation,
where all the pipeline blocks are tested singularly in an isolated way, is only possible with full
control on the simulation side. It is in particular necessary to have the freedom to choose

• the source catalogue to be simulated in the FoV, as well as their theoretical spectra;

• the instrumental and optical effects included in the simulation.
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3.4. THE SIR_SPECTROSIM_RUNNER SOFTWARE

Figure 3.6: Block diagram of the SIR_SpectroSim_Runner software. Starting from a single
JSON file and all the necessary data pointed by MDB, it orchestrates the run of TIPS and/or
the SIR Pipeline.

In the first part of my PhD I worked on the development of a software element aimed at
performing the customised and granular spectroscopic simulations just described. My code
stands on top of TIPS, the official spectroscopic simulator described in Sec. 3.3.3, and it
allows us to control it in a standalone mode, disentangling it from the SIM pipeline outlined
in Sec. 3.3.4. The code I wrote has been given the name SIR_SpectroSim_Runner, and it is
available 2 through the official gitlab of the SGS

https://gitlab.euclid-sgs.uk/lpagan01/SIR_SpectroSim_Runner

The whole software package has been written in Python, and consists in a total of 2775
lines of code, excluding blank lines and comments. The code has been used in the OU-SIR
group for automating the validation procedures, allowing also to control the results from
end to end. A great effort has been made to keep the simulation production as simple as
possible, minimising the amount of configuration and input files needed by the software (see
Fig. 3.6). SIR_SpectroSim_Runner allows us also to run the SIR Pipeline data reduction on the
simulated images, and it is therefore made by two distinct modules: the SimulationManager
and the SIRPipelineRunner. As the name tells, the simulation side of the code is managed
by the SimulationManager module. The configuration for the simulation is specified through
a JSON file, which contains:

• boolean switches for detector and optical instrumental effects;

• the grism observation sequence;

• the dithering strategy, with custom sky coordinates offsets;

• the name of the file containing the True Universe (TU) input source catalogue;

• the name of the file containing the True Universe input spectra for the sources specified
in the TU catalogue.

2At the moment the access to the SGS gitlab code is limited to Euclid Consortium members only.
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Figure 3.7: Comparison between a simulated NISP detector without (left) and with (right)
background light. This simulation has been made using the SIR_SpectroSim_Runner software,
and only bright stars (magnitude in NISP J band < 15) from True Universe are present in the
FoV.

The SimulationManager allows us to simulate one, two, three, or four dither exposures for the
instrument. Additional input files are represented in Fig. 3.6 by the MDB data, which must be
provided in a working directory whose path can be specified in the JSON configuration. After
reading the configuration, the SimulationManager creates all the necessary input files for TIPS
and then it starts the simulation. After the simulation has ended, the SimulationManager
reorganises the working directory, optionally storing all the necessary intermediate products
which can be used for validation. The intermediate files include the input spectra falling on
each given detector and the instrument configuration file used by TIPS to simulate the images.

The SIRPipelineRunner module manages the run of the SIR Pipeline on the simulated
raw frames produced by the SimulationManager. Running the SIR Pipeline is not a straight-
forward task. As represented in Fig. 3.3, the SIR Pipeline is made by several logical blocks,
each of them taking as input the output of the previous one. The SIRPipelineRunner or-
chestrates the pipeline run, making sure that there is consistency in the whole process. For
example if the background light is not present in the simulated images, the runner skips the
background subtraction task. Moreover the SIRPipelineRunner provides a configuration file
to each task of the pipeline, as Fig. 3.6 illustrates.

In the next section I report some of the several test cases in which SIR_SpectroSim_Runner
has been used to validate the SIR Pipeline.

3.5 SIR Validation test cases

The SIR_SpectroSim_Runner code has been used as the main tool for the validation of the
SIR pipeline at all levels. The granularity of the simulations produced allows to test what
is the impact of every single instrumental systematic effect. Also, the full control on the
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Figure 3.8: Flux-magnitude relation for extracted spectra in a simulation with only bright
stars and no background. The flux on the y axis is measured in photon counts. Two different
linear trends are clearly visible in the counts-magnitude relation. Plot courtesy of Marco
Scodeggio.

catalogue of sources simulated in the FoV gives the possibility to avoid cross-contamination
among spectra, which is one of the most difficult noise sources to handle. Moreover, the
possibility to automatically run the full data reduction after the simulation makes it possible
to perform end-to-end tests, where the extracted spectra are directly compared to the input
theoretical ones. In this section I report some of the test cases of the SIR Pipeline for which
the SIR_SpectroSim_Runner code has been employed.

3.5.1 Finding bugs in the code: spectra resampling

The first test case I present is one where SIR_SpectroSim_Runner has been helpful in finding
a bug in the SIR Pipeline. The simulation employed in this case was one with only a few
bright stars and without background light (see left panel of Fig. 3.7). A problem was spotted
by plotting the extracted spectra counts against the magnitude of the sources. If things are
simulated properly and the spectra are correctly extracted, the logarithm of the flux of the
sources should be linearly proportional to their magnitude. However, as Fig. 3.8 shows, this
was not the case. In the plot, each red dot represents a source in the FoV whose spectrum
had been extracted by the SIR Pipeline. There are clearly two different linear trends in the
flux-magnitude relation of the extracted spectra, instead of one as it should be. The flux of
some sources was systematically being underestimated3.

Going in more depth with additional tests, it turned out that the SIR Pipeline was somehow
treating differently the sources, depending on the fractional part of their vertical coordinate.
The problem is manifest in the plots shown in Fig. 3.9. The x axis is the fractional part of the

3In principle there could also have been a spurious overestimation, but this turned out not to be the case.
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Figure 3.9: Fractional difference on the fluxes of the sources in two different exposures against
the fractional part of the vertical coordinate. Left panel refers to the fluxes as extracted from
the SIR Pipeline. Right panel refers instead to the fluxes computed by summing up the values
of the pixels of the two-dimensional spectra before the extraction. Plots courtesy of Marco
Scodeggio [69].

vertical coordinate of the sources. The y axis represents the fractional difference of the fluxes
of the sources between two exposures, in which the same sources have been translated by 0.5
pixels along the vertical (orthogonal to dispersion) direction. The difference is normalised to
the mean of the fluxes in the two situations, in order to be unbiased about which flux was
the correct one. On the left panel, the fluxes involved are those extracted by the Pipeline,
while on the right panel the fluxes were obtained by summing up the value of the pixels of the
2-D spectra before resampling them. In both cases the extraction aperture for computing the
fluxes was very broad (15 pixels), and it was possible to use such a large aperture since the
simulated spectra were a few and isolated from each other, and no background was present in
the simulation.

The total fluxes of the extracted spectra exhibited a non-physical dependence on the frac-
tional part of the vertical coordinate of the sources. In particular, when the centre of the
spectrum of the source fell in the upper half of a pixel, the extracted flux was systematically
higher by about 10% with respect to the situation where it fell in the lower half. From the
right panel it is clear that this feature was not present when computing the fluxes by summing
up the pixels of the 2-D images. This implies that the simulated data were consistent and that
the problem could only be in the extraction procedure. Since this behavior is not physical,
some artificial effect induced by a bug in the software was likely to be present. Moreover this
difference on the extracted flux was well above the required accuracy on the flux estimation
reported in Sec. 3.2, and therefore the bug had to be found and corrected.

In order to understand what was happening it is useful to outline the details of the 2-D
resampling procedure:

1. The resampling employs a 2-D kernel which covers a square window of 4× 4 pixels.

2. Since the images of the 2-D spectra are cropped, the resampling kernel may enclose some
pixels that are outside of the cropping window, and the code automatically assigned 0
as the fill value for these missing pixels. Instead it should have ignored them, and here
there was the error.

3. The largest contribution from the resampling comes from the centre of the spectrum,
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Figure 3.10: Difference (in pixel) between the input and reconstructed peak of the spectrum,
averaged over the sources falling in each NISP detector. The rainbow colormap represents the
gradual increasing of the wavelength, from the bluest (12 500Å) to the reddest (18 500Å) part
of the spectrum. Plot courtesy of Chiara Mancini and Marco Scodeggio [69].

since it is the brightest part. Then in order to correctly estimate the extracted flux, it is
necessary to correctly resample the image especially around the centre of the spectrum.

4. When the centre of the spectrum happened to be in the upper half of the pixel, the
resampling kernel did not go outside of the extraction aperture, therefore not including
spurious zero values. When the centre happened to be in the lower half instead, the
kernel window included some spurious zeros, effectively lowering the resulting flux.

This error could only have been spotted with a very special simulation with few bright sources
and no background. In such a simplified simulation a very wide extraction aperture can be
used without contaminating the extracted spectra with other sources or with background light.
Instead, in a complete simulation this non-physical effect would have been buried by the high
cross-contamination between the thousands of sources and all the background effects, and
therefore it could not have been spotted.

3.5.2 Tuning pipeline performance: verifying grism tilt reconstruction

When the grism is tilted the dispersion direction is neither horizontal nor vertical, and this
must be considered in the data reduction. The extraction window is rotated by an angle which
has to be as close as possible to the true unknown grism tilt, which has to be estimated from
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the images. In the SIR Pipeline there is a dedicated algorithm for the tilt estimation, based
on a two-dimensional Fourier transform, which must be validated.

The validation of the grism tilt reconstruction starts by simulating clean images with few
well separated objects, not subject to cross-contamination, with SIR_SpectroSim_Runner.
The validation procedure tests the accuracy of the reconstruction of the trace left by the
spectrum, which is represented by the curve followed by the brightest point of the spectrum
as a function of the horizontal pixel coordinate. With a clean simulation it is possible to
measure the brightest point of the spectrum as the maximum of the 2D spectrum along the
vertical coordinate at various wavelengths. The resulting trace is then compared to the trace
reconstructed by the SIR Pipeline, in which also the astrometric and spectroscopic distortions
are taken into account. Therefore this test also validate the implementation of the curvature
model implemented in the pipeline, which parameterises the spectroscopic distortions.

In Fig. 3.10 the results of the validation are reported. The plot shows the difference
between the input and the reconstructed peak position, averaged over all the sources falling in
each of the 16 detectors. This has been done for seven different wavelengths between 12 500Å
and 18 500Å, in order to probe the accuracy of the reconstruction locally along the dispersion
direction. From the plot it can be seen that there is a slight systematic difference, which
gradually increases when going from the blue to the red part of the spectrum. This may
indicate that there has been a systematic effect in the tilt reconstruction, or it may simply
represent the resolution in the trace reconstruction of the algorithm. Other software tests
including various telescope pointings have been scheduled, in order to distinguish between the
two possible explanations.

3.5.3 Optimising pipeline parameters: extraction aperture

Simulations can also be used to determine the optimal values of some parameters of the data
reduction. One of these parameters is the extraction aperture, which should be as large as it
is necessary to enclose the whole spectrum, and thus maximise the desired signal. However,
a wider aperture increases the contribution from the background, which is approximately
constant in the FoV. This therefore decreases the signal-to-noise ratio, which in this context
is defined as

S/N =
enclosed spectrum flux

rms of background flux
(3.3)

The enclosed spectrum flux converges at the value of the total flux of the object when the
extraction window encloses the whole spectrum. The enclosed background flux instead grows
approximately linearly with the extraction aperture, since the background flux is approxi-
mately constant in the FoV. The S/N ratio starts at zero, when the aperture is zero. This is
the degenerate case where no flux is enclosed in the extraction window. Then the S/N rises
reaching a maximum, corresponding to the optimal aperture for the given object. Finally the
S/N decreases after the enclosed flux object converges to the total flux of the source. In this
regime, the background contribution dominates, since the signal flux remains constant, and
the enclosed background flux grows.

The optimal aperture is found with an empirical procedure, using multiple reductions of
the same simulation with different apertures. However this procedure can only converge with
meaningful results, if the simulated spectra are isolated and not contaminated from overlapping
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Figure 3.11: Signal-to-noise S/N ratio against the extraction window (left) or the extraction
efficiency (right), defined as the ratio of the extracted flux over the incident flux. The plots
show that increasing the aperture lowers the S/N, but it also increases the extraction efficiency.
Plots courtesy of Chiara Mancini and Marco Scodeggio [69].

sources. This means that a completely realistic simulation cannot be used for the purpose.
Instead, a simulation with a few bright objects 4 with the background enabled are needed.

An image of one detector given from the simulation in exam is shown in the right panel of
Fig. 3.7. In Fig. 3.11 the results of the optimisation procedure are shown. In the left panel the
S/N relative to its value at 3 pixel aperture is plotted against the aperture size. The points
represent averages over the population sources in the field of view, with error bars given by the
standard deviations. As expected, the S/N decreases with the aperture size, and the maximum
is at 3 pixel aperture. However, also the fraction of enclosed spectrum flux must be considered
to determine the optimal aperture. In the right panel the same S/N has been plotted against
the ratio between the extracted and the input spectrum flux, referred to as the extraction
efficiency. Using an aperture of 3 pixels leads to the best S/N, at the cost of losing 10% of
the spectrum flux. The loss is also larger in the case of extended objects like galaxies, which
are the most interesting sources for Euclid science. Instead, choosing an aperture between 5
and 7 pixels yields a S/N which is ∼ 80% of the maximum, along with an extraction efficiency
greater than 95%. For this reason it has been concluded that an aperture between 5 and 7
pixel is optimal, since it leads to reasonably high S/N and extraction efficiency.

3.5.4 Performing end-to-end tests: the full simulation-reduction chain

The architecture of the SIR_SpectroSim_Runner software represented in Fig. 3.6 shows how
it is possible to perform end-to-end tests, in which the whole software pipeline is tested. The
user is free to choose the input spectra, which can be used as a benchmark to check the quality
of the output extracted spectra. Moreover the high-level of automation in the whole procedure

4In this simulation only stars with J-band magnitude magJ in the range 14 < magJ < 18 have been included.
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Figure 3.12: Plots of the extracted fluxes against the incident (theoretical) ones for the check
described in Sec. 3.5.4. In the left panel the extracted Hα line fluxes are compared to their
theoretical counterparts, while the right panel shows the same plot but for the continuum of
the spectra. Plots courtesy of Louis Gabarra [70].

makes it easy to perform such a task.
An end-to-end test that has been performed is a consistency check on the Hα line flux for

some simulated galaxies, whose spectra were taken as input. This line flux is defined as the
integral of the galaxy spectrum over a suitably defined range centred at the Hα line observed
wavelength. Correctly reconstructing the Hα flux is of paramount importance, since this is
the main spectral feature that the SPE pipeline uses for measuring the spectroscopic redshifts.
Significant discrepancies in the estimated line flux can affect the completeness and the purity
of the catalogue, which are of major importance for the scientific requirements, as explained
in Sec. 2.3.3.

In order to be in the spectroscopic catalogue, the galaxies must have an Hα line falling
within the sensitivity region of NIR detectors, which is 1100− 2000 nm as reported in Chap-
ter 2, and with an intensity above the sensitivity threshold of the Euclid deep survey. The
first condition is effectively a constraint on the redshift of the source, which must be com-
prised in the range 0.9 < z < 1.8. The second condition translates into an Hα line flux
> 5× 10−17 erg cm−2s−1. The end-to-end test has been performed with a simulated ad hoc
galaxy catalogue, using as sources only the galaxies satisfying these conditions, and positioned
on a regular grid. The simulation excluded all the irrelevant sources, useless for the test itself,
thus gaining a significant improvement in the pipeline processing time. The spacing between
the galaxies has been chosen large enough to prevent cross-contamination, since this effect was
not relevant for this particular check.

In Fig. 3.12 two plots of the extracted flux against the incident (theoretical) one are shown.
In the left panel the Hα line flux from extracted spectra are plotted against their simulated
value, computed from the input galactic spectra. In the right panel instead, the plot has
been repeated for the continuum5 of the galaxy spectra. In both cases the black diagonal
line represents the identity relation, which is the expected ideal result for this test. In both

5Here with continuum it is meant the broad, slowly-varying component of the spectrum.
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cases the scattered points cluster around the black diagonal, which means that there is a good
agreement between the simulated input spectra and the extracted output ones. We also notice
an asymmetric behaviour with respect to the diagonal at low values of the incident fluxes.
The asymmetry is particularly evident in the case of Hα line flux, reported in the left panel of
Fig. 3.12, and it starts when the incident flux is around the line flux limit of the Euclid wide
survey, i.e. 2× 10−16 erg cm−2 s−1.

The asymmetry has been attributed to the influence of the background light, which was
present in the simulation. In a spectroscopic exposure of the Euclid wide survey the detector
counts coming from background infrared photons are expected to follow a Poisson statistic with
a mean value of ∼ 900, which is approximately uniform across the field of view. Consequently
the standard deviation of pixel-to-pixel stochastic fluctuations of the background counts can
be estimated to be about

√
900 = 30. As explained in Sec. 3.2, in the SIR Pipeline there is a

step in which the background is subtracted from the input frames. However this subtraction
only removes the average value of the background as inferred from the raw frames, while its
stochastic pixel-to-pixel fluctuations cannot be eliminated.

On the other hand the typical Hα counts of a galaxy near the flux limit are ∼ 100, with
a standard deviation of

√
100 = 10, therefore for these sources the background fluctuations

represent a dominant contribution. Moreover the Hα line photons counts are distributed in
a localised region on the detector of approximately 3 × 3 pixels. On such a small region, the
random pixel-to-pixel background fluctuations may lead to a significant random variation of
the observed line flux. These fluctuations of the background may either increase the counts
of a faint source above the detection threshold, or decrease them below the threshold. In the
first case, the extracted flux is systematically higher than its simulated incident flux. In the
second case, the source is not detected. This explains the high asymmetric scatter at low flux
observed in the distribution of the galaxies represented in Fig. 3.12.

In the case of the continuum of the spectra reported in the right panel of Fig. 3.12 the
low-flux asymmetry due to the background fluctuations is less prominent. This arises because
the continuum flux is estimated by using a larger portion of the spectra, and the average
contribution of background fluctuations becomes close to zero.
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Chapter 4

Exploiting multi-probe correlations in
Euclid forecasts

The Euclid mission will be one of the largest galaxy surveys ever made, covering about one-
third of the sky. As explained in Chapter 2, Euclid will produce visible imaging data of 1.5
billion galaxies for weak lensing measurements. At the same time the redshifts of these galaxies
will be estimated by using NISP in photometric mode. Instead, with NISP in spectroscopic
mode the spectroscopic redshifts of about 20 million galaxies will be measured with a much
higher precision, using the Hα emission line feature of their spectrum. Therefore, Euclid
represents a unique opportunity to exploit a full combined analysis of three cosmological
probes: weak lensing (WL), photometric galaxy clustering (GCph), and spectroscopic galaxy
clustering (GCsp). On the one hand, the statistical cross-correlations between these probes
potentially contain new cosmological information, which may enhance the final constraints on
the cosmological parameters. On the other hand, these cosmological probes can also exhibit
a non-zero cross-covariance, which if not accounted for may lead to an overestimation of the
constraining power coming from their combination.

A full data analysis including all the cross-correlations and cross-covariances between the
probes may be computationally expensive. Therefore forecasts are needed in order to get
insights on what would be their impact on the final scientific results. In [5] a first Fisher forecast
analysis – which in the following is also referred to as IST:F – for the Euclid survey has been
done. In that work, the angular spherical-harmonic measurements of the two-point statistic
(which from now on will be called harmonic power spectrum for simplicity) was adopted as the
observable for WL and GCph, while the the full, anisotropic, and redshift-dependent galaxy
power spectrum (which from now on will be called Fourier power spectrum for simplicity) was
used as the observable for GCsp. The authors studied the impact of the XC(WL,GCph) cross-
correlation, showing that its inclusion enormously improves the constraints on cosmological
parameters. In particular, it increases the dark energy FoM by about 400% in the optimistic
scenario, a result which has been reproduced in the present work too. The cross-correlations
and cross-covariances involving GCsp and the other probes were not considered, since it was
not obvious how to evaluate the correlation between a probe studied in the three-dimensional
(3D) Fourier domain with another treated in the two-dimensional (2D) harmonic one.

The aim of the present work is to extend the IST:F forecast analysis with the inclusion of
the WL-GCsp and GCph-GCsp covariances and cross-correlations, quantifying their impact on
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the parameter constraints. In order to do this, the 2D harmonic formalism is adopted for all
the probes (harmonic approach) including GCsp. In this way the cross power spectra can be
easily computed and included in the analysis. Also, it is possible to perform the so-called full
6×2pt analysis, which includes as observables all the six two-point correlations functions that
can be constructed from the three cosmological probes: WL, GCph, and GCsp

1. Furthermore,
with this approach all the possible covariances can be naturally included in the analysis.
Nonetheless, this approach presents a drawback, consisting in the fact that GCsp significantly
loses much of its constraining power when projected in the 2D harmonic domain from the
3D configuration space. In order to circumvent this issue, two different strategies have been
adopted. The first is to use as observable for the GCsp auto-correlation the harmonic power
spectrum, but refining the tomographic binning in order to enhance its performances. The
second is to consider an alternative hybrid approach, which tries to combine the information
coming from the harmonic GCsp cross-correlations with the full constraining power of GCsp

auto-correlation expressed as the 3D galaxy power spectrum. This is done by computing the
cross-correlation power spectra XC(WL,GCsp) and XC(GCph,GCsp) in the harmonic domain,
and then adding the Fourier auto-power spectrum of GCsp – which in the following is referred to
as GCsp(Pk) – as an independent probe. However, this approach is approximate: it implicitly
neglects the cross-covariances between the auto-spectrum GCsp(Pk) and the harmonic spectra
of the other probes, since the Fisher matrix associated to GCsp(Pk) is added a posteriori in
the covariance as an independent probe.

The forecast has been performed in two scenarios: one pessimistic and one optimistic,
differing only for the multipole ranges used to compute the harmonic power spectra. For a
summary of the settings see Tab. 4.5. The results of the analysis show that the harmonic-
domain cross-covariances between GCsp and the other two probes, WL and GCph, are always
practically negligible. The XC(GCph,GCsp) and XC(WL,GCsp) cross-correlations start to
give a slightly significant impact only when using a very fine tomographic binning for GCsp, but
their contribution never reaches the impact given by the XC(WL,GCph) cross-correlation. It
turned out that the constraining power of GCsp treated in the harmonic domain is dramatically
limited by the higher shot noise with respect to GCph. In fact the Euclid spectroscopic sample
is expected to contain a factor of ∼ 80 less galaxies than the photometric one. Consequently,
the GCsp harmonic power spectra will be affected by higher shot noise than the GCph ones.
Furthermore GCsp covers a smaller redshift range than GCph, and this results in a further
reduction of its constraining power in harmonic domain with respect to GCph.

The computations presented in this chapter have been performed using a code named
SEYFERT, whose I have been one of the main developers. In Appendix B I describe the overall
architecture of the code, together with the numerical algorithms implemented for carrying out
the calculations. The results obtained with SEYFERT for WL,GCph, and XC(WL,GCph) have
been validated against the ones obtained by the codes used in the IST:F [5].

This chapter is structured as follows.
In Sec. 4.1 the harmonic power spectra formalism is described, together with a brief de-

scription of the Fourier power spectrum method used in the IST:F for treating GCsp. The
cosmological model assumed is the flat w0waCDM, where the dark energy equation of state is
governed by the CPL parameterisation Eq. (1.122).

1Using three different probes three auto-correlations and three cross-correlations can be constructed, yielding
a total of six independent 2-point functions.
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CHAPTER 4. EXPLOITING MULTI-PROBE CORRELATIONS IN EUCLID
FORECASTS

Parameter Ωb,0 Ωm,0 w0 wa h ns σ8
∑
mν [eV]

Reference value 0.05 0.32 −1 0 0.67 0.96 0.816 0.06

Table 4.1: Values of the cosmological parameters in the reference cosmology considered in the
forecast. All the parameters are let free to vary except for the sum of the neutrino masses,
which has been fixed to its reference value

∑
mν = 0.06 eV.

In Sec. 4.2 the general Fisher matrix formalism is reported. The aforementioned harmonic
and hybrid approaches for computing the Fisher matrices are described in detail. Also, some
examples of two-probe combinations are presented in order to concretely explain the effects of
cross-covariance and cross-correlation on the Fisher matrix.

In Sec. 4.3 the results of the analysis are presented. The impact on the results of the
cross-covariances and cross-correlations involving GCsp is discussed in detail. This is done
both for the pairwise combinations GCph-GCsp, WL-GCsp and for the full combination of
WL,GCph,GCsp considered altogether.

Finally, Sec. 4.4 contains the conclusions of this work, along with future perspectives.

4.1 Observables

As said in the introduction, the cosmological model adopted in this forecast is a flat w0waCDM
cosmology. Therefore, the redshift evolution of the Hubble parameter is governed by Eq. (1.124)
with Ωk,0 = 0, and consequently ΩDE,0 = 1 − Ωm,0. The cosmological parameters involved
in the forecast are summarised in Tab. 4.1, which also reports the values in the reference
cosmology.

The probes considered in this forecast are: the photometric galaxy clustering (GCph), the
spectroscopic galaxy clustering (GCsp), and the weak lensing (WL). For the WL and GCph

probes, the observable employed is the tomographic angular power spectrum Cij(`). For the
GCsp probe, both the harmonic power spectrum and the Fourier power spectrum have been
considered as observables. The Fourier power spectrum approach is the same followed in [5]
and briefly described in Sec. 4.1.3. However, in this work the corresponding Fisher matrix is
not directly computed; instead it is taken as an external input from the IST:F public online
repository [71].

The angular power spectrum C(`) is essentially the harmonic transform of the two-point
tomographic angular correlation function. Each cosmological probe A in a given redshift bin
i can be associated to a field fAi (n̂) defined on the sky, which can be expanded in spherical
harmonics

fAi (n̂) =

∞∑
`=0

∑̀
m=−`

aAi`mY`m(n̂) . (4.1)

The aAi`m coefficients are the projection of fAi on the spherical harmonic orthonormal basis

aAi`m =

∫
dΩY ∗`m(n̂)fAi (n̂) (4.2)

The tomographic angular correlation between probe A, at the redshift bin i, and B, at the
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redshift bin j, is then defined as the following implicit relation〈
aAi`m

(
aBj`′m′

)∗〉
= CABij (`)δ``′δmm′ , (4.3)

where the angular brackets here denote the theoretical expectation value. In the Limber
approximation the expression of the angular power spectra can be parameterised as

CABij (`) ' c
∫ zmax

zmin

dz
WA
i (z)WB

j (z)

H(z)χ2(z)
Pδδ

[
k =

`+ 1/2

χ(z)
, z

]
, (4.4)

where χ(z) is the comoving distance defined in Eq. (1.36), WA
i is the weight (or window)

function for the probe A in the i-bin (details are given in the next subsections), and Pδδ is
the total matter power spectrum introduced in Eq. (1.108). In this forecast, it has been taken
as an external input, loading the publicly available power spectra computed in [5]. These
power spectra have been computed using the CAMB Boltzmann code with a revised version
of the HALOFIT [72] recipe to take into account non-linearities. Massive neutrinos have
been included among the Boltzmann code configuration parameters, using

∑
mν = 0.06 eV as

reference value.
The power spectra are publicly available at [73].
The functional form of the weight function WA

i depends on the probe A. The fundamen-
tal ingredient for the computation of WA

i is the redshift distribution per unit solid angle,
dNA(z)/(dzdΩ), associated to the probe. This can be either modelled analytically, as in the
case of WL or GCph, or can be obtained via simulations, as for GCsp.

The normalised redshift density of the probe A in the i-bin can be computed from the
redshift distribution as

nAi (z) =

∫ z+i
z−i

dzp
dNA

dzdΩ(z)pA (zp|z)∫ zmax

zmin
dz
∫ z+i
z−i

dzp
dNA

dzdΩ(z)pA (zp|z)
. (4.5)

The function pA(zp|z) is the probability that a galaxy with true redshift z will be measured with
a redshift zp. This probability incorporates the redshift measurement errors, and it is modelled
differently depending whether the redshift measurement is photometric or spectroscopic. The
parameterisation chosen is the same of [5]

pA(zp|z) = 1−fout√
2πσb(1+z)

exp

{
−1

2

[
z−cbzp−zb
σb(1+z)

]2
}

+ fout√
2πσo(1+z)

exp

{
−1

2

[
z−cozp−z0
σo(1+z)

]2
}
. (4.6)

This model allows us to include both a multiplicative and additive bias in the redshift deter-
mination of a fraction 1− fout of sources with well measured redshifts, and a fraction fout of
catastrophic outliers, i.e. systems with severely incorrect estimate of the redshift. The values
of the parameters for the probability functions are summarised in Tab. 4.2. The uncertainty σb

on the correctly measured (not catastrophic) redshifts has been chosen from the Euclid design
requirements [46] described in Chapter 2. In particular σb = 0.05 for GCph and σb = 0.001
for GCsp.
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Figure 4.1: Plot of the weight functions for the probes considered in the forecast. Note that
for WL at high redshift bins the weight function Eq. (4.21) (solid line) becomes negative, due
to the contribution of intrinsic alignment (IA). The shear weight function Eq. (4.20) (dashed
line) remains instead always positive as it should be.
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probe cb zb σb co zo σo fout

GCph 1.0 0.0 0.050 1.0 0.1 0.05 0.1
GCsp 1.0 0.0 0.001 – – – 0.0

Table 4.2: Values of the parameters adopted for the probability distributions defined in
Eq. (4.6) and Eq. (4.13). For the GCsp probe, the outlier parameters are not reported, being
the outliers fraction fout = 0.

4.1.1 Photometric galaxy clustering

In the case of galaxy clustering the starting point to write down the weight function is the
galaxy density contrast δg(x, z), where x = χ(z)n̂ is the comoving distance vector. This is
also referred to as the 3D density constrast, since it is a function of both the direction and the
distance. As galaxies are tracers of the dark matter distribution, δg is expressed in terms of
the matter density contrast δ through the galaxy bias b. In Fourier space the galaxy bias can
be implicitly defined by the following relation

δg(k, z) = b(z)δ(k, z) , (4.7)

with k being the wavevector and k its module. In general the galaxy bias depends also on the
scale k, but in this work this k-dependence has been neglected, following the treatment of [5].

The field to be expanded in spherical harmonics for galaxy clustering is ∆A
i (n̂), the galaxy

density contrast projected along the observation direction n̂

∆A
i (n̂) =

∫ zmax

zmin

dzWA
i (z)

∫
d3k

(2π)3
eik·n̂χ(z)δg

i (k, z) . (4.8)

Here the index A stands for GCph or GCsp, andWA
i (z) is the galaxy clustering weight function

WA
i (z) = bA(z)

H(z)

c
nAi (z) , (4.9)

where nAi (z) is defined by Eq. (4.5). The true redshift distribution of the photometric sample
is modelled as in the Euclid redbook [46]

dNph

dzdΩ
(z) = Nph

0

(
z

z0

)2

exp

[
−
(
z

z0

)3/2
]
, (4.10)

where z0 = 0.9/
√

2 and the normalisation factor Nph
0 is chosen such that the surface density

of galaxies is equal to 30 galaxies per arcmin2, corresponding to an expected total number of
galaxies of about 1.6× 109. This redshift distribution is then convolved with the photometric
probability distribution pph(zp|z) defined in Eq. (4.6).

The redshift evolution of the photometric galaxy bias bA(z) is modelled as in [5]: for GCph

the following piecewise constant function is employed

bph(z) = bph
i =

√
1 + z̄i, z−i < z < z+

i , (4.11)
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z−i 0.001 0.418 0.560 0.678 0.789 0.900 1.019 1.155 1.324 1.576
z+
i 0.418 0.560 0.678 0.789 0.900 1.019 1.155 1.324 1.576 2.500

bph
i 1.100 1.220 1.272 1.317 1.358 1.400 1.445 1.497 1.565 1.743

Table 4.3: Tomographic bin edges for photometric (GCph) galaxy clustering, along with the
values of the photometric galaxy bias bph

i .

where z̄i = (z−i + z+
i )/2 is the mean redshift of the bin i. As in [5], this forecast employs

10 tomographic bins chosen to be equally populated, i.e. with equal number of galaxies per
bin, according to the distribution Eq. (4.10). The bin edges and the photometric galaxy bias
values are summarised in Tab. 4.3. The GCph weight function is explicitly given by Eq. (4.9)
in which A = ph

W ph
i (z) = bph(z)

H(z)

c
nph
i (z) . (4.12)

A plot of this function for all the photometric redshift bins is shown in the upper panel of
Fig. 4.1.

4.1.2 Spectroscopic galaxy clustering: 2D approach in the harmonic do-
main

For the spectroscopic sample the true redshift distribution is the one obtained from the analysis
of the Euclid SPV2 [74]. The range of the expected distribution of Hα-emitting galaxies is
determined by the sensitivity range of NISP detectors. In particular, for a galaxy to be
observed by NISP its redshift must fall in the range z ∈ [0.9, 1.8] (see Chapter 2). The total
number of galaxies in the sample is about 2× 107, which is smaller by a factor ∼ 80 than the
total number photometric galaxies. In the present work, for numerical reasons2 it has been
decided to convolve the spectroscopic redshift distribution with the probability psp(zp|z). For
this probability is again assumed the functional form Eq. (4.6), but using parameters different
from the case of photometric clustering

psp (zp|z) =
1√

2πσb(1 + z)
exp

{
−1

2

[
z − cbzp − zb

σb(1 + z)

]2
}
. (4.13)

In particular, the redshift uncertainty σb is set to 0.001 as specified in the scientific require-
ments in [46] for Euclid , and the fraction of outliers fout is set to zero. The other parameters
in Eq. (4.13) are instead assumed to be the same as for GCph, as summarised in Tab. 4.2.

The spectroscopic galaxy bias bsp(z) also is taken to be a piece-wise constant function,
and the values bspi in the bins are summarised in Tab. 4.4 along with the bin edges. Both
the bias values and the bins are the same that have been used in [5], but in this work also a
finer binning has been considered, in particular 12, 24 and 40 equally spaced bins in the range
0.9 < z < 1.8. The values of the bias for finer binning are obtained by linear interpolation of
the values listed in Tab. 4.4.

2This operation is aimed at mitigating the sharpness of the boundaries of the spectroscopic bins, to prevent
potential numerical instabilities in the computation of the redshift integrals.
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z−i 0.90 1.10 1.30 1.50
z+
i 1.10 1.30 1.50 1.80

bspi 1.46 1.61 1.75 1.90

Table 4.4: Tomographic binning and galaxy bias values bspi for spectroscopic GCsp galaxy
clustering.

The GCsp weight function is simply given by Eq. (4.9) with A = sp

W sp
i (z) = bsp(z)

H(z)

c
nsp
i (z) . (4.14)

A plot of this function for the case of 4 spectroscopic redshift bins is shown in the middle
panel of Fig. 4.1.

4.1.3 Spectroscopic galaxy clustering: 3D approach in Fourier space

In [5] the spectroscopic galaxy clustering is treated by using the Fourier galaxy power spectrum
Pgg(k, µ; z), where k is the modulus of the wave mode in Fourier space, and µ = cos θ = k · r̂/k
is the cosine of the angle θ between the wave-vector k and the line-of-sight direction r̂. This
section gives an overview of the Fisher matrix computation in the case of the 3D GCsp. For
further details refer to Sec. 3.2 in [5].

The main advantage of the Fourier power spectrum approach is that it significantly in-
creases the constraining power of GCsp as a single probe with respect to the harmonic ap-
proach. This is because it allows us to include in a natural way a number of physical effects
that carry cosmological information, e.g. the so-called redshift space distortions (RSD), which
are instead neglected when treating GCsp in the harmonic domain. The full non-linear model
for the observed power spectrum of the Hα galaxies is given by the following equation:

Pobs (kref , µref ; z) =
1

q2
⊥q‖

{[
bσ8(z) + fσ8(z)µ2

]2
1 + [f(z)kµσp(z)]2

}
Pdw(k, µ; z)

σ2
8(z)

Fz(k, µ; z) + Ps(z) (4.15)

The main physical effects included in this formula are:

• Anisotropies due to RSD: the peculiar velocity contributions to the observed redshifts
induce anisotropies in the observed galaxy power spectrum. This effect is encapsulated
in the factor enclosed in curly braces in Eq. (4.15), where the denominator accounts for
the so-called finger-of-God (FoG) effect by mean of the non-linear parameter σp(z).

• Redshift uncertainty: despite being much more precise than the photometric redshift
measurements, the spectroscopic redshifts are still affected by an uncertainty. This
smears out the galaxy field along the line of sight, causing a partial suppression of
the correlation between galaxy positions. This is included in the multiplicative term
Fz(k, µ; z) = e−k

2µ2σ2
r(z).

• Residual shot noise: this effect is modelled by the additive term Ps(z), and it accounts
for the non-Poissonian component of the shot noise.
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• Alcock-Paczynski (AP) projection effects: in order to convert redshifts into distances for
the measurement of the galaxy power spectrum, it is necessary to assume a reference
cosmology. Choosing a reference cosmology which is not the true one results in a re-
scaling of the components of the wave-vector k in the directions perpendicular and
parallel to the line-of-sight. This is known as the Alcock-Paczynski effect, which in
Eq. (4.15) is given by the multiplicative factor 1/(q2

⊥q‖), being q⊥ and q‖ the scaling
factors of the transverse and radial components of the wave-vector respectively. The
subscript “ref” for k and µ in the left hand side of the equation means that k and µ are
considered in the reference cosmology.

• Non-linear damping of BAO: another non-linearity effect that is taken into account is the
damping of the BAO wiggles in the power spectrum, due to the late-time non-linearities.
This is accounted for by using the so-called “de-wiggled” power spectrum Pdw(k, µ; z),
which encapsulates an exponential damping factor of the BAO feature.

The Fisher matrix coming from the galaxy Fourier power spectrum Pobs is computed by
summing up the contributions of the considered redshift bins. The Fisher matrix element for
a bin centred at zi is

F bin
αβ (zi) =

1

8π2

∫ 1

−1
dµ

∫ kmax

kmin

k2 dk

[
∂ lnPobs (k, µ; zi)

∂α

∂ lnPobs (k, µ; zi)

∂β

]
Veff (zi; k, µ) ,

(4.16)
where Veff is the effective volume of the survey, defined as

Veff(k, µ; z) = Vs(z)

[
n(z)Pobs(k, µ; z)

n(z)Pobs(k, µ; z) + 1

]2

, (4.17)

and n(z) is the number density of Hα galaxies in each redshift bin

n(z) =
dN sp(z)

dΩdz

Asurvey

Vs(z)
∆z . (4.18)

Finally the Fisher matrix is calculated by summing over the redshift bins:

Fαβ =

Nzbin∑
i=1

F bin
αβ (zi) . (4.19)

4.1.4 Weak lensing

As it has already been introduced in Sec. 1.4.4, the gravitational field of large-scale cosmic
structure deflects the path of light rays emitted by distant galaxies, distorting the images
of the galaxies detected by the observers [75–77]. At the linear level these distortions can be
locally decomposed into convergence (κ) and a complex shear γ, which are respectively related
to the magnification and shape distortion of the image. In this forecast, only the shear signal
γ is considered, and treated in the harmonic domain with the Limber approximation Eq. (4.4).
The corresponding weight function for cosmic shear is [5]

W γ
i (z) =

3

2

(
H0

c

)2

Ωm,0(1 + z)χ(z)

∫ zmax

z
dz′ nph

i (z′)
[
1− χ(z)

χ(z′)

]
. (4.20)
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Physically speaking, the integral manifests that weak lensing is a cumulative effect, influenced
by all the matter along the line of sight up to the considered redshift z.

The forecast also includes the intrinsic alignment (IA), which is the main systematic effect
altering weak lensing measurements [78–80]. This is a physical phenomenon due to align-
ments of nearby galaxies caused by tidal interactions which occur during galaxy formation
and evolution. It produces spurious correlations which affect the two-point correlation func-
tions. The correlations caused by IA are indistinguishable from the ones produced by cosmic
shear. Therefore, it is necessary to parameterise the IA effect on the lensing angular power
spectrum. A possible way to do this is by using the extended non-linear alignment model [5,
81] which consists in the following modification of the cosmic shear weight function

Wwl
i (z) = W γ

i (z)−AIACIAΩm,0
H(z)FIA(z)

cD(z)
nph
i (z) . (4.21)

In the above equation, D(z) is the growth factor introduced in Eq. (1.109), which can be
directly computed from the linear power spectrum Eq. (1.112). The function FIA is defined as

FIA(z) ≡ (1 + z)ηIA
[〈L〉(z)
L?(z)

]βIA
, (4.22)

where 〈L〉(z) and L?(z) are the mean and characteristic luminosity functions, respectively.
The intrinsic alignment parameters AIA, ηIA, and βIA are treated as nuisance parameters in
the analysis. The reference values for the IA parameters are the same adopted in [5]

{AIA, ηIA, βIA} = {1.72,−0.41, 2.17} (4.23)

The parameter CIA = 0.0134 is instead kept fixed, since it is completely degenerate with AIA.
The scaled luminosity function 〈L〉(z)/L?(z) is obtained via interpolation of its sampled values
available at [73].

4.2 Fisher information matrix

The Fisher information matrix is defined as the expectation value of the hessian matrix of the
log-likelihood:

Fαβ = −
〈
∂2 lnL

∂θα∂θβ

〉
, (4.24)

where α and β are the parameter indices. The expected covariance matrix is the inverse of
the Fisher matrix:

Cαβ =
(
F−1

)
αβ

. (4.25)

The diagonal elements of the covariance matrix are the squares of the marginalised 1σ uncer-
tainties on the parameters, where σ is the Gaussian standard deviation:

σα =
√
Cαα . (4.26)

The performances are quantified using the FoM mentioned in Sec. 2.1, which has been defined
as in [5]

FoM ≡
√

det
(
F̃w0wa

)
=
[
σ2
w0
σ2
wa − C2

w0wa

]−1/2
. (4.27)
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The notation F̃w0wa denotes the Fisher information matrix relative to the dark energy equation
of state parameters w0 and wa, marginalised over all the other free parameters. Note that the
Cauchy-Schwarz inequality Cw0wa ≤ σw0σwa guarantees that the argument of the square root
is always greater than or equal to zero. The value of the FoM can be boosted by small errors
on w0 and wa and/or by their cross-covariance Cw0wa . The FoM is inversely proportional to
the area of the 1–σ marginalised contour ellipse in the w0-wa plane. Tighter constraints on
w0 and wa lead to smaller ellipses, which in turn means higher FoMs.

4.2.1 Fisher matrix from harmonic approach

Under the assumption that the aA`m of the observed fields follow a gaussian distribution, it
can be shown – see Appendix A – that the corresponding Fisher matrix can be computed
analytically. In this case the covariance matrix for the harmonic power spectra is

Cov
[
CABij (`), CCDkm (`′)

]
=

δK
``′

2`+ 1

[
ΣAC
ik (`)ΣBD

jm (`′) + ΣAD
im (`)ΣBC

jk (`′)
]
, (4.28)

with δK
``′ the Kronecker delta symbol, and

ΣAB
ij (`) =

1√
fsky∆`

[
CABij (`) +NAB

ij (`)
]
. (4.29)

The quantity NAB
ij (`) is the Poisson shot noise described later in Sec. 4.2.2, fsky is the sky

fraction covered by the survey, and ∆` is the spacing between the multipoles in which the
C(`) are sampled.

In order to compute the Fisher matrix elements it is necessary to define a data-vector,
which contains the independent values of the C(`)’s to be included in the computation. In
practice, since the tomographic angular power spectra are matrices, they need to be vectorised3

accordingly to their symmetry properties. For example the GCph auto-correlation Cphph
ij (`)

at fixed multipole ` is a 10 × 10 symmetric matrix with 10(10 + 1)/2 = 55 independent
components. At fixed ` the data vector can be written in general as

C(`) = {C1(`),C2(`), . . . ,CN (`)} , (4.30)

where N is the number of the different types of C(`) according to the different probes con-
sidered in the analysis. When considering 3 probes at most – WL, GCph, and GCsp – the
maximum number of angular power spectra that can be computed is Nmax = 6. This is
because there are 3 possible auto-correlations and 3 possible cross-correlations:

• auto-correlations: Cwlwl(`), Cphph(`), Cphph(`);

• cross-correlations: Cwlph(`), Cwlsp(`), Cphsp(`).

The angular power spectra are evaluated in a finite number N` of multipoles, therefore the
full data-vector D also includes all the values of the power spectra evaluated at all multipoles

D = {C(`1),C(`2), . . . ,C(`N`)} . (4.31)

3In this context the term “vectorised” refers to matrix vectorisation, which is defined in Sec. A.2.
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The covariance matrix associated to this data-vector is block diagonal, since the Kronecker
delta of Eq. (4.28) assures that different multipoles are uncorrelated

Cov [D,D] =


Cov [C(`1),C(`1)] 0 . . . 0

0 Cov [C(`2),C(`2)] . . . 0
...

...
. . .

...
0 0 . . . Cov [C(`N`),C(`N`)]

 . (4.32)

The generic diagonal block, Cov [C(`),C(`)], accounts for all the correlations between the
different kinds of C(`)’s included in the data vector, and it is itself a block matrix

Cov [C(`),C(`)] =


Cov [C1(`),C1(`)] Cov [C1(`),C2(`)] · · · Cov [C1(`),CN (`)]
Cov [C2(`),C1(`)] Cov [C2(`),C2(`)] · · · Cov [C2(`),CN (`)]

...
...

. . .
...

Cov [CN (`),C1(`)] Cov [CN (`),C2(`)] · · · Cov [CN (`),CN (`)]

 , (4.33)

where the single blocks Cov [Ci(`),Cj(`)] are computed according to Eq. (4.28). With these
definitions, the Fisher matrix element Fαβ can be calculated as

Fαβ =
∂D
∂θα

Cov−1 [D,D]
∂D
∂θβ

=

`N∑̀
`=`1

Fαβ(`) , (4.34)

where the second equality follows from the block diagonal form of the covariance, and the
fisher matrix element4 at fixed ` is given by

Fαβ(`) =
∂C(`)

∂θα

T

Cov [C(`),C(`)]−1 ∂C(`)

∂θβ
. (4.35)

For later convenience, here I report the adopted conventions for naming the Fisher matrices
that have been computed in this work:

1. the name of a Fisher matrix is representative of the data vector, and it is composed by
different labels, which identify the C(`)’s contained in the data-vector itself.

2. Within the name of a Fisher matrix, the auto-correlation CAA(`) of the probe A is
labeled simply as A, while the cross-correlation CAB(`) between the two probes A and
B is denoted as XC(A,B).

3. Square brackets are used to delimit the data-vector extent.

4. The pairwise cross-covariances between the C(`)’s included in a given data-vector are
always taken into account in the computation of the corresponding Fisher matrix.

5. The sum of two Fisher matrices [F1] and [F2] is simply denoted by [F1] + [F2]. This
simple sum corresponds to combine [F1] and [F2] without taking into account the cross-
covariances between their data-vectors, i.e. it is an independent sum.

4In this work the derivatives of the angular power spectra have been computed using the SteM numerical
fitting procedure [82].
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The simplest case of a Fisher matrix is when only the auto-correlation of a single probe A is
considered in the data-vector. For example, when say A = GCph, the only observable that can
be constructed is the auto-correlation of A with itself. In this case the data-vector is simply

C(`) =
{

Cphph(`)
}
. (4.36)

Assuming 10 tomographic bins for GCph, the vector Cphph(`) will have 10(10 + 1)/2 = 55
elements. Consequently the covariance matrix is made by a single 55× 55 block

Cov
[
Cphph(`),Cphph(`)

]
, (4.37)

which takes into account the auto-covariance of GCph only. In this case, the Fisher matrix
element from Eq. (4.35) becomes

F
[GCph]
αβ (`) =

(
∂Cphph(`)

∂θα

)T
Cov

[
Cphph(`),Cphph(`)

]−1 ∂Cphph(`)

∂θβ
, (4.38)

or, in comma notation

F
[GCph]
αβ (`) =

[
Cphph(`),α

]T
Cov

[
Cphph(`),Cphph(`)

]−1
Cphph(`),β . (4.39)

When considering two or more probes, multiple combinations can be constructed, depending
if cross-covariances and cross-correlations are included or not in the computation. In this
work the word “cross-covariance” are indicates the off-diagonal blocks of the covariance matrix
Eq. (4.33), i.e. the blocks Cov [Ca(`),Cb(`)] with a 6= b. The term “cross-correlation” (signal)
is instead used to denote the data-vector entry corresponding to the correlation between two
probes, which is therefore something carrying cosmological information.

In the following, the three possible combinations that can be constructed using two probes,
A and B, are described in detail.

Fisher matrix from two-probe combinations

There are three possible angular power spectra that can be constructed from two probes A
and B:

• auto power spectrum of A, CAA(`);

• auto power spectrum of B, CBB(`);

• cross power spectrum between A and B, CAB(`).

As a concrete example, consider A = GCph and B = GCsp.

Combining GCph and GCsp as independent probes When assuming GCph and GCsp

to be independent, the resulting Fisher matrix will be given by the sum of the Fishers of
the two single probes. According to the conventions explained above, the resulting Fisher is
denoted as [GCph] + [GCsp]. This case is equivalent to build a data-vector including the two
auto-correlations

C(`) =
{

Cphph(`),Cspsp(`)
}
. (4.40)
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and setting to zero the off-diagonal blocks of the associated covariance matrix

Cov [C(`),C(`)] =

(
Cov

[
Cphph(`),Cphph(`)

]
0

0 Cov [Cspsp(`),Cspsp(`)]

)
. (4.41)

Since the matrix in Eq. (4.41) is block diagonal, its inverse will be of the same form [83]:(
A 0

0 B

)−1

=

(
A−1 0

0 B−1

)
. (4.42)

Therefore the matrix product entering the Fisher matrix element will be given by

(
Cphph(`),α Cspsp(`),α

)(Cov
[
Cphph(`),Cphph(`)

]−1
0

0 Cov [Cspsp(`),Cspsp(`)]−1

)(
Cphph(`),β

Cspsp(`),β

)
, (4.43)

and the resulting Fisher matrix element will be

F
[GCph]+[GCsp]
αβ (`) =

[
Cphph(`),α

]T
Cov

[
Cphph(`),Cphph(`)

]−1
Cphph(`),β

+ [Cspsp(`),α]T Cov [Cspsp(`),Cspsp(`)]−1 Cspsp(`),β

= F
[GCph]
αβ (`) + F

[GCsp]
αβ (`) ,

(4.44)

which is the sum of the fisher elements associated to the single probes.

Combining GCph and GCsp with cross-covariance The Fisher matrix in this case is
denoted as [GCph + GCsp]. The data-vector is the same as the previous one Eq. (4.40), but
the off-diagonal blocks of the covariance matrix are taken into account

Cov [C(`),C(`)] =

(
Cov

[
Cphph(`),Cphph(`)

]
Cov

[
Cphph(`),Cspsp(`)

]
Cov

[
Cspsp(`),Cphph(`)

]
Cov [Cspsp(`),Cspsp(`)]

)
. (4.45)

This matrix is not block-diagonal, hence, when inverting it, the blocks will mix with each
other. There exist some formulas based on the Schur complement [83] for the inverse of a 2×2
block matrix, but writing it down does not help to enlighten what happens in this case. From
an intuitive point of view, the cross-covariance between two observables should worsen the
constraints with respect to combining the two probes as independent. This can be understood
with the following argument. If two observables exhibit a non-zero cross-covariance, there
will be a mutual correlation between the two. In particular, a change in one of the two –
for example induced by a variation of the cosmological parameters – will statistically induce
a corresponding variation in the other. This in turn means that the two observables will
share an amount of cosmological information, and therefore the total information coming from
their combination will be less than the direct sum of the two pieces of information carried
individually by the two of them. More specifically, combining two correlated observables as if
they were independent will end up in a double-counting of the same information, leading to
an artificial improvement of the constraining power of their combination.
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Combining GCph, GCsp and their cross-correlation Here both the covariance and the
cross-correlation between GCph and GCsp are taken into account. The resulting Fisher matrix
is denoted as [GCph + GCsp + XC(GCph,GCsp)], and the data-vector includes accordingly the
maximal set of the available C(`)’s

C(`) =
{

Cphph(`),Cphsp(`),Cspsp(`)
}
. (4.46)

The covariance matrix is made of 3× 3 blocks

Cov [C(`),C(`)] =

Cov
[
Cphph(`),Cphph(`)

]
Cov

[
Cphph(`),Cphsp(`)

]
Cov

[
Cphph(`),Cspsp(`)

]
Cov

[
Cphsp(`),Cphph(`)

]
Cov

[
Cphsp(`),Cphsp(`)

]
Cov

[
Cphsp(`),Cspsp(`)

]
Cov

[
Cspsp(`),Cphph(`)

]
Cov

[
Cspsp(`),Cphsp(`)

]
Cov [Cspsp(`),Cspsp(`)]

 . (4.47)

In this case the new information coming from the cross-correlation is added to the data-
vector, and this contribution is expected to tighten the resulting constraints with respect to
the uncorrelated sum. In particular, the cross-correlation is itself a function of the cosmological
parameters, meaning that its value will be sensitive to a variation of the parameters themselves.
In this sense it is said that adding the cross-correlation signal is expected to provide more
cosmological information, therefore improving the combined constraints. On the other hand,
also all the cross-covariances between the C(`)’s are being considered in this case, and this
will tend to worsen the constraints, as explained in the previous paragraph. So there are two
concurring effects, and in principle it is not obvious which of them is dominant. The forecasts
performed in my PhD Thesis show that the tightest constraints are actually obtained when
both the cross-covariance and cross-correlation are included.

4.2.2 Poisson shot noise

The Poisson shot noise [84] has been implemented in a similar way to what has been done in
[5]. It is assumed that only the auto-correlation C(`)’s are affected by a shot noise, which is
independent of the multipole and is a tomographic diagonal matrix

NAB
ij (`) = δK

ABδ
K
ijN

A
i . (4.48)

So the definition of the noise is reduced to define the quantity NA
i , which represents the shot

noise associated to the probe A at tomographic bin i. For photometric and spectroscopic
galaxy clustering in the harmonic domain this is simply given by

Nph
i ≡

1∫ z+i
z−i

dz dNph

dzdΩ

, N sp
i ≡

1∫ z+i
z−i

dz dNsp

dzdΩ

. (4.49)

For weak lensing the definition is instead given by the GCph shot noise multiplied by the
variance σ2

ε of the intrinsic galaxy ellipticity

Nwl
i ≡

σ2
ε∫ z+i

z−i
dz dNph

dzdΩ

. (4.50)

The value assumed for σε is 0.3 as in [5].
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As the Kronecker delta δK
AB of Eq. (4.48) states, no shot noise has been considered for the

cross-correlation C(`)’s. It is in fact commonly assumed for the noises of different tracers to be
uncorrelated [5]. This approximation is expected to work well for the cross-correlation between
weak lensing and galaxy clustering, since these are different tracers of the same underlying
dark matter distribution.

In the cross-correlation of GCph with GCsp the tracers are the galaxies for both the probes,
so in principle a shot noise on the cross power spectra (cross-noise) should be present. In this
work we checked the δK

phsp approximation of Eq. (4.48) with the following approach. Given
that the Poisson shot noise affecting the two-point function comes from the count of galaxy
self-pairs – see introduction of [84] – the cross-noise will be due to those galaxies which are in
both the photometric and in the spectroscopic sample. The scenario with the highest noise is
therefore the one in which the spectroscopic sample is a proper subset of the photometric one.
So, assuming this worst case scenario, a subtraction of the spectroscopic galaxy distribution
from the photometric one has been performed. After the subtraction there will be no more
overlap between the two samples, and their cross-noise becomes zero by construction. It has
been checked that the constraints do not change appreciably after the subtraction, with the
FoM and the marginalised uncertainties of the free parameters being negligibly affected.

The shot noise affects in a direct way the diagonal covariance blocks corresponding to
the auto-correlation power spectra, as it enters in all the factors of Eq. (4.28). This is what
happens for example in the case of the auto-covariance of GCsp

Cov
[
Cspsp
ij (`), Cspsp

km (`)
]
∝
[
Cspsp
ik (`)) +N spsp

ik (`)
] [
Cspsp
jm (`)) +N spsp

jm (`))
]

+ (4.51)

[Cspsp
im (`)) +N spsp

im (`)]
[
Cspsp
jk (`)) +N spsp

jk (`))
]
.

However, the fact that the auto-correlation power spectra are contaminated by the shot noise
indirectly alters also the other blocks of the covariance matrix. For example the diagonal block
corresponding to the auto-covariance of Cphsp(`) reads

Cov
[
Cphsp
ij (`), Cphsp

km (`)
]
∝
[
Cphph
ik (`)) +Nphph

ik (`)
] [
Cspsp
jm (`)) +N spsp

jm (`))
]

+ Cphsp
im (`)Cphsp

jk (`) , (4.52)

and therefore also the terms coming from the inclusion of the XC(GCph,GCsp) are affected
by the shot noise of both GCph and GCsp. Moreover, since the number of galaxies in the
spectroscopic sample is ∼ 80 times smaller than the galaxies in the photometric one, from
Eq. (4.49) it is clear that the GCsp shot noise will be larger than the one associated to GCph.
In order to quantify the impact of the GCsp noise the forecast has been performed also in
an unrealistic alternative scenario, where this noise is artificially reduced as if the number
of spectroscopic galaxies were equal to the number of the photometric ones. This is done in
practice by introducing an alternative reduced shot noise for GCsp, defined as follows

Ñ sp
i ≡

N tot
sp

N tot
ph

·N sp
i , (4.53)

where N tot
sp (N tot

ph ) is the total number of spectroscopic (photometric) galaxies, computed by
integrating the galaxy distribution over its redshift range. As it is discussed in Sec. 4.3, it
turns out that the results in the harmonic approach dramatically change using this reduced
noise.
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4.2.3 Fisher matrix in the hybrid 2D-3D approach

As it has been already pointed out, in this work the observables adopted to compute the
Fisher matrix are the angular power spectra. These are computed by mean of a projection
on the sky of the galaxy density contrast. From a mathematical point of view, in the Limber
approximation this translates into the computation of an integral in the radial direction. For
weak lensing, this approach is the most natural one, since the deformation of the images of
the source galaxies is a consequence of the cumulative effect of all the matter encountered by
the light rays along the line of sight.

Treating also galaxy clustering with this approach allows us to compute cross-covariances
and cross-correlation between the main probes in a straightforward way. The main disadvan-
tage of treating the clustering signal in the harmonic domain is that the projection on the
celestial sphere consists in a integral along the line of sight. Therefore this projection results
in a partial loss of the information from the galaxy density distribution along the radial direc-
tion. This in turn ends up in a smaller constraining power from the projected galaxy clustering
probe. For photometric clustering, GCph, this loss is limited, since the redshift resolution is
already hampered by the large photometric errors, and therefore one does not lose too much
information when projecting along the line of sight. Moreover, the constraining power of GCph

is boosted by the large number of galaxies in the sample, and this is the main strength of the
GCph probe.

In the spectroscopic sample there are instead fewer galaxies, and their redshifts are known
with much better precision, which is the main strength of the spectroscopic clustering probe.
Therefore the 2D projection results in a larger loss of constraining power from GCsp. The
tomographic technique can be employed in order to partially recover the radial information
about the distances of the galaxies.

The most natural approach to treat GCsp is the one adopted in [5], which has been briefly
described in Sec. 4.1.3, and here it is referred as “3D” or Pk. In this method the 3D galaxy
power spectrum is used as the observable, which allows us to naturally exploit the high redshift
resolution of the spectroscopic sample, thus significantly increasing the constraining power of
GCsp alone. Nonetheless, in this case it is difficult to compute cross-correlations and cross-
covariances between WL,GCph, and GCsp.

In this forecast we therefore considered two approaches to combine GCsp with WL and
GCph. The first is to treat all probes with the angular power spectra, as described in the
previous section. In the second approach, which is the topic of this section, the Fisher matrix
for the spectroscopic auto-correlation is not computed from the angular power spectra. The
contribution of GCsp is considered by adding a posteriori the Fisher matrix computed in the
3D approach of [5], referred here as GCsp(Pk). This matrix has not been recomputed from
scratch by implementing the recipe reported in Sec. 4.1.3. Instead, the official results of [5]
have been taken as external inputs. The advantage of this method is that it allows us to include
the information coming from the cross-correlations between GCsp and the other probes in the
angular domain, preserving at the same time the higher constraining power of the 3D approach
for GCsp. The main drawback is that it is an approximation. In fact, when adding the Fisher
matrix of GCsp(Pk) a posteriori, the cross-covariances between the GCsp auto-correlation and
the other observables are neglected.

In order to be more concrete, here it is reported the case of the combination of GCph

with GCsp. The starting point is to include only the harmonic GCph auto-correlation and the
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Forecast settings in the harmonic approach

Multipoles settings

Optimistic
GCph 10 ≤ ` ≤ 3000
GCsp 10 ≤ ` ≤ 3000
WL 10 ≤ ` ≤ 5000

Pessimistic
GCph 10 ≤ ` ≤ 750
GCsp 10 ≤ ` ≤ 750
WL 10 ≤ ` ≤ 1500

General settings
Baseline GCph all the 10 bins of Tab. 4.3

GCsp reduced shot noise Eq. (4.53)

Alternative GCph only 4 bins of Tab. 4.3 with z−i , z
+
i ∈ [0.9, 1.8]

GCsp reduced shot noise Eq. (4.53)

Table 4.5: Summary of the setting scenarios considered in the forecast. For WL the general
settings are not reported since no distinction other than the multipole range has been made.
The scenario in which the GCsp shot noise is reduced is not intended to be realistic, and has
been studied only to probe the theoretical limitations of the harmonic approach.

harmonic GCph ×GCsp cross-correlation in the data-vector

C(`) =
{

Cphph(`),Cphsp(`)
}
. (4.54)

Consequently, the covariance matrix is built considering only the upper left sector of Eq. (4.47).
The Fisher matrix element is computed with the usual formula Eq. (4.34), and we refer to the
resulting matrix with the notation [GCph + XC(GCph,GCsp)]. Finally, the Fisher matrix of
GCsp(Pk) is simply added via a sum

F {[GCph + XC(GCph,GCsp)] + [GCsp(Pk)]} = F {[GCph + XC(GCph,GCsp)]}+ F {[GCsp(Pk)]} . (4.55)

This procedure is equivalent to neglecting the covariance terms between the GCsp auto-
correlation and the other observables, and performing the computation by using a covariance
matrix that can be symbolically written as

Cov
[
Cphph,Cphph

]
Cov

[
Cphph,Cphsp

]
0

Cov
[
Cphsp,Cphph

]
Cov

[
Cphsp,Cphsp

]
0

0 0 Cov [Pobs,Pobs]

 . (4.56)

The upper left 2 × 2 sector contains the covariances between the elements of the Cphph(`)
and Cphsp(`) matrices, organised in block-diagonal form for all multipoles as in Eq. (4.32).
Analogously, the lower right corner block represents the auto-covariance of the spectroscopic
galaxy Fourier power spectrum for all wave-numbers and redshifts considered. The zeroes
correspond to the elements containing the unknown covariances between the 2D and 3D power
spectra, which are therefore neglected.
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4.3 Results

In this section the results of the forecast are presented. As a convention, the reported
marginalised 1–σ uncertainties are always fractional, i.e. divided by the values of the pa-
rameters in the reference cosmology in Tab. 4.1. The only exception are the contour plots,
which are drawn using the original values of the uncertainties computed via Eq. (4.26). In
order to quantitatively assess the impact of cross-covariances and cross-correlations on the
forecasts, the corresponding percentage variations of the parameter constraints are plotted
with vertical bars. This is done both for the FoM and the relative 1–σ uncertainty, using the
following formula

δX [%] ≡ 100 · Xb −Xa

Xa
, (4.57)

where X generically denotes the FoM or the relative uncertainty σθ/θfid. The subscript a
denotes the Fisher matrix whose constraints are used as reference, while b is the Fisher matrix
under examination, also referred as the minuend in the following.

This section is organised as follows. Sec. 4.3.1 reports the different scenarios and settings
with which the forecast has been performed. In Sec. 4.3.2 the results from the combination
of GCph and GCsp are presented. Also a comparison is made between GCph and GCsp when
treated in the harmonic domain. In Sec. 4.3.3 the results are reported for the combination
of WL and GCsp, also comparing the impact on the constraints from XC(WL,GCsp) against
XC(WL,GCph). Finally in Sec. 4.3.4 the constraints coming from the combination of the
full set of Euclid main probes are shown, focusing on the importance of cross-covariances
and cross-correlations between GCsp and WL,GCph. In this last section the results of the
so-called Euclid 6× 2pt statistics are reported; with this term it is meant the combination of
the all possible two-point functions that can be constructed from WL,GCph, and GCsp. Using
the naming convention for the Fisher matrices introduced in Sec. 4.2, the harmonic 6 × 2pt
statistics results are explicitly denoted by

[(harmonic) 6× 2pt] ≡ [WL + GCph + GCsp + XC(WL,GCph) + XC(WL,GCsp) + XC(GCph,GCsp)] . (4.58)

Here the word “harmonic” indicates that all the observables are treated using the angular
power spectrum formalism. The corresponding notation of the 6× 2pt statistics results in the
hybrid approach is

[(hybrid) 6× 2pt] ≡ [WL + GCph + XC(WL,GCph) + XC(WL,GCsp) + XC(GCph,GCsp)] + [GCsp(Pk)] . (4.59)

Therefore, in the hybrid 6 × 2pt approach everything is treated using C(`)’s except for the
spectroscopic auto-correlation, whose Fisher matrix is added a posteriori and computed via
the full, anisotropic, and redshift-dependent galaxy power spectrum as described in Sec. 4.1.3.

4.3.1 Settings description

The scenarios considered in this forecast are summarised in Tab. 4.5. Regarding the multipole
range, two scenarios have been studied: one optimistic and one pessimistic. In the optimistic
scenario the multipole range for GCph and GCsp (in the harmonic domain) is set to ` ∈
[10, 3000], while it is ` ∈ [10, 5000] for WL. In the pessimistic scenario instead the multipole
range is ` ∈ [10, 750] for GCph, GCsp (in the harmonic domain), and ` ∈ [10, 1500] for WL.
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GCph ×GCsp FoM results

GCsp bins Fisher matrix FoM ∆FoM ∆FoM(%)

– [GCph] 63.12 – –

4

[GCph] + [GCsp(Pk)] 230.27 – –
[GCph + XC(GCph,GCsp)] + [GCsp(Pk)] 234.54 – –
[GCph] + [GCsp] 65.69 – –
[GCph + GCsp] 63.95 −1.75 −2.66%
[GCph + GCsp + XC(GCph,GCsp)] 69.63 +3.94 +6.00%

12

[GCph] + [GCsp] 72.02 – –
[GCph + GCsp] 70.48 −1.55 −2.15%
[GCph + GCsp + XC(GCph,GCsp)] 79.87 +7.85 +10.90%

24

[GCph] + [GCsp] 85.02 – –
[GCph + GCsp] 83.88 −1.13 −1.33%
[GCph + GCsp + XC(GCph,GCsp)] 108.35 +23.34 +27.45%

40

[GCph] + [GCsp] 111.22 – –
[GCph + GCsp] 110.39 −0.83 −0.75%
[GCph + GCsp + XC(GCph,GCsp)] 153.71 +42.48 +38.20%

Table 4.6: Table reporting the FoM for GCph, GCsp and their cross-correlation. The ∆FoM
column contains the variation of the figure of merit with respect to the independent sum
[GCph] + [GCsp] for the given number of bins. The ∆FoM(%) column is calculated by taking
∆FoM as a percentage of the FoM of [GCph] + [GCsp].

For galaxy clustering one more assumption has been made, in order to better understand
the differences between GCph and GCsp when both are treated in the harmonic domain. For
GCsp the alternative reduced shot noise described in Sec. 4.2.2 has been employed, in order to
assess its impact on the results. However it is important to stress that this scenario in which
the GCsp shot noise has been reduced is not meant to be realistic. It has been considered only
to understand the reason for the different constraining power of the GCsp and GCph probes.
For the same reason, in the case of photometric clustering the analysis has been performed
using also an alternative tomographic binning, where only the 4 photometric bins entirely
comprised in the redshift range z ∈ [0.9, 1.8] are considered. This has been done in order to
make both GCph and XC(WL,GCph) comparable with GCsp and XC(WL,GCsp) respectively.
In fact, apart from the shape of the galaxy distribution and the values of the galaxy bias, in
the harmonic domain the two main differences between GCph and GCsp are the shot noise and
the redshift range of the galaxy catalogue. As said in Sec. 4.2.2, the shot noise of GCsp is much
larger than the GCph one, since the spectroscopic sample has 80 times fewer galaxies than the
photometric one. Moreover, the redshift range covered by the photometric galaxy distribution
is [0.001, 2.5], while for the spectroscopic galaxy distribution it is limited to z ∈ [0.9, 1.8] due
to the wavelength range in which NISP is sensitive.
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GCph × GCsp: harmonic approach

Scenario: Optimistic

Figure 4.2: Impact, on 1–σ parameter errors and FoM, of cross-covariance and cross-correlation
in the harmonic approach for the combination of GCph and GCsp. The left panel shows the
impact of the cross-covariance, quantified with the percentage differences between [GCph +
GCsp] and [GCph] + [GCsp]. In the right panel the impact of the cross-correlation is reported,
quantified by percentage differences of [GCph + GCsp + XC(GCph,GCsp)] with respect to
[GCph] + [GCsp].

4.3.2 Combining photometric and spectroscopic clustering

In this section I report the results for the combination of GCph and GCsp. As said above,
in this case the Fisher matrix in the harmonic approach is denoted as [GCph + GCsp +
XC(GCph,GCsp)], while in the hybrid one as [GCph + XC(GCph,GCsp)] + [GCsp(Pk)]. In
the following I discuss the impact on the constraints given by the inclusion of the GCph-GCsp

cross-covariance and the XC(GCph,GCsp) cross-correlation. In this section, I take as reference
values for the percentages the constraints coming from the independent combination of GCph

and GCsp, that is [GCph] + [GCsp] in the harmonic approach and [GCph] + [GCsp(Pk)] in the
hybrid one. The results for this combination are reported in the optimistic scenario only for
brevity.

Impact of the GCph-GCsp cross-covariance on parameter constraints

According to the notation convention defined in Sec. 4.2.1, in the case of the cross-covariance
alone, the Fisher matrix [GCph + GCsp] is computed in the harmonic domain by taking into
account only the cross-covariance between GCph and GCsp. The notation [GCph] + [GCsp]
represents instead the simple sum of the Fisher matrices of the two probes, which does not
take the cross-covariance into account. From Tab. 4.6 it can be seen that in any case the cross-
covariance slightly worsens the FoM, as expected. Anyway the contribution is always smaller
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than 3%, in particular it is −2.66% with 4 bins and −0.75% with 40 bins used for GCsp. This
decreasing trend can be understood as follows: the finer the tomographic binning of GCsp the
smaller the support of the integrand of the off-diagonal terms Cphsp(`). Intuitively, the value of
the integral over each of the 4 thick bins is diluted into more thinner bins when a finer binning
is used. Hence the off-diagonal block Cov

[
Cphph(`),Cspsp(`)

]
and its transposed counterpart

become larger and sparser as the number of bins is increased, and therefore the cross-covariance
contribution becomes smaller. Physically this could be understood considering that for 40 bins
the loss of information due to the projection transversely to the line of sight is less severe than
for 4 bins only.

The same trend is observed also for the marginalised uncertainties on the cosmological
parameters, as it can be seen by Fig. 4.2, where the percentage difference between the un-
certainties, as defined in Eq. (4.57), are drawn as vertical bars. In particular, the impact of
the cross-covariance is shown in the left panel as the comparison between [GCph + GCsp] and
[GCph] + [GCsp], taking this last as reference. The parameters mostly affected by the covari-
ance are Ωb,0 and h, whose constraints in the 4 bin setting worsen by 4% and 6% respectively.
However, as soon as the binning is refined, the effect gets smaller, becoming about 0.9% for
Ωb,0 and 2.5% for h. The uncertainties on Ωm,0, ns, and σ8 are instead affected by less than
2% for all the binning settings. This outcome is confirmed also by Fig. 4.3, which reports the
relative marginalised uncertainties and the FoM as horizontal bars. The [GCph + GCsp] bars
(in blue) always have practically the same length as the [GCph] + [GCsp] bars (in cyan), and
they look more and more similar as the number of GCsp bins increases.

In conclusion the cross-covariance between GCph and GCsp can be considered negligible,
as it does not change the uncertainties on the cosmological parameters by more than 6% and
the FoM by more than 3%.

Impact of the XC(GCph,GCsp) signal on parameter constraints

Harmonic approach In the harmonic approach the contribution to the FoM coming from
the XC(GCph,GCsp) cross-correlation is always positive, as reported in Tab. 4.6, and it is
about 6% (38%) with 4 (40) bins for GCsp. This gain is visible also in Fig. 4.3, where the FoM
and the marginalised uncertainties from the [GCph + GCsp + XC(GCph,GCsp)] Fisher matrix
are represented with green bars. The improvements on the errors for w0, wa, and consequently
on the FoM, are particularly visible for finer binnings, coherently with the results reported in
the table.

The marginalised uncertainties on the cosmological parameters also improve when includ-
ing the XC signal, but the gain is more modest than the one on the FoM, as it is shown
in the right panel of Fig. 4.2. In fact, the biggest improvements are for w0 and wa, whose
uncertainties get smaller at most by 23% and 25%, respectively. Instead, the uncertainty on
the baryon density parameter, Ωb,0, slightly increases by about 1% with 4 bins and becomes
smaller by 18% with 40 bins. The small worsening on this parameter in the case of 4 bins has
been attributed to the contribution of the cross-covariances between the C(`)’s included in the
data-vector of the Fisher matrix [GCph + GCsp + XC(GCph,GCsp)], which are not taken into
account in the simple sum [GCph] + [GCsp]. It is possible that with 4 bins the gain coming
from the inclusion of the XC signal is compensated by the covariance contribution, producing
a net (small) worsening. However, as soon as the number of GCsp bins increases, the positive
contribution of the cross-correlation signal starts to dominate, and the constraints on Ωb,0 to
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Figure 4.3: Comparison between harmonic and hybrid harmonic-Fourier approaches for the
case of GCph ×GCsp.

improve too. The uncertainties on the other parameters also improve, in particular Ωm,0 and
σ8 gain at most 12% when 40 bins are used, as well as h and ns which improve by 7% at
maximum.

Hybrid approach In the hybrid approach instead, the XC(GCph,GCsp) has quite a small
impact on the constraints: the marginalised uncertainties and FoM from the [GCph +
XC(GCph,GCsp)] + [GCsp(Pk)] Fisher matrix are very similar to the ones from [GCph] +
[GCsp(Pk)], as it is qualitatively shown in the barplots of Fig. 4.3. A more detailed analysis
is reported in Fig. 4.4, where the percentage variations on the constraints resulting from
adding the XC(GCph,GCsp) are shown. The variation on the FoM is comprised between
+1.5% and +2%, so there is a very small improvement when including XC(GCph,GCsp) in
the hybrid approach. This is also the case for the marginalised uncertainties which improve
less than 1%. Therefore, it can be concluded that, in the hybrid approach, the inclusion of
the XC(GCph,GCsp) cross-correlation in the combination of GCph and GCsp has a negligible
impact on the results.

Hybrid approach vs harmonic approach

As Fig. 4.5 shows, the hybrid approach performs better than the harmonic one in constrain-
ing almost all the cosmological parameters, even if the constraining power of the harmonic
approach significantly improves with increasing the number of GCsp tomographic bins. The
harmonic approach has a FoM of 69 (153) for 4 (40) spectroscopic bins, while the hybrid
one provides a FoM of 234, which is 236% (52%) larger than in the former case. Thus the
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Figure 4.4: Impact, on FoM and marginalised 1–σ errors, of the XC(GCph,GCsp) in the
hybrid approach, for the optimistic scenario. The reference here are the constraints com-
ing from [GCph] + [GCsp(Pk)], while the minuend for the percentage difference is [GCph +
XC(GCph,GCsp)] + [GCsp(Pk)]. Note that in the hybrid approach only 4 tomographic bins
were used to compute the XC(GCph,GCsp) angular power spectra, for consistency with the
Fourier power spectrum analysis.

hybrid approach is better even when 40 spectroscopic bins are used for the harmonic one. In
particular, this is true for the reduced Hubble constant h. In this case the hybrid approach per-
forms remarkably better, with a gain on the marginalised uncertainty which is always between
75% and 100%, depending only slightly on the number of GCsp bins used for the harmonic
approach. This is expected, since the hybrid approach takes advantage of the 3D power spec-
trum as an observable, in which radial BAO and RSD are included. The constraints on the
other parameters appear instead quite sensitive to the GCsp binning. The differences on the
w0 and wa uncertainties significantly decrease from more than 50% with 4 bins to about 20%
with 40 bins, as it could be expected from the FoM differences between the hybrid approach
and the harmonic one. For Ωm,0, and σ8 the hybrid approach is still better than the harmonic
one, even if the difference between the two approaches decreases significantly with the number
of bins too.

The only exceptions are given by the baryon density, Ωb,0, and the spectral index, ns. In
particular, the Ωb,0 uncertainty from the hybrid approach is more than 25% smaller than from
the harmonic one with 4 spectroscopic bins, but the situation gets reversed with 40 bins. In
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Figure 4.5: Percentage difference between FoM and marginalised 1–σ errors of the hybrid
and harmonic approaches, for the combination of GCph and GCsp in the baseline optimistic
scenario. The percentage differences are normalised to the results of the harmonic approach.

the latter case the harmonic approach provides ∼ 10% better constraints on Ωb,0 than the
hybrid one. The ns uncertainty in the harmonic approach with 4 bins is about 20% larger
than in the hybrid one. Instead, when 40 bins are used for the harmonic approach, the ns

uncertainty given by the hybrid approach is a few percents larger than the one given by the
former.

To conclude, for the combination of GCph and GCsp, the hybrid approach always provides
better constraints than the harmonic one. Increasing the number of bins of the harmonic
approach improves its performances. Using 40 bins allows us to reach the performances of the
hybrid approach for some parameters – ns and Ωb,0 – but a large gap still remains for the
other constraints, especially for h and the FoM.

Comparing photometric and spectroscopic clustering in the harmonic domain

As anticipated in Sec. 4.3.1 two alternative configurations have been considered both for
GCph and GCsp. The baseline configuration for GCph consists in using all the 10 redshift bins
reported in Tab. 4.3, while in the alternative configuration only the 4 bins strictly contained
in the range [0.9, 1.8] are considered. For spectroscopic clustering instead the baseline settings
correspond to use the shot noise as calculated from the second equation of Eq. (4.49), while the
alternative consists in using the artificially reduced version Eq. (4.53) of the noise. In fact, from
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Figure 4.6: Percentage gain on the FoM relative to photometric clustering alone ([GCph]). In
the left panel the computation has been done using the standard GCsp shot noise Eq. (4.49),
while in the right panel the reduced version Eq. (4.53) has been used.

further investigation it turned out that a great limitation of the harmonic approach is due to
the shot noise associated to the GCsp auto-correlation C(`)’s. This is in fact much higher than
the one associated to GCph, since the expected number of Hα-emitting galaxies in the Euclid
catalogue (∼ 2× 107) is smaller than the expected number of galaxies in the photometric
sample (∼ 1.6× 109). Therefore, in order to quantify the impact of the spectroscopic shot
noise, the forecast has been performed also in the artificially reduced shot noise setting, as
explained in Sec. 4.2.2. The results are shown in Fig. 4.6: in the left panel the standard GCsp

shot noise computed from Eq. (4.49) is employed, while in the right one the reduced noise
Eq. (4.53) is used. From the panels it is manifest that lowering the shot noise systematically
boosts the results of the harmonic approach by about one order of magnitude, making its
performance comparable or even better than in the hybrid case. In particular, as it can be
expected, the observable which most improves its performance thanks to the noise reduction
is the harmonic GCsp auto-correlation. Instead, the XC(GCph,GCsp) is not affected as the
shot noise does not enter its definition, as can be observed from Eq. (4.48).

Instead, when considering the behaviour of the [GCph + XC(GCph,GCsp)] + [GCsp(Pk)]
Fisher matrix, as compared to the corresponding one in the harmonic domain, its performance
remains stable against the change of the shot noise level, since the possible change of the latter
would enter only GCsp(Pk), which is a fixed external input. Therefore, while in the harmonic
case the survey performance increases with the noise reduction and the increasing of the
number of spectroscopic bins, in the hybrid case the performance stay unchanged since both
the noise level and the bin number are fixed to the values of the external input.

It is important to stress that the condition of reduced shot noise for GCsp is not realistic,
since it is realised only if the number of galaxies in the spectroscopic sample equals the number
of the photometric one, which is not the case. This check has been done in order to better

94



CHAPTER 4. EXPLOITING MULTI-PROBE CORRELATIONS IN EUCLID
FORECASTS

FoM Ωb,0 Ωm,0 h ns σ8 w0 wa
σθ/θfid

10−2

10−1

100

101

102

GCsp bins: 4
Scenario: Optimistic

[GCph] vs [GCsp]: harmonic domain

GCph 10 bins

GCph 4 bins

GCsp shot noise reduced

GCsp shot noise normal

Figure 4.7: Comparison between the constraints coming from [GCph] and [GCsp] in the har-
monic approach, in the different configurations described in Sec. 4.3.1. The scale on the vertical
axis is logarithmic to make both the relative marginalised uncertainties and the FoM visible
in the same plot.

understand the limitations of GCsp in the harmonic approach.
The results of considering the same shot noise level and redshift range for GCsp and GCph

are reported in Fig. 4.7. The height of the bars labeled with the cosmological parameters is
equal to the relative marginalised uncertainty for that particular parameter. Regarding the
FoM the height is instead given by the value of the FoM itself. From the plot it is evident
that the constraints coming from GCph restricted to the 4 bins in the spectroscopic range
(blue bars) are very close to the ones of GCsp when the shot noise is reduced (yellow bars).
Thus in these special conditions the two probes are essentially equivalent. This is expected,
since the functional form of the weight for galaxy clustering is always the same, with the
photometric function W ph

i differing from the spectroscopic one W sp
i only for the shape of the

galaxy distribution and the values of the galaxy bias.
Fig. 4.7 shows also the two probes in the baseline configuration, in which the 10 bins listed

in Tab. 4.3 are used for GCph (red bars) and the more realistic shot noise Eq. (4.49) is used
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WL×GCsp FoM results

GCsp bins Fisher matrix FoM ∆FoM ∆FoM(%)

4
[WL] + [GCsp(Pk)] 158.13 – –
[WL + XC(WL,GCsp)] + [GCsp(Pk)] 182.74 – –
[WL] + [GCsp] 74.72 – –
[WL + GCsp] 74.37 −0.35 −0.47%
[WL + GCsp + XC(WL,GCsp)] 103.56 +28.83 +38.59%

12
[WL] + [GCsp] 92.90 – –
[WL + GCsp] 92.77 −0.13 −0.14%
[WL + GCsp + XC(WL,GCsp)] 131.38 +38.47 +41.41%

24
[WL] + [GCsp] 111.41 – –
[WL + GCsp] 111.42 +0.01 +0.0021%
[WL + GCsp + XC(WL,GCsp)] 155.18 +43.76 +39.28%

40
[WL] + [GCsp] 141.12 – –
[WL + GCsp] 141.17 +0.06 +0.042%
[WL + GCsp + XC(WL,GCsp)] 188.45 +47.34 +33.55%

Table 4.7: Table reporting the FoM for WL, GCsp and their cross-correlation The ∆FoM
column contains the variation of the figure of merit with respect to the independent sum
[WL] + [GCsp] for the given number of bins. The ∆FoM(%) column is calculated by taking
∆FoM as a percentage of the FoM of [WL] + [GCsp].

for GCsp (green bars). On the one hand, the usage of all bins for GCph makes a big difference,
improving the FoM by a factor of ∼ 30 and reducing the uncertainties of about one order of
magnitude on average. On the other hand, the realistic shot noise of GCsp significantly affects
its performances, reducing the FoM by a factor of ∼ 10 and making the uncertainties larger.

The conclusion is therefore that the shot noise and the redshift range of the galaxy sample
are what makes the difference between GCph and GCsp in terms of constraining power, when
both are treated in the harmonic domain. When GCph is restricted to the same range of GCsp

and the shot noise of the latter is reduced to the same level of the former, their constraints
become comparable with each other.

4.3.3 Combining weak lensing and spectroscopic clustering

In this section I report the results from the combination of WL and GCsp. The Fisher matrix
in the harmonic approach is [WL + GCsp + XC(WL,GCsp)], while in the hybrid one it is
[WL+XC(WL,GCsp)]+[GCsp(Pk)]. I quantify the impact on parameter constraints of the WL-
GCsp cross-covariance and the XC(WL,GCsp) cross-correlation using percentage differences.
I take as reference values for the percentages the constraints coming from the Fisher matrix
corresponding to independent combination of WL and GCsp, that is [WL] + [GCsp] in the
harmonic approach and [WL] + [GCsp(Pk)] in the hybrid one. For brevity, the results of this
combination are reported in the optimistic scenario only.
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Figure 4.8: Contour plots showing the comparison between the two approaches in the combi-
nation of GCph and GCsp.

Impact of the WL-GCsp cross-covariance on parameter constraints

In Tab. 4.7 the FoM values resulting from the combinations of WL and GCsp are reported.
In this case the cross-covariance is even more negligible than in the GCph-GCsp case, always
impacting by less than 0.5% on the figure of merit. This effect gets smaller as the number
of bins increases, starting from −0.47% with 4 spectroscopic bins up to +0.042% with 40
spectroscopic bins respectively. This last is unexpectedly positive, but the variation is so
small that can be considered as a numerical fluctuation around zero.
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Figure 4.9: Impact, on 1–σ parameter errors and FoM, of cross-covariance and cross-correlation
in the harmonic approach for the combination of WL and GCsp. The left panel shows the
impact of the cross-covariance, quantified with the percentage differences between [WL+GCsp]
and [WL]+[GCsp]. In the right panel the impact of the cross-correlation is reported, quantified
by percentage differences of [WL + GCsp + XC(WL,GCsp)] with respect to [WL] + [GCsp].
Note that the percentages on the left panel have been multiplied by 10 in order to make them
visible with the same vertical scale of the right panel.

The same conclusion can be drawn by looking at the effect of the covariance on the
marginalised 1–σ uncertainties on the cosmological parameters, shown in the left panel of
Fig. 4.9. The marginalised uncertainties affected the most by the cross-covariance are the ones
on h and Ωb,0, with variations of 0.7% and 0.3% respectively. The variations on all the other
parameters are always well below 0.2%, and in all cases the absolute value of these variations
decreases as the number of GCsp bins increases, confirming the same trend observed for the
FoM.

The conclusion here is that, when combining WL and GCsp in the harmonic domain, their
cross-covariance can be safely neglected. A similar result for another experiment other than
Euclid has been obtained in [85]. Here the authors performed a joint data analysis combin-
ing weak lensing measurements from the Kilo-Degree Survey (KiDS-1000) and spectroscopic
clustering from the Baryon Acoustic Oscillations Survey (BOSS) and 2-degree Field Lensing
Survey (2dFLenS). The WL was treated using the harmonic power spectrum as observable, as
it has been done in this work. Moreover, the cross-covariance matrix was computed in the har-
monic domain, considering only the correlation between WL and the transverse component of
GCsp. The authors estimated the covariance matrix for the data through an analysis of over
20 000 fast full-sky mock galaxy catalogues, finding that the off-diagonal (cross-covariance)
terms were negligible with respect to the diagonal (auto-covariance) ones.

98



CHAPTER 4. EXPLOITING MULTI-PROBE CORRELATIONS IN EUCLID
FORECASTS

FoM Ωb,0 Ωm,0 h ns σ8 w0 wa
σθ/θfid

−5

0

5

10

15

δX[%]

WL×GCsp: impact of XC in hybrid approach

GCsp bins

4

Scenario: Optimistic

Figure 4.10: Impact, on FoM and marginalised 1–σ errors, of the XC(WL,GCsp) in the hybrid
approach, for the optimistic scenario. Note that in the hybrid approach only 4 tomographic
bins were used to compute the XC(WL,GCsp) angular power spectra, for consistency with the
Fourier power spectrum analysis.

Impact of the XC(WL,GCsp) signal on parameter constraints

Harmonic approach When combining WL and GCsp only, the XC(WL,GCsp) has quite a
significant impact on the results of the harmonic approach, as Tab. 4.7 shows. The percentage
gain on the figure of merit is always larger than +30%, and slightly depends on the number of
spectroscopic bins used. This can be explained by observing that WL weight functions have
a broad support, which becomes larger as the tomographic index increases, as Fig. 4.1 shows.
This suggests that increasing the radial resolution may not help in improving the constraints
coming from the XC(WL,GCsp). It is also worth noting that the FoM percentage gain does
not strictly increase with the number of spectroscopic bins. In particular it is +38% at 4
bins and +33% with 40 bins, with a maximum of about +41% at 12 bins. This not intuitive
behaviour is due to the normalisation of the FoM percentage difference, which is the FoM of
the [WL] + [GCsp] Fisher matrix. This quantity depends on the number of spectroscopic bins,
and it increases slightly faster than the variation induced by the cross-correlation in the FoM
of the [WL + GCsp + XC(WL,GCsp)] Fisher matrix. This can be seen from Tab. 4.7: the
difference ∆FoM between the FoMs of the [WL + GCsp + XC(WL,GCsp)] and [WL] + [GCsp]
Fisher matrices grows slower with the number of bins than the FoM of [WL] + [GCsp] alone.

99



4.3. RESULTS

0

1

P
/P

m
ax

-1.3 -1 -0.74

w0

-0.89

0

0.89

wa

-0.89 0 0.89

wa

0

1

P
/P

m
ax

Scenario: Optimistic
GCsp bins: 4

WL×GCsp: full C(`) vs 2D× 3D

[WL] + [GCsp]

[WL + GCsp + XC(WL,GCsp)]

[WL] + [GCsp(Pk)]

[WL + XC(WL,GCsp)] + [GCsp(Pk)]

0

1

P
/P

m
ax

-1.3 -1 -0.74

w0

-0.89

0

0.89

wa

-0.89 0 0.89

wa

0

1

P
/P

m
ax

Scenario: Optimistic
GCsp bins: 40

WL×GCsp: full C(`) vs 2D× 3D

[WL] + [GCsp]

[WL + GCsp + XC(WL,GCsp)]

[WL] + [GCsp(Pk)]

[WL + XC(WL,GCsp)] + [GCsp(Pk)]

Figure 4.11: Contour plots showing the comparison between the two approaches in the com-
bination of WL and GCsp.
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The marginalised 1–σ uncertainties decrease when the XC(WL,GCsp) cross-correlation
signal is included, especially the ones on w0, wa, σ8 and Ωm,0, as it can be seen from Fig. 4.9.
For these parameters the improvement is always larger than 12% with 4 GCsp bins, and it is
about 20% at most when 40 bins are used. The gain on the Ωb,0 uncertainty is more modest,
being comprised between 5% and 10%. The uncertainties on the reduced Hubble constant h
and the scalar spectral index ns gain always less than 5%.

The improvement on the marginalised uncertainties XC(WL,GCsp) cross-correlation seems
to decrease when increasing the number of spectroscopic bins, as it happens for the FoM. Again,
the reason of this behaviour is that the performances of the Fisher matrix taken as reference –
that is [WL] + [GCsp] – improve faster than the relative contribution of the cross-correlation.
This is true for all parameters except for h, which is the parameter affected the least.

Hybrid approach The impact on the constraints of the XC(WL,GCsp) cross-correlation
in the hybrid approach is less significant than in the harmonic one, as shown in Fig. 4.10.
The FoM of the [WL + XC(WL,GCsp)] + [GCsp(Pk)] Fisher matrix is 183, which is ∼ 15%
higher than the one of the independent combination [WL] + [GCsp(Pk)], which is 158. The
improvements on the marginalised uncertainties are all comprised between 5% and 7%, and
there are no significant differences between the various parameters. The uncertainty on Ωm,0

is the most affected, gaining about 8%, while the least affected is the uncertainty on ns, which
is slightly lower than 5%.

Hybrid approach vs harmonic approach

In contrast to what happens in the case of GCph and GCsp, when combining WL and GCsp the
harmonic approach can reach the FoM of the hybrid one. However, this only happens when
40 GCsp bins are used to compute the harmonic Fisher matrix [WL+GCsp +XC(WL,GCsp)].
The value reached by the FoM is 188, which is only 3% higher than the one given by the
hybrid approach. Moreover, Fig. 4.12 shows that the marginalised uncertainties in w0, wa of
the hybrid approach are smaller than their harmonic counterparts. Nonetheless, as said above,
the FoM of the harmonic approach is slightly higher than the one of the hybrid approach. This
is due to the correlation Cw0wa between the parameters, which enters the definition [Eq. (4.27)]
of the FoM. This correlation is higher for the harmonic approach, and this compensates for
the larger uncertainties, with a net result of slightly higher FoM. This effect can also be seen
by zooming on the bottom panel of Fig. 4.11. The contour of the harmonic approach (cyan)
in the w0-wa plane is slightly narrower than the contour of the hybrid one (red), even if being
more elongated, and this results in a smaller area of the contour ellipse – which means an
higher FoM – of the former with respect to the latter.

Regarding the marginalised uncertainties, Fig. 4.12 shows that the hybrid approach always
performs better than the harmonic one. The reduced Hubble constant h is the parameter for
which the difference is the highest. In particular, the hybrid approach produces an uncertainty
on h which is ∼ 90% (75%) smaller than the one given by the harmonic approach with 4 (40)
spectroscopic bins. For the uncertainties on the other parameters the gap is smaller, and
it reduces significantly as the number of spectroscopic bins increases. The most sensitive
uncertainty is the one on Ωb,0, for which the gap between the two approaches decreases from
more than 50% to less than 10% when 4 and 40 bins are used for the harmonic approach
respectively. The uncertainty on ns is quite sensitive to the number of bins too, and the
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Figure 4.12: Percentage difference between FoM and marginalised 1–σ errors of the hybrid
and harmonic approaches, for the combination of WL and GCsp in the baseline optimistic
scenario. The percentage differences are normalised to the results of the harmonic approach.

difference between the two approaches ranges from 40% to 10% when the number bins of
the harmonic approach increases from 4 to 40. Finally, the differences on the marginalised
uncertainties on Ωm,0 and σ8 are smaller, ranging from 20% to less than 5%.

Comparing XC(WL,GCsp) with XC(WL,GCph)

In [5] it has been shown that the XC(WL,GCph) cross-correlation considerably improves the
constraints on the cosmological parameters. In this work the same result is found: in the
optimistic scenario the Fisher matrix [WL + GCph + XC(WL,GCph)] yields a FoM which is a
factor of ∼ 5 higher than the one given by the [WL] + [GCph] Fisher matrix. This means that
the percentage gain induced by the cross-correlation signal is about 400%. The XC(WL,GCsp)
cross-correlation has a smaller impact on the constraints, as the [WL+GCsp +XC(WL,GCsp)]
Fisher matrix produces a FoM at most ∼ 40% higher than the one of the [WL] + [GCsp]
combination. This is what happens when both GCph and GCsp are treated in the baseline
settings, i.e. when the standard shot noise Eq. (4.49) is used for GCsp and 10 tomographic
bins are used for GCph. The effect of the shot noise on GCsp can be seen from Fig. 4.13,
where I report the percentage gain on the FoM of various combinations with respect to WL
alone. Left panel refers to the standard GCsp shot noise computed with the second equation
of Eq. (4.49), right panel refers to the alternative reduced noise of Eq. (4.53). When the noise
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Figure 4.13: Percentage gain on the FoM relative to weak lensing clustering alone ([WL]). In
the left panel the computation has been done using the standard GCsp shot noise Eq. (4.49),
while in the right panel the reduced version Eq. (4.53) has been used. Note that [WL]+[GCsp]
(blue points) is indistinguishable from [WL+GCsp] (orange points), confirming that the cross-
covariance between WL and GCsp is negligible.

is reduced the Fisher matrix of the harmonic approach with 4 bins is already competitive
with the one of the hybrid approach, yielding a gain of ∼ 300% relative to WL alone. The
observable gaining the most from the noise reduction is the GCsp auto-correlation, as the two
curves of [WL + GCsp] and [WL + GCsp + XC(WL,GCsp)] converges towards each other as
the number of bins increases.

A direct comparison between the gain coming from XC(WL,GCph) and XC(WL,GCsp)
cross-correlations is shown in Fig. 4.14, where the percentage variations on parameter con-
straints are represented with vertical bars. When GCsp and GCph have the same shot noise
level and the same redshift range, the effect of the XC(WL,GCsp) on the constraints becomes
comparable with the one of XC(WL,GCph).

Therefore, the conclusion is the same drawn for the direct comparison between the GCph

and GCsp auto-correlations. The shot noise and the redshift range of the galaxy catalogue
are what makes the differences between XC(WL,GCph) and XC(WL,GCsp) in terms of con-
straining power.

4.3.4 Exploiting the Euclid 6× 2pt statistics

In this section I present the results of the combination of all the Euclid main probes:
WL,GCph, and GCsp. The starting point is the (photometric) 3 × 2pt statistics, defined
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Figure 4.14: Impact, on FoM and marginalised 1–σ uncertainties, of the XC(WL,GCph) and
XC(WL,GCsp) cross-correlations in different configurations. The vertical bars represent the
percentage differences on the uncertainties normalised to the independent sum of the two
probes. For XC(WL,GCph) the reference is [WL]+[GCph], while for XC(WL,GCsp) is [WL]+
[GCsp]. Note that for the uncertainties the percentage variation is negative, meaning that the
contribution of the cross-correlations reduces the errors.

as
3× 2pt ≡ [WL + GCph + XC(WL,GCph)] . (4.60)

This combination has already been studied in [5], finding that the XC(WL,GCph) cross-
correlation has a large impact on the constraints. The same result is found in this work too,
as it has been already pointed out in Sec. 4.3.3 – see the red bars of Fig. 4.14. In terms of this
combination, the 6× 2pt statistics, defined in Eq. (4.58) and Eq. (4.59), can be expressed as

[(harmonic) 6× 2pt] = [3× 2pt + GCsp + XC(WL,GCsp) + XC(GCph,GCsp)]

[(hybrid) 6× 2pt] = [3× 2pt + XC(WL,GCsp) + XC(GCph,GCsp)] + [GCsp(Pk)]
(4.61)

In this section I report the Euclid performance when GCsp and its cross-correlations with WL,
and GCph are combined with the 3 × 2pt statistics. The discussion will be focused on two
main points:

• the importance of the cross-covariance between GCsp and the 3× 2pt statistics;

• the contribution to the constraints of the XC(GCph,GCsp) and XC(WL,GCsp) cross-
correlations.
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Figure 4.15: Comparison between harmonic and hybrid harmonic-Fourier approaches for the
case of WL×GCsp.

The cross-covariance between GCsp and 3 × 2pt statistics is studied only in the harmonic
approach, since in the hybrid approach it is neglected by definition. The effect of the cross-
correlations is assessed for both the harmonic and the hybrid approaches, and in both the
pessimistic and optimistic scenarios defined in Tab. 4.3.1.

Impact of the GCsp cross-covariances on parameter constraints

The impact on the constraints of the cross-covariance between GCsp and 3× 2pt is shown in
the two panels of Fig. 4.16, the left one representing the optimistic scenario and the right the
pessimistic one. The plot compares the constraints from the [3× 2pt + GCsp] and [3× 2pt] +
[GCsp] combinations: in the former the GCsp-3 × 2pt cross-covariance is taken into account,
while it is not in the latter. It can be seen that the impact of the cross-covariance is almost
the same in the two scenarios and decreases as the number of GCsp bins increases, confirming
the same trend observed in the two pairwise combinations GCph-GCsp and WL-GCsp. The
percentage variations on the constraints are always below 10% (5%) with 4 (40) spectroscopic
bins. It is also evident that the covariance almost always worsens the constraints, reducing
the FoM and increasing the marginalised 1–σ uncertainties with respect to considering GCsp

and 3× 2pt as independent. The parameters whose uncertainties are affected the most by the
GCsp-3× 2pt cross-covariance are Ωb,0 and h, with variations of ∼ 8% with 4 bins. When 40
bins are used for GCsp the variation reduces to ∼ 2% for both parameters.

On of the most evident differences between the optimistic and the pessimistic scenario is
the impact on the FoM, which is slightly higher in the pessimistic than in the optimistic setting.
However the percentage difference is always below 5%, the worst case being the pessimistic
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Figure 4.16: Impact, on FoM and marginalised 1-σ uncertainties, of cross covariances between
GCsp and 3× 2pt ([WL + GCph + XC(WL,GCph)]), quantified with percentage differences on
the constraints, in the optimistic (left) and pessimistic (right) scenarios. The reference for the
percentage are the constraints of [3× 2pt] + [GCsp], where GCsp is considered as independent
from the rest.

scenario with 4 bins, where it is ∼ 4%. The percentage variation on the Ωm,0 uncertainty is
at the sub-percent level in the optimistic scenario, while it is about at the percent level in
the pessimistic scenario. The uncertainty on σ8 is always smaller than 1% in the optimistic
scenario, while it ranges from 4% to 1% in the pessimistic scenario.

Impact of the XC signals on parameter constraints

Here I discuss the impact on the constraints of the XC(GCph,GCsp) and XC(WL,GCsp) cross-
correlations. The impact of the cross-correlations is quantified as percentage differences on
the constraints with respect to the given reference, represented with vertical bars. Fig. 4.17
and Fig. 4.18 show the results in the harmonic approach, and Fig. 4.19 in the hybrid one.
Each of these plots contains three columns. The left column reports the effect of the in-
clusion of the XC(WL,GCsp) cross-correlation, the middle column reports the impact of the
XC(GCph,GCsp) cross-correlation, and the right column reports the impact of both.

Harmonic approach For the harmonic approach, two Fisher matrices have been used as
reference for the percentage differences: [3 × 2pt] + [GCsp], where the 3 × 2pt statistics and
GCsp are combined as independent, and [3× 2pt + GCsp], where the cross-covariance between
the two is taken into account (see Sec. 4.2.1). As explained in the previous section, these
two combinations do not produce the same constraints (see Fig. 4.16), as the independent
combination yields slightly better constraints.
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Figure 4.17: Impact of the XC(GCph,GCsp) and XC(WL,GCsp) cross-correlations on FoM and
marginalised 1–σ uncertainties, with respect to the constraints given by the [3× 2pt + GCsp]
Fisher matrix, in which the cross-covariance between 3× 2pt statistics and GCsp is taken into
account. The top panels refer to the optimistic scenario, while the bottom panels refer to
the pessimistic one. Note that the percentage differences related to XC(WL,GCsp) have been
multiplied by 100 to make them visible when using a single scale on the y axis.

I consider the two different references above since, when the cross-correlations are added in
the harmonic approach, the cross-covariance between GCsp and the 3×2pt statistics is always
accounted for. Thus, on the one hand, I focus on the improvement due to the inclusion of the
XC signals alone, and this is done when the Fisher matrix [3×2pt+GCsp +XC(WL,GCsp)] is
compared to the reference [3×2pt+GCsp], and the same for [3×2pt+GCsp +XC(WL,GCsp)]
and [3 × 2pt + GCsp + XC(WL,GCsp) + XC(GCph,GCsp)] (see Fig. 4.17). In this case, the
percentage differences are representative of the net effect of the cross-correlation signals on
the constraints, which is expected to be always positive.

On the other hand, when the Fisher matrices comprising the XC’s information are com-
pared to the independent combination [3 × 2pt] + [GCsp], I focus on the total effect, which
not only contains the gain from the inclusion of the XC signals, but also the penalty from the
cross-covariance between GCsp and the 3 × 2pt statistics (see Fig. 4.18). This comparison is
useful in order to evaluate the overall impact of the cross angular power spectra.
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Figure 4.18: Impact of the XC(GCph,GCsp) and XC(WL,GCsp) cross-correlations on FoM and
marginalised 1–σ uncertainties, with respect to the constraints given by the [3× 2pt] + [GCsp]
combination, where 3× 2pt and GCsp are treated as independent. The top panels refer to the
optimistic scenario, while the bottom panels refer to the pessimistic one.

Harmonic approach: adding XC(WL,GCsp) The net effect of the XC(WL,GCsp)
inclusion is shown in the left panels of Fig. 4.17, where the Fisher matrix [3 × 2pt + GCsp +
XC(WL,GCsp)] is compared to the reference [3 × 2pt + GCsp]. The differences in this case
have been amplified by a factor of 100 to make them visible on the same vertical scale of
the other plots. The variation on the constraints due to the addition of XC(WL,GCsp) to
[3 × 2pt + GCsp] is always about 0.01%-0.05%, with no significant differences between the
optimistic and pessimistic scenarios. Therefore, it seems that this cross-correlation does not
give any contribution to the constraints, i.e. it looks like the computation of the total [3 ×
2pt + GCsp + XC(WL,GCsp)] Fisher matrix is not useful to improve the Euclid performance.
This might seem in contrast to what happens in the pairwise combination of WL and GCsp,
where the XC(WL,GCsp) cross-correlation signal has a significant impact on the constraints.
However, the latter case does not include by definition the XC(WL,GCph) signal, since it refers
only to WL combined with GCsp. Instead, in the case now under discussion of [3 × 2pt +
GCsp+XC(WL,GCsp)], the reference for the net effect here considered is [3×2pt+GCsp], which
contains the contribution of the XC(WL,GCph) cross-correlation, proven to be dominant.

From the above reasoning, it is also possible to infer the reason why the constraints from
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the [3× 2pt + GCsp + XC(WL,GCsp)] Fisher matrix are worse by 6% at most (see Fig. 4.18)
than the ones from the independent combination [3×2pt]+[GCsp] taken now as reference: the
impact of the cross-correlation signal is so small that its possible improvements are completely
dominated by the cross-covariance between GCsp and the 3 × 2pt statistics (see Fig. 4.16),
which is present when adding the cross signal, but not kept into account in the reference.
Therefore, the total effect of the inclusion of XC(WL,GCsp) in the combination of GCsp with
the 3 × 2pt statistic is to worsen the parameter constraints. However, while it has been just
shown that the XC(WL,GCsp) signal can be safely neglected, the cross-covariance between
GCsp and the 3× 2pt statistic needs to be taken with caution.

Harmonic approach: adding XC(GCph,GCsp) The middle panel of Fig. 4.17 shows
the positive net effect of the XC(GCph,GCsp) inclusion, which increases with the number of
spectroscopic bins. This confirms the same behaviour observed in the pairwise combination
of GCph and GCsp. The gain on the FoM relative to the Fisher matrix [3 × 2pt + GCsp] is
about 1% for 4 bins, and increases up to 8-10% for 40 bins, with practically no differences
between the optimistic and the pessimistic scenario. Fig. 4.18 shows that when the independent
combination [3 × 2pt] + [GCsp] is used as reference instead, the FoM variation due to the
XC(GCph,GCsp) inclusion is −2% (+7%) for 4 (40) GCsp bins. The small worsening at 4
bins is due to the fact that the positive contribution of the cross-correlation is cancelled by
the negative contribution of the GCsp-3 × 2pt cross-covariance (see Fig. 4.16). In fact, this
cross-covariance is taken into account in the Fisher matrix [3×2pt+GCsp +XC(GCph,GCsp)],
while it is not in the [3× 2pt] + [GCsp], which is used as the reference in this last case.

Analogously, the marginalised 1–σ uncertainties on the cosmological parameters exhibit a
similar behaviour, with no significant differences between the optimistic and the pessimistic
scenarios. When using 4 spectroscopic bins the inclusion of the XC(GCph,GCsp) cross-
correlation produces a small improvement when the Fisher matrix [3× 2pt + GCsp] is used as
reference. For a small number of bins, this positive contribution is in general compensated by
cross-covariance effects when the percentage differences are referred to the [3× 2pt] + [GCsp]
Fisher matrix. When using 40 spectroscopic bins the cross-correlation dominates and the
cross-covariance effects become negligible, and the percentage differences become always posi-
tive, independently of the reference that is used. The parameters whose uncertainties decrease
the most are Ωb,0 and h, gaining 15% and 10% respectively in the optimistic scenario, 10%
and 5% in the pessimistic.

Therefore, the total effect of the inclusion of XC(GCph,GCsp) in the combination of GCsp

with the 3×2pt statistic depends on the chosen binning set, and may be dominant with respect
to GCsp-3× 2pt cross-covariance effects for a large number of bins.

Harmonic approach: the 6× 2pt statistics The harmonic 6 × 2pt statistics in
Eq. (4.58) consists in the inclusion of the XC(WL,GCsp) and XC(GCph,GCsp) cross-correlations
in the [3 × 2pt + GCsp] data-vector. In the harmonic approach, the constraints produced by
the 6× 2pt analysis are equivalent to the ones given by including the XC(GCph,GCsp) alone.
The percentage differences between the constraints from the 6 × 2pt Fisher matrix and the
[3 × 2pt + GCsp] Fisher matrix are reported in the rightmost panels of Fig. 4.17. These are
indistinguishable from the ones reported in the middle panels, which refer to the impact of
the XC(GCph,GCsp) cross-correlation only with respect to [3×2pt + GCsp]. This is expected,
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Figure 4.19: Impact, on FoM and marginalised 1–σ errors, of the XC(GCph,GCsp) and
XC(WL,GCsp) cross-correlations in the hybrid approach. The reference for the percentage
differences is [WL + GCph + XC(WL,GCph)] + [GCsp(Pk)]. In any case the cross-correlations
are always considered to be covariant with the 3 × 2pt statistics observables. Note that the
percentage differences in left panel have been multiplied by 10, to make them visible to the
naked eye.

since in the above paragraphs it has been shown that XC(WL,GCsp) provides a negligible
contribution with respect to XC(GCph,GCsp).

Hybrid approach The contribution of the XC(WL,GCsp) and XC(GCph,GCsp) signals in
the hybrid approach is reported in Fig. 4.19, quantified with percentage differences of the
constraints plotted as vertical bars. In this case the reference used is always the independent
combination [3×2pt] + [GCsp(Pk)], since in the hybrid approach the cross-covariance between
GCsp(Pk) and the 3 × 2pt is neglected by definition. Only the 4 bins case is presented for
consistency with the power spectrum analysis done in [5], for which the authors employ the 4
standard spectroscopic bins listed in Tab. 4.4. Again, Fig. 4.19 is subdivided in three columns.
The first column reports the impact of XC(WL,GCsp), the middle column reports the impact
of XC(GCph,GCsp), and finally in the last column reports the impact of both.

Hybrid approach: adding XC(WL,GCsp) In the hybrid approach the impact of
the XC(WL,GCsp) cross-correlation on the constraints from [3 × 2pt + XC(WL,GCsp)] +
[GCsp(Pk)], relative to [3×2pt]+ [GCsp(Pk)], is negligible, being always less than 0.05%, both
in the optimistic and in the pessimistic scenarios. The contribution is so small that it has been
amplified by a factor of 10, in order to make it visible when using a single scale on the vertical
axis. This result is analogous to what has been found with the harmonic approach, when I
consider the comparison of [3×2pt+GCsp +XC(WL,GCsp)] with respect to [3×2pt+GCsp],
to isolate the impact of XC(WL,GCsp). This is expected, since there are no differences in the
3× 2pt between the two approaches, and, in particular, the XC(WL,GCph) cross-correlation
is computed in the same way in the two cases.
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Figure 4.20: Comparison between FoM and marginalised 1–σ uncertainties of the hybrid 6×2pt
and the harmonic 6 × 2pt statistics, quantified using percentage differences taking the latter
as reference.

Hybrid approach: adding XC(GCph,GCsp) In the hybrid approach the impact of
the XC(GCph,GCsp) cross-correlation on the constraints from [3× 2pt + XC(GCph,GCsp)] +
[GCsp(Pk)], relative to [3 × 2pt] + [GCsp(Pk)], is slightly smaller than in the harmonic one
with 4 spectroscopic bins. The middle panel of Fig. 4.19 shows that the absolute percentage
differences on all constraints is always below 2%. The gain on the FoM is ∼ 1% both in the
optimistic and the pessimistic scenario. The parameters whose uncertainties are affected the
most are Ωb,0 and h, with a gain of 1.5% at most in the pessimistic scenario, and less than
0.5% in the optimistic scenario.

Hybrid approach: the 6× 2pt statistics As it happens for the harmonic approach,
the constraints given by the hybrid 6 × 2pt statistics are similar to the ones given by the
inclusion of the XC(GCph,GCsp) cross-correlation only. This is manifest in the right panel of
Fig. 4.19: the vertical bars representing the differences are indistinguishable from the ones in
the middle panel. Nonetheless, in the hybrid approach the inclusion of the XC(GCph,GCsp)
cross-correlation has a negligible impact on the constraints, as discussed in the above para-
graph. Therefore, the Fisher matrix of the hybrid 6× 2pt statistics produces constraints that
are almost equivalent to the [3× 2pt] + [GCsp(Pk)] Fisher matrix.

The 6× 2pt statistics: hybrid approach vs harmonic approach

For the 6×2pt statistics the hybrid approach performs better than the harmonic one, especially
when a small number of spectroscopic bins is used for the latter. The comparison of the two
approaches is reported in Fig. 4.20, where the percentage differences between their constraints
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6× 2pt FoM results
GCsp bins Fisher matrix FoM ∆FoM ∆FoM(%)

Optimistic scenario

4
[3× 2pt] + [GCsp(Pk)] 1216.16 – –

[6× 2pt (hybrid)] 1227.69 11.53 +0.95%
[6× 2pt (harmonic)] 1018.43 −197.73 −16.26%

12 [6× 2pt (harmonic)] 1073.31 −142.85 −11.75%

24 [6× 2pt (harmonic)] 1151.13 −65.03 −5.35%

40 [6× 2pt (harmonic)] 1296.44 80.28 +6.60%

Pessimistic scenario

4
[3× 2pt] + [GCsp(Pk)] 549.37 – –

[6× 2pt (hybrid)] 555.87 6.50 +1.18%
[6× 2pt (harmonic)] 379.85 −169.52 −30.86%

12 [6× 2pt (harmonic)] 434.00 −115.37 −21.00%

24 [6× 2pt (harmonic)] 486.40 −62.97 −11.46%

40 [6× 2pt (harmonic)] 550.82 1.45 +0.26%

Table 4.8: Figure-of-Merit of the 6 × 2pt statistics in the harmonic and hybrid approaches
and in the hybrid one. The ∆FoM columns quantify the differences with respect to the
[3×2pt]+[GCsp(Pk)] combination, which is used as reference to assess the impact on the FoM
of the XC(GCph,GCsp) and XC(WL,GCsp) cross-correlations. In fact this combination does
not include the contributions of XC(GCph,GCsp) and XC(WL,GCsp), but only the one of
XC(WL,GCph) – see Eq. (4.60). For the definitions of 6×2pt statistics in the two approaches
see Eq. (4.58) and Eq. (4.59).

are plotted as vertical bars. In this case, the reference adopted is the Fisher matrix of the
harmonic approach, Eq. (4.58). The hybrid approach produces a FoM which is 20% (40%)
larger than the harmonic one in the optimistic (pessimistic) scenario, when 4 spectroscopic
bins are used for the latter. When using 40 bins, the harmonic approach performs instead
slightly better (∼ 6%) than the hybrid one in the optimistic scenario, while it is equivalent to
it in the pessimistic scenario.

Regarding the marginalised 1–σ uncertainties on the dark energy parameters, w0, wa, the
hybrid approach always provides better constraints than the harmonic one, regardless the
number of spectroscopic bins used for the latter. However, the harmonic approach with 40
bins produces a slightly higher FoM than the hybrid one in the optimistic scenario.

Fig. 4.20 shows that the hybrid approach performs drastically better in constraining h,
producing a 1–σ uncertainty on it which is always more than 70% smaller than the one in
the harmonic approach. The hybrid approach gives better uncertainties than the harmonic
one for ns and Ωb,0 too. For ns the uncertainty of the hybrid approach is always smaller
than the one of the harmonic approach by 30-40%. For Ωb,0 the hybrid approach gives a 60%
smaller uncertainty than the harmonic approach with 4 bins, while the difference is about
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20% with 40 bins. Concerning the uncertainty on Ωm,0 the two approaches produce results
that are always comparable within 5%. Finally, on σ8 the harmonic approach with 12 bins
performs slightly better than the hybrid one. In the optimistic scenario the uncertainties on
σ8 are always comparable, while in the pessimistic case the harmonic approach produces a
10% smaller uncertainty when using 40 tomographic bins.
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Figure 4.21: Comparison between harmonic and hybrid approaches for the case of 6 × 2pt
statistics. The top panels refer to the optimistic scenario, while the bottom panels refer to the
pessimistic one.

4.4 Conclusions and outlook

In this work I presented the results of the first Euclid forecasts which include all the pairwise
correlations between the main probes: weak lensing (WL), photometric galaxy clustering
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(GCph), and spectroscopic galaxy clustering (GCsp). I have studied these correlations from
two points of view. First, as off-diagonal terms of the covariance matrix, the cross-covariances,
that account for the statistical correlation between two different probes. Second, as additional
observables, the cross-correlation signals which can be sensitive to cosmological parameters.

My work is a natural extension of the Euclid IST forecast [5], where the authors studied
WL and GCph including their correlation in the 2D harmonic domain. The GCsp was instead
studied in the 3D Fourier domain, and in first approximation was assumed to be independent
from the other two probes. Here I extended the harmonic formalism also to GCsp, with the
aim of including the XC(GCph,GCsp) and XC(WL,GCsp) correlations in the analysis as well.

I have performed the forecasts in two scenarios: optimistic and pessimistic, differing only
for the multipole ranges chosen for the harmonic power spectra. In the optimistic scenario, the
multipole range was 10 ≤ ` ≤ 3000 for both GCph and the projected GCsp and 10 ≤ ` ≤ 5000
for WL. In the pessimistic scenario the ranges were 10 ≤ ` ≤ 750 and 10 ≤ ` ≤ 1500,
respectively.

I have considered two different approaches to include the cross-correlations in the analysis:
the harmonic approach and the hybrid approach. In the harmonic approach all the observables
– the two-point correlation functions – are treated in the harmonic domain, i.e. using the C(`)’s
formalism. This approach allows us to naturally take into account all cross-covariances between
the observables, computed via Eq. (4.28). Nonetheless, it has the disadvantage to significantly
lower the constraining power of GCsp, since the integral along the line of sight prevents to
fully exploit the accurate radial information provided by the spectroscopic clustering. In order
to recover such information, I tried to refine the tomographic binning of the projected GCsp,
from 4 bins (the baseline setting) up to a maximum of 40 bins.

In the hybrid approach all the observables are studied in the harmonic domain – including
XC(WL,GCsp) and XC(GCph,GCsp) – except for the GCsp auto-correlation function. I have
considered it as an independent observable, adding the GCsp Fisher matrix that had been
computed in IST:F [5], using the 3D Fourier power spectrum as observable. The main advan-
tage of this approach is that it fully exploits the potential of GCsp, keeping the information
from radial BAO and RSD available thanks to accurate spectroscopic redshift measurements.
At the same time the XC(GCph,GCsp) and XC(WL,GCsp) cross-correlations are included in
the analysis as harmonic two-point functions, i.e. C(`)’s. However, this approach comes with
two main drawbacks. First, for consistency with the official 3D spectroscopic galaxy clus-
tering setting, only 4 tomographic bins can be employed for computing the XC(GCph,GCsp)
and XC(WL,GCsp) cross-correlations, thus limiting the gain of constraining power which
comes from their inclusion in the analysis. Second, it is not obvious how to compute the
cross-covariance terms between the 3D GCsp auto-correlation and the other 2D observables.
Therefore, accordingly to the conclusions from the analysis in the harmonic domain (which
correctly accounts for the projected part of such cross-covariances), in the hybrid approach
they have been neglected, leaving their computation to future work.

Here I summarise the results of the analysis in the three cases considered: the combination
of GCph and GCsp, the combination of WL and GCsp, and the so-called 6× 2pt, i.e. the full
combination of WL,GCph,GCsp altogether. In the latter case – which is the most interesting
for the Euclid data analysis – I presented the results in both the optimistic and pessimistic
scenarios. Instead, for the two pairwise combinations GCph-GCsp and WL-GCsp, I reported
the results for the optimistic scenario alone.

114



CHAPTER 4. EXPLOITING MULTI-PROBE CORRELATIONS IN EUCLID
FORECASTS

−0.25

0

0.25

wa

Scenario: Pessimistic
GCsp bins: 4

[3× 2pt] + [GCsp(Pk)]

[6× 2pt (harmonic)]

[6× 2pt (hybrid)]

0

1

P
/P

m
ax

0

1

P
/P

m
ax

Scenario: Optimistic
GCsp bins: 4

−1.1 −1 −0.93

w0

−0.25

0

0.25

wa

−0.25 0 0.25

wa

Scenario: Pessimistic
GCsp bins: 40

0

1
P
/P

m
ax

−1.1 −1 −0.93

w0

−0.25 0 0.25

wa

0

1

P
/P

m
ax

Scenario: Optimistic
GCsp bins: 40

Figure 4.22: Contour plots showing the comparison between the two approaches in the case
of the 6× 2pt statistics.
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Combination of GCph and GCsp In the harmonic approach, the full analysis, [GCph +
GCsp + XC(GCph,GCsp)], i.e. including cross-covariance and cross-spectrum, provides a FoM
of 69 in the baseline setting of 4 spectroscopic bins. In the combination of GCph and GCsp, the
cross-covariance between the two (as said above, computed only in the harmonic approach) can
be considered practically negligible, as it does not change the uncertainties on the cosmological
parameters by more than 6% and the FoM by more than 3%, with respect to the reference
combination in the harmonic domain, [GCph]+[GCsp], of the two probes taken as independent.
In the harmonic approach, the XC(GCph,GCsp) cross-correlation signal starts to be significant
only when using 40 bins, yielding a maximum FoM of 153, which is 38% higher than for the
[GCph] + [GCsp] combination. Regarding the uncertainties on w0 and wa, the improvement
given by the XC(GCph,GCsp) cross-correlation is 5% and 6% respectively in the baseline 4
bins setting, while it is 23% and 25% when using 40 bins. The gain on the uncertainties on
the other parameters is less than 5% with 4 bins and ranges from 10% to 20% with 40 bins.

In the hybrid approach, the full analysis, [GCph+XC(GCph,GCsp)]+[GCsp(Pk)], including
cross-spectrum but, as said above, neglecting cross-covariance, gives instead a FoM of 234,
which is much higher than in the harmonic case. However, in the hybrid case the impact of
the XC(GCph,GCsp) signal is negligible, as combining the probes as independent, [GCph] +
[GCsp(Pk)], provides a FoM of 230, which is only 1.7% lower than for the full analysis. The
gain on the marginalised uncertainties is even smaller, being always less than 1%. Therefore,
it is possible to conclude that the XC(GCph,GCsp) cross-correlation can be neglected in the
combination of GCph with GCsp.

Combination of WL and GCsp In the harmonic approach, the full analysis, [WL +
GCsp +XC(WL,GCsp)], i.e. including cross-covariance and cross-spectrum, provides a FoM of
103 in the baseline setting of 4 spectroscopic bins. In the combination of WL and GCsp, the
cross-covariance (computed only in the harmonic approach) is even more negligible than for
the combination of GCph with GCsp, impacting the constraints always by less than 1% with
respect to the reference independent combination, [WL] + [GCsp], computed in the harmonic
domain. In this domain, the XC(WL,GCsp) cross-correlation signal improves the constraints
almost independently of the number of tomographic bins used for GCsp, when compared to
[WL]+[GCsp]. The percentage gain on the FoM produced by the XC inclusion is 38% and 33%
with 4 and 40 bins respectively. This counterintuitive trend has been explained in Sec. 4.3.3:
it is due to the fact that the performance of the harmonic GCsp auto-spectrum alone improves
faster than for XC(WL,GCsp) when refining the spectroscopic binning. The value of the FoM
provided by the full combination, [WL + GCsp + XC(WL,GCsp)], increases to 188 with 40
bins, i.e. by ∼ 45% with respect to the baseline bin setting. The XC(WL,GCsp) improvement
on the marginalised uncertainties on w0 and wa exhibits the same trend observed for the FoM,
decreasing from 20% to 13% as the number of spectroscopic bins increases from 4 to 40. This
happens also for the uncertainties on Ωm,0 and σ8, with improvements ranging from 18% to
12% for the former and from 16% to 11% for the latter. The decrease on the uncertainties on
Ωb,0 and ns ranges instead from 5% to 8% for the former and from 5% to 2% on the latter.
Finally, the uncertainty on h is the only exception to this trend, as its decrease improves from
1% to 4%.

In the hybrid approach, the full analysis, [WL + XC(WL,GCsp)] + [GCsp(Pk)], including
cross-spectrum but neglecting cross-covariance, provides a FoM of 183, which is comparable
to the harmonic case when 40 bins are used, but is ∼ 56% larger in the case of 4 bins. In the
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hybrid approach, the impact of the XC(WL,GCsp) signal is not negligible, since the FoM is
15% larger than for the independent combination, [WL] + [GCsp(Pk)], of the two probes. The
improvements on the marginalised uncertainties are all comprised between 4% and 8%, with no
significant differences between the parameters. The uncertainty on Ωm,0 is the one improving
the most, about 8%, while the one gaining the least is the uncertainty on ns, decreasing by
slightly less than 5%.

Combination of WL,GCph,GCsp and the 6× 2pt statistics In the harmonic ap-
proach, the full 6 × 2pt analysis, Eq. (4.58), i.e. including all cross-covariances and cross-
spectra, provides a FoM of 1018 in the baseline setting of 4 spectroscopic bins. The overall
impact of the cross-covariances (computed only in the harmonic approach) between the angular
GCsp and the observables of the 3 × 2pt statistics, with respect to the independent combi-
nation [3 × 2pt] + [GCsp], is slightly higher than for the pairwise combinations GCph-GCsp

and WL-GCsp, reported above. This is presumably due to the cumulative effect of three inde-
pendent off-diagonal covariance blocks. These account for the covariances between the GCsp

auto-spectrum and the three observable power spectra of the 3 × 2pt statistics, namely the
auto-spectra of WL, GCph and their cross-spectrum XC(WL,GCph). However, the increase
on parameter uncertainties is never larger than 8%, as Fig. 4.16 shows.

Both in the harmonic and hybrid approaches, the cross-correlations with GCsp are always
negligible. The XC(WL,GCsp) is definitely negligible both in the optimistic and pessimistic
scenarios. In the harmonic approach, it always improves parameter constraints by less than
0.05%, with respect to the independent combination, [3× 2pt + GCsp], computed in the same
approach. This is because the contribution brought by the XC(WL,GCsp) is dominated by
the XC(WL,GCph), which is already present in the Fisher used as reference. Moreover, still
in the harmonic approach, the effect of the XC(WL,GCsp) becomes completely invisible with
respect to the results from the independent combination, [3× 2pt] + [GCsp], computed in the
same approach. This is because the difference is dominated by the cross-covariance between
GCsp and 3× 2pt, which is accounted when adding the cross-correlation observable.

In the hybrid approach the situation is similar: the XC(WL,GCsp) cross-correlation im-
proves both the FoM and the uncertainties by always less than 0.05% with respect to the
constraints produced by the [3× 2pt] + [GCsp(Pk)] combination.

The effect of the XC(GCph,GCsp) is larger than the one of XC(WL,GCsp), both in the
optimistic and pessimistic scenarios and both in the harmonic and in the hybrid approach.
For this reason the 6× 2pt statistics is essentially equivalent to adding XC(GCph,GCsp) only.
Nonetheless, the improvement on the constraints produced by the XC(GCph,GCsp) cross-
correlation is almost always smaller than 10%. In the harmonic approach, its improvement is
always below 5% when compared to [3× 2pt + GCsp], while it is dominated by the covariance
effect when compared to [3 × 2pt] + [GCsp]. The only exception is when using 40 bins for
GCsp: in this case the FoM improves by about 10%, while the marginalised uncertainties on
Ωb,0 and h decrease by ∼ 15%. The uncertainties on the other parameters decrease by always
less than 5% instead.

In the hybrid approach the XC(GCph,GCsp) improvement is always below 2%, for both
FoM and uncertainties with respect to [3× 2pt] + [GCsp(Pk)], as in this case only the baseline
setting of 4 spectroscopic bins can be used for consistency with the official 3D spectroscopic
galaxy clustering approach.

117



4.4. CONCLUSIONS AND OUTLOOK

Finally, looking at the absolute performance, the values of the FoM are reported in Tab. 4.8,
which is possible to summarise as:

1. the [3× 2pt] + [GCsp(Pk)] is taken as reference, and it gives a FoM of 1216 (549) in the
optimistic (pessimistic) scenario;

2. the harmonic 6× 2pt statistics with 40 bins gives a FoM of 1296 (550) in the optimistic
(pessimistic) scenario, which is only 6.6% (0.26%) better than 1. When using 4 bins it
gives a FoM of 1018 (380) in the optimistic (pessimistic) scenario, which instead is 15%
(31%) worse than 1.

3. The hybrid 6× 2pt statistics is essentially equivalent to the [3× 2pt] + [GCsp(Pk)], with
a FoM of 1228 (556) in the optimistic (pessimistic) scenario, only 1.18% (0.95%) better
than 1.

Therefore, XC(GCph,GCsp) and XC(WL,GCsp) cross-correlations are negligible when
added to the combination of GCsp and the 3×2pt statistics, both in the harmonic and hybrid
approaches.

In conclusion, either the cross-covariances (here computed only in the harmonic approach)
or the cross-correlations (computed both in the harmonic and hybrid approaches) between
GCsp and the other main probes of Euclid , represented by the so-called 3×2pt statistics, have
a negligible impact on the cosmological parameter constraints.

In the case of the hybrid approach, I attribute this result to the effect of the XC(WL,GCph)
cross-correlation which is dominant with respect to the other cross-correlations, and to the
higher performance of the full anisotropic 3D GCsp probe with respect to the projected one.

In the case of the 2D harmonic domain, I attribute this result to two main theoretical
limitations of the projected GCsp probe: the high shot noise and the limited redshift range
of the sample. I have found that, under two conditions, GCsp in harmonic space becomes
equivalent to GCph in terms of constraining power, as it can be seen from Fig. 4.7. The first
condition is to reduce the shot noise of GCsp to the same level of GCph. The second is to
restrict the tomographic bins of GCph to the 4 photometric bins comprised in the GCsp redshift
range, i.e. z ∈ [0.9, 1.8]. Under these same conditions, XC(WL,GCsp) and XC(WL,GCph)
become equivalent in terms of constraining power too, as I show in Fig. 4.14. Nonetheless,
these conditions are not realistic.

Finally, a future extension of my work would be to overcome some approximations made
in this thesis. First, I have computed the C(`)’s making use of the Limber approximation.
It has been shown in a recent work [86] that this may result in a biased analysis. Using the
exact expression for computing the angular power spectra would help to prevent this issue.
Second, I have computed the C(`)’s covariance with Eq. (4.28) as in IST:F [5], and this formula
only accounts for the Gaussian contributions. Comparison with covariances estimated from
N -body simulations showed that the inclusion of non-Gaussian effects may be necessary to
reach a better agreement with simulations [87]. In particular, including the super-sample
covariance effect may help to improve Fisher forecasts by making the signal-to-noise ratio
more realistic [88]. Third, in what I have called the “hybrid approach” I have neglected
the covariances between the Fourier GCsp auto-correlation and the other observables. The
computations done here with GCsp in the harmonic space suggest that these terms may be
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negligible. Nonetheless, providing an analytical modelling of these terms when GCsp is studied
in the 3D Fourier space would surely help to confirm this hypothesis.
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Conclusions

This thesis work has been carried out in the context of the ESA Euclid mission. As a member
of the Euclid Consortium, I contributed to two different areas of the mission:

• I worked on spectroscopic image simulations of NISP raw data, in order to validate the
data-reduction software pipeline of the spectroscopic channel of Euclid ;

• I performed a forecast about the inclusion of the correlations between the Euclid main
probes.

In the first half of my PhD I collaborated with the Milan INAF-IASF OU-SIR group in order
to perform the simulations necessary for the validation of the SIR data-reduction Pipeline.
I extended the official spectroscopic image simulator of Euclid built by OU-SIM, making it
more flexible and allowing full control on the simulation side. The most useful features of the
software are essentially two. First, the possibility to choose in a simple way the instrumental
effects to be simulated, together with the coordinates and the spectra of sources falling in the
field-of-view. Second, the possibility to run a full simulation-reduction chain, in which the SIR
Pipeline can be executed on the simulated images to extract the spectra. These features of the
software allowed the SIR group to use it for producing the input data for various validation test
cases: simple debugging of the reduction algorithms, optimising spectra extraction parameters
or testing the overall performances of the whole pipeline. At the moment of writing there are
also plans for applying it to the production of simulated spectra for the Euclid Legacy science
groups, in particular the Active Galactic Nuclei (AGN) and Galaxy Evolution working groups.

In the second half of my PhD I collaborated within the Euclid GC-SWG WP:Likelihood
in order to perform a Fisher forecast about the inclusion of the correlations between the Eu-
clid main probes: weak lensing (WL), photometric (GCph) and spectroscopic (GCsp) galaxy
clustering. The aim of the work was to assess the impact of these correlations on the dark en-
ergy Figure-of-Merit (FoM) and the marginalised constraints on the cosmological parameters.
In a previous forecast – the Euclid IST forecast [5], hereafter briefly denoted as IST:F – it
was shown that the cross-correlation between WL and GCph has a significant impact on the
scientific outcome of the mission, improving the FoM up to 400% and the constraints on the
parameters up to 60%. In particular, WL and GCph and their cross-correlation were studied
in the 2D harmonic space, using tomographic angular power spectra as observables. The GCsp

probe was instead studied as independent from the other two, using the 3D Fourier galaxy
power spectrum as the observable.

The work presented here extends the IST:F by including also the correlations between GCsp

and WL and between GCsp and GCph. A proper weight function for GCsp is introduced, allow-
ing us to compute the XC(WL,GCsp) and XC(GCph,GCsp) cross-correlations in the harmonic
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domain, and therefore including them as observables for the Fisher forecast. The GCsp auto-
correlation has been included following two different approaches: the harmonic approach and
the hybrid approach. In the harmonic approach it is implemented as a tomographic angular
power spectrum: this allows to naturally take into account the cross-covariances with the other
observables, but it significantly limits its constraining power because of the integration along
the line of sight. In order to circumvent this issue and partially recover the radial information,
I refined the tomographic binning of GCsp, starting from the 4 bins used in the IST:F up to
40 equally spaced bins. In the hybrid approach, the GCsp auto-correlation is included as an
independent probe by adding a posteriori its Fisher matrix, separately computed using the the
3D full anisotropic power spectrum, to the [3×2pt+XC(WL,GCsp)+XC(GCph,GCsp)] Fisher
matrix. In this way the full constraining power of GCsp is preserved, but the covariances of
its auto-correlation with the other probes are neglected.

I have performed the forecast in two scenarios: an optimistic scenario and a pessimistic
one, differing for the multipole values in which the angular power spectra are computed. In the
optimistic scenario the multipole range is 10 ≤ ` ≤ 3000 for angular GC and 10 ≤ ` ≤ 5000
for WL, while in the pessimistic scenario it is 10 ≤ ` ≤ 750 for GC and 10 ≤ ` ≤ 1500 for
WL. My analysis shows that the XC(WL,GCsp) and XC(GCph,GCsp) cross-correlations have
a much minor impact on the results than the XC(WL,GCph). Regarding this last, the results
agree with the ones obtained by IST:F, confirming its significance in improving the constraints
on cosmological parameters.

The cross-covariance terms between the GCsp auto-correlation and the other observables
– computed in the harmonic domain – always have a negligible impact on the constraints,
the maximum percentage variation being of 8% in the combination of GCsp with the 3× 2pt
statistics.

The cross-correlation observables do not add significant constraining power too. In the
pairwise combination of WL and GCsp the XC(WL,GCsp) improves the FoM by about 38% in
the harmonic approach and by 15% in the hybrid, which is more than a factor of 10 smaller than
the contribution given by its photometric counterpart XC(WL,GCph). In the combinations of
3× 2pt statistics with GCsp, when XC(WL,GCph) is included as well, the contribution of the
XC(WL,GCsp) cross-correlation becomes completely negligible, impacting the constraints only
by 0.05%, both in the optimistic and pessimistic scenarios. The XC(GCph,GCsp) is always
irrelevant in the hybrid approach, impacting the constraints by always less than 2%. In the
harmonic approach it gives a non-negligible contribution only in the pairwise combination
of GCph-GCsp, for which it improves the FoM by 38% when 40 tomographic bins are used
for GCsp. Its contribution drops to 5% when the XC(WL,GCph) is included in the analysis,
either in the optimistic and the pessimistic scenario. Therefore, the XC(GCph,GCsp) and
XC(WL,GCsp) cross-correlations are essentially negligible when added to the combination of
GCsp and the 3× 2pt statistics, both in the harmonic and hybrid approaches.

The analysis shows that the hybrid approach performs better than the harmonic. This is
due to the loss of information in the angular projection of the GCsp. Refining the tomographic
binning partially helps to mitigate this loss of radial information.

The main theoretical limitations of GCsp in the harmonic domain, when compared to
GCph, are the higher shot noise and the reduced redshift range. I have in fact shown that
the two probes become comparable to each other under two conditions. First, the shot noise
of GCsp has to be reduced to the same level of GCph. Second, only the tomographic bins of
GCph falling within the redshift range of GCsp have to be considered. As it has been already
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explained in Sec. 4.4, these conditions are not realistic, and the aforementioned limitations of
the harmonic GCsp probe cannot be overcome in this way.

I therefore conclude that probably it will be possible to neglect the GCsp-WL and GCsp-
GCph correlations in the future Euclid data analysis. Obviously this is not the last word
on the subject, as in the next future this forecast will be improved under various aspects.
The super-sample covariance contribution will be added to the covariance matrix, providing
a more realistic signal-to-noise ratio [87, 88]. The Limber approximation will be dropped in
the computation of the angular power spectra, in order to prevent eventual biased results [86].
Finally, the cross-covariance terms between 2D and 3D power spectra – here neglected in the
so-called hybrid approach – will be analytically modelled and computed.
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Appendix A

Fisher matrix expressions for gaussian
fields

A.1 Introduction

Under the assumption that the probes can be represented as a collection of correlated gaussian
fields a`m, there exists a closed expression for the Fisher matrix elements. In [5] two expressions
are reported, referred as second-order covariance and fourth-order covariance. Here I provide
a proof for the second-order expression, and I show that it is equivalent to the fourth-order
expression, following the treatment of [89].

Second-order covariance formula

For the auto-correlation of a probe A the Fisher matrix element reads

FAAαβ =
1

2

`max∑
`=`min

(2`+ 1) Tr

[
∂CAA(`)

∂α

(
ΣAA(`)

)−1 ∂CAA(`)

∂β

(
ΣAA(`)

)−1
]
. (A.1)

In the case of the cross-correlation between N probes the formula is the following [5]

FXC
αβ =

1

2

`max∑
`=`min

(2`+ 1)
∑

ABCD

∑
ijkm

∂CABij (`)

∂α

[(
ΣBC(`)

)−1
]
jk

∂CCDkm (`)

∂β

[(
ΣDA(`)

)−1
]
mi

.

(A.2)

The sum runs over all values of the probe indices A,B,C,D and the tomographic indices
i, j, k,m, and

[
ΣAB(`)

]
ij

= ΣAB
ij (`). This equation can be recast in the same form of the

auto-correlation. First, define the following multi-indices

I ≡ (A, i) J ≡ (B, j) K ≡ (C, k) M ≡ (D,m) , (A.3)

with significance increasing from right to left. Now define a block matrix CXC(`) such that:

CXC(`) ≡


C11(`) C12(`) . . . C1N (`)[
C12(`)

]T
C22(`) . . . C2N (`)

...
...

. . .
...[

C1N (`)
]T [

C2N (`)
]T

. . . CNN (`)

 ,
[
CXC(`)

]
IJ

= CABij (`) . (A.4)
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This block matrix is symmetric by construction:[
CXC(`)

]T
= CXC(`) .

A block matrix ΣXC(`) can be defined with the same conventions. Therefore, the nested sum
of Eq. (A.2) can be rewritten as

∑
IJKM

(
∂CXC(`)

∂α

)
IJ

[(
ΣXC(`)

)−1
]
JK

(
∂CXC(`)

∂β

)
KM

[(
ΣXC(`)

)−1
]
MI

,

which is explicitly a matrix trace:

FXCαβ =
1

2

∑
`

(2`+ 1) Tr

[
∂CXC(`)

∂α

(
ΣXC(`)

)−1 ∂CXC(`)

∂β

(
ΣXC(`)

)−1
]
. (A.5)

Fourth-order covariance formula

The fourth order covariance formula for the Fisher matrix of the AA auto-correlation reads

FAAαβ =

`max∑
`=`min

∑
i≤j,k≤m

∂CAAij (`)

∂θα
Cov−1

[
CAAij (`), CAAkm (`)

] ∂CAAkm (`)

∂θβ
, (A.6)

while when including also cross-correlations there is also a sum over the block descriptors
A,B,C,D

FXC
αβ =

`max∑
`=`min

∑
(AB,CD)sym

∑
(ij,km)sym

∂CABij (`)

∂θα
Cov−1

[
CABij (`), CCDkm (`)

] ∂CCDkm (`)

∂θβ
. (A.7)

The notation (ij, km)sym means that the sum runs run over the pairs ij, km such that i ≤ j
when A = B and k ≤ m when C = D. Analogously (AB,CD)sym stands for summing over
the unique pairs AB,CD independently of the order of the letters A,B and C,D in the single
pairs. From a combinatorical point of view this means the pairs AB,CD are the combinations
with replacement of two elements drawn from N , i.e. the 2-combinations of N elements. This
means that for the auto-correlation only the upper triangular part of the C(`) matrices is to be
considered. To make things clearer Eq. (A.7) can be turned into the same form of Eq. (A.6),
as it has been done in the previous section. In particular∑

(AB,CD)sym

∑
(ij,km)sym

(. . . ) =
∑

I≤J,K≤M
(. . . ) .

Considering only the upper triangular part of the block matrix Eq. (A.4) precisely means to
take only the upper triangular part of the auto-correlations and the whole matrices for all the
2-combinations of pairs A 6= B,C 6= D. Thus

FXC
αβ =

`max∑
`=`min

∑
I≤J,K≤M

∂CXCIJ (`)

∂θα
Cov−1

[
CXCIJ (`), CXCKM (`)

] ∂CXCKM (`)

∂θβ
. (A.8)
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A.2 Linear algebra tools

In this section I follow [83], referring to it for all missing proofs.

Matrix vectorisation The vectorisation of a p× q matrix X is defined as an pq× 1 vector

vec(X) =

 x1
...
xm

 , (A.9)

where xi is the i-th column of X.

Commutation matrix The commutation matrix Kpq of order pq × pq is defined as

Kpq =

p∑
i=1

q∑
j=1

(
Hij ⊗HT

ij

)
, (A.10)

where the p × q matrix Hij has a unit element at (i, j)th position and zero elsewhere. The
commutation matrix has the following property

Kpq(A⊗B)Krs = B ⊗A , (A.11)

where A,B have sizes p × q and r × s respectively. The symbol ⊗ is the Kronecker product
of matrices: here I will simply use its properties, referring to [83] for the proofs. If X is p× p
square matrix then

Kpp(X ⊗X) = (X ⊗X)Kpp . (A.12)

The typical element of Kpp is
(Kpp)ij,km = δimδjk . (A.13)

Half-vectorisation If X is a p× p symmetric matrix the half-vectorisation of X is defined
as a p(p+ 1)/2 vector formed from the elements of the upper triangular sector of the matrix,
taken columnwise

vecp(X) =



x11

x12

x22
...
x1p
...
xpp


= vecp

(
XT
)
. (A.14)

Transition matrix The half-vectorisation is related to the vectorisation through the tran-
sition matrix Bp, which has size p2 × p(p+ 1)/2 and is such that

vecp(X) = BT
p vecp(X) (A.15)

vec(X) = (B+
p )T vecp(X) ,

127



A.2. LINEAR ALGEBRA TOOLS

where B+
p has size p(p+ 1)/2× p2 and is the Moore-Penrose left pseudo-inverse of Bp

B+
p ≡ (BT

p Bp)
−1BT

p . (A.16)

The typical element of the transition matrix is

(Bp)ij,km =
1

2
(δikδjm + δimδjk) , i ≤ p, j ≤ p, k ≤ m ≤ p . (A.17)

It can be shown [83] that Bp has full column rank

rank(Bp) =
p(p+ 1)

2
, (A.18)

and

B+
p Bp = 1 p(p+1)

2

, BpB
+
p =

1

2

(
1p2 +Kpp

)
≡Mp . (A.19)

The p2 × p2 matrixMp has the typical element

(Mp)ij,km =
1

2
(δikδjm + δimδjk) , i, j, k,m ≤ p , (A.20)

and it satisfies
Mp(X ⊗X) = (X ⊗X)Mp . (A.21)

Moreover, theMp matrix is singular:

rank(Mp) = rank(BpB
+
p ) ≤ min

[
rank(Bp), rank(B+

p )
]
≤ rank(Bp) =

p(p+ 1)

2
< p2 .

SinceMp has not full rank, it must be det (Mp) = 0.
Given a p× p matrix Y , it follows that Y ⊗Y is p2× p2 and its indices can be represented

as pairs of the indices of Y :
(Y ⊗ Y )ij,km = YikYjm .

Now consider the p(p+ 1)/2× p(p+ 1)/2 matrix BT
p (Y ⊗ Y )Bp, with typical element[

BT
p (Y ⊗ Y )Bp

]
ij,km

=
1

2
[YikYjm + YimYjk] , i ≤ j ≤ p, k ≤ m ≤ p . (A.22)

The determinant of this matrix is

det
(
BT
p (Y ⊗ Y )Bp

)
= 2−

1
2
p(p−1) det(Y )p+1 , (A.23)

and, if Y is non-singular[
BT
p (Y ⊗ Y )Bp

]−1
= B+

p (Y −1 ⊗ Y −1)(B+
p )T . (A.24)

On the other hand the p2 × p2 matrix BpB
+
p (Y ⊗ Y ) has the same typical element of the

previous one:[
BpB

+
p (Y ⊗ Y )

]
ij,km

= [Mp(Y ⊗ Y )]ij,km =
1

2
(δiaδjb + δibδja) (Y ⊗ Y )ab,km

=
1

2
(YikYjm + YimYjk) , i, j, k,m ≤ p .

But it is singular, since det(Mp) = 0.
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Trace-Kronecker identity A useful matrix identity [83] is

Tr
(
ATBCDT

)
= vec(A)T (D ⊗B) vec(C) . (A.25)

A special case of this equality follows by assuming all matrices to be symmetric and setting
B = D

Tr (ABCB) = vec(A)T (B ⊗B) vec(C) . (A.26)

A.3 Equivalence between second order and fourth order Fisher
formulas

Here I prove the equivalence between the second-order and fourth-order covariance formulas
for the Fisher matrix. In practice, to make use of the fourth-order formula the C(`) matrices
will be transformed into vectors, since the covariance defined Eq. (4.28) is a matrix labelled
by pairs of indices. In other words it is convenient to make use of the matrix vectorisation
formalism introduced in section A.2. Here for simplicity I drop the superscripts from the
C(`) and Σ(`) matrices, since the results I prove will be generalised for both the auto- and
the cross-correlation cases. Therefore I assume to deal with matrices C(`) and Σ(`) that are
symmetric with shape p× p. Now by using Eq. (A.26) and proceeding as in [89]

Tr
(
AΣ(`)−1DΣ(`)−1

)
= vec(A)T

(
Σ(`)−1 ⊗Σ(`)−1

)
vec(D)

= vecp(A)TB+
p

(
Σ(`)−1 ⊗Σ(`)−1

) (
B+
p

)T
vecp(D)

= vecp(A)T
[
BT
p (Σ(`)⊗Σ(`))Bp

]−1
vecp(D)

=
2

2`+ 1
vecp(A)T

[
2

2`+ 1
BT
p (Σ(`)⊗Σ(`))Bp

]−1

vecp(D)

= vecp(A)T Cov−1 [C(`),C(`)] vecp(D) ,

(A.27)

where the covariance matrix Cov [C(`),C(`)] has been defined as

Cov [C(`),C(`)] ≡ 2

2`+ 1
BT
p (Σ(`)⊗Σ(`))Bp . (A.28)

Then it follows that

2`+ 1

2
Tr

[
∂C(`)

∂θα
Σ(`)−1∂C(`)

∂θβ
Σ(`)−1

]
= vecp

(
∂C(`)

∂θα

)T
[Cov (C(`),C(`))]−1 vecp

(
∂C(`)

∂θβ

)
.

(A.29)
Note that using Eq. (A.22) it follows

[Cov (C(`),C(`))]ij,km =
1

2`+ 1

[
Cik(`)Cjm(`) + Cim(`)Cjk(`)

]
, i ≤ j ≤ p, k ≤ m ≤ p ,

(A.30)
which is the same form of Eq. (4.28). Now let X,Y be two square matrices of shape p and M
a square matrix of shape p(p + 1)/2. Consider the following sum, in which the ranges of the
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indices are explicitly written:

∑
a≤b,c≤d

XabMab,cd Ycd ≡
p∑

b,c=1

∑
a≤b, c≤d

XabMab,cd Ycd . (A.31)

The composite indices ab ≡ (a, b), cd ≡ (c, d) both spans the range 1, . . . , p(p+1)/2. Therefore

p∑
b,c=1

∑
a≤b, c≤d

XabMab,cd Ycd =

p(p+1)
2∑

ab=1

p(p+1)
2∑

cd=1

[vecp(X)]ab [M ]ab,cd [vecp(Y )]cd

= vecp(X)TM vecp(Y ) .

(A.32)

Finally ∑
a≤b,c≤d

XabMab,cd Ycd = vecp(X)TM vecp(Y ) . (A.33)

Therefore the RHS of the fourth order formulas can be rewritten using the half-vectorisation.
For the auto-correlation it follows that

FAA
αβ =

`max∑
`=`min

vecp

(
∂CAA(`)

∂θα

)[
Cov

(
CAA(`),CAA(`)

)]−1
vecp

(
∂CAA(`)

∂θβ

)
, (A.34)

and using Eq. (A.29) the equality between Eq. (A.1) and Eq. (A.6) follows. For the cross-
correlation it is convenient to take the rewritten form Eq. (A.8), from which Eq. (A.33) can
be directly used to get

FXC
αβ =

`max∑
`=`min

vecp

(
∂CXC(`)

∂θα

)[
Cov

(
CXC(`),CXC(`)

)]−1
vecp

(
∂CXC(`)

∂θβ

)
. (A.35)

Finally using again Eq. (A.29) the equivalence between Eq. (A.5) and Eq. (A.7) follows.

A.4 Proof of second order covariance formula

A.4.1 The field perspective

The starting hypothesis is that the spherical harmonics expansion coefficients aAi`m follow a
multivariate gaussian distribution with zero mean and covariance matrix S

L(a`|θ) =
exp

(
−1

2a
T
` S−1a`

)√
(2π)n|S|

, (A.36)

where θ is the vector of the parameters and a` is a vector collecting the aAi`m. The logarithm
of this probability distribution function is

lnL(a`|θ) = −1

2

[
n ln(2π) + ln |S|+ aT

` S−1a`
]

= −1

2

[
n ln(2π) + ln |S|+ Tr(S−1A)

]
,

(A.37)
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with A ≡ a`aT` . The computation of the second derivative yields, after taking the expectation
value

Fαβ(`) = −〈lnL(x|θ), αβ〉 =
1

2
Tr
(
S−1S, αS−1S, β

)
, (A.38)

where S = 〈A〉 and I have used the following matrix identities:

(ln |S|), α = Tr(S−1S, α), (S−1), α = −S−1S, αS−1 . (A.39)

Now let us specify how the aAi`m have been collected into the vector a`. Working at fixed
multipole `, the vector a` has a multi-index I = (m, i,A). Each of these indices runs on
a different range, and the range of the tomographic index i may depend on the probe A
considered. Summarising:

• m varies from −` to `;

• i varies from 1 to NA;

• A varies from 1 to N .

Here N being the number of probes and NA the number of tomographic bins for probe A. I
choose to order the array a` varying the three indices with a significance increasing from left
to right. With this choice, the matrix S has the following block form:

S = Σ(`)⊗ 12`+1, Σ(`) =


Σ11(`) Σ12(`) · · · Σ1N (`)

Σ21(`) Σ22(`) · · · Σ2N (`)

...
...

. . .
...

ΣN1(`) ΣN2(`) · · · ΣNN (`)

 . (A.40)

Using the properties of the Kronecker product it follows that

Tr
[
S−1S, αS−1S, β

]
= Tr

[(
Σ(`)−1Σ(`), αΣ(`)−1Σ(`), β

)
⊗ 12`+1

]
= Tr

(
Σ(`)−1Σ(`), αΣ(`)−1Σ(`), β

)
Tr (12`+1)

= (2`+ 1) Tr
(
Σ(`)−1Σ(`), αΣ(`)−1Σ(`), β

)
= (2`+ 1) Tr

(
Σ(`)−1C(`), αΣ(`)−1C(`), β

)
.

(A.41)

In the last line I have used the fact that, in this model, the shot noise does not depend on
the cosmological parameters. The C(`)’s block matrix C(`) has the same form of Σ(`) of
Eq. (A.40), with entries CABij (`) instead of Σ(`)ABij . From Eq. (A.38) I can finally write

Fαβ(`) =
2`+ 1

2
Tr
(
Σ(`)−1C(`), αΣ(`)−1C(`), β

)
. (A.42)

Now, I sum over the multipoles `, considering them as independent:

Fαβ =
∑
`

2`+ 1

2
Tr
[
Σ(`)−1C(`), αΣ(`)−1C(`), β

]
, (A.43)

thus obtaining the generic form for the second order covariance formula.
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A.4.2 The estimator perspective

In the previous section I have evaluated the expression of the Fisher matrix for a multivariate
normal distribution; then, I specialised this expression for the field perspective, when the
observables are the a`m’s. In this section I will derive the Fisher matrix expression when the
observables are the estimator Ĉ(`)’s, defined as

ĈABij (`) ≡ 1

2`+ 1

∑̀
m=−`

aAi`ma
Bj
`m . (A.44)

One may argue that, since the a`m’s are normally distributed, also the Ĉ(`) should be normally
distributed. However, this is not true; in the following I obtain the Ĉ(`) probability density
function (pdf) together with its corresponding Fisher matrix. Since C(`)’s with different ` are
assumed to be uncorrelated, I will work at fixed `. The Ĉ(`)’s likelihood is

L(Ĉ|θ) =

∫
da`L(a`|θ)

∏
A,B

∏
i,j

δ

(
Ĉ(`)ABij −

1

2`+ 1

∑̀
m=−`

aAi`ma
Bj
`m

)
. (A.45)

Using the Dirac delta function the L(a`|θ) can be taken out of the integral

L(Ĉ|θ) =
f(Ĉ)√
(2π)n|S|

exp

(
−1

2
Tr(S−1A)

)
, (A.46)

where f(Ĉ) is the result of the integral in the alm’s space. Taking the logarithm of the previous
equation it follows

lnL(Ĉ|θ) = ln

(
f(Ĉ)√
(2π)n

)
− 1

2
ln(|S|)− 1

2
Tr(S−1A) . (A.47)

Proceeding as in the previous section and using 〈A〉 = S the expectation value of the second
derivative becomes 〈

lnL(Ĉ|θ), αβ

〉
= −1

2
Tr(S−1S, βS

−1S, α) . (A.48)

Finally, performing the same manipulations of the previous section Eq. (A.43) follows. This
proves the equivalence between the field and the estimator perspectives.
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Appendix B

SEYFERT: SurvEY FishEr foRecast
Tool

The forecast that has been presented in Chapter 4 has been performed using a code named
SEYFERT. The code is written in modern Python3 – it consists of 11 414 lines of Python code,
excluding blank lines and comments1 – and it has been developed by Luca Paganin (me) and
Marco Bonici, under the scientific supervision of Melita Carbone. The structural design of the
code, especially at the beginning of the work, was supervised by Stefano Davini. The code is
able to compute the Fisher matrices for the Euclid main probes, i.e. WL, GCph, and GCsp,
together with all their possible cross-correlations. The observables employed are the angular
power spectra in the Limber approximation, while the computation of the Fisher matrix is
performed using the recipe detailed in Sec. 4.2. The code is also able to take an external Fisher
matrix as input, as it has been done to implement the so-called hybrid approach explained in
Sec. 4.2.3. In this case the GCsp(Pk) Fisher matrix computed by the IST Forecast [5] from
the spectroscopic galaxy-galaxy Fourier power spectrum has been taken as an external input.

B.1 Main concepts and classes

In this section the main concepts that have been implemented in the code are described. Each
of these concepts has been implemented in a SEYFERT Python class, and belongs to a specific
sub-module of the SEYFERT Python package, which are briefly described in the following.

B.1.1 Core terms

Probe With the word “probe” it is denoted a generic cosmological entity that can be as-
sociated to a field f that can be expanded in spherical harmonics, like in Eq. (4.1). In this
sense, the probes considered in the work presented in Chapter 4 are 3: weak lensing (WL),
photometric galaxy clustering (GCph), and spectroscopic galaxy clustering (GCsp). Capital
letters in alphabetic order (A, B, C,...) are used to indicate a generic probe. In SEYFERT a
probe is identified by mean of a single string, probe_key, which simply stores the name of the
probe itself.

1To count the lines of code I used the open-source tool cloc https://github.com/AlDanial/cloc.
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Observable The word “observable” is used to denote a generic two-point function given by
the correlation of two probes. Specifically, in SEYFERT the observables are the angular power
spectra, i.e. the harmonic transform of the two-point correlation function.

Data-vector A “data-vector” is a list of the observables used to compute a Fisher matrix.
If a data-vector contains more than one observable, all the pairwise cross-covariances between
the included observables are included in the covariance matrix associated to the data-vector
itself.

B.1.2 Cosmology module

This SEYFERT module collects the class implementations for the computation of all the relevant
cosmological quantities. The module contains the source code for the execution of the first
two SEYFERT tasks, i.e. PowerSpectrum and Angular (see Sec. B.2).

Cosmology This is one of the most important classes of the Cosmology module. It contains
the values of the cosmological parameters, and implements methods to compute the Hubble
parameter H(z), the comoving distance χ(z), and the growth factor D(z). It also possesses an
instance of the PowerSpectrum class and can be invoked to compute the power spectra. This
class is possessed by all the other classes representing derived quantities which depend on the
above mentioned basic cosmological functions.

PowerSpectrum This class implements the concept of matter power spectrum. It is used for
storing linear and nonlinear matter power spectra, and it can also be invoked to compute them.
The computation is done via a call to the selected Boltzmann solver, which can be either CAMB
or CLASS. The power spectra are stored as 2D numpy arrays, with the two axes representing
the redshift and the wave-number dimensions respectively. This object also stores the redshift
and the wave-number grids on which the power spectra are evaluated by the Boltzmann solver.
The most important pieces of data that this class manages are the following:

• z_grid: a 1D numpy array representing the redshift grid on which the power spectrum
is evaluated.

• k_grid: a 1D numpy array representing the wave-number grid on which the power spec-
trum is evaluated.

• lin_p_mm_z_k: a 2D numpy array representing the linear matter power spectrum evalu-
ated on the 2D grid defined by z_grid and k_grid.

• nonlin_p_mm_z_k: a 2D numpy array representing the non-linear matter power spectrum
evaluated on the 2D grid defined by z_grid and k_grid.

PhysicalParameter This is a basic simple class implementing the concept of a physical
parameter of the forecast, meaning that it can be a cosmological parameter or a nuisance
parameter. A parameter can be free to vary, in the sense that derivatives with respect to it
can be computed, or it can be fixed.
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RedshiftDensity This class represents the redshift distribution of a given cosmological
probe, and as such is uniquely labeled by a probe_key. More concretely, the resdshift density
is associated to a particular tracer of the dark matter distribution. The most important task
of this class is to provide the tomographic normalised density distribution nAi (z) defined in
Eq. (4.5). In order to do the task, it implements an instrument response parameterised by the
double gaussian defined in Eq. (4.6). The main data structure contained in this class is a 2D
numpy array n_iz storing the values of the tomographic normalised density nAi (z) evaluated
on the PowerSpectrum redshift grid.

WeightFunction This class implements the concept of the tomographic weight function
WA
i (z) appearing in the Limber integral Eq. (4.4). Three subclasses of this class exists,

implementing the GCph,GCsp, and WL weight functions defined by equations Eq. (4.12),
Eq. (4.14), and Eq. (4.21) respectively. A WeightFunction is uniquely identified by its probe
index A (the probe_key). The class possesses an instance of the Cosmology class and an
instance of the RedshiftDensity class. The probe_key of the density must be equal to the
one of the weight function, with the only exception of the LensingWeightFunction, i.e. the
weight function associated to WL Eq. (4.21). This is because the WL is computed by using
the redshift density of GCph.

The most important piece of information carried by the WeightFunction class is a 2D
numpy array w_iz with the values of WA

i (z) evaluated on the PowerSpectrum redshift grid.

KernelFunction This is mainly a convenience class which defines the kernel function against
which the matter power spectrum is integrated in Eq. (4.4). The kernel functions are defined
as in [5], i.e.

KAB
ij (z) ≡ c

WA
i (z)WB

j (z)

H(z)χ2(z)
(B.1)

The main task of the KernelFunction class is to compute and store a 3D numpy array k_ijz
containing the values of the kernel. This array is then multiplied by the 2D array containing
the values of the non-linear matter power spectrum and it is integrated along the redshift
dimension.

AngularCoefficient This class represents a tomographic angular power spectrum CABij (`).
As such it possesses a KernelFunction instance, which in turn comes with a Cosmology
instance and two WeightFunction instances. An AngularCoefficient is identified by mean
of two strings, which are the strings identifying the two weight functions, i.e. two probe_key’s
.

The main operations performed by the AngularCoefficient class are the following:

• evaluate the power spectrum in Limber approximation on the given multipoles ` grid.
The computation is performed via a two-dimensional interpolation of the non-linear
matter power spectrum, which is defined on a z-k grid. The result is stored in the
attribute limber_power_spectrum_l_z, and it is a 2D array: the two dimensions being
the multipole and redshift dimensions respectively.
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• evaluate the kernel function using the already evaluated weight functions, which are
computed and stored before starting the computation of the C(`)’s themselves (see
AngularCoefficientsCollector paragraph).

• multiply the kernel and the Limber power spectrum, and integrate over the redshift
dimension using numerical Newton-Cotes discrete methods (see Sec. B.4). This method
is way faster than interpolation and then integration via Gauss quadrature rules (see
discussion in Sec. B.4).

The result of the computation is stored in a 3D numpy array c_lij, which stores the values
of the power spectra for each combination `, i, j. The name of the attribute is self-descriptive
about the ordering of the axes, i.e. `, i, and j are respectively the first, second, and third
dimension of the array.

AngularCoefficientsCollector This a collector class whose aim is to orchestrate the com-
putation of all angular power spectra that can be constructed with the selected cosmological
probes. The weight functions of the probes are evaluated once and then are re-used for
computing the kernel functions of the angular power spectra. This is the main class that is
instantiated and invoked to execute the Angular task. The main steps carried out by this
class are

• Load the cosmology evaluated by the PowerSpectrum task, with the already computed
matter power spectra.

• Evaluation and storage of the weight functions for the present probes.

• Loop over all the possible angular power spectra, computing them efficiently by re-using
the already computed weight functions and matter power spectra.

• Store the results on disk in an HDF5 file.

B.1.3 Derivatives module

This module is responsible for the computation of the C(`)’s derivatives with respect to the free
parameters of the forecast. The computation is done via the SteM fitting procedure described
in Sec. B.5 [82]. The computation of the derivative with respect to a parameter relies on the
already computed spectra for 15 different values of the parameter itself, which are the output
of the Angular task.

SteMClDifferentiator The class is responsible for the computation of the derivative itself.
It loads the angular power spectra for all the values of the current parameter, and for each
combination of `, i, j it performs the SteM iterative linear fit, yielding the slope of the regression
as the value of the derivative. In practice the input for the computation of the derivative is a
4-dimensional array c_dvar_lij, which represents a stacked collection of c_lij arrays along
the first dimension, which corresponds to the physical parameter (dvar) in question. The
linear regression must be performed along the first dimension of the array, for all values of
the last three indices. Thus it is not straightforward to implement this procedure in the most
efficient way. The algorithimc details of the implementation that has been done in SEYFERT
are reported in Sec. B.5.
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ClDerivative This class acts as container for the values of the derivative CABij (`),θ of a
single angular power spectrum with respect to a free parameter θ. It possesses an instance of
SteMClDifferentiator, which is used to evaluate the derivative, and stores the result of the
computation in a 3D numpy array dc_lij. The ordering of the axes is the same of the c_lij
array stored by the AngularCoefficient class.

ClDerivativeCollector This class is a collector of ClDerivative instances, and it is the
main entry point of the Derivative task. The derivatives are evaluated through a call to a
method of this class, which then stores them in a python dictionary. The results are then
saved to disk on a HDF5 file.

B.1.4 Fisher module

This is the module devoted to the computation of the Fisher matrix elements, together with
the final results of the forecast obtained from the inversion of the Fisher matrices themselves.

ClDataVector This is a simple class defining a the structure of the data-vector for the com-
putation of a given Fisher matrix. It is essentially a list of pairs (A,B) of probe_key’s, each
one identifying a kind of angular power spectrum. In symbols it can be written as

[(A1,B1), (A2,B2), . . . , (AN,BN)] , (B.2)

where N is the number of pairs involved. The most important task of this class is to establish
the block ordering structure of the covariance matrix of the C(`)’s, along with the ordering of
the vectorised derivatives of the angular power spectra to be used in the computation of the
Fisher matrix elements. Each ClDataVector has a name, that can be deduced from its entries
according to the rules defined in Sec. 4.2.1. In practice, the rules for building the name are
the following:

1. the pair (A,A) is mapped to the string “A”;

2. the pair (A,B) with A 6= B is mapped to the string “XC(A,B)”;

3. the full name is built by mapping all pairs into strings according to the two rules above
and concatenating all the strings with plus signs. The final result is wrapped with square
brackets, in order to delimit the datavector extent.

Some examples:

[(WL,WL)] −→ “[WL]”

[(WL,WL), (GCph,GCph)] −→ “[WL + GCph]”

[(WL,WL), (WL,GCph)] −→ “[WL + XC(WL,GCph)]”

[(WL,WL), (GCph,GCph), (WL,GCph)] −→ “[WL + GCph + XC(WL,GCph)]” .

(B.3)
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ClCovarianceMatrix This class represents the covariance matrix of the C(`)’s. This is im-
plemented through a 3D numpy array: the first dimension represent the multipoles in which
the C(`)’s are sampled. The last two dimensions are two multi-indices representing the vec-
torisation of the tomographic indices pairs of the involved C(`)’s. More explicitly, for a fixed
` and a given pair A,B the CABij (`) is a tomographic matrix. This matrix is symmetric if
A = B, while when A 6= B it is not even necessarily square as well as not symmetric. To
build the covariance matrix it is necessary to turn this matrix into a vector, using the vec or
vecp operators introduced in Sec. A.2. This is realised through a mapping between a pair of
tomographic indices i, j and a single multi-index I. More specifically, assuming A 6= B:

[vecp(CAA(`))]I = CAAij (`), [vec(CAB(`))]I = CABij (`) . (B.4)

The range of the multi-index I can be denoted as NAB, and

NAA =
NA(NA + 1)

2
, NAB = NA ·NB . (B.5)

With this notation, the block AB-CD of the covariance matrix is a NAB ×NCD matrix, and
can be rewritten as {

Cov
[
CAB(`), CCD(`)

]}
IJ

= Cov
[
CABij (`), CCDkm (`)

]
. (B.6)

Each of these blocks is used to build the full covariance matrix, with a layout which is based on
the data-vector ordering, as the examples in Sec. 4.2.1 show. In principle this block structure is
equivalent to the definition of a quadruple multi-index, mapping (A,B, i, j) to a single number.
Both solutions, if correctly implemented, should give the same answer.

FisherEvaluator This is a class whose task is to compute the Fisher matrix elements for
a given data-vector. It takes the necessary inputs for building the covariance matrix and the
C(`)’s derivative vectors, and performs the computation of the Fisher matrix using Eq. (4.34)
and Eq. (4.35).

FisherMatrix This class represents the Fisher matrix. The matrix is stored in the matrix
attribute, which is a pandas DataFrame, a data structure allowing to label rows and columns
of a table using strings. This class also stores the name of the Fisher matrix, together with
two python sets specifying which of the parameters are nuisance and which are cosmological.

FisherAnalysis This class works as a container, holding a dictionary of FisherMatrix
objects. It also implements methods for computing the parameters of the gaussians and
the ellipses that are drawn in the contour plots.

B.2 Dataflow and execution modes

In this section it is described the dataflow of the code, along with the execution modes available.
The dataflow of SEYFERT can be subdivided in four main different computational tasks:

1. PowerSpectrum: computation of matter power spectra;
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2. Angular: computation of angular power spectra;

3. Derivative: computation of the derivatives of the angular power spectra;

4. Fisher: computation of the Fisher matrices.

These tasks are described in detail in the next subsection. A complete run of the code comprises
the execution of all the above described tasks, which must be run in the correct order. However,
it is not necessary to run all the steps at once. In fact, one of the main strengths of SEYFERT is
its high modularity, i.e. the possibility to run each task separately, taking the necessary inputs
from the output of the previous steps. In particular, for the forecast described in Chapter 4,
the power spectra were not computed with SEYFERT. Instead the IST:F power spectra [5] have
been taken as external inputs, after the appropriate file formats conversions.

B.2.1 Computation tasks

In this section a schematic description of the sequential steps done in each task is provided.

PowerSpectrum

This is the step in which the linear and non-linear matter power spectra are evaluated. The
computation is done via calling an external Boltzmann solver – choices are among CAMB or
CLASS– and it is repeated for different values of the cosmological parameters. This is because
the numerical differentiation algorithm employed for computing the derivatives needs that the
C(`)’s – and thus also the matter power spectra – are computed for different values of each
parameter. The computation of the matter power spectra is performed invoking a specific
method of the Cosmology class described in Sec. B.1.

Angular

This is the step in which the angular power spectra are evaluated starting from the mat-
ter power spectra. The input power spectra can be either computed by SEYFERT in the
PowerSpectrum task, or taken as external inputs. The computation of the redshift integral is
performed via numerical integration with composite Newton-Cotes quadrature rules, described
in detail in Sec. B.4. Like the PowerSpectrum task, also the Angular task must be executed
multiple times, separately varying each of the parameters. The computation of the C(`)’s is
performed invoking a specific method of the AngularCoefficientsCollector class described
in Sec. B.1, and it is repeated for all kind of C(`)’s that can be constructed from the probes
present in the forecast.

Derivative

Here the derivatives of the angular power spectra are computed using the SteM numerical
differentiation method, which is detailed in Sec. B.5. The varied angular power spectra are
loaded from the output of the Angular task, and then the SteM fitting procedure is applied for
each parameter. The derivatives are computed both for the cosmological and for the nuisance
parameters. The class instantiated by this task is ClDerivativeCollector, with which then
the derivatives with respect to a given parameter are computed. This is done for all kind of
C(`)’s that can be constructed from the probes present in the forecast.
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Fisher

Here the Fisher matrices are computed, using the input of the previous Angular and Derivative
steps. The task accepts more than one data-vector in the form of a instance of the ClDataVector
class. The computation is done using the FisherEvaluator class. For a given data-vector,
this class builds the covariance matrix, along with the vectorised derivatives, and then applies
the formula Eq. (4.35). A sum over the multipoles is done to obtain the final Fisher matrix
elements. The result of the computation are the full Fisher matrices for each of the data-vector
that have been specified.

B.2.2 Execution modes

The main entry point of the code is the job_submitter script, which among the other options
accepts the execution mode through the --execution command line argument. The code can
be executed in two ways: interactive and batch.

Interactive execution

The interactive way can be run on any machine, and it is fully sequential. This especially
affects the performances of the PowerSpectrum and Angular tasks. These tasks must be
repeated multiple times for each free parameter, in order to produce the variations for the
computation of the derivatives of the angular power spectra. Since in the interactive mode all
these calculations are done sequentially, this mode is slower than the batch execution, with
which multiple jobs are executed in parallel. This mode is intended to be used for debugging
purposes, since it allows a step-by-step monitoring of the code execution, or if the user does
not have access to an LSF cluster. The runtime of this mode varies significantly depending on
the configuration chosen. In particular it takes about 22 minutes when using 4 bins for GCsp,
which is the lightest configuration. Instead it takes 83 minutes in the most time-consuming
settings, i.e. when using 40 GCsp bins. The runtimes reported here for the interactive mode
have been obtained by running on a workstation with Ubuntu 20.04 LTS, with a RAM of
32 GB and a Intel Core CPU i7-4820K with a clock frequency of 3.70 GHz.

Batch execution

The batch mode allows to parallelise the independent computational steps, but needs to be
run on a cluster equipped with the LSF orchestration system [90]. The parallelism is done
via submitting multiple jobs with the bsub LSF command. The parallel jobs are the ones
belonging to the same task, while the four tasks must be run one after another. This is
because each task takes as input the outputs of one or more of the previous tasks. The batch
execution is more efficient than the interactive, taking about 10 minutes to run with 4 GCsp

bins, and ∼ 40 minutes when the bins are 40. This means the batch execution is faster than
the interactive roughly by a factor of ∼ 2. The runtimes reported here for the batch mode
have been obtained by running on the INFN Genova computing facility.
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Figure B.1: Example view of the forecast configuration JSON file.

B.3 File formats

This section briefly describes the file formats adopted in SEYFERT, both for the configuration
and the output data storage.

B.3.1 Configuration files

All SEYFERT configuration files are written in JavaScript Object Notation (JSON) format. This
format has been chosen for the following reasons:

• JSON files are essentially collections of key-value pairs, therefore each entry must have
a name and a value. This comes automatically with readability, since the keys are self-
descriptive of what they point to (the values). Moreover JSON supports all the basic
types like float, string and bool.

• Python has a standard library (json) that is very easy to use, and allows to do JSON
file I/O operations with few lines of code. A JSON file can be easily read into a Python
dictionary, which is a built-in data structure. Viceversa, a python dictionary can be
easily dumped to a JSON file.

• JSON can be nested. That is, the main dictionary can contain other dictionaries as values
of its keys. This allows to put highly structured information into a single file.

• JSON is a simple text format that can be easily read, written, and maintained. If a new
option or a new group of options is needed it is sufficient to add a new entry with a new
value, which can also be a dictionary of values. This operation won’t affect any of the
other options that were already present.
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Figure B.2: Example view of the forecast configuration GUI.

In SEYFERT there are two kinds of configurations files: the forecast configuration and the
task configurations.

Forecast Configuration

The forecast configuration is a single JSON file, which specifies the global configuration of the
forecast. In Fig. B.1 it is shown an example view of the forecast configuration. The file is
highly structured, being 240 lines long, so it cannot be expanded on a single screen view. The
main keys are shown in the figure:

• metadata: metadata describing the file itself, like author, date and time of creation and
version;

• synthetic_opts: these are shortcut high-level options that are processed to create the
configuration file automatically. For example if scenario is set to optimistic, the code
automatically sets the optimistic multipole ranges for the present probes. However, these
options are only used as a shortcut for the automatic creation of the file, and are written
to the file for descriptive reasons. After the file is created the other settings can be
modified manually.

• survey: general options about the survey, e.g. the sky fraction covered.

• cosmology: settings of the cosmology, i.e. flatness and the settings of the cosmological
parameters.

• probes: this a nested dictionary containing the settings for the single probes of the
forecast.
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SEYFERT has also a graphic user interface (GUI) window that allows to create and modify the
configuration file in a user-friendly way. An example view of the GUI is shown in Fig. B.2.
After editing the settings the user can click on the “Save to JSON” button: this action will
trigger the opening of a dialog window, in which the user can insert the name of the file to
be saved. After finishing, the configuration will be dumped to a JSON file ready to be used by
the code.

Task configurations

Each of the SEYFERT tasks has configuration file, containing options that are specific to the
computation that is performed in that task.

PowerSpectrumConfig The configuration for the PowerSpectrum task. It essentially contains
high-level options for the Boltzmann code, setting the sampling and the extent of the k and z
grids. It also contains the name of the Boltzmann code to use, i.e. CAMB or CLASS.

AngularConfig The configuration for the Angular task. It specifies the order of the inte-
gration quadrature rule, together with the interpolation settings for computing the Limber
approximated matter power spectrum.

DerivativeConfig The configuration for the Derivative task. In past versions of the code
this was used, but now it is empty since there was no need of specific options for this task.

FisherConfig The configuration for the Fisher task. Like the DerivativeConfig it was
used in previous versions of SEYFERT, while now it is not being used any more.

B.3.2 Data files

The output data of SEYFERT are almost always stored in binary HDF5 format. The main
advantages of this format are the following:

• It can contain natively numpy arrays, which are widely and almost omni-present in
SEYFERT.

• It supports various algorithms for data compression, such as gzip or bz2.

• An HDF5 can be arbitrarily nested, resembling the structure of a directory tree with
subdirectories (HDF5 groups) and files (HDF5 datasets).

• There exists a Python library (h5py) that can be used for easily creating, reading and
writing HDF5 files.

• Multi-dimensional numpy arrays can be natively stored as HDF5 datasets, allowing to
save and load them without any intermediate reshape or transformation.

• HDF5 datasets and groups can have a dictionary of attributes, which can be used to store
simple data as bool, string or float. Attributes are also useful to store the metadata
of the files itself, like creation date, description and so on.
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• The datasets stored in an HDF5 file are retrieved only when explicitly accessed. This
allows to save RAM usage, since opening the file does not automatically load all the file
content in memory. This allows to work with very large files, as long as single datasets
are small enough to fit in the RAM.

Two kinds of additional input HDF5 files are needed for a SEYFERT run, containing information
about the redshift density and the bias (if present) of a given probe. Examples of these files
can be found in the SEYFERT gitlab repository.

B.4 Numerical integration

The integrals that define the angular power spectra in the Limber approximation are evaluated
numerically. Since the matter power spectra are evaluated from the Boltzmann solver on a
regular redshift grid, an interpolatory quadrature rule must be employed in order to compute
the integral. Therefore the problem is to approximate the value of the integral knowing the
integrand only at regularly sampled points.

There are various approaches that can be followed, but in this case some kind of interpola-
tion must be done, explicitly or implicitly. The simplest quadrature rules are the Newton-Cotes
formulas (see Sec. B.4.1), which give an approximation of the integral with a weighted sum
of the function samples. This weighted sum is the closed-form expression of the integral of a
interpolating polynomial, so there is an implicit interpolation in this method.

More precise methods for approximating integrals are Gaussian quadrature rules with free
nodes [91]. These rules rely on evaluating the integrand function at particular points, i.e. the
nodes of the quadrature, which are adjusted to minimise the error for the given function. This
means that the positions of these nodes are not a priori known, and most importantly they
depend on the particular function in exam. Therefore an interpolation must be done explicitly,
and then the interpolating function (spline) has to be passed to the quadrature algorithm,
which optimally finds the free nodes. Moreover, the result is an accurate approximation of
the integral of the spline, which is not necessarily closer to the true (unknown) value than the
result given by the Newton-Cotes quadrature. Therefore, in this case the Gauss quadrature is
not necessarily better than the classical Newton-Cotes quadrature. Moreover, Newton-Cotes
rules give closed-form expressions that can be easily vectorised, and this significantly boosts
the performances. For this reason the choice that has been done in SEYFERT is to adopt the
Newton-Cotes formulas for integrating Eq. (4.4) numerically.

B.4.1 Newton-Cotes quadrature

Newton-Cotes quadratures formulas [91] are interpolatory rules that approximate the integral
of a function f(x) using a weighted sum of the function samples on a regular grid. Assume to
have sampled f on n regularly spaced points x1, . . . , xn, with corresponding function values
fi = f(xi). An interpolatory quadrature formula consists in approximating the integral of f
as the integral of a polynomial p(x), which can be written as a weighted sum of the function
samples fi ∫ b

a
p(x)dx =

n∑
i=1

wifi , (B.7)
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where p(x) is the unique polynomial of degree n− 1 interpolating f(x) at the distinct points
x1, x2, . . . , xn. By Lagrange’s interpolation formula

p(x) =

n∑
i=1

f(xi)`i(x), `i(x) =

n∏
j=1
j 6=i

(x− xj)
(xi − xj)

(B.8)

where `i(x) is the elementary Lagrange polynomials associated with the node xi. It follows
that the weights are given by

wi =

∫ b

a
`i(x)dx (B.9)

Newton-Cotes formulas are special cases of interpolatory rules when the nodes are equispaced.
In general, having n nodes uniquely determines a polynomial of degree n−1. However it is

known that Newton-Cotes formulas becomes numerically unstable very soon with increasing
the order of the interpolating polynomial. In particular this starts to happen already with
n ≥ 8, see [92] page 390 for a discussion. Of course, in real life more than 8 function samples
will be available. In practice what is done is to use composite low order rules, which consist
in applying the interpolation to small sub-intervals of the integration range, and then sum up
together all the contributions to get a global answer for the integral.

In SEYFERT by default a composite Newton-Cotes rule of order 2 (Simpson’s rule) is used;
the maximum order allowed is n = 6. In what follows the simplest rules are briefly reviewed,
showing the performances on a non-trivial test function when the number of samples is in-
creased.

Trapezoidal rule

After the Riemann sum, which approximates the integral of a function with a sum of rectangles,
there is the trapezoidal rule, which is the Newton-Cotes formula of order 1. Given two points
x1 = a and x2 = b with the corresponding function values fa, fb, the interpolating polynomial
is a straight line

p(x) = fa +
fb − fa
b− a (x− a) (B.10)

The approximation to the integral in this case is given by the area under this straight line,
which is a trapezium ∫ b

a
dx p(x) =

b− a
2

(fa + fb) (B.11)

However this is a very poor approximation of the integral, as the upper left panel of Fig. B.3
shows. When more samples are available, a composite rule can be adopted. This consists in
applying the linear interpolation to more than one couple of points. Supposing to have a total
of n points including the extrema a and b, there will be n− 2 internal points xi

x1 = a, xi = xa + (i− 1)h, xn = b, i = 2, . . . , n− 2 , (B.12)

and the spacing between the points will be h = b−a
n−1 , since there are n−1 sub-intervals between

a and b. The trapezoidal rule applied to a single sub-interval [xi, xi+1] gives a contribution of

Ti =

∫ xi+1

xi

dx p(x) =
h

2
(fi + fi+1) (B.13)
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Figure B.3: Composite trapezoidal rule performances with increasing number of samples,
applied to a test function.

The total integral can be written as a sum of these pieces coming from the n−1 sub-intervals:

∫ b

a
dx f(x) '

n−1∑
i=1

Ti =
h

2

[
f1 + 2

n−2∑
i=2

fi + fn

]
, (B.14)

where the 2 in front of the internal points comes from the fact that these will be shared
between adjacent sub-intervals. Instead, this clearly not happen for the extrema, that appears
only once in the sum. It can be shown [91] that the global truncation error of the composite
trapezoidal rule is proportional to h2. This means that increasing the number of points gives
progressively better results, as it can be intuitively expected. This is shown in Fig. B.3, where
the error relative to the exact analytical value of the test function decreases down to 1× 10−7

when using 300 samples in the interval [a, b].

Simpson’s rule

The Newton-Cotes rule of order 2 is also referred as the Simpson’s rule, and it is based on a
parabolic interpolation of the function samples. For this reason at least 3 samples are needed
in order to apply this rule. Supposing to have 3 equispaced points x1, x2, x3, with x2 = x1 +h
and x3 = x1 + 2h, the three Lagrange basis polynomials defined by Eq. (B.8) are

`1(x) = (x−x2)(x−x3)
(x1−x2)(x1−x3) , `2(x) = (x−x1)(x−x3)

(x2−x1)(x2−x3) , `3(x) = (x−x1)(x−x2)
(x3−x1)(x3−x2) . (B.15)
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Figure B.4: Composite Simpson’s rule applied to a test function, progressively increasing the
number of samples.

The interpolating parabola is obtained from a linear combination of these polynomials weighted
by the function’s values:

p(x) = f1`1(x) + f2`2(x) + f3`3(x) . (B.16)

A straightforward computation of the integral of the `i’s then leads to the Simpson’s rule∫ x3

x1

dx f(x) '
∫ x3

x1

dx p(x) =
h

3
(f1 + 4f2 + f3) . (B.17)

Like for the trapezoidal, a composite rule can be built. However, when applying the composite
Simpson’s rule the samples must be subdivided in groups of 3 points each. Since the first and
the last point of each group are shared by the adjacent groups, except for the extrema, it turns
out that the number of samples must be odd in order to have an integer number of groups.
Assuming for the moment to have an integer number of groups, the composite Simpson’s rule
reads ∫ b

a
dx f(x) ' h

3

n−1
2∑
i=1

(f2i−1 + 4f2i + f2i+1) (B.18)

where by definition x1 = a and xn = b, and h is again the step size given by h = b−a
n−1 .

If the number n of samples is even, one point will be left out of the computation. It can
be included by applying the trapezoidal rule to an additional pair of points, including the
remaining point and another one belonging to a group of three. How this pair is chosen is
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Figure B.5: Comparison of the first three even orders of the Newton-Cotes quadrature. Each
column corresponds to a given order, as indicated in the titles.

conventional. The Simpson’s composite rule implemented in scipy (scipy.integrate.simps)
does the computation in two ways, applying the trapezoidal rule to the first and second point
or to the last and the second-last. The final result is computed by giving a simple average of
the two results. The convention followed in SEYFERT instead is to apply the trapezoidal rule
only to the last and second-last points, since in this way the algorithm can be generalised to
higher orders more easily.

The truncation error for the Simpson’s rule decreases with the step size with order h4 [91],
which gains two orders of magnitude with respect to the trapezoidal rule, without using more
function evaluations.

B.4.2 Implementation of the quadrature algorithm

The Newton-Cotes quadrature has been implemented in SEYFERT exploiting again the vec-
torisation offered by numpy. In fact the integrand function of the angular power spectra in
general is a 4D array, with the four dimensions corresponding to `, i, j, z respectively. The al-
gorithm has therefore been designed to accept a multi-dimensional array, with the possibility
to specify the axis along which the integration has to be performed. Since the approximation
of the integral is given by a weighted sum, the vectorisation can be easily achieved by doing a
proper indexing of the integrand array. The weights for the given order n are computed once
by mean of the scipy function scipy.integrate.newton_cotes, which gives n + 1 weights.
For example for n = 1 (trapezoidal) the weights will be two and equal to 1/2, as Eq. (B.13)
states. For n = 2 (Simpson) the weights are 3 and equal to 1/3, 4/3, and 1/3 respectively,
and so on. The maximum order allowed is n = 6, in order to be safe from the aforementioned
high-order numerical instabilities. After the order and the weights are known, the number Nb

148



APPENDIX B. SEYFERT: SURVEY FISHER FORECAST TOOL

of sub-groups is computed from the number of points Np by an integer division, according to
the formula:

Np − 1 = Nb · n+ r . (B.19)

Here r is the integer remainder from the division (Np− 1)/n and is the number of points that
are left out of the composite rule of order n. The first step of the numerical integration is done
by applying the composite rule at the first Nb · n points. If r 6= 0, Newton-Cotes of order r
is applied to the last r + 1 points, and the contribution is summed to the previous one. This
is because having r + 1 samples – the r remaining points and the last of the included ones
– allows to apply Newton-Cotes of order r at most. This is because r + 1 points allows to
uniquely determine an interpolating polynomial with degree at most r.

B.5 Numerical differentiation

In SEYFERT the derivatives of the angular power spectra are computed using the SteM numer-
ical method, which has been developed by Stefano Camera [82]. This algorithm has proven to
be numerically more stable than classical finite-difference methods, like the N -points stencil
derivative. In this section this algorithm is briefly described, also detailing how it has been
implemented in SEYFERT.

B.5.1 SteM algorithm

Given an independent variable x and a dependent variable y, the SteM algorithm uses an
iterative linear regression of N samples of y against N samples of x to give a numerical
estimate of the derivative

dy

dx

∣∣∣∣
x=x0

(B.20)

The x variable is sampled around the central value x0 in a symmetric way. The displaced
values are computed using displacements relative2 to the value of x0

xi = x0 + εi · x0 = x0(1 + εi) , (B.21)

and the function y(x) is sampled accordingly in these points

yi = y(xi) . (B.22)

In SEYFERT a total of 15 samples is employed: the central value, 7 displacements on the right,
and the 7 symmetric ones on the left. The values of the 7 positive displacements used are the
following

εi = {0.00625, 0.0125, 0.01875, 0.025, 0.0375, 0.05, 0.1} (B.23)

accompanied by their symmetric negative ones. Therefore, the angular power spectra must
be computed for 15 values of a given free parameter in order to compute the derivative with
respect to it. Each parameter is varied independently of the others; if Nparams are let free to
vary this leads to a total of

Nsamples = 1 + 14 ·Nparams (B.24)

2If x0 = 0, as in the case of wa, a reference value of x0 = 1 is used to compute the displacements.
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Figure B.6: Visualization of the SteM linear fit for the computation of the derivative of a
particular value of the WL (denoted by γ) auto-correlation. In this example the varying
parameter is wa, whose value in the reference cosmology is 0. Therefore the displacements are
computed using 1 as reference value.

evaluations of the C(`)’s. In a typical run there are 7 free cosmological parameters and 17
nuisance parameters – 10 bias parameters for GCph, 4 for GCsp and the 3 intrinsic alignment
parameters for WL – leading to a total of 337 evaluations.

Once the x and y samples are given an iterative procedure is started: at each step a linear
fit of y versus x is done, evaluating the maximum absolute percentage deviation of the y
values from the fitting straight line. If this deviation is smaller than 1% the algorithm stops,
returning the slope of the line as the value of the derivative. If the deviation is larger, the
first and the last values of x and y are removed, going to the next iteration. If only 3 samples
are left from the previous iterations, the algorithm stops independently of the value of the
deviation, since a linear fit with less than 3 points does not make any sense.

Regarding the stability of the SteM algorithm, numerical checks had been done in [5]
already. In particular, the SteM algorithm proved to be more stable than standard finite-
difference methods. For this reason in this work no extensive tests have been repeated about
the stability of the numerical differentiation.

B.5.2 Vectorisation of the linear regression

In order to compute the derivatives of the angular power spectra, a separate linear fit must be
done for each combination of `, i, j. As explained in Sec. B.1, the input for the computation
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is a 4D numpy array c_dvar_lij: the first dimension represent the parameter with respect
to which the differentiation is done, while the other three are `, i, j. The first and simplest
implementation one might come out with is to write a triple nested for loop over the last
three dimensions of the array `, i, j. However, since Python is an interpreted language, this
approach may be quite slow. Instead, in SEYFERT the computation is vectorised by exploiting
the efficiency of the numpy.polyfit function. This function accepts two arrays as inputs:
x and y, respectively representing the x and y values to be fitted. Also the order of the
polynomial fitting must be specified, which is 1 in this case for a linear fit. The x array must
be one-dimensional, while y can be at most two-dimensional. The first dimension of y must
match the length of x, while the second is independent. The function performs a polynomial
fit of the columns of y against x, and it is about 100 times faster than an ordinary python
for loop. In practice, in SEYFERT the 4D array c_dvar_lij is reshaped in 2D form using
the numpy.reshape function, grouping the last three dimensions into one. Then the reshaped
array is passed to polyfit along with the 15 values of the varied parameter as x, and after
the computation an inverse reshaping is done to get the 3D dc_lij array of the derivative.
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