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Abstract: The nondestructive characterization of cylindrical objects is needed in many fields, such
as medical diagnostics, tree trunk inspection, or concrete column testing. In this study, the radar
equation of Lambot et al. is combined with cylindrical Green’s functions to fully model and invert
ultra-wideband (UWB) ground-penetrating radar (GPR) data and retrieve the properties of cylindrical
objects. Inversion is carried out using a lookup table (LUT) approach followed by local optimization
to ensure retrieval of the global minimum of the objective function. Numerical experiments were
conducted to analyze the capabilities of the developed inversion procedure to estimate the radius,
permittivity, and conductivity of the cylinders. The full-wave model was validated in laboratory
conditions on metallic and plastic pipes of different sizes. The adopted radar system consists of
a lightweight vector network analyzer (VNA) connected to a single transmitting and receiving
horn antenna. The numerical experiments highlighted the complexity of the inverse problem,
mainly originating from the multiple propagation modes within cylindrical objects. The laboratory
measurements demonstrated the accuracy of the forward modeling and reconstructions in far-
field conditions.

Keywords: full wave inversion; ground penetrating radar; cylindrical objects

1. Introduction

Ground-penetrating radar (GPR) is a nondestructive measurement technique, which
uses high frequency electromagnetic waves to locate targets within dielectric materials. Due
to its fast data acquisition capability, its high resolving ability and the fact that it responds
to metallic as well as non-metallic targets, GPR has been widely used in agricultural and
environmental engineering [1], civil engineering [2], glacier and permafrost geology [3,4],
archaeological prospecting [5,6], landmine detection [7–9], etc. Meanwhile, microwave
imaging (MWI) has been introduced in an increasing number of fields, e.g., tree trunk
imaging [10–15] and clinical diagnostics [16–19], to determine the properties of their inner
structures [20–22]. Unlike most GPR applications, in which the assumption of half-space is
usually an adequate approximation that does not deviate much from reality, these more
recent applications focus on cylindrical or other irregularly shaped objects. To encourage
better applications of GPR and MWI to these new fields, a deeper understanding of their
ability to retrieve relevant electrical parameters of cylindrical media is necessary.

Typically, there are two major modes of analysis when using GPR to visualize the
cross section of a (nearly) cylindrical medium, namely, ray-based and full-wave inver-
sion approaches. The ray-based method mainly consists of determining the dielectric
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parameters and geometry of the inspected object by tracking the shape of the reflection
amplitude envelope or relating the reflection amplitudes with relative permittivity directly.
For example, Ježová, Harou and Lambot [23] numerically analyzed the reflection curve
characteristics obtained from a cylindrical medium and their physical experiments helped
to verify their interpretation. Li, Wen, Xiao and Xu [24] used a GPR ray-based tomography
technique incorporating a point cloud method to reconstruct the internal structure of a
tree trunk. For ray-based methods, the theories involved are relatively easier and the data
processing is more efficient. However, the information they provide is limited and the
results are often ambiguous or inaccurate due to the strong underlying simplifications.
Full-wave inversion methods focus on the full modeling of the radar waveforms, thereby
providing characterizations that are more detailed using numerical inversions [14]. The the-
ory involved is more complicated and the sensitivity to anomalies is relativity high. Such
methods mainly consist of two parts, namely, forward modeling, e.g., [25–27] and inversion
(or imaging reconstruction), e.g., [28,29], which usually involve expensive computation.

Electromagnetic modeling of wave propagation in cylindrical media has been studied
for a long time [30–33]. The research regarding the Green’s functions [34–36] constitutes
an essential part of this kind of study. A closed form Green’s function for cylindrically
stratified media was first developed in [37], and the authors of [38] extended that work. Ye,
Zhao, Xiao and Chai [39] developed a robust and efficient method for computing Green’s
function, based on a two-level approximation. Bhattacharya, Ghosh and Sarabandi [40]
proposed an efficient closed-form Green’s function which can remove the spatial domain
singularity in the spectral domain Green’s function. The ability of the closed-form Green’s
function to address the convergence problem and remove the spatial singularity [41,42]
can finally lead to a less singular and higher efficient forward modeling.

Although cylindrical Green’s functions are exact, the closed-form solutions of Maxwell’s
equations involving point sources are not sufficient to accurately model real radar data.
Indeed, wave propagation through the radar antenna(s) should also be accounted for. Due
to the inherent variations of impedance within the antenna, infinite multiple reflections
occur within the antenna as well as between the antenna and the target. Modeling radar
antennas can be performed using numerical methods, such as the method of moments,
finite element or finite difference methods. For instance, the gprMax software has been
successfully used to model complex GPR antennas [43]. However, numerical methods
require significant modeling efforts, significant computation times, and their accuracy
remains limited due to the inherent differences between the discretized models and the real
antennas. In that respect, Lambot, Slob, van den Bosch, Stockbroeckx and Vanclooster [44]
introduced an intrinsic radar equation for accurately and efficiently modeling radar an-
tennas when operated in far-field conditions. The model is based on global reflection
and transmission functions that are frequency-dependent and characteristic to an antenna.
These intrinsic functions can be estimated through a calibration procedure. The radar equa-
tion was generalized later to near-field conditions [45]. This model relies on assumptions
regarding the distribution of the backscattered field over the antenna aperture, which, if
respected, makes the antenna equation exact. The model was validated, in particular, for
wave propagation in 3D planar layered media with the corresponding closed-form Green’s
functions. However, it has not yet been tested for cylindrical objects.

In this study, we combine the far-field radar equation of Lambot et al. [44] with
cylindrical Green’s functions to fully model and invert ultra-wideband (UWB) GPR data
and retrieve the properties of cylindrical objects. Inversion is carried out using a lookup
table (LUT) approach followed by local optimization using the Nelder−Mead simplex
algorithm to ensure robust and efficient retrieval of the global minimum of the objective
function. Numerical experiments were conducted to investigate the well posedness of the
inverse problem and in particular the possibility of estimating the radius, permittivity, and
conductivity of circular cylinders. The full-wave model was then validated in laboratory
conditions on three metallic and three dielectric pipes of different diameters. In particular,
for dielectric pipes, the radius and permittivity were simultaneously retrieved, whereas
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only the radius was retrieved in the case of metallic pipes. Therefore, the reconstruction of
conductivity has not been explicitly explored in these preliminary inversion results. The
adopted radar system consists of a lightweight vector network analyzer (VNA) connected
to a single transmitting-and-receiving air-coupled horn antenna, which can be remotely
controlled using a cell-phone, tablet or computer [46].

The paper is structured as follows. In Section 2, the developed procedure, the main rel-
evant theory and the experimental setup used for its validation are described. Experimental
results are discussed in Section 3. Discussion and Conclusions follow in Section 4.

2. Methods and Experimental Set-Up
2.1. Computational Methods
2.1.1. Scattering Green’s Function for Cylindrically-Layered Media with Circular
Cross Section

A dielectric medium with N = 2 layers, as schematically shown in Figure 1, is
considered in this paper. These layers are separated by a cylindrical surface with circular
cross section of radius R. The inner one is characterized by a dielectric permittivity ε1,
electric conductivity σ1, and magnetic permeability µ1. The outer layer extends to infinity
and is characterized by the dielectric properties of vacuum (i.e., ε0 ≈ 8.85× 10−12 F/m,
µ0 = 4π × 10−7 H/m).
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An infinitesimal z-directed electrical dipole is assumed to be located in the outermost
layer at position (in cylindrical coordinates) r

′
= (ρ′, φ′, z′). The zz-component of the

spatial-domain dyadic Green’s function at point r = (ρ, φ, z) can be written as [26]

Gzz
(
ρ, φ, z, ρ′, φ′, z′

)
=
∫ ∞

−∞
G̃zz
(
ρ, φ, ρ′, φ′, kz

)
ejkz(z−z′)dkz (1)

The previous Green’s function can be split into two contributions: a singular part, GP
zz,

which corresponds to the free-space Green’s function, and a term GH
zz which is associated

to the scattering from the first interface. The corresponding spectral versions are denoted
as G̃P

zz and G̃H
zz, respectively. In particular, only the scattering component GH

zz is of interest
in this work. Given that the layered medium has a circular symmetry, the zz-component of
the spectral domain dyadic Green’s function G̃H

zz can be expressed in terms of cylindrical
harmonics as

G̃H
zz
(
ρ, φ, ρ′, φ′, kz

)
= − 1

4πω
(

ε0 +
σ0
jω

) k2
ρ0

∞

∑
n=−∞

d11,n
(
ρ, ρ′, kz

)
ejn(φ−φ′) (2)
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where the term d11,n(ρ, ρ′, kz) is the first diagonal element of the following 2× 2 matrix [40]

¯
DH,n

(
ρ, ρ′, kz

)
= H(2)

n
(
kρ0ρ

)
H(2)

n
(
kρ0ρ′

)
R0,1 =

[
d11(ρ, ρ′, kz) d12(ρ, ρ′, kz)
d21(ρ, ρ′, kz) d22(ρ, ρ′, kz)

]
(3)

In (3), kρ0 =
√

k2
0 − k2

z, with k2
0 = ω2µ0ε0 is the wavenumber in the outermost layer,

H(2)
n is the Hankel function of nth order and second type, and R0,1 denotes the reflection

matrix, which is obtained by imposing the boundary conditions at the cylindrical interface
between the two layers. In particular, by noting that the considered part of the dyadic
Green’s function is proportional to the zz-component of the field produced by a z-directed
point source, and that (1) and (2) basically represent an expansion into cylindrical harmonics

with different ejnφ dependance, it is possible to calculate
¯
R0,1 from the boundary conditions

involving the nth electric (Ẽz,n, Ẽφ,n) and magnetic (H̃z,n, H̃φ,n) field harmonics [26], i.e.,

[
Ẽz,n(ρ)

H̃z,n(ρ)

]
=

H(2)
n
(
kρ0ρ

)¯
R0,1·an + Jn

(
kρ0ρ

)
an ρ ≥ R

Jn
(
kρ1ρ

)¯
T0,1·an ρ < R

(4)

[
Ẽφ,n(ρ)

H̃φ,n(ρ)

]
=


¯
H

(2)

n
(
kρ0ρ

)¯
R0,1·an +

¯
J n
(
kρ0ρ

)
·an ρ ≥ R

¯
J n
(
kρ1ρ

)¯
T0,1·an ρ < R

(5)

where an is an array containing the coefficients of the incident wave,
¯
T0,1 is the transmission

matrix, kρ1 =
√

k2
1 − k2

z (with k2
1 = ω2µ0(ε1 + σ1/jω)), Jn is the Bessel function of first kind,

whereas
¯
H

(2)

n and
¯
J n are matrices whose elements are given by Hankel and Bessel functions

as detailed in [26]. Consequently, the boundary conditions become:[
H(2)

n
(
kρ0R

)¯
R0,1 + Jn

(
kρ0R

)¯
I
]
·an = Jn

(
kρ1R

)¯
T0,1·an[

¯
H

(2)

n
(
kρ0R

)¯
R0,1 +

¯
J n
(
kρ0R

)]
·an =

¯
J n
(
kρ1R

)¯
T0,1·an

(6)

By solving the previous equations, the reflection matrix can be written as

¯
R0,1 =

¯
D
−1

·
[

Jn
(
kρ1R

)¯
J n
(
kρ0 R

)
− Jn

(
kρ0R

)¯
J n
(
kρ1 R

)]
(7)

where
¯
D =

[
¯
J n
(
kρ1R

)
H(2)

n
(
kρ0R

)
−

¯
H

(2)

n
(
kρ0R

)
Jn
(
kρ1R

)]
[26].

Finally, exploiting the even symmetry of d11, the zz-component of the scattering part
of the spatial domain Green’s function is finally obtained as

GH
zz
(
ρ, φ, z, ρ′, φ′, z′

)
=
∫ ∞

0
G̃H

zz
(
ρ, φ, ρ′, φ′, kz

)
cos
[
kz
(
z− z′

)]
dkz (8)

2.1.2. Optimal Integration Path

The spatial Green’s function is obtained through a Sommerfeld-type integral over an
unlimited interval. As is well known, the computation of such an integral is a critical point,
because the integrand function is characterized by the presence of singularities, originating
from poles and branch points [26,47]. To avoid this problem, in the literature different
strategies based on the deformation of the integration path in the complex kz plane (usually
along elliptic or rectangular integration paths) and on the application of Cauchy’s integral
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theorem, have been proposed [48,49]. These techniques are usually valid or optimal for
specific configurations and require the proper tuning of the integration boundaries.

In this work, following the approach in [50], an optimal path is automatically obtained
by forcing that Im

(
kρi
)

is constant and equal to its value at kz = 0, where the integration
starts [50]. This strategy allows avoiding singularities and, especially, minimizing the
oscillations of the integrand, thereby accelerating integration. The efficiency of the ap-
proach increases with the distance between the radar antenna and the internal cylindrical
layer. It is particularly suited to far-field conditions. Considering the complex number

k̃z = kR
x + jkI

z
(
kR

x
)

and that kρi =
√

k2
i − k̃2

z, a change of variables α = −kR
x

c
ω and β = −kI

z
c
ω

has been done, where c represents the speed of light. Vacuum properties are considered
in the outermost layer, so k2

0 =
(

ω
c
)2. The individuation of the optimal path requires that

Im
(
kρ0
)
= const., i.e.,

Im
(
kρ0
)
= Im

(√
(α + jβ)2 − 1

)
=

1
2

√
2 + 2

√
α4 + 2α2β2 − 2α2 + β4 + 2β2 + 1− 2α2 + 2β2 = const. (9)

Since for k̃z = 0 we have α = −jβ, it directly follows that Im
(
kρ0
)
= 1. Consequently,

from the previous equation the following imaginary part of the complex variable defining
the integration path is obtained

kI
z

(
kR

x

)
=

kR
x√(

kR
x c
ω

)2
+ 1

(10)

The spatial domain Green’s function can be then calculated as follows

GH
zz
(
z− z′

)
=
∫ xmax

0
G̃H

zz

(
k̃z

)
cos
[
k̃z
(
z− z′

)] ∂k̃z

∂kR
x

dkR
x . (11)

with

∂k̃z

∂kR
x
= 1 + j

 1√(
kR

x c
ω

)2
+ 1

−
(
kR

x c
)2

ω2

√((
kR

x c
ω

)2
+ 1
)3

 (12)

2.1.3. Far-Field Radar-Antenna Model

We used the radar equation of Lambot et al. [44] applied to far-field conditions to
relate the cylindrical Green’s functions to the field actually measured at the radar reference
plane. This model was validated for planar layered structures, but not for cylindrical
objects, which is the purpose of this study. With this model, in far-field conditions, a
single point source and receiver is considered and a homogeneous field distribution is
assumed for the backscattered field over the antenna aperture. Thanks to the linearity of
Maxwell’s equations, wave propagation between the source or field points considered in
the Green’s functions and the radar transmission line reference plane is accounted for by
means of complex, frequency-dependent global reflection and transmission coefficients.
These characteristic coefficients intrinsically determine the antenna and transmission line
internal transmissions and reflections, and thereby infinite antenna−medium interactions
as well. Considering the cylindrical Green’s function presented above, this radar equation
is expressed in the frequency-domain as:

S11(ω) =
b(ω)

a(ω)
= Hi(ω) +

Ht(ω)GH
zz(ω)Hr(ω)

1− GH
zz(ω)H f (ω)

(13)
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where S11(ω) denotes the ratio between the backscattered field b(ω) and the incident field
a(ω) at the radar reference plane, ω is the angular frequency, Hi(ω) is the global reflec-
tion coefficient of the antenna for fields incident from the radar reference plane onto the
source, corresponding to the free-space antenna response, Ht(ω) is the global transmission
coefficient for fields incident from the field point onto the radar reference plane, Hr(ω) is
the global transmission coefficient for fields incident from the radar reference plane onto
the source point, and H f (ω) is the global reflection coefficient for fields incident from the
target onto the field point. To reduce the number of transfer functions to be determined
and avoid underdetermination, we define H(ω) = Ht(ω)Hr(ω). H f (ω) is, in particular,
responsible for the multiple reflections occurring between the antenna and the medium.
The radar-antenna characteristic functions can be calculated from calibrating measurements
performed at different distances from a planar copper plane or other known media.

2.1.4. Full-Wave Inversion Method

We limited our study to homogeneous cylinders. Hence, the purpose of inversion
is to retrieve from the radar signal the parameter vector b = [ε1, R, σ1] so that an objec-
tive function Φ(b) is minimized. ε1, R and σ1 represent the relative permittivity, radius
and electrical conductivity of the cylinder, respectively. The objective function Φ(b) is
formulated in the least-squares sense as:

Φ(b) =
n

∑
i=1

[S(ti)− S∗(ti)]
2 (14)

where S(ti) and S∗(ti) are, respectively, the measured and modeled GPR data in the time
domain after subtracting Hi(ω), namely, S(ti) = IFFT(S11(ω)− Hi(ω)). Although all
antenna effects could be filtered out from the original radar data by analytically inverting
(10), thereby directly providing the measured Green’s function, in this study we kept the
effects of H(ω) and H f (ω) for future comparisons with near-field conditions. Indeed,
in the latter case the radar equation cannot be analytically inverted [51]. Inversion is
performed in the time domain in order to remove the reflections from other objects in the
laboratory by defining a maximum time range. In this paper, we set the maximum time
range as 10 ns because within this time range, the maximum propagation distance of the
reflected electromagnetic waves we can receive is about 1.5 m, and there are no obstacles
in front of the antenna within this distance range. For larger times, extraneous reflections
from laboratory objects could interfere. In the full-wave inversion procedure, a LUT is first
built for looking up an approximate solution of the inverse problem. Then, this solution
is subsequently refined using local optimization. The LUT is an aggregate consisting
of massive forward modeling results corresponding to all combinations of parameter
sets chosen in the parameter space with a given resolution forming a multidimensional
parameter grid. The parameter space is large enough so as to include all the possibilities
of the measured models. The LUT can then be used to calculate the objective function for
each measurement and thereby find its minimum, i.e., the optimal parameter set of the
LUT grid. Finally, this solution is used as the initial guess b0 for the local optimization to
further refine the solution. The Nelder–Mead simplex (NMS) algorithm [52] was employed
in this study, but other local optimization algorithms could also be used.

2.2. Numerical Experiments

To analyze the capabilities of the inversion method to estimate the radius, permittivity
and conductivity of cylinders, we needed to do several forward modeling tests and build up
the lookup table representing different ranges of these parameters. Figure 2 represents the
model configuration for which synthetic Green’s functions and S(ti) signals were generated.
The isotropic homogeneous cylindrical model stood vertically in front of the antenna. All
the analyses were performed in the frequency range of 1–4 GHz. Table 1 shows the model
configuration parameters of the six different models. For forward modeling, model 1 and
model 2 were nonconductive cylinders of different radius and relative permittivity, and
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model 3 and model 4 were conductive models of different radius and conductivities. For
the four mentioned models above, the distance between the antenna and the outer surface
of the cylinder was set to d = 0.40 m. For building up the lookup table, model 5 was a
nonconductive cylindrical model with the radius ranging from 1 cm to 10 cm with an
interval of 1 cm and the relative permittivity ranging from 2 to 12 with an interval of 0.5,
and model 6 was a conductive cylindrical model with the radius being set the same as
model 5 but the relative permittivity being effectively set as 1 because conduction current
is dominant in a metal conductor. For model 5 and model 6, d was set to be both 0.15 m
and 0.4 m. The aggregate used for building up the LUT consisted of the forward modeling
results of model 5 and model 6. The radius and relative permittivity ranges covered all the
possibilities of our experimental models.
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Table 1. The parameter settings of the numerical models.

Model Radius (cm) Relative Permittivity Conductivity (S/m)

1 1, 5, 10 5 0
2 5 2, 6, 12 0
3 1, 5, 10 1 100
4 5 1 1, 10, 100
5 1, 2, 3, . . . 10 2, 2.5, 3, . . . 12 0
6 1, 2, 3, . . . 10 1 100

Laboratory Experimental Set-Up

• The Lightweight Radar System

The radar system consisted of a lightweight vector network analyzer (Planar R60,
Copper Mountain Technologies, IN, USA), generating stepped-frequency continuous-wave
signals, that was connected to a single transmitting and receiving doubled ridged horn
antenna (BBHA 9120D, Schwarzbeck Mess-Elektronik, Schönau, Germany). An Intel
Compute Stick with a power bank and smartphone was used to remotely control the
radar system (home-made WiFi-based application). Figure 3 shows the radar system in
measuring conditions, with a vertical polarization. The radar system was fixed on an
automated positioning arm that was remotely controlled.

• Measurements on the Cylindrical Models

We measured the GPR signals for three PVC tubes filled with dry sand and three
hollow metal tubes in the frequency range of 1 GHz to 4 GHz. The relative permittivity
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of the dry sand we used in the experiment was between 2.35 and 2.82, depending on
density, as was estimated by De Coster and Lambot [51]. The radiuses of the PVC tubes
were 0.0201 m, 0.0406 m, and 0.0805 m, and the radiuses of the metal tubes were 0.0170 m,
0.0248 m, and 0.0640 m. They are referred to as PVC-1, PVC-2, PVC-3, Metal-1, Metal-2
and Metal-3, respectively. For each cylindrical model, two measurements were taken with
d being set as 0.15 m and 0.40 m, respectively. During the measurement, the cylindrical
models stood vertically on the sand box and the antenna moved horizontally backward at
the center height of the cylinder.
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3. Results

To determine the complex values of the antenna characteristic coefficients for the
model described by Equation (10), we set up an experiment to measure the GPR signals
over a 3 × 3 m2 copper sheet, assumed as a perfect electrical conductor (PEC), at different
distances ranging unevenly from 0.31 m to 0.57 m. In total, nine measurements were
performed. The corresponding Green’s functions for a PEC were then calculated. Together
with the collected S(ω) data set, Equation (10) was solved for retrieving the antenna
characteristic functions.

Figure 4a shows the amplitude and phase of the return loss transfer function as a
function of frequency. The amplitude of Hi indicated the proportion of the emitted signal
which was not transmitted by the antenna and returned directly to the vector network
analyzer. For instance, at the frequency 3 GHz, |Hi| equaled 0.0664. This means that at
this frequency, 6.64% of the feeding signal is not radiated and returns directly to the vector
network analyzer. The BBHA 9120D horn antenna works better at higher frequencies. The
H phase variations with frequency were mostly linear, showing that the antenna was not
significantly dispersive.



Remote Sens. 2021, 13, 2370 9 of 18Remote Sens. 2021, 13, x FOR PEER REVIEW 9 of 18 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 4. Amplitude and phase of the (a) return loss transfer function (b) global transmission and 
reflection coefficient function and (c) feedback loss transfer function of the BBHA 9120D horn an-
tenna as a function of frequency. 

3.1. The Effects of Conductivity, Radius, and Relative Permittivity on Time Domain GPR 
Signals 

Let us consider the numerical models presented in Table 1. In this section, we ana-
lyzed the effects of the properties of the considered cylinders on the time-domain GPR 
signals. For the nonconductive cylinder indicated as model 1, the GPR waveform obtained 
with the antenna at a distance of 0.4 m is shown in Figure 5a. As the radius rose from 1 
cm to 10 cm, the first arrival time remained the same but the amplitudes of the first arrival 
slightly increased with the radius. However, the second arrival time and amplitudes in-
creased rapidly with the radius. The phase was both affected by radius and relative per-
mittivity.  
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3.1. The Effects of Conductivity, Radius, and Relative Permittivity on Time Domain GPR Signals

Let us consider the numerical models presented in Table 1. In this section, we analyzed
the effects of the properties of the considered cylinders on the time-domain GPR signals.
For the nonconductive cylinder indicated as model 1, the GPR waveform obtained with
the antenna at a distance of 0.4 m is shown in Figure 5a. As the radius rose from 1 cm to 10
cm, the first arrival time remained the same but the amplitudes of the first arrival slightly
increased with the radius. However, the second arrival time and amplitudes increased
rapidly with the radius. The phase was both affected by radius and relative permittivity.
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Figure 5. The effects of (a) radius and (b) relative permittivity on nonconductive cylindrical models.

Considering model 2, the effects of a change in the relative permittivity of the cylin-
drical target have been analyzed, as shown in Figure 5b. These results indicate similar
trends with the effects of radius. What makes the difference is that (1) the effect of the
radius on the first arrival amplitude is less obvious than that of relative permittivity; (2) the
second arrival amplitude is proportional to the radius but not continuously increasing with
relative permittivity. In our case, for the model with a radius equal to 5 cm, the second
arrival amplitude reached a maximum when the relative permittivity equaled 6; (3) the
second arrival time also showed a more complicated response with respect to the different
relative permittivity.

For conductive models (model 3 and model 4) as shown in Figure 6, the responses
were less complicated, and there were no second arrivals that could be identified due to the
PEC entirely reflecting the electromagnetic waves. The radius and conductivity affected the
amplitudes of the signals in almost the same way, indicating that the correlation between
these two parameters was very strong. This also means that inverting for both the radius
and the conductivity at the same time using the time domain signal would be very difficult
as multiple solutions of the inverse problem would exist (nonuniqueness of the inverse
problem). The amplitude after the first arrival did not decrease to the same value as those
before the first arrival, denoting the existence of creeping waves.
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For both conductive and nonconductive models, the backscattered signals from the
cylinder became weaker as the radius decreased. Therefore, characterizing small cylinders
will need higher frequencies and shorter distances for sufficient resolution and signal-to-
noise ratio.

3.2. Full-Wave Inversion Analysis
3.2.1. Topography of the Objective Functions

In order to analyze the well posedness of the inverse problem to estimate the radius
and permittivity of the laboratory models, we calculated the objective function distributions
for all the six laboratory cylinders. For the nonconductive cylinders PVC-1, PVC-2, and
PVC-3, the objective function was calculated, based on model 5. For the conductive
cylinders Metal-1, Metal-2, and Metal-3, the objective function was calculated based on
model 6.

Figure 7 shows the objective function of the three PVC pipe models filled with sand
at two different positions. For the smallest nonconductive model PVC-1, the objective
function distributions with respect to radius and relative permittivity at position 0.15 m
and 0.4 m were almost the same except for the bounds. The relatively easy changing
responses and the fact that there were no local minima indicated that retrieving the relative
permittivity and radius at the same time for small nonconductive cylindrical media could,
in principle, be feasible. The gradients near the global minimum were relatively small,
depicting good stabilities of the inverse problem because even if there were noise in the
measured data, the inversed parameters could still be around the real data. However,
high-resolution inversion of these small radius cylindrical objects like PVC-1 is of great
challenge, due to the ambiguity of the global minimum. To pursue a high-resolution
detection for small radius cylinders, higher frequencies must be employed.

For the nonconductive cylindrical model PVC-2, the radius was 0.0406 m, although
about two local minima emerged for each position, the global minimum was much smaller
than the local minima and the gradients around the global minimum were very sharp.
This demonstrates that in the frequency range 1–4 GHz, retrieving the radius and relative
permittivity of a nonconductive cylinder with a radius of around 0.04 m could be relatively
easy: well-defined minimum and relatively simple objective function topography. For the
nonconductive cylindrical model PVC-3, the radius was 0.0801 m, several local minima
occurred for both positions, indicating that inverting these large cylindrical objects in
the frequency range 1–4 GHz could be easily trapped in the local minimum. However,
the gradient of the objective function in correspondence to the global minima was much
sharper than the gradient close to the local minimum. If we choose the inversion algorithms
which have strong abilities to avoiding plunging into local minimum, inverting for both
the radius and the relative permittivity for the large nonconductive cylindrical targets in
the frequency range 1–4 GHz is theoretically possible.

For PVC-2 and PVC-3, when the distance between the antenna aperture and the
cylinder was equal to 0.4 m, the gradients around the global minimum were sharper than
those when the distance between the antenna aperture and the cylinder was equal to
0.15 m. This is mainly due to the fact that the far-field model is less applicable when the
distance between the antenna aperture and the detected object is less than a threshold,
which is defined as 1.2 times of the maximum dimension of the antenna aperture [53].
The presence of the local minimum indicates that for nonconductive cylindrical objects,
the relative permittivity and radius are coupled. For smaller cylindrical objects like PVC-
1, the coupling effect between the relative permittivity and radius also existed. We did
not observe any local minimum for PVC-1 because in the frequency range 1–4 GHz, the
resolution was not high enough to allow us to see more detailed results. In this condition,
we think that more local minima will be brought to sight if we use larger frequency ranges
(e.g., see De Coster, Tran and Lambot [54]).
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Figure 7. The objective function distribution of (a) PVC-1 with d equals 0.15 m, (b) PVC-2 with d
equals 0.15 m, (c) PVC-3 with d equals 0.15 m, (d) PVC-1 with d equals 0.4 m, (e) PVC-2 with d equals
0.4 m, (f) PVC-3 with d equals 0.4 m.

Figure 8 shows the objective function with respect to the radius for a cylindrical metal
model. For the distance d = 0.15 m, the minimum of the objective function for Metal-
1, Metal-2 and Metal-3 occurred at radius 0.01 m, 0.01 m and 0.02 m, respectively. We
think that these discrepancies between the model and the measurements mainly originate
from the fact that we reached the limit of the signal-to-noise ratio. To encourage higher
accuracy, higher frequencies would be needed. For the distance d = 0.4 m, the minimum
of the objective function occurred at radius 0.01 m, 0.02 m and 0.06 m, respectively. For
the conductive cylinders, when the position was 0.4 m, the minimum of the objective
function was consistent with the real radius values. However, closer, the agreements were
less satisfactory.
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3.2.2. The Local Optimization Results

Tables 2 and 3 show the inversion results for the six cylindrical models at distances
0.15 m and 0.4 m, respectively. For both positions, the estimated radius of the PVC-1,
PVC-2 and PVC-3 targets were close to the measured value. The relative permittivity was
estimated in a range from 1.8428 to 2.4316. For Metal-1, Metal-2 and Metal-3, the estimated
radiuses were less satisfying for position 0.14 m than that of 0.4 m.

Table 2. The inversed parameters of the laboratory models at position 0.15 m.

Model Radius (m) Relative permittivity

Estimated Measured Error (%) Estimated Measured

PVC-1 0.0236 0.0201 17.41 1.8428 2.35–2.82
PVC-2 0.0432 0.0406 6.40 2.0641 2.35–2.82
PVC-3 0.0801 0.0805 0.50 2.4316 2.35–2.82

Metal-1 0.0051 0.0170 70.00 / /
Metal-2 0.0082 0.0248 66.93 / /
Metal-3 0.0207 0.0640 67.66 / /

Table 3. The inversed parameters of the laboratory models at position 0.4 m.

Model Radius (m) Relative permittivity

Estimated Real Error (%) Estimated Measured

PVC-1 0.0210 0.0201 4.48 2.3283 2.35–2.82
PVC-2 0.0419 0.0406 3.20 2.2918 2.35–2.82
PVC-3 0.0815 0.0805 1.24 2.4057 2.35–2.82

Metal-1 0.0124 0.0170 27.06 / /
Metal-2 0.0203 0.0248 18.15 / /
Metal-3 0.0528 0.0640 17.50 / /

In laboratory conditions, the signal-to-noise ratio is, in general, relatively high. Re-
trieving the global minimum is not difficult, especially when the searched parameters in
the lookup table are dense enough. However, we observed some discrepancies between
the model and the measurements, especially for the cases where the backscattered signal
from the cylinder was relatively small. In that respect, this could be improved by operating
closer to the target and by using much higher frequency ranges. Besides, for nonconductive
cylindrical media, the influence of relative permittivity and radius on the objective function
is correlated, further increasing uncertainties in the retrieved parameters.

Figures 9 and 10 show the measured time domain signal and the computed data using
the inversion results at position 0.15 m and 0.4 m, respectively. At both positions, the
measured and computed data matched quite well for the conductive cylindrical models.
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For the nonconductive cylindrical model, the computed amplitude of the first arrival and
the second arrival matched well with the measured data. There was a slight mismatch
before the first and also after the second arrival at position 0.15 m but this kind of mismatch
at position 0.4 m was larger.

Remote Sens. 2021, 13, x FOR PEER REVIEW 14 of 18 
 

 

measured and computed data matched quite well for the conductive cylindrical models. 
For the nonconductive cylindrical model, the computed amplitude of the first arrival and 
the second arrival matched well with the measured data. There was a slight mismatch 
before the first and also after the second arrival at position 0.15 m but this kind of mis-
match at position 0.4 m was larger. 

Both numerical and laboratory results indicate that the amplitude of the first reflec-
tion is a very important parameter for cylinder inversion. For conductive cylindrical me-
dia, because both the radius and the conductivity affect similarly the amplitude of the first 
reflection, it is difficult to retrieve these two parameters at the same time (highly corre-
lated) as has been analyzed in Section 3.1. For the nonconductive cylindrical model, alt-
hough there were greater relative mismatches before the first arrival compared to the con-
ductive models, the retrieved radius and the relative permittivity still stayed in a normal 
range.  

 
(a) 

 
(d) 

 
(b) 

 
(e) 

 
(c) 

 
(f) 

Figure 9. The comparison between the measured time domain signal and the modeled time domain signal of (a) PVC-1, (b)
PVC-2, (c) PVC-3, (d) Metal-1, (e) Metal-2, (f) Metal-3 at position 0.15 m.
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Both numerical and laboratory results indicate that the amplitude of the first reflection
is a very important parameter for cylinder inversion. For conductive cylindrical media,
because both the radius and the conductivity affect similarly the amplitude of the first
reflection, it is difficult to retrieve these two parameters at the same time (highly correlated)
as has been analyzed in Section 3.1. For the nonconductive cylindrical model, although
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there were greater relative mismatches before the first arrival compared to the conductive
models, the retrieved radius and the relative permittivity still stayed in a normal range.

4. Conclusions

We addressed forward and inverse modeling of UWB radar data for wave propaga-
tion through cylindrical objects. In particular, we combined the radar equation of Lambot
et al. [43–49] with cylindrical Green’s functions, which was initially validated only for
planar layered media. Numerical analyses were performed to investigate the well posed-
ness of the inverse problem and robustness of the inversion strategy, i.e., the lookup table
approach combined with local optimization to refine the results. Assuming cylinders with
a unique layer, the analysis of the topography of the objective function, as well as numerical
inversions, demonstrated the uniqueness of the solution to retrieve the cylinder radius
and permittivity. Nevertheless, the inverse problem becomes more complicated when
electrical conductivity is also considered, due to correlations with the other parameters.
Our numerical analysis results indicate that inverting for both the radius and electrical
conductivity at the same time is not a good choice because these two parameters affect the
radar signal in a very similar way. The presence of local minima in the objective functions
also imposes the use of a global optimization strategy to find the global minimum of
the objective function. For the conductive cylinders, the amplitude of the first arrival is
increasing with both electrical conductivity and radius. The phase and amplitude of the
second arrival are affected by the two parameters in a more complicated way. For small
radius cylinders, we did not detect any local minimum in the objective function because
the frequency range we employed was not high enough to allow us to see more detailed
results, and the global minimum was quite flat. This makes it easy to inverse a coarse but
stable result for small cylinders (radius is about 0.02 m) in the frequency range 1–4 GHz.
For the cylinders with an intermediate or larger radius, the global minimum was very well
defined. Yet, several local minima occurred because the radius and the relative permittivity
were partly correlated in the inverse problem. We believe that more local minimum will be
brought to sight if larger frequency ranges are employed. For the conductive cylindrical
media, both the radius and the conductivity were highly correlated as they both affected
similarly the amplitude of the reflections. These two parameters are therefore complicated
to retrieve.

The laboratory results demonstrated that, in far-field conditions, the model accurately
represents real radar data. Nevertheless, when the cylinder has a relatively small diameter
and small reflection coefficient at its surface, leading to a relatively weak backscattered
signal, modeling results are less satisfactory due to the limited signal-to-noise ratio. In that
case, operating closer to the target and using higher frequency ranges become necessary.
Future research will focus on near-field modeling of radar data for improving the accuracy
of the reconstructions. In the meantime, our methods will be tested on more complicated
structures, with the goal of enhancing the inversion method to use FWI in more areas, such
as tree trunk inspection and concrete column testing.
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